
 
 
 
 
 
 
 
 
 
 
 

 
 

This thesis has been submitted in fulfilment of the requirements for a postgraduate degree 

(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following 

terms and conditions of use: 

 

This work is protected by copyright and other intellectual property rights, which are 

retained by the thesis author, unless otherwise stated. 

A copy can be downloaded for personal non-commercial research or study, without 

prior permission or charge. 

This thesis cannot be reproduced or quoted extensively from without first obtaining 

permission in writing from the author. 

The content must not be changed in any way or sold commercially in any format or 

medium without the formal permission of the author. 

When referring to this work, full bibliographic details including the author, title, 

awarding institution and date of the thesis must be given. 

 



Omics Measures of Ageing and Disease 

Susceptibility 

 

 

 

 

Erin Macdonald-Dunlop 

 

The University of Edinburgh 

Doctor of Philosophy with Integrated Study 

2021 

  





 i 

Declaration 

I declare that this thesis has been composed by myself and the work has not been 

submitted for any other degree or qualification. I confirm that the work is my own, 

except where work which has formed part of jointly-authored manuscripts has been 

included, in which case my contribution and those of others to the work has been 

explicitly indicated below and in chapters 3-5. I confirm that appropriate credit has 

been given within this thesis where reference has been made to the work of others. 

 

 

…………………………………………………………………………………………….. 

Erin Macdonald-Dunlop, 8th August 2021 

  



 ii 

Abstract 

While genomics has been a major field of study for decades due to relatively 

inexpensive genotyping arrays , the recent advancement of technology has also 

allowed the measure and study of various “omics”. There are now numerous 

methods and platforms available that allow high throughput and high dimensional 

quantification of many types of biological molecules. Traditional genomics and 

transcriptomics are now joined by proteomics, metabolomics, glycomics, lipidomics 

and epigenomics. 

I was lucky to have access to a unique resource in the Orkney Complex Disease 

Study (ORCADES), a cohort of individuals from the Orkney Islands that are 

extremely deeply annotated. Approximately 1000 individuals in ORCADES have 

genomics, proteomics, lipidomics, glycomics, metabolomics, epigenomics, clinical 

risk factors and disease phenotypes , as well as body composition measurements 

from whole body scans. In addition to these cros s-sectional omics and health 

related measures, these individuals also have linked electronic health records (EHR) 

available, allowing the assessment of the effect of these omics measures on 

incident disease over a ~10-year follow up period. In this thesis I use this phenotype 

rich resource to investigate the relationship between multiple types of omics 

measures and both ageing and health outcomes. 

First, I used the ORCADES data to construct measures of biological age (BA). The 

idea that there is an underlying rate at which the body deteriorates with age that 

varies between individuals of the same chronological age, this biological age, would 

be more indicative of health status, functional capacity and risk of age -related 

diseases than chronological age. Previous models estimating BA (ageing clocks) 

have predominantly been built using a single type of omics assay and comparison 

between different omics ageing clocks has been limited. I performed the most 

exhaustive comparison of different omics ageing clocks ye t, with eleven clocks 

spanning nine different omics assays. I show that different omics clocks overlap in 
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the information they provide about age, that some omics clocks track more 

generalised ageing while others track specific disease risk factors and that  omics 

ageing clocks are prognostic of incident disease over and above chronological age.  

Second, I assessed whether individually or in multivariable models, omics measures 

are associated with health-related risk factors or prognostic of incident disease over 

10 years post-assessment. I show that 2,686 single omics biomarkers are associated 

with 10 risk factors and 44 subsequent incident diseases . I also show that models 

built using multiple biomarkers from whole body scans, metabolomics, proteomics 

and clinical risk factors  are prognostic of subsequent diabetes  mellitus and that 

clinical risk factors are prognostic of incident hypertensive disorders, obesity, 

ischaemic heart disease and Framingham risk score. 

Third, I investigated the genetic architecture of a subset of the proteomics 

measures available in ORCADES, specifically 184 cardiovascular-related proteins. 

Combining genome-wide association (GWAS) summary statistics from ORCADES and 

17 other cohorts from the SCALLOP Consortium, giving a maximum sample size of 

26,494 individuals, I performed 184 genome-wide association meta-analyses 

(GWAMAs) on the levels of these proteins circulating in plasma. I discovered 592 

independent significant loci associated with the levels of at least one protein. I 

found that between 8-37% of these significant loci colocalise with known expression 

quantitative trait loci (eQTL). I also find evidence of causal associations between 11 

plasma protein levels and disease susceptibility using Mendelian randomisation, 

highlighting potential candidate drug targets. 
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Lay Summary 

While the human DNA sequence has been relatively easy and cost effective to 

measure and is therefore extensively studied, recent technological advancements 

have allowed many other different types of biological molecules that circulate in 

the blood to be measured. As well as DNA, it is now possible to measure large 

numbers of proteins, metabolites, fat molecules  and sugar molecules  for example. 

Together these are known as “omics”, due to proteomics, metabolom ics, lipidomics 

and glycomics etc. All of this information about an individual, these different types 

of omics, can be measured in a single blood sample. 

I was lucky to have access to a unique resource in the Orkney Complex Disease 

Study (ORCADES), a study population of individuals from the Orkney Islands in 

Scotland, that we have a lot of biological information about. There are nine 

different types of omics measured as well as information about their health, 

lifestyle, and any disease diagnoses. In addition to all of this information that was 

collected at time of recruitment, there is also information about any diseases these 

individuals were hospitalised with over a 10-year follow up period. In this thesis I 

use this biological information from the ORCADES study to investigate the 

relationship between multiple types of omics measures and both ageing and health 

outcomes. 

First, I used the different types of omics in ORCADES to measure how healthy 

individual’s bodies are compared to other individuals of the same age, this measure 

is called biological age. I compared the biological age measures  based on different 

omics and found: that they massively overlap in the information they provide about 

age, that some omics biological age measures track more generalised ageing while 

others track specific disease risk factors and that omics biological age measures are 

able to predict future hospitalisation due to disease , better than just knowing how 

old someone is . 
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Second, I tested whether either on their own or together, omics measures are able 

to predict commonly measured disease risk factors such as cholesterol and blood 

pressure. Further, I looked to see if omics measures can predict if an individual is 

likely to be hospitalised for a particular disease in the future. 

