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ABSTRACT
Ethereum, the second-largest cryptocurrency after Bitcoin, has attracted wide atten-
tion in the last few years and accumulated significant transaction records. However,
the underlying Ethereum network structure is still relatively unexplored. Also, very
few attempts have been made to perform link predictability on the Ethereum transac-
tions network. This paper presents a Detailed Analysis of the Ethereum Network on
Transaction Behavior, Community Structure, and Link Prediction (DANET) frame-
work to investigate various valuable aspects of the Ethereum network. Specifically,
we explore the change in wealth distribution and accumulation on Ethereum Fea-
tured Transactional Network (EFTN) and further study its community structure. We
further hunt for a suitable link predictability model on EFTN by employing state-
of-the-art Variational Graph Auto-Encoders. The link prediction experimental re-
sults demonstrate the superiority of outstanding prediction accuracy on Ethereum
networks. Moreover, the statistic usages of the Ethereum network are visualized and
summarized through the experiments allowing us to formulate conjectures on the
current use of this technology and future development.

Subjects Data Mining and Machine Learning, Data Science, Emerging Technologies
Keywords Ethereum, Graph Neural Network, Wealth Distribution, Network Community
Structure

INTRODUCTION
Networks are ubiquitous data structures representing complex real-world scenarios
that generally involve relationships among objects (Hamilton, 2020). Blockchain is
one of the promising networks that have the potential to reform several conventional
businesses. The first generation of blockchain, namely Bitcoin, has demonstrated that
the global consensus can be completed without a trusted third party or central authority.
As a result, many researchers have put a lot of effort into designing more powerful and
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multifunctional blockchain systems due to their high applications in numerous real-world
settings.

Later, Ethereum (a system of a transaction-based state machine and a fully decen-
tralized peer-to-peer) was developed in 2015 and became the second-largest blockchain
platform, where the market value reached over 1,000 million dollars in 2020 (Nakamoto,
2019;Wood, 2014;Ma et al., 2021; Akhtar et al., 2021). After the development of
Ethereum, it has been successfully used in a variety of applications, including transaction
management, smart contracts, and industrial applications. Since Ethereum’s growth in
value and adoption in the market, critical enterprise applications based on programming
frameworks, and the total number of users is increasing, the research community’s
attention is now focused on investigating and analyzing various aspects of the Ethereum
system (Wu et al., 2019).

Although various statistical analyses on blockchain transactional networks have been
performed, most of these methods focus on deanonymization (Androulaki et al., 2013;
Ober, Katzenbeisser & Hamacher, 2013; Said et al., 2019), clustering (Meiklejohn et al.,
2013; Said et al., 2018), and finding malicious activities (Hirshman, Huang & Macke,
2013; Harlev et al., 2018;Möser, Böhme & Breuker, 2013; Ao et al., 2021; Rodriguez-Garcia,
Sicilia & Dodero, 2021) of Bitcoin system. However, such Bitcoin data analysis cannot be
applied or performed directly on the Ethereum data because of the different protocols and
designs.

Ethereum users’ activities are encapsulated in the blocks as shown in Fig. 1 where each
transaction inside a block includes the sending and receiving addresses and the transferred
value. As an open shared ledger, Ethereum allows any user to store the history of the
entire transaction. By using this history, special nodes (miner’s node) can confirm new
transactions. Miner’s integrity is determined by a proof mechanism that validates miners’
transactions. It notifies new transactions added to the Ethereum chain via blocks added at
a constant rate between 10 and 20 s (Gervais et al., 2016).

Ethereum is difficult to calculate when changing a transaction (double spending)
(Rosenfeld, 2014) that a user has already used since the processing information for all
relevant blocks must be re-executed. All users of the Ethereum network receive and send
transactions through ID or address generated by the Elliptic Curve Digital Signature
Algorithm (ECDSA), which gives the private and public key pairs. The private key is used
to send transactions to another address, and the public key is used to receive transactions
from another address. Ethereum users can synchronize the nodes with the network to get
information about every transaction. A transaction includes sender address, recipient
address, amount (Ether), time, and other attributes as shown in Table 1. However, for
security and anonymity, a user’s real identity is not tied to an address, making analysis
difficult.

Existing studies on Ethereum focus on the analysis of the transactional Ethereum
data in terms of quantity, network in-degree, and out-degree distributions. For example,
Muzammal et al. (2019) deployed the Decision Tree algorithm to predict future trans-
actions by utilizing two features: ‘‘from’’ and ‘‘to’’, which demonstrated the capability
of using the network theory to analyze the Ethereum transactional network. However,
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Figure 1 The structure and transaction of Ethereum blockchain.
Full-size DOI: 10.7717/peerjcs.815/fig-1

most studies in this area still overlooked detailed analyses of the network community
structures. While extensive studies have been performed on blockchain networks such
as Bitcoin (Nerurkar et al., 2021) due to its long establishment, network analyses on
Ethereum are quite limited (Li et al., 2020). Such analyses could play a crucial role in
wealth distribution, the network’s relational structure, and the link predictability from
heterogeneous network data.