Third, I combined data from 18 different study populations including ORCADES to 

investigate how variation in the DNA sequence between individuals leads to the 

differing levels of 184 cardiovascular related proteins that are measured circulating 

in the blood. I found 592 regions of the DNA that are associated with changes in at 

least one of the 184 protein levels. I also show that these regions of the DNA 

overlap with regions known to be associated with many different diseases and that 

there is evidence that changes in some of these protein levels in the blood cause a 

change in disease risk. 
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Chapter 1: Introduction 

At its simplest, the aim of all scientific research is to gain a greater understanding of 

the world around us, how it works, and why it is the way it is. Physics often dedicates 

itself to the extremely small using quantum mechanics and the very large. In turn, 

chemistry concerns itself with elements and compounds, how they combine and 

interact. However, Biology aims to understand how all of these things come together 

to create living organisms, their inner workings and complexities and why they are 

the way they are.  

It is only with our understanding of biology improving over the centuries that we have 

modern medicine. Without the knowledge of how our immune system works there 

would not have been 3 approved vaccines for COVID -19 developed1–3 and 67.3 million 

doses distributed in the last 15 months in the UK4. Given that the theory that diseases 

were spread by noxious air, miasma 5, advanced by Hippocrates (c.460-377 B.C.E)6 was 

still being used by scientists to explain epidemics of cholera7 and the black death8,9 in 

the 1850’s and 14th Century respectively, this is an enormous advancement. However, 

despite the vast improvement since then there is still so much that we do not know.  

Relative to the detailed mechanistic understanding that physics and chemistry have 

achieved, biology is still searching for an understanding of the end-to-end details of 

the mechanisms that support life. While we have extremely detailed knowledge of 

certain processes for example, how the huma n genome is copied and passed on 

during cell division and the sequence of steps that provide the body with energy, the 

Krebs cycle10, these are often disparate. Our holistic understanding of biomedical 

systems remains vague in comparison. For example, there are effective medicines 

used today where we do not fully understand how they work, merely that they do, 

rather than having the detailed step-by-step comprehension that enables certain and 

accurate prediction of the effect of interventions and treatments. In 2019 there were 

still 18.6 and 10 million deaths due to heart disease and cancer, respectively11, 

despite the billions of pounds of funding devoted to their research.  
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Nonetheless, improvement in modern medicine has more recently created new 

challenges for society and biological research. For example, people living longer has  

increased the prevalence of age-related diseases, highlighting the need to deepen our 

understanding of the underlying biology of ageing.  

The only way to improve on this situation is to carry out further research. Only by 

increasing our understanding of the underlying biology will it be possible to establish: 

which pathways and mechanisms bring about ageing and diseases, design measures 

that predict individuals’ risk of developing diseases in the future and devise effective 

treatments. 

1.1 Promise of Genetics 

Genetics was a promising opportunity for exploring variation between individuals. 

The idea that traits could be inherited, passed down through the generations was first 

demonstrated in the 19th Century by Mendel12 however, it was the discovery of the 

structure of deoxyribonucleic acid (DNA), that carries information from one 

generation to the next in 195213, that was a pivotal step in deepening  our 

understanding of molecular biology. 

With the development of Sanger sequencing 14 in 1977, it became possible to 

determine the sequence of bases (nucleotides) that made up a short sequence of a 

sample’s genetic code: adenine (A), guanine (G), thymine (T) and cytosine (C).  

However, this was an extremely inefficient and labour-intensive process, resulting in 

many different research groups each focussed on disparate , highly specific regions, 

genes or pathways of interest. Consequently, our understanding of DNA variation and 

its effect on traits as a cohesive whole progressed relatively slowly.  

However, in 2003, due to the worldwide collaborative effort of the Human Genome 

Project, the first complete human DNA sequence (genome) became available 15. This 

was hailed as the missing piece of the puzzle that would finally facilitate the long -

awaited rapid progression of biological research16, and in part it did. Having a 
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complete human reference sequence, allowed the subsequent discovery of locations 

in the genome that vary between individuals, g iven that all Homo sapiens generally 

share 99.9% of their DNA sequence15. Individual bases where the alleles are known to 

vary between individuals , for example between A and C in a given population,  are 

known as single nucleotide polymorphisms (SNPs). Together with the advancement of 

microarray technology, it became possible to measure the pair of alleles (one on each 

strand - genotypes) at hundreds of thousands of SNPs across the genome 

simultaneously17. With this information, it became possible to assess if the variant 

that an individual possesses at a given position in the genome is associated with a 

trait of interest. 

Since the landmark publication in 200718, genome wide association studies (GWAS) 

have been the gold standard to uncover the underlying biology of complex traits. 

These studies systematically test if variation in the alleles at sites across the genome 

are associated with variation in the trait of interest (such as height or type II Diabetes 

mellitus)19,20. GWA studies were sold as the solution to the field’s previous difficulties, 

they would: allow the identification of regions of the genome that influence disease, 

provide insight into the underlying biological mechanisms and pathways that bring 

about these phenotypes and pinpoint potential opportunities for new treatments and 

interventions16.  

The continuing decline in price of genotyping arrays has meant that over 4,300 

papers reporting on 4,500 GWAS have been published since 2007, spanning over 

5,000 different phenotypes and reporting over 55,000 unique, associated genetic 

loci21. However, despite this, very few of these findings have been successfully 

translated into clinical use22. One of the reasons for this is that it is extremely difficult 

to infer causal genes (as the discovered causal regions often contain tens of genes) 

and thus end-to-end mechanisms of action of the associated genetic variants on the 

trait of interest23–26. Another reason is  the many layers of separation between the 

DNA sequence level and end-point disease phenotype. It is thus natural to look to 

intermediate phenotypes, such as circulating biological molecules, to further unravel 
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the end-to-end pathways and underlying complexities that result in some individuals 

developing disease and others ageing whilst disease free. 

1.2 The Omics Era 

Just as technology advanced for measuring genomics in the form of both genotyping 

and sequencing, there has been similar advancement in platforms capable of 

capturing large numbers of other types of biological molecules (omics). In addition to 

genomics, genome-wide gene expression levels (transcriptomics) and DNA 

methylation (epigenomics) which use sequencing technologies, high throughput 

assays quantifying the levels of often hundreds to thousands of circulating: plasma 

protein (proteomics), metabolite (metabolomics), lipid (lipidomics) and glycan 

(glycomics) levels are now available. 

Transcriptomics is the study of the levels of RNA transcripts that are produced when 

the regions of the DNA that encode proteins are transcribed into RNA. These 

transcripts are then transported from the nucleus to ribosomes , so they can be 

translated into proteins . A snapshot of the levels of thousands of transcripts 

therefore provides a picture of the levels of all the genes expressed in a specific tissue 

at a specific time27. Their study allows the identification of genes that are 

differentially expressed in different cells, tissues, during diseases and in response to 

different treatments, offering the opportunity to form a more complete 

understanding of what is happening in the body. 

The regulation of which genes are expressed over time and in which tissue is 

complex. They are partly regulated by epigenetic marks on DNA molecules , which 

vary by cell within individuals. One type of epigenomics, DNA methylation, has 

aroused considerable interest. DNA methylation is the reversible addition of methyl 

groups to cytosine residues, often in regions of the genome containing runs of GC 

dinucleotides (CpGs)28, particularly promoters29,30, and has been shown to regulate 

gene expression31. DNA methylation patterns have also been shown to change with 
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environmental exposures and behaviours , such as tobacco smoking32. The ability to 

measure the levels of methylation at 850,000 CpG sites across the genome 

simultaneously33, therefore provides the opportunity to provide a comprehensive 

picture by adding a substantial layer of information beyond the DNA seque nce level.  

Proteins are the building blocks of cells and are involved in all key cell processes, thus 

the ability to capture and study the abundance of hundreds to thousands (dependent 

of the platform) of proteins circulating in the plasma , proteomics, is invaluable34–36. 

The fact that there are numerous licenced drugs that target circulating plasma 

proteins37–40 means proteomics assays are of particular interest in the search for 

novel drug targets or candidates for repurposing. 

Glycans are sugar molecules that are added to proteins post-translation and are 

involved in functional regulation41. The diverse range of different glycans  that are 

added to immunoglobulin G (IgG) antibodies, which are involved in the immune 

response, regulate IgG activity. The study of these glycans, IgG glycomics, offers the 

potential to understand how the immune system is regulated in response to differen t 

diseases, for example, IgG glycans have been shown to promote the shift between 

pro- and anti-inflammatory functions. Disruption of glycosylation has been associated 

with auto-immune42 disorders as well as numerous other diseases 43. This suggests 

further study of IgG glycomics has the potential to provide useful insight into 

pathways and mechanisms that lead to disease. 

Metabolites are intermediate products of metabolic reactions; platforms to measure 

the levels of different metabolites circulating in the blood often capture overlapping 

measures with lipidomics assays due to the number of lipid fractions involved in the 

metabolic process. Large scale profiling of metabolite levels, metabolomics, therefore 

obtains a snapshot of circulating molecules that capture all major proces ses within 

the body44. 

Given the sheer number of different layers of biology that these omics capture 

beyond the DNA sequence level, they offer the opportunity to form a more 
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comprehensive picture of what is happening inside the organism, especially those 

that are involved in regulation. Further, several of these omics biomarkers are much 

closer to end point phenotypes than DNA and, in the case of proteins, are themselves 

potential actors. Omics measures could therefore help to disentangle mechanisms for 

how associated SNPs influence disease phenotypes. 

Each of the aforementioned omics assays quantify hundreds to thousands of features 

simultaneously. Due to the expense, there are often more features measured (p) than 

samples (n), these features are often highly correlated, providing challenges for 

statistical analyses . However, as these assays become more affordable, cohorts with 

increased number of samples with a number of these high-dimensional omics assays 

are becoming more abundant, giving rise to the field of multi -omics. Big Multi-omics 

data is an invaluable resource, and when paired with efficient computing and 

statistical methods such as machine learning, creates enormous potential for 

precision medicine research. It has the potential to increase our understandin g of the 

complexities of biology that underpin ageing and disease, that are still lacking.  

1.3 Ageing 

A key area of research that has made extensive use of omics assays and a variety of 

statistical and machine learning approaches is ageing. It is the bigge st risk factor for 

most late onset chronic diseases and contributes to morbidity and mortality. 

Like many countries globally, the UK has an ageing population with 18.5% over the 

age of 65 (mid-2019) combined with a declining birth rate45. This is in part due to the 

steady increase in life expectancy of 3 years per decade (1970 -2010)46, which is at 

79.4 years (males) and 83.1 (females) as of 2019 (ONS life expectancy 2017 -201947). 

However, this observed increase in life expectancy is not fully accompanied by an 

increase in the number of years expected to live disease free 48. Interventions 

promoting healthy ageing could thus improve length and quality of life. If we had the 
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ability to identify the prematurely aged or those at risk of premature ageing, this 

could drive personalised medicine, again improving quality of life. 

Despite being aware of numerous changes that occur as we age , little is understood 

about which of these are causes or consequences of ageing 49. That the changes to 

outward appearance such as greying hair, baldness, loss of skin elasticity and 

worsening of posture occur at different rates between individuals is apparent to us 

all. Less visible indicators such as a decline in eyesight and hearing and hypertension 

are also familiar to most. However, there are also molecular changes that occur with 

age such as: shortening of telomeres 50, genomic instability, DNA methylation 

pattern51, deregulated nutrient sensing, mitochondrial dysfunction, cellular 

senescence, stem cell exhaustion, loss of proteostasis and altered intercellular 

communication that are all well documented49. 

Individuals of the same chronological age also vary enormously in their apparent 

frailty, health and number of co-morbidities, further suggesting that there may be 

differences in the underlaying rate at which people age. Even lifestyle factors that are 

known health risks such as smoking, stress and an individual’s physical fitness have 

been shown to alter telomere length52, DNA methylation patterns and apparent rate 

of ageing53. 

It has therefore been suggested that individuals may age at different rates, and that 

this could be measured using molecular markers 54,55. 

The idea of this underlying biological age and the existence of biomarkers of ageing 

was postulated by Baker and Sprott56, they suggested that chronological age may not 

be the best predictor of health, mortality or functional age, but that biological age 

may be. They reasoned that if ageing is the cumulative effect of basic biological 

processes, then it should be possible to observe it change throughout life  and to 

detect biomarkers of biological age, and if true, these biomarkers would be better 

predictors of future functional capacity than chronological age.  
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In the last eight years high dimensional omics assays have become the ideal and 

favoured source of potential biomarkers of biological age. 

1.4 Measuring Biological age: Biological Ageing Clocks 

1.4.1 First Generation Clocks 

The earliest attempts to construct models that predicted chronological age used DNA 

methylation data, as it has extensively documented age-related changes57–64. 