This paper presents a sequence of studies on the Ethereum network, including
detecting community structures and investigating link predictability on the transaction
network using a graph structure learning technique. Specifically, we propose a Detailed
Analysis of Ethereum Network on Transaction Behavior, Community Structure, and Link
Prediction framework, namely DANET, as a unified platform to conduct various analyses
simultaneously. Specifically, DANET consists of four main modules: (1) Ethereum Data
Management; (2) Ethereum Transaction Behavior Analysis; (3) Ethereum Community
Structure Analysis; and (4) Ethereum Link Prediction Analysis. In particular, Ethereum
Data Management is designed to collect and filter the transactional data used in the
experiments. At the same time, Ethereum transaction behavior analysis and Ethereum
community structure analysis are proposed to better understand the network’s charac-
teristics, such as in-degree and out-degree relationships. Also, Ethereum Link Prediction
Analysis is introduced to perform the graph construction and representation for the link
prediction. The experimental results show some useful statistical characteristics of the
Ethereum network in terms of the distribution of active addresses, traffic of Ether history
per address, and the degree distribution. Also, we could achieve high accuracy from 80–
90% on the link prediction task given the time-series snapshot graph as inputs.

The main contributions of this manuscript are as follows:
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Table 1 Block and transactions’ attributes of the Ethereum data.

Attribute Description

Block Information
name A unique block identifier
nonce A hash of proof-of-work
hash A unique hash of the block
miner A beneficiary address who receives mining reward
total Difficulty Indicating the total difficulty of the chain up to a specified

block by an integer value
difficulty Specifying the difficulty level by an integer value
extraData A field containing additional data from a block
size The block size in bytes
gasUsed Total gas used by all transactions in a block
gasLimit Maximum gas usage of all transactions in a block
timestamp A UNIX timestamp when blocks were contrasted
transactions Unique ID of the transaction or a hash array of 32-byte

transactions
uncles Uncle block hashes array

Transactional Information
nonce Before that transaction, total transactions made by similar

sender
hash A unique transaction hash
blockNumber A unique block number for the committed transaction

block
blockHash A unique hash for the committed transaction block
from A unique hash string considered as sender’s address
to A unique hash string considered as receiver’s address,

resulted null if creating contract is the purpose of received
transaction

value The transferred amount in (Wei) where Wei is unit of
Ethereum

gasPrice Sender provided gas proice in (Wei)
gas Sender provided gas amount
input Extra data sent with the transaction

• We propose DANET: A Detailed Analysis of Ethereum Network on Transaction Be-
havior, Community Structure and Link Prediction framework as a unified framework
to return various aspects of analysis to support the understanding of the Ethereum
network.
• We study the matter of Ethereum transaction tracking from a network perspective (i.e.,
the influential addresses and community structure) which gives a deeper understanding
of Ethereum transaction records and could contribute to the long-term evolution of the
blockchain.
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• We model Ethereum transactional data in the form of a heterogenous attributed
network that preserves all the transactions’ essential information with graph auto-
encoders for Ethereum link prediction.
• We make the code and dataset available for research purposes at github.com/Anwar-
Said/Link-Predictability-using-VGAE.

The rest of the paper is organized as follows. ‘Introduction’ outlines the Ethereum
data analysis and network-based representation approaches. ‘Related Work’ discusses
background and relevant literature. ‘The Proposed Framework: DANET’ presents the
methodology used in this research. ‘Experiment Results’ provides the experimental results
and relevant discussions. Finally, ‘Conclusions’ concludes the paper.

RELATED WORK
This section presents an overview of the recent advancements in Ethereum, Bitcoin,
and Network representation, mainly divided into Ethereum data analysis and network
representation. The first category of approaches involves studying Ethereum and Bitcoin
data using different techniques, while the latter deals with learning network structures
using deep learning (DL) based graph representation approaches.

Ethereum data analysis
Recently, many methods have been proposed to explore the Bitcoin network. Gencer et
al. (2018) analyzed the number of Bitcoin users having large balances and studied graph-
based Union-Find algorithm for finding addresses matching best to individuals. The
authors also studied whether Bitcoin is primarily used for saving or routine transactions.
Karame, Androulaki & Capkun (2012) presented a scenario for spending and avoiding
double payments in Bitcoin transactions, by calculating the average ‘‘standard deviation’’
time, ‘‘transaction acceptance’’ time and ‘‘block generation’’ time of the network.