Bocklandt et al.65 showed that two CpGs  could explain 73% of the variance in 

chronological age, highlighting the fact that epigenetic markers could be used to 

construct models that estimate chronological age. More recent studies have gone a 

step further and built models that endeavour to estimate biological age. 

Hannum et al. were the first to build an ageing “clock” that could be used to estimate 

a measure of biological age55. Again, using DNA methylation data, Hannum et al. went 

further and used the ratio of predicted age to chronological age to create the 

measure of “apparent methylomic rate of ageing” (AMAR). This measure could be 

used to identify individuals whose predicted age showed a larger than expected 

deviation from chronological age and hence was the first estimate of biological age. 

Hannum et al.’s clock is limited by the fact that it was trained only using DNA 

methylation data from adult whole blood, thus providing biased estimates for 

children and samples from different tissues. 

In contrast Horvath’s epigenetic clock, published the same year as Hannum et al., was 

trained using methylation data from 51 different tissues, with samples ranging from 

foetal cord blood to centenarians 66. Horvath’s clock age, DNAme age, displayed four 

additional promising properties as a potential measure of biological age. First, 

embryonic stem (ES) cells and induced pluripotent (iPS) cells had a DNAme age of 

zero. Second, DNAme age was significantly correlated with cell passage number. 

Third, age acceleration, defined as the deviation between DNAme age and 
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chronological age, exhibited a high heritability estimate. Fourth, DNAme age 

correlated with chronological age in chimpanzee tissue 66. 

The high accuracy and broad applicability of Horvath’s epigenetic clock means that it 

is one of the most extensively studied ageing clocks. Differences in DNAme age 

acceleration between cases and controls have been found in: neuropathology in the 

elderly67, Down syndrome68, Parkinson’s Disease69, Werner syndrome70, Huntington’s 

Disease71, Alzheimer’s Disease72, physical and cognitive fitness 73, development74, 

HIV1 infection75, osteoarthritis76, menopause77 and centenarian status 78. DNAme 

derived measures of age acceleration are statistically significant predictors of life 

expectancy79. The fact that DNAme age acceleration was associated with multiple 

age-related conditions and disease phenotypes suggests that biomarkers of ageing 

can be found and emphasises the potential of ageing clocks to stratify individuals for 

health risks. These results highlight the potential of ageing clocks as a valuable 

avenue of precision medicine research. 

1.4.2 Other Omics Clocks 

Since the first biological ageing clocks were published, studies have used a variety of 

different high-dimensional omics assays as sources of biomarkers and different 

statistical methods to build ageing clocks. C locks trained on chronological age have 

since been constructed using telomere length80, facial morphology81, neuro-imaging 

data82–85, metabolomics86, glycomics87, proteomics54,88,89 and immune cell counts 90. 

1.4.3 Limitations of Chronological Ageing Clocks 

These studies uncovered limitations of omics ageing clocks trained on chronological 

age. First, that including enough predictors in the model can create a perfect 

predictor of chronological age. Lehallier et al. showed that the correlation between 

clock predicted age and chronological age increases with the number of proteins 

included in the model91. Further, it is possible to explain 100% of the variance in 

chronological age using DNA methylation data, by fitting all CpG sites 
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simultaneously92. Returning estimates of biological age that equal chronological age is 

a major concern given that the purpose of estimating a measure of biological age is to 

be able to distinguish health outlook between individuals of the same chronological 

age. 

Second, it is vital to ensure that these age acceleration measures derived  from omics 

ageing clocks are capturing true underlying biological age, rather than being mere 

statistical artefacts. The most common approach used to assess this in previous omics 

clocks studies is to test if the omics clock age acceleration (OCAA) measure is 

associated with health outcomes for example, all -cause mortality, prevalent disease 

and incident disease. Often when OCAAs are associated with health outcomes, the 

effect sizes are small after adjusting for chronological age 93–95. This difficulty in 

proving that OCAAs are capturing biological age encouraged a shift towards biological 

ageing measures that are more outcome focussed, rather than training on 

chronological age. 

1.4.4 Second Generation Clocks 

Levine et al.’s measure, DNAm PhenoAge, was the first to use a more sophisticated 

approach, regressing CpGs on a novel measure, phenotypic age, as the dependent 

variable96. Phenotypic age was estimated using regularised Cox regression, a model 

containing 42 clinical markers and chronological age was trained on 10-year all-cause 

mortality. Elastic net regression and DNA methylation data were then used to create 

DNAm PhenoAge, that outperformed previous epigenetic clocks by more accurately 

predicting all-cause and disease specific mortality. 

More recently still, Lu et al.’s measure DNAm GrimAge comprises DNA methylation 

surrogates of 7 plasma protein levels, a DNA estimator of smoking pack years, 

chronological age and sex97. The resultant age acceleration measure outperformed 

previous epigenetic clocks as a predictor of all -cause mortality, time-to-cancer, time-

to-coronary heart disease and was associated with number of co-morbidities. 
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GrimAge also remained prognostic of all -cause mortality after adjusting for traditional 

clinical risk factors.  

1.4.5 Clock Comparisons 

Comparisons of multiple different omics ageing clocks have been carried out , 

however, these studies focused on DNA methylation, traditional risk factors and 

frailty-based measures93–95,98,99. One common finding was that second-generation 

DNA methylation clocks, DNAm GrimAge and DNAm PhenoAge, were the most 

prognostic of mortality and incident disease, outperforming both first-generation 

epigenetic clocks and those built from other omics assays, trained on chronological 

age. However, after adjusting for chronological age, effect sizes of age acceleration 

measures still tended to be modest93–95. 

1.4.6 Summary 

Despite all of the research into biological age, there are still many unanswered 

questions. There has been a slight shift, with more studies using mortality -based 

outcomes to train omics ageing models instead of chronological age. However, there 

has been little work done to fully establish the properties of different single omics 

ageing clocks trained on chronological age. Are the OCAAs from the numerous 

statistical approaches and sources of omics biomarkers actually capturing biological 

age? Is there only one single underlying biological age or are there multiple biological 

ages, each tracking susceptibility to different diseases or for different organ systems? 

There has been limited work to address this. Comparisons of multiple omics ageing 

clocks have been performed as mentioned previously, however, comparisons were 

often limited to few different omics sources. Commonly these clocks were only 

assessed based on their variance explained in chronological age and their ability to 

predict mortality or disease phenotypes. Few further investigations were made once 

a significant p-value for association with a health outcome had been established.  
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A comprehensive comparison and characterisation of multiple omics assays as 

potential sources of biomarkers of biological age would a ddress these gaps in the 

knowledge. The uniquely broadly phenotyped cohort, the Orkney Complex Disease 

Study (ORCADES), annotated with 9 different omics assays  would provide the ideal 

opportunity for this type of analysis . 

Further characterisation of omics ageing clocks is essential as we need to understand 

what these OCAA measures are actually capturing, if the aim is to construct measures 

of biological age that have the potential to be clinically useful. If found to be so, omics 

ageing clocks could be used for personalised medicine and to potentially reverse the 

effects of ageing; there is already preliminary evidence for this  being possible100. Not 

only could this prompt interventions that mean more people live healthier for longer, 

but it could also give us a greater understanding of the ageing process and determine 

if there is indeed an underlying rate of ageing. 

1.5 Omics Biomarkers of Disease 

In addition to biological ageing, omics measures from high-dimensional assays are a 

potential source of biomarkers for incident disease  directly. 

The ability to predict future health outcomes would aid precision medicine and 

drastically improve quality of life. Biomarkers or risk scores could be used: to predict 

the likelihood of successful outcomes after surgery or other procedures, to predict 

response to different therapeutic options, to gain insight into whether a disease is 

likely to recur, relapse or metastasise, to inform how regular preventative screenings 

are required to be and to give patients the opportunity to make lifestyle changes to 

lower their risk of developing morbidities in the future.  

Motivated by the numerous potential benefits of effective biomarkers, this is a n 

extensive area of study. Historically, research into biomarkers has focussed on 

traditional clinical measures to build risk scores, often for very specific clinical 

outcomes101–103. In fact, there are many whole sub-fields dedicated to optimising risk 
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scores for several of the purposes outlined above: sub-phenotypes, disease 

recurrence104, outcome post-surgery105,106 and response to different therapies 107.  

However, more recently, as assay technology and computing have advanced so have 

the sources of data used in developing risk scores. These include high-dimensional 

omics assays108–111 and image analysis 112. Statistical methods have also progressed 

and now stepwise regression108, penalised regression113, random forest110, neural 

networks83 and deep learning112 are used in the construction of risk scores. 

Omics assays that overlap with those measured in ORCADES have been associated 

with several different health outcomes. Menni et al. found that 46 IgG glycans were 

associated with the 10-year atherosclerotic cardiovascular disease (ASCVD) risk 

score108. Two eleven protein signatures have been shown to be prognostic of 

cervical114 and ovarian109 cancer respectively. Gisby et al. reported that the levels of 

203 individual plasma proteins and a multivariable score were associated with clinic al 

severity of COVID-19110. Pietzner et al. showed that plasma metabolite levels were 

prognostic for numerous incident diseases and of multimorbodity 111. 

Given the unique range of omics assays, clinical phenotypes and incident diseases 

through electronic health records (EHR) that are available in ORCADES, it offers the 

potential to explore the suitability of these omics measures as biomarkers of health-

related risk factors, clinical risk scores and incident disease. Such an investigation has 

the potential to provide greater insight into disease aetiology, as well as highlighting 

biomarkers that are prognostic of disease phenotypes which contribute towards the 

global burden of morbidity and mortality. 

1.6 Leveraging Genetic Architecture of Protein 

Biomarkers 

As mentioned previously, genome-wide association studies (GWAS), despite having 

discovered thousands of associated loci, have posited very few plausible mechanisms 
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of action for these variants 23. Similarly, recent techniques that allow testing for causal 

relationships between complex traits , using associated SNPs as instruments , again do 

not necessarily provide mechanistic insight23. However, although omics biomarkers 

might be consequences, they could also be causes of a mechanism and in any c ase 

offer insight into the underlying biology. 

This, paired with the increase in availability of high dimensional omics data, means it 

is natural that the field of statistical genetics would take an interest in omics 

measures and apply the techniques used in studying complex trait genetics. GWAS 

and other common downstream analysis leveraging genetic information have been 

performed on proteomics 115–121, metabolomics122, lipidomics123, transcriptomics124 

and DNA methylation levels 125. 

Proteomics are a natural starting point, as proteins circulating in the plasma are 

closer to end-point phenotypes than other omics biomarkers. Despite the inexorable 

link between transcript and protein level, the two measures are not always highly 

correlated126,127, meaning that additional information can be gained by studying 

protein levels beyond transcript levels. Further, it is often protein dysfunction and 

dysregulation that lead to disease phenotypes and proteins circulating in the plasma 

are druggable targets 37–39,128–130. 

It is only through the power of techniques used in statistical genetics that we are able 

to pose interesting research questions such as: how these layers of biology interact, 

how they are regulated and how does their dysregulation lead to disease. Given their 

potential impact on advancing our understanding, these techniques are therefore 

worth taking the time to introduce. 

1.6.1 Genome Wide Association Studies 

As mentioned previously, genome-wide association studies (GWAS) assess how 

variation in a trait of interest maps to a specific region in the genome. Historically this 

was done using linkage analysis 131, but is now achieved using genotype or sequencing 
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data. As technology has advanced since the first human reference  genome, the 

human genome project15, there are now more comprehensive reference panels such 

as 1000 Genomes 132 and the Haplotype Reference Consortium133 (HRC). Similarly, 

microarray technology has progressed in recent years from measuring hundreds of 

thousands to over a million SNPs across the genome 134. Imputation of the allele 

dosages of SNPs not directly measured on the array using a reference is now a 

common strategy to increase coverage of the genome. This is possible using the 

knowledge from reference genomes of the patterns of variants that are correlated 

with one another - linkage disequilibrium (LD). 

A GWAS therefore comprises millions of linear associations of the allelic dosage of 

single SNPs with a phenotype of interest while taking into account covariates  such as 

relatedness of individuals and population stratification. This is done using linear 

regression for continuous traits or logistic regression for binary traits such as disease 

case-control status as shown: 

 

Where  is an  vector of trait values for n individuals,  is the intercept,  is an 

 matrix of  covariates with the associated , a  vector of fixed effects,  is 

a vector of random effects based on a genomic relationship matrix (GRM), that can be 

calculated from genotype data135 and  is an  vector of residual deviations 

assumed to be distributed independently of the random genetic effects 136.  is the 

allelic dosage of the SNP coded as number of effect alleles (0, 1 or 2) compared to a 

reference (e.g. AA, AG, GG, with reference to A) if genotyped and any value between 

0 and 2 if imputed,  is the effect size of the  on  in outcome units per effect 

allele136. For each linear SNP-outcome association the hypothesis test is whether  

differs from zero. 