Similarly, Chan & Olmsted (2017) used a transaction-based graph that was configured
on each node to analyze the behavior of each address. They also clustered the nodes
using the similarity of the graph. The study concluded that Ethereum’s new transaction
input is independent of the output of past unspent transactions, unlike Bitcoin. Gencer
et al. (2018) analyzed the distribution statistics of various blockchains by mining power
distribution. The results have shown that 61% of the weekly mining power was shared by
only three IDs, with 90% of the power being shared by 11 entities. Mining nodes’ integrity
was also evaluated by calculating the block numbers in the node that resulted in blocks
of ankles(blocks that most miners rejected). Koshy, Koshy & McDaniel (2014) found that
Bitcoin clients are designed for data collection where clients actively connect with their
peers and collect all broadcast data along with IP information. The authors analyzed
Bitcoin traffic, looked for anomalous relay patterns, and mapped Bitcoin addresses to
IPs using the collected data. Moreover, anonymity links in the Bitcoin network were
discovered using the aggregation method proposed by Reid & Harrigan (2011). The ag-
gregation method associates different bitcoin addresses with users by specifying multiple
inputs, multiple outputs, regular transactions, and geographically co-located IP addresses
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within a period. By splitting the shared Bitcoin wallet into different units,Meiklejohn et
al. (2013) worked on the identification of identities in the executed transaction chunk
by introducing intelligent clustering. By using heuristics of participating payments and
address changes, authors who identified approximately 3.4 million clusters were able
to put nearly 2,000 names from them. Additionally, Ober, Katzenbeisser & Hamacher
(2013) suggested a structural analysis technique for the prediction of graph anonymity
of the Bitcoin transactions. The author used a global passive adversary that defines entities
according to the linkability of a transaction. Global enemies were also using participatory
payment and address to change reasoning.

After Bitcoin, Ethereum is perhaps the second most popular cryptocurrency-based
network; both employ blockchain, a distributed ledger technology. Both Bitcoin and
Ethereum are digital currencies; however, the fundamental aim of Ether (Ethereum
transactional token) is to facilitate and monetize the operation of the smart contract and
decentralized application platform, rather than establish itself as an alternative monetary
system. While Bitcoin networks have been extensively investigated and analyzed in the
previous literature, the recent emergence of Ethereum in 2015 has merely drawn attention
from limited research, making it scarcely explored (Li et al., 2020). Some of the recent
studies that are relevant to the Ethereum data analysis is discussed here.

Maeng, Essaid & Ju (2020) proposed a node discovery algorithm for the Ethereum net-
work utilizing the P2P links discovery. Furthermore, they analyzed the collected Ethereum
data to identify the relationship between nodes, heavily connected nodes, and nodes geo-
distribution. Farrugia, Ellul & Azzopardi (2020) proposed an XGBoost based classification
algorithm for detecting the illicit accounts on the Ethereum network. Their dataset
comprised 2,179 illicit accounts flagged by the Ethereum community and 2,502 normal
accounts. They have identified that top features associated with illicit activities include
‘Time diff between first and last(Mins)’, ‘Total Ether balance’, and ‘Min value received’.
Li et al. (2020) highlighted that all cryptocurrency and crypto-token transactions are
permanently recorded on distributed ledgers and are publicly accessible, allowing for the
development of a transaction graph and the analysis of connections between transaction
graph characteristics and crypto price dynamics. They used the principles of persistent
homology and functional data depth to study Ethereum crypto-tokens, particularly
investigating price anomaly predictions and hidden co-movement between tokens. Using
topological data analysis and functional data depth into blockchain data analytics, they
discovered that the Ethereum network could provide valuable insights on price changes of
crypto-tokens that are otherwise largely inaccessible with conventional data sources and
traditional analytic methods. Xie et al. (2021) proposed to model Ethereum transaction
records with a time-series snapshot network (TSSN) that captures the transactions’ spatial
and temporal aspects. The network was traversed using the temporal biased walk (TBW)
algorithm that effectively embeds accounts via their transaction records. They further
explored two problems: phishing node classification and link prediction using a number
of graph embedding algorithms. This study, however, lacks the analysis of the global
Ethereum transaction network. Closest to our research would be the study byWu et al.
(2021) where the community detection problem was examined in both the Bitcoin and
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Ethereum networks. The low-rank community detection algorithm proposed byWai et
al. (2018) was used to detect communities in the Ethereum network. However, their study
represented the Ethereum network as a graph of EoAs (users) and CAs (contracts) nodes
since their objective was to identify sub-communities. Our research, on the other hand,
also considers the Ethereum transactions as well.

Network representation and link prediction
Learning network structure has received considerable attention in the last few years due
to its wide range of applications, including recommender systems, molecular structures,
biological systems, and various physical systems (Cai, Zheng & Chang, 2018). Since the
network structure is unordered, classical machine learning and DL approaches are not
directly applicable. The DL application on graphs was first presented by Scarselli et al.
(2009) where Graph Neural Networks (GNNs) was proposed. This idea was later refined
and extended by Gallicchio & Micheli (2010) and Kipf & Welling (2016a). GNNs methods
generally involve several DL de facto standards such as random walks over networks,
convolutions, recurrent neural networks, adversarial networks, message passing and
autoencoders (Cai, Zheng & Chang, 2018; Hamilton, Ying & Leskovec, 2017; Zhang, Cui
& Zhu, 2020; Said et al., 2020). These methods work in several settings in both super-
vised and unsupervised fashions. Various tasks can be performed over networks using
these approaches, such as graph classification, node classification and link prediction
(Bojchevski & Günnemann, 2018; Kipf & Welling, 2016b; Ahmed, Hassan & Shabbir, 2020).
In the Ethereum network perspective, link predictability defines the ability to identify
future transactions between two addresses. In other words, link prediction is a problem
of identifying potential or missing links in a network.