However, there are three reasons why GWA studies are not quite a s simple as 

performing millions of single SNP associations. First, it is crucial to account for 

relatedness between the individuals in the sample, by including random effects from 
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the GRM in the model. As to fail to do so ignores the covariance in  between 

relatives and the covariance between  and SNP as a result. Even in unrelated 

samples it is necessary to take into account population structure : this is most 

commonly done by including principal components of the genotypes as covariates. 

Failure to account for relatedness and wider population structure could result in 

confounded associations being used to draw incorrect conclusions about the biology 

of the trait of interest. However, there are now tools that account for relatedness 

between individuals137–141 and allow GWA studies to be performed in related 

populations. 

Second, these millions of linear associations are not independent, as each SNP is not 

independent, due to linkage disequilibrium (LD)142. LD is the property of the genome 

whereby alleles at SNPs in close physical proximity are correlated (because they co-

segregate with each other). This is both a blessing and a curse as on the one hand, as 

often up to hundreds of SNPs will be in LD with a given common variant, it is 

therefore not necessary to have genotyped (or imputed) the causal SNP, just one in 

LD with it. On the other hand, all of the SNPs in LD with the causal variant will be 

associated with the trait of interest, making it more difficult to narrow down and 

determine the true causal variant. 

Third, there is the issue of practicality, even with the power of modern computing, 

performing millions of mixed models is extremely computationally intensive. Rather 

than fit both fixed effects covariates and random components for every SNP, like 

some tools143–145, it is more computationally efficient to split this into two separate 

steps. Step 1 being the correction of the trait value for covariates and random effects 

while step 2 involves performing per-SNP linear associations with the corrected trait 

values. There are now a variety of tools that use a two-step approach with different 

statistical methods to correct the trait values 137–141 which have massively improved 

the computational efficiency of performing GWA studies.  

GWAS offer the opportunity to find genetic variants that are associated with the 

variation in the levels of omics biomarkers circulating in the blood, provide insight 
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into how their levels are regulated and highlight regions of the genome in which to 

search for the underlying causal variants. With this technique , we are able to search 

for genes and pathways that underpin these different omics and to understand how 

these omics layers interact. The ability to answer these questions however depends 

on the power and therefore sample size of the GWAS. 

1.6.2 Meta-analysis 

Due to the expense of omics assays, cohorts with measures in large sample sizes are 

rare. In order to increase power to detect variants with modest effect sizes 146, GWAS 

run on the phenotype of interest in different cohorts are combined, thus increasing 

the sample size. This is an efficient strategy as it negates the need to share individual 

level data and with the use of a consistent reference panel across studies, genotypes 

can be imputed to provide a common set of SNPs for analysis.  

The most common approach for genome-wide association meta-analysis (GWAMA) is 

to combine evidence from multiple studies weighted on the inverse variance of the 

estimated effect size for each SNP, and is implemented by the software METAL 147. 

Inverse variance-weighted meta-analysed parameter estimates for each SNP are 

calculated as follows: 

⁄  

Where  the weight calculated for study  is based on the standard error of the 

effect estimate, , for study . The meta-analysis effect estimate  is: 

∑ ∑⁄  

Where  is the effect size estimate for study . Meta-analysis standard error ( ) and 

P-value are calculated as follows: 
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√ ∑⁄  

( | |) 

Where  is the cumulative distribution function of the normal distribution and 

⁄ . 

As GWAMAs are an extremely effective way of increasing sample sizes available for 

studies, they have been used extensively to increase the number of trait-associated 

loci discovered for a diverse range of phenotypes19,148. This is particularly the case 

with proteomics, where the number of protein quantitative trait loci (pQTL) 

discovered has increased from 79 from a single cohort study 115 to 451 from a meta-

analysis of the same 90 proteins 149. GWAMAs therefore offer the potential to 

increase our ability to discover genetic loci involved in the regulation of the levels of 

omics biomarkers. The larger sample sizes increase power for downstream analysis , 

allowing the interrogation of potential mechanisms of action of associated genetic 

variants on the levels of omics biomarkers and the inference of causal relationships 

between omics biomarkers and disease. 

1.6.3 Conditional Analysis 

Both GWAS and GWAMAs estimate the effect size for each SNP in the study, on the 

trait of interest, however SNPs are not independent due to LD, arising from the fact 

that SNPs in close proximity are inherited together more often tha n would be 

expected if they were unlinked. Therefore any SNPs in high LD with a causal variant 

will also be associated with the trait of interest and could have p-values passing 

genome-wide significance (5 x 10-8). Physical distance or LD clumping are commonly 

used to define significant loci: both of these approaches report the SNP with the 

lowest p-value in the region as tagging the signal , however, this still does not mean 

that the top SNP is causal150. This actually assumes that the top SNP captures the 

maximum amount of variation in the region by its LD with an unknown causal variant 
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and that the other SNPs in the vicinity show association due to their correlation with 

the top SNP150. 

There are issues with this assumption, first, even if there is a single underlying causal 

variant, there is no guarantee that one of the genotyped or imputed SNPs may 

capture the overall variation at the locus 151,152. Second, there may be multiple causal 

variants in a single locus and by reporting only one top SNP the variation explained by 

that locus may be underestimated150. 

Conditional analysis is a method commonly used to overcome these limitations, by 

performing association analysis while conditioning on the primary associated SNP at a 

locus, to test for the presence of conditionally associated SNPs. The tool, GCTA -

COJO150, performs approximate conditional and joint analysis using GWAS summary 

statistics and has become the gold standard method for discovering conditionally 

associated loci. Numerous GWAS on plasma protein levels have used GCTA -COJO to 

find secondary pQTL116,149,153. Conditional analysis facilitates the discovery of 

additional associated variants, allowing a more accurate picture of the genetic 

regulation of the trait of interest. This also offers further potential to find genes and 

pathways that lead to the end-point phenotype. 

1.6.4 Heritability 

As we aim to increase our understanding of how and why disease phenotypes arise, it 

is advantageous to determine how much of a given trait is determined by genetics 

and how much is driven by the environment. Heritability (h2) is the estimate of the 

proportion of variation in a phenotype ( ) that can be attributed to the additive 

effects of genetic variation ( ), as opposed to environmental factors or chance. 