From a network perspective, the link prediction task is a widely studied problem where
its approaches consist of three categories: heuristics methods, graph embedding methods,
and feature learning methods. The heuristics methods usually compute node similarities
using graph-theoretic methods and use them as a likelihood of links (Zhang et al., 2020).
Among which preferential attachment (Barabási & Albert, 1999), Jaccard coefficient
(Liben-Nowell & Kleinberg, 2007), and Katz index (Katz, 1953) are well-known methods.
Graph embedding methods involve learning free-parameter node embeddings based on
the predefined network in a transductive setting where they cannot be generalized on
unseen nodes (Grover & Leskovec, 2016; Hamilton, 2020). The third category involves the
powerful and recently emerged Graph Neural Networks (GNNs) methods which learn
node features using message passing mechanism and generalize well on unseen nodes
(Kipf & Welling, 2016a; Kipf & Welling, 2016b; Said et al., 2021; Bojchevski & Günnemann,
2018; Hamilton, Ying & Leskovec, 2017). In a supervised setting, Graph Auto Encoders
(VGAE) is largely adopted specifically for link prediction (Kipf & Welling, 2016b). In link
prediction, VGAE learns node embeddings in an unsupervised fashion with a negative
sampling approach (Yu et al., 2018). Kipf & Welling (2016b) introduced an unsupervised
framework for learning graph-structured data with variational auto-encoders and latent
variables. These methods have shown promising results and are now considered to be
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powerful tools for learning the graph-structured data (Zhang, Cui & Zhu, 2020; Said et
al., 2020).

Unlike the existing works, we propose the framework named DANET to provide the
Detailed Analysis of Ethereum Network on Transaction Behavior, Community Structure,
and Link Prediction framework as a unified platform. Particularly, we adopt a unique
approach to represent Ethereum data in the network form in the graph structure, allowing
us to observe several exciting properties of the Ethereum network. We also considered the
link predictability task on the constructed network and deployed VGAE (Kipf & Welling,
2016b), a powerful GNNs based learning model that yields outstanding link prediction
results. We show that the Ethereum network consists of an exciting community structure,
following the phenomenon of real-world networks.

THE PROPOSED FRAMEWORK: DANET
As shown in Fig. 2, to comprehensively analyze the Ethereum network and transaction
records, we propose a consolidated framework: DANET, which includes four main
modules to deliver the different analysis results. (1) Ethereum Data Management: to
collect Ethereum transactional data for the experiments and compute the statistical
characteristics of the Ethereum network; (2) Ethereum Transaction Behavior Analysis:
to investigate the transaction behavior such as in- and out-degree relationships; (3)
Ethereum Community Structure Analysis: to identify the trait of Ethereum community
structure; (4) Ethereum Link Prediction Analysis: to evaluate the effectiveness of our
framework on the Ethereum link prediction task. The details of each component are
elaborated in the following subsections.
Ethereum data collection
For data collection, we synced the Ethereum full node to collect all the historical trans-
actional data. We used a spark cluster with one master node and two worker nodes
with Ubuntu 16.04 having 40 GB RAM on each machine and an Internet connection
of 10Mbps. We used geth (https://geth.ethereum.org/). Ethereum client as a full node to
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collect all the historical blocks data. This node took 11 days to collect data till 2018. We
used the web3 API to send RPC requests to the Ethereum node. Web3 is an Ethereum
compatible JavaScript API that implements the general JSON RPC specification. JSON-
RPC is a transport-agnostic protocol that can be used over sockets and HTTP. We
defined the RPC port and address while configuring the Ethereum node. We used
web3.eth.getBlock(id,true) to retrieve blocks and extract transaction information from
each block, and save the extracted information to a PostgreSQL database. The total
collected Ethereum transactions data was from ‘‘2015-08-07′′to ‘‘2019-01-01′′comprising
189 million transactions in 55 blocks.

Ethereum transaction behavior analysis
We used the Ethereum transactions dataset used byMuzammal et al. (2019). The
dataset is 200 MB in size and was first downloaded and processed for understanding
the Ethereum network. The raw data can be downloaded from Google BigQuery (https:
//tinyurl.com/7bmh3xkf). We constructed a directed Ethereum Transaction Featured
Network (ETFN) where vertices represent addresses and edges represent the relationship
in terms of transaction among the vertices. We also use the number of transactions
among the pair of addresses (nonce), and the transferred amount (value) as a feature set
over each edge to preserve transaction information. Formally, our ETFN is a attributed
directed graph G = (V,E) where V = {v1,v2,v3,...,vn} and E = {e1,e2,e3,...,em} where
n= |V |,m= |E|. Also, we define e = (u,v,w) where u and v represent two nodes in V ,
and w represents the weight of the edge between these two nodes .

Ethereum community structure analysis
Exploring the community structure of a network plays a vital role in understanding the
underlying network structure. There is no universal definition of a community within a
network. However, it is widely accepted that the community represents a sub-group of
vertices that are densely intra-connected and sparsely interconnected with the rest of the
network (Said et al., 2018). A community represents a set of individuals with common
interests within a network. For example, in a protein-protein interaction network, pro-
teins having common functionality may belong to the same community. A community
may represent a particular region of the brain having dense neurons connectivity in a
brain network. Similarly, in a transaction network, a community represents individuals
who frequently make transactions with each other. Exploring a transaction network’s
communities can reveal individuals’ potential and valuable information regarding their
transaction patterns and time slots (if the network is time-variant) (Newman & Girvan,
2004; Newman, 2006; Said et al., 2019).

Due to numerous applications in a wide range of real-world settings, community
detection has caught the research community’s special attention, especially the Louvain
community detection algorithm (Blondel et al., 2008). The Louvain algorithm is a greedy
method based on the optimization of the modularity measure that has been extensively
used to identify communities in crypto-currency networks, such as that of Bitcoin (Remy,
Rym &Matthieu, 2017; Zhang, Wang & Zhao, 2020; Gavin & Crane, 2021). While the
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Bitcoin network has some differences from the Ethereum network, it makes sense to
follow similar protocols widely used to analyze these cryptocurrency networks. The
Louvain algorithm is a greedy method based on optimization of the modularity measure,
which can be defined for a simple undirected network as follows.

Q=
k∑

c=1

[
Ec
E
−

(
degc
2E

)2
]

(1)

In the above equation, k is the total number of communities, Ec is the total number of
edges, degc indicates the total degree in the community c , and E is the total edges in the
network. The modularity value ranges between [-1,1], where the highest value indicates
a good community structure and vice versa. The negative value means no community
structure in the network. The value approaches zero if all the vertices are assigned to a
single community (Newman, 2006).

The Louvain algorithm optimizes the modularity value of the network and consists
of two phases. The first phase assigns a different community to each node and then
attractively combines each node to its neighbors’ community and evaluates the mod-
ularity score. In case of improvements in the modularity score, nodes are merged into
a single community. This process is repeated until there is no gain in the modularity
score. In the second phase, the first phase communities are compressed to a single node
where the internal edges are used as self-links and repeat the first step. Once no further
improvements are found, the algorithm stops and returns the identified community
structure. Louvain community detection algorithm is known to be one of the scalable
algorithms having O(nlogn) where n is the number of nodes (Blondel et al., 2008).

Ethereum link prediction analysis
Graph construction
To perform link predictability on our Ethereum Transaction Featured Network (EFTN),
we employ the Variational Graph Auto-encoder (VGAE) (Kipf & Welling, 2016b) as our
primary model. Given a graph G = (V,E), with N = |V| vertices, let A∈ {0,1}N×N denote
the adjacency matrix of G where Aij = 1 if vi and vj are neighbors and 0 otherwise. Let
DN×N denote the degree matrix of G.D is a diagonal matrix where its diagonal values Di,i

equals the degree of vi. Similarly, let AD−
1
2AD−

1
2 be the normalized adjacency matrix. Let

Ni denote the network neighborhood of a vertex vi, XN×d represents node features matrix
and zi is a stochastic latent variable summarized in an N ×d matrix Z . Note that Ni can
be either complete vi’s neighborhood or it can be generated through a neighborhood
sampling strategy S , where the sampling strategy is a technique to randomly select a
subset of vertices or edges from the original graph. The network embedding is a function
φ : V →Rd that maps the vertices to a feature representation. Here d indicates the
dimension of our feature presentation for each vertex. Therefore, φ is a matrix of size
N ×d parameters.

Graph representation
Variational Graph Auto-Encoders (VGAE) is a GCN-based link prediction method over
networks. The algorithm has recently been adopted to learn graph representation of the
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Bitcoin network (Shah et al., 2021; Zhang et al., 2021). VGAE’s framework first learns
vertex embeddings of the entire network using GCNs, and then the aggregation of source
and target nodes is performed to predict the target link (Kipf & Welling, 2016b). The
method uses the standard notion of variational auto-encoders while learning µand σ to
generate the desired output. The architecture includes two layers of GCNs where the first
layer generates the latent variables Z and the second layer generates µand σ . Then the
standard parameterization trick is used to calculate Z. Given the input A and X, the first
layer of GCN is defined as follows.

X =GCN (X,A)=ReLu(ÂXW0). (2)

The second layer of GCN generates µand σ from X̂ as follows.