 

The knowledge that a particular disease has a high heritability, for example 

Mendelian diseases such as cystic fibrosis154, means that an individual’s risk of 
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developing said disease is determined at conception. Knowing this offers the 

opportunity for genetic counselling and will inform aspects of an individual at high 

risk’s medical care. For example, how often they receive screenings, not only for the 

individual in question but also their close relatives. In contrast, the knowledge that a 

particular disease has a low heritability, and is in fact predominantly driven by 

environmental factors , offers the potential for changes in policy that may reduce the 

risk of disease across large sections of the general population, particularly if socio-

economic status- or lifestyle-related factors contribute to disease risk.  

Once the heritability of a trait has been estimated, it is interesting to deconstruct this 

further and assess how much of the genome is contributing to this heritability. Is the 

trait polygenic, meaning there are hundreds or even thousands of loci across the 

genome each contributing a small amount to the trait variation, as is the case with 

height19, or are there very few loci or even a single locus that is entirely responsible 

for the variation in the (monogenic) trait, as with Mendelian disorders . An 

understanding of the genetic architecture of a trait in this way is useful , for example, 

in resource allocation when planning genetic studies, but also has further 

downstream applications . 

There are numerous methods to estimate heritability from individual -level genetic 

data145,155,156, however in practice it is common to employ methods that use GWAS 

summary statistics , as the larger sample sizes in publicly available meta -analyses from 

large consortia provide more power to produce more accurate estimates. However, 

the common method used to estimate heritability using GWAS summary statistics, 

Linkage Disequilibrium Score regression (LDSC)157 assumes that the trait is 

polygenic149. While polygenicity is expected and has indeed been shown for many 

complex traits158, Folkersen et al. highlighted that it may not be true of omics 

biomarkers such as plasma protein levels. Particularly as some proteins show a single 

extremely strong cis-association signal149 (cis meaning proximal to the coding gene 

and trans being distant Figure 1).  
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Figure 1. Cis & Trans Associated pQTL.  

To overcome this assumption, Folkersen et al. estimated the heritability contributed 

by significant pQTL (pQTL component) and the remaining genome-wide SNP 

heritability (polygenic component), separately for each protein149. LDSC was used to 

estimate the polygenic component contributed by the SNPs not passing genome -wide 

significance. The pQTL component was calculated as the sum of the estimated 

variance in protein level explained by the lead SNPs : 

∑  

Where  is the estimated effect size of the lead variant of pQTL ,  is the minor 

allele frequency and . Folkersen et al. showed that the genetic 

architecture varies enormously between proteins, with some such as platelet derived 

growth factor subunit B (PDGF-B) being extremely polygenic but Interleukin 6 

receptor subunit alpha (IL-6RA) being almost monogenic149. 

It is therefore extremely informative to assess both the total heritability of traits as 

well as how the contributions to that heritability are spread across the genome. In 

addition to providing an insight into epidemiology and giving us a better 

understanding of how the trait is regulated by genetics, this can also indicate targets 

for therapeutic intervention. 

1.6.5 Genetic Correlations 

It is possible to estimate how much genetic architecture two traits share, by 

calculating the genetic correlation between the two traits . 
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As an individual’s phenotypic value ( ) is equal to the sum of their genotypic value 

( ), the component of this value associated with genetic effects, and their 

environmental deviation (E), the component of phenotypic value not due to genetics. 

 

The correlation of the genetic components of two traits (  and ), , is therefore: 

( ) 

Genetic correlations between traits are often due to pleiotropy, the property where a 

single gene influences more than one trait. Genetic correlations capture the effect of 

all the segregating genes across the whole genome that affect both traits159. Positive 

correlations are observed when genetic variants act to increase both traits, in 

contrast negative correlations are observed when variants increase one trait but 

decrease the other159. This measure therefore indicates how SNP effects, genome -

wide, align between two traits.  

Practically, genetic correlations provide insight into the relationships between 

phenotypes and can be used to prioritise investigations into potential causal 

relationships. In terms of plasma protein levels, determining whether they are 

genetically correlated with disease phenotypes has the potential to inform 

epidemiology and increase our understanding of disease aetiology.  

Estimating genetic correlations , however, is not a simple matter, as in reality it is not 

possible to accurately measure an individual’s genotypic value ( ). As the phenotypic 

component due to genetics ( ) is itself a combination of the contributions from 

additive genetic effects ( ), dominance effects ( ), and genetic interaction effects ( ): 

 

So, the genetic correlations quoted in the literature are actually estimates of the 

correlation of the additive genetic effects between two traits:  
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( ) 

However, these estimates are still commonly written  and referred to as genetic 

correlations despite being an estimate of genetic correlation due to additive genetic 

effects, as it is not possible to calculate true . For consistency with the literature, I 

will only use the terms  and genetic correlations from this point on but note that 

they are referring to what is more accurately . 

There are methods that estimate  from GWAS summary statistics using the 

following approach157,160,161: 

√
 

Where the genetic correlation, , is the covariance, , of the genetic effects of 

the two traits divided by the square root of estimated heritabilities of the traits  and 

. As genetic correlations are influenced by allele frequencies and therefore will vary 

between populations with different patterns of L D159, it is necessary to take LD 

information into account when estimating . The previous gold standard method for 

estimating genetic correlations from summary statistics, LD-score regression 

(LDSC)157,160, uses LD information as does the recent method proposed by Ning et al., 

high definition likelihood161. 

Genetic correlations between numerous traits have been reported 160,162, including 

previous pQTL studies, showing that plasma protein levels share genetic architecture 

with multiple phenotypes (Shen et al. Unpublished). 

1.6.6 Mendelian Randomisation 

While genetic correlations can indicate when two traits share architecture and that 

the genome-wide genetic effects correlate, they cannot tell us anything about the 

direction of the relationship between the two traits, they do not indicate causality.  
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The limited ability to assess causality between traits is a huge hurdle in biology. In 

order to form a comprehensive picture of how disease phenotypes arise , we want to 

know whether biomarkers, either molecular such as LDL cholesterol levels or complex 

traits such as blood pressure, are causes or consequences of disease. 

Traditionally causality between two traits was only able to be assessed using 

randomised controlled trials (RCT), where participants are randomly assigned into 

either the control group or a group that received the intervention or exposure. Such 

studies are what is referred to as double blind, as both the participants and the 

researchers are unaware to which group participants have been assigned. In all other 

respects the groups are treated the same, therefore minimising sources of 

experimental bias. 