µ=GCNµ(X,A)=ÂXW1 (3)

σ =GCNσ (X,A)=ÂXW1 (4)

whereW0 andW1 are the model weight matrices. Each elementWi,j inW0 andW1

represents the weight of the edge between the ith vertex and the jth vertex.
The decoder model is simply Â= σ (zzᵀ), where σ (.) is a logistic sigmoid function. The

overall encoder–decoder model is defined as follows.

q(zi|X,A)=N (zi|µ,diag(σ )2) (5)

and the decoder is represented as

p(Aij = 1|zi,zj)= σ (z
ᵀ
i zj). (6)

The loss function of VGAE is similar to the standard variational auto-encoders and is
defined below.

L=Eq(Z|X,A)
[
logp(A|Z)

]
−KL

[
q(Z|X,A)||p(Z)

]
. (7)

The first part is the reconstruction loss between the original and the constructed adja-
cency matrix, while the second part is the KL divergence for p(Z)=N (0,1).

Link prediction
This section describes the experimental setup and results for the link predictability task
on our Ethereum network. Recall that our EFTN network consists of 2.7 million vertices
and 4.6 million edges. Also, the network is attributed where it contains nonce and value as
features on each edge. For nodes’ features, we used one-hot degree encoding; however, we
fixed the size of the feature vector to 100.

We observed that few nodes (less than 10) had large degrees, playing the role of hubs in
the network. Thus, to avoid sparsity in our feature matrix, we fixed the size and assigned
a degree of 100 if a node’s degree is greater than 100. Due to the memory limitation, we
constructed two different networks while choosing a chunk from the whole data. We only
considered 20 days of transactions: from 2016-12-1 to 2016:12:20 where the total number
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(A) (B)

Figure 3 The visualizations ofG1 (A) andG2 (B) EFTN networks.
Full-size DOI: 10.7717/peerjcs.815/fig-3

of records was 0.42 million. The first 15 days comprise around 0.210 million transactions,
while the remaining five days have 0.211 million transactions. We constructed two
networks G1 and G2 separately from this data. The numbers of nodes and edges in G1 were
33,989 and 53,261, respectively, while there were 37,175 nodes and 56,987 edges in G2.
Please note that we consider the chunk from the data randomly; however, we believe that
the slice of data at any point can be considered and would produce similar results. Also,
we consider both the networks as undirected, as we want to predict a transaction among
two addresses made from either side. We show the visualizations of both the constructed
networks in Fig. 3.

We considered a two-layer network in GCN architecture and considered 100 and 8
neurons in the encoder layer. As mentioned previously, our decoder layer is simply the
dot product of the learned feature vectors of the corresponding vertices. We used negative
sampling for preparing the training and test data (Mikolov et al., 2013). The ratio of the
train and test splits was set to 67 : 33 accordingly. We set the number of epochs to 100,
and the learning rate to 0.001.
EXPERIMENT RESULTS
In this section, we provide a complete set of analyses based on the Ethereum network as
follows.

Statistical characteristics of ethereum network
As shown in Table 2A, we can notice that the majority of addresses (88%) are associated
with less than 10 transactions each. Also, 39 addresses are frequently used on the network
and are associated with at least 50,000 transactions. On the other hand, 32% of addresses
participate in a transaction only once. There are also six active addresses participating in
over 1,000,000 (30%) transactions. We investigate the six active addresses: ENS-Registrar,
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Table 2 (A): The distribution of active addresses. Min andmax represent the minimum andmaximum
of the transactions. (B): The breakdown of per address transactions.

min max #addresses

1 2 1,115,238
2 4 1,509,244
4 10 1,102,949
10 100 364,406
100 1,000 47,711
1,000 5,000 3,307
5000 10,000 219
10,000 50,000 236
50,000 100,000 39
100,000 500,000 40
500,000 1,000,000 8
1,000,000 6

min max #addresses

1 2 1,700,413
2 4 1,066,002
4 10 320,416
10 100 194,338
100 1,000 33,090
1,000 5,000 1,546
5000 10,000 114
10,000 50,000 127
50,000 100,000 19
100,000 500,000 21
500,000 1,000,000 3
1,000,000 2

YoCoin, Bittrex_2, Acronis_Contract, Poloniex_1, and Kraken_5 and found them to be
contract addresses.

Similarly, as shown in Table 2B, 1,700,413 (49%) support transactions were received
only once in history, concluding that most wanted to remain anonymous as they changed
their addresses after each transaction. Considering the distribution of total transferred
transactions per address (Table 3), we noticed that less than 10 transactions were received
from 156,304 (90%) addresses. The study found that the total number of Ethers received
from most addresses was barely significant.

Table 4 shows that 28% of addresses send less than one accumulated Ether in a
transaction. In its history, 48% of addresses send less than 10 Ether, and 63% of addresses
receive less than 100 Ether.

Table 5 shows that 1 or less Ether was received by 32% of all addresses (1,088,717), less
than 10 Ether were received by 58% of addresses, and less than 100 Ether received by 75%
of addresses.
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Table 3 Breakdown of total transactions sent per address.

min max #addresses

1 2 1,319,452
2 4 984,028
4 10 419,211
10 100 156,304
100 1,000 16,630
1,000 5,000 1,069
5000 10,000 91
10,000 50,000 112
50,000 100,000 20
100,000 500,000 20
500,000 1,000,000 5
1,000,000 2

Table 4 Breakdown of outgoing accumulative Ether history per address.

Total Ether (≥) Total Ether (<) Number of addresses

0 1 917,327
1 10 695,867
10 100 469,766
100 1,000 224,543
1,000 10,000 548,540
10,000 50,000 39,202
50,000 100,000 899
100,000 500,000 648
500,000 5,000,000 128
5,000,000 50,000,000 25
50,000,000 1

Table 5 Breakdown of incoming accumulative Ether history per address.

Total Ether (≥) Total Ether (<) Number of addresses

0 1 1,088,717
1 10 863,216
10 100 537,756
100 1,000 242,315
1,000 10,000 546,260
10,000 50,000 36,344
50,000 100,000 717
100,000 500,000 607
500,000 5,000,000 131
5,000,000 50,000,000 26
50,000,000 2
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Table 6 The breakdown of Ether balance per address (until May 15, 2017).

Total Ether(≥) Total Ether (<) Number of addresses

0 0.01 2,493,480
0.01 0.1 288,026
0.1 1 193,895
1 10 193,057
10 100 87,533
100 1000 28,418
1000 10,000 6,079
10,000 50,000 781
50,000 100,000 98
100,000 500,000 119
500,000 2,500,000 35
2,500,000 16

Table 7 Ethereum network’s transaction size distribution.

Total Ether(≥) Total Ether(<) Number of addresses

0 0.001 6,552,962
0.001 0.1 4,360,858
0.1 1 8,585,043
1 10 12,544,316
10 100 2,358,529
100 1,000 1,245,886
1,000 10,000 607,476
10,000 50,000 10,815
50,000 100,000 1,040
100,000 500,000 696
500,000 2,500,000 41
2,500,000 2

Table 6 shows that nearly 96% of the addresses’ current (May 15, 2017) balance is less
than 10 Ether, but this number drops to 82% when looking at the maximum balance
that can be seen during the life of these addresses. Table 6 states that only 1,049 (0.2%)
addresses have a balance of 10,000 or more.

Table 7 represents the distribution of the transaction sizes of the network. At other
times, many transactions are very small, and it is noticeable that less than 1 Ether has been
received by 53% of transactions. Similarly, considering medium-sized quantities, less than
10 Ether were received by 88% of transactions. Moreover, Table 7 shows that only 1,788
transactions received greater than 50,000 Ether.

Ethereum transaction behavior analysis
We analyzed the transaction flow by breaking the data into two phases, in-degree and
out-degree relationships. We considered each year (2016, 2017, and 2018) as a single
phase and constructed the corresponding network. Since the network grows over time,
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Figure 4 Degree distributions of various time periods.
Full-size DOI: 10.7717/peerjcs.815/fig-4

we are also interested in measuring network growth. We first measured our constructed
Ethereum networks’ degree distributions, as shown in Fig. 4. from the distribution, we
approximated to the power law and observed that both the out-degree and in-degree are
relatively uniform. Also, the number of nodes and their degrees are increasing with time
passing.
Figure 5 draws a Lorenz curve (a graphical representation of the Gini Coefficient) to
additionally characterize the evolution of the order distribution and calculate the ‘‘Gini
Coefficient’’ with other timestamps. In order to measure the inequalities that present
in the breakdown of wealth, we used such a scale because it is also used to calculate the
heterogeneity of the empirical data. In general, the Gini coefficient is calculated as follows:

Gc =
2
∑t

j=1 jxj
t
∑t

j=1xj
−

t+1
t
.

Here, xj is the jth sample from t data points, and xj is ordered monotonically, i.e., xj ≤
xj+1.Gc = 1, implies complete inequality and Gc = 0 indicates perfect equality in wealth
distribution, i.e., all nodes have the same wealth amount.

Figure 6A shows that the Ethereum network is changing with time. The line of equality
is indicated using the Yellow line. If other lines get closer to it, this means that the system
is moving to equality. As we see from the figure, EFTN moves towards equality as the
curves get closer to the Lorenz curve as time passes. The Gini coefficient computed for
out-degree each year was Gout

' 0.96, Gout
' 0.92 and Gout

' 0.85 respectively for years
2016, 2017 and 2018.
Similar behavior for network in-degree was also observed, as shown in Fig. 6B. Gini
Coefficient values were Gin

' 0.95, Gin
' 0.90 and Gin

' 0.83 for each year 2016, 2017
and 2018 respectively. For both in and out degrees, the Gini Coefficient values are close
to 1 for each year under consideration. This implies large inequality among sending
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Figure 5 The Lorenz curve of the address balance at other moments.
Full-size DOI: 10.7717/peerjcs.815/fig-5

(A) (B)

Figure 6 Different time frames of Lorenz curves for out-degree and in-degree.
Full-size DOI: 10.7717/peerjcs.815/fig-6

and receiving transactions distributions. Apart from the in-degree and out-degree
distributions, we can observe lacking balance among addresses, as shown in Fig. 5. The
figure indicates only a few addresses own a major part of the Ethers representing perfect
inequality in the distribution.

We analyzed nodes with a high degree compared to other nodes in the network. Nodes
with higher order are assumed to have higher balances. In Fig. 7A, it is noticed that higher
proportion is associated with higher in-degree nodes till date 2018-04-25. However, there
is no relation between out-degree and the balance as depicted in Fig. 7B. Therefore, we
concluded that the distribution of the Ether is associated more with the in-degrees rather
than the out-degrees.
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Balance in Ether Balance in Ether

(A) (B)

Figure 7 Relation between balance and in- and out-degrees (until 2018-04-25).
Full-size DOI: 10.7717/peerjcs.815/fig-7

Ethereum community structure analysis
To explore our ETFN network’s community structure, we deployed the Louvain al-
gorithm in our experimental setting. The histogram representation of the network
community structure is shown in Fig. 8 depicting an exciting observation. On the x-axis,
the number of communities is shown, while the y-axis represents individuals’ count (ad-
dresses in this case) in each community. We can see that the entire network comprises five
major communities while a few other smaller communities. The community distribution
shows quite interesting observation resembling the community distribution of most of the
real-world networks (Said et al., 2018). Moreover, one central community contains many
influential addresses and covers most of the network (around 30%). These results indicate
that EFTN consists of some excellent community structure, and thus, various network
theory measures can be deployed to mine further hidden information from it.
Ethereum link prediction analysis
This section considers standard Area Under the Curve (AUC) and Average Precision
(AP) matrices for evaluation. The performance of VGAE in terms of AUC and AP
on both the networks is shown in Fig. 9. We can see that the VGAE model has shown
outstanding performance while achieving 87.6% AUC on G1 and 91.59% AUC on G2

networks. Similarly, it shows 88.28% and 88.5% AP on G1. These results demonstrate
the effectiveness of VGAE on the Ethereum transaction data. Furthermore, we observe
that both the networks have similar statistics and structures; ergo, the performance of the
models is also quite closed using both evaluation metrics.

DISCUSSION AND FUTURE WORK
In this study, we provided a set of analyses based on the Ethereum network as follows.
First, we noticed that most Ethereum addresses are associated with a few transactions
when analyzing the outgoing and incoming accumulative Ether history per address.
Second, we observed that the number of nodes and their degrees during 2016-2018 in-
creased with time regarding the measurement of the in-degree and out-degree transaction
relationship. Specifically, we discovered that the distribution of Ether is more associated
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Figure 8 Histogram representation of EFTN community structure.
Full-size DOI: 10.7717/peerjcs.815/fig-8

with the in-degrees rather than out-degrees. Third, we recognize five major communities
from the entire network. Lastly, the performance of VGAE on Ethereum’s link prediction
in terms of area under the curve and average precision matrices is outstanding, with over
80% on sub-networks over time.

In the future, we plan to use our findings in this study as a groundwork for comparing
the statistical features from more Ethereum data, examining the evolution of temporal
properties in the transaction network, and gaining a better understanding of the complex
interaction between the transaction network and the social network. In addition, we could
investigate graph algorithms that can handle the community detection and link prediction
problems altogether, using either traditional graph analysis (Lü & Zhou, 2011) or graph
representation learning methods (Choong, Liu & Murata, 2018; Liu et al., 2020). Also,
this study could lay the direction for further research on optimizing and managing the
optimal usage of the Ethereum network for better network maintenance. Finally, more
recent data could be collected and processed to investigate the evolution of the network
behavior over time.

CONCLUSIONS
In this paper, we proposed a Detailed Analysis of Ethereum Network on Transaction
Behavior, Community Structure and Link Prediction framework (DANET) to track
the evolution of Ethereum transactional data from the perspective of graph analysis.
Also, we investigated wealth distribution over Ethereum in terms of network degree and
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(A) (B)

(C) (D)

(E) (F)

Figure 9 (A & B): Area Under the Curve (AUC) of VGAEmodel on bothG1 andG2 for 100 epochs. (C
& D): The performance in terms of Average Precision (AP). (E & F): The corresponding loss curves.

Full-size DOI: 10.7717/peerjcs.815/fig-9

explored the network’s community structure showing a piece of exciting information. We
further performed link prediction using variational graph auto-encoders on a small set of
transaction data. The model showed impressive prediction accuracy on the link prediction
task. By examining these graphs through several metrics, we gain many new observations
and insights, which could assist the understanding of the Ethereum network.
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