Mendelian Randomisation (MR) is a technique that provides the opportunity to infer 

causal relationships between two traits  using GWAS summary statistics and has 

revolutionised the field of genetic epidemiology. MR as we know i t today, was first 

put forward in 2003163,164 and enables the estimation of the causal effect of an 

exposure on an outcome, without the need to conduct an RCT. MR further allows a 

broader array of exposures to be investigated, a s it would be neither possible nor 

ethical to subject research participants to exposures which are known health risks. 

Additionally, many apparently robust observational associations do not deliver the 

anticipated results when assessed using an RCT165. Unlike traditional epidemiological 

studies, which are hampered by confounding and reverse causation, the use  of 

genetic data has several attractive advantages. Firstly, that as genotypes are assigned 

randomly when passed from parent to offspring during meiosis, they can be 

considered free from confounding from environmental factors that could influence 

exposure or outcome. Secondly, in accordance with the central dogma, as genotypes 

are not affected by potential exposures or outcomes, they are not subject to reverse 

causality. As subsets of individuals in a study population with differing number of 

exposure-modifying alleles at a SNP can be thought of as having been randomised to 
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receive a different level of an exposure during their lifetime, there is effectively a 

naturally occurring RCT166,167. 

MR estimates the causal effect of an exposure on an outcome using SNPs as 

instrumental variables (IVs)168 of the exposure. The two-sample MR approach169 

which uses GWAS summary statistics from two different studies for exposure and 

outcome is more commonly used, given the amount of publicly available GWAS 

summary statistics, particularly large meta-analyses from consortia. It is increasingly 

rare that a single study would have both outcome and exposure measured in a 

sample size large enough to rival those published. The TwoSampleMR R package and 

the associated database of exposure and outcome GWAS, MRBase, have become the 

most common tools for performing MR170. The basic method works as follows: 

 
Figure 2. Mendelian Randomisation DAG. 

As shown in Figure 2 the effect of the IV ( ) on the exposure ( ) is , the effect of 

the IV ( ) on outcome ( ) is , the causal effect of exposure ( ) on outcome ( ) is 

estimated as the effect of IV on outcome divided by the effect of the IV on the 

exposure. 

 

This example, using a single SNP IV is the simplest MR method, the Wald ratio 171. 

Inverse variance weighting (IVW) is used to combine ratio estimates from multiple  

independent (i.e. not correlated) IVs: 

̂
∑ ̂

∑
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Where  is the inverse variance of the ratio estimate for IV , ̂  The Wald ratio and 

IVW are the most common MR methods.  

The MR approach relies on three assumptions172 (Figure 3). First, that IVs are strongly 

associated with the exposure. Second, that IVs are not affected by unmeasured 

confounders of the exposure and outcome. Third, that IVs are not associated with th e 

outcome via any other path than through the exposure. Any violations of these 

assumptions introduce bias into the results . For example, horizontal pleiotropy, when 

IVs affect the outcome via a different biological mechanism, other than through the 

exposure being considered, is a major source of biased causal effect estimates from 

MR163,164. Similarly, if there are differences in the single SNP causal effect estimates 

between multiple instruments, instrument heterogeneity, this could indicate that a 

proportion of the IVs selected are invalid, resulting in the overall causal effect 

estimate of exposure on outcome being biased173. 

 
Figure 3. Assumptions of Mendelian Randomisation. MR DAG with causal paths indicated by solid 
lines, assumptions numbered in purple, causal effects that violate assumptions in dashed lines, 
example of analysis of the effect of protein level on disease in red.  

As MR is extremely popular, new methods to overcome these limitations are 

constantly being developed such as MR-Egger which provides causal effect estimates 

even with invalid instruments . The MR-Egger intercept is also used to detect 

horizontal pleiotropy174–176. Maximum likelihood177, weighted median173 and 
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weighted mode approaches are more robust to IV heterogeneity , due to allowing a 

proportion of IVs selected to be invalid.  

Together these methods allow us to pose research questions that, without the ability 

to assess causality between traits, we were not equipped to answer.  

Plasma protein levels are of particular interest when it comes to investigating 

potential causal relationships due to their: proximity to end-point phenotypes, 

potential to drive mechanisms that result in disease and the fact that they are 

druggable targets. For these reasons, dedicated research has been done on the use of 

pQTL as IVs, suggesting the following additional sensitivity analysis should accompany 

IVW MR178. Namely, that filters based on heterogeneity between instruments and 

MR-Egger intercept be applied when using multiple IVs to limit the chance of 

pleiotropy influencing results. Similarly, that evidence of reverse causality , here 

referring to the outcome having a causal effect on the exposure,  should be assessed 

either by performing bidirectional MR if the full summary statistics for the exposure 

are available or the Steiger test for directionality179 if not. Finally, that colocalisation 

(outlined below) should be used to provide additional evidence that exposure and 

outcome share a causal variant.  

Previous pQTL studies have performed MR using pQTL as IVs with numerous 

outcomes. These studies have recapitulated reported causal relationships, replicated 

findings from randomised controlled trials 149 as well as highlighting several circulating 

plasma proteins such as PAPPA, F3 and SPON1 as novel drug targets 149 and 

opportunities for drug repurposing such as Denosumab, that targets RANKL, for 

treatment of Paget’s disease116.  

These studies highlight the exciting discoveries possible using pQTL as IVs for MR. 

However, the number and robustness of causal relationships inferred depends on the 

strength of the instruments, which in turn depends on the power of the exposure 

GWAS. This emphasises the potential possible with even larger sample size s. Well 

powered MR studies using pQTL as instruments offer the potential to infer causal 
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relationships that would improve our understanding of disease aetiology, discover 

causal biomarkers of disease and pinpoint novel therapeutic targets for intervention.  

1.6.7 Colocalisation  

It is relatively simple to discover genetic variants significantly associated with 

variation in a trait of interest, however it is much more difficult to determine how 

these variants, via which genes and pathways, act to actually impact the trait. It is 

therefore of great interest to be able to determine if  gene expression and a trait of 

interest share causal variants, although this can also be assessed for pairs of complex 

traits that are thought to be related.  

This is of particular interest when studying proteomics , as the most direct biological 

mechanism for pQTL would be to alter the gene expression of the coding gene, thus 

also being an expression quantitative trait loci (eQTL).  

There are several possible approaches to see if pQTL overlap with eQTL. The most 

straightforward is to see if the lead variant (top SNP) of the pQTL has been previously 

reported as being associated with expression of the relevant gene using publicly 

available eQTL datasets (e.g. GTEx)180–182. However, as mentioned previously, there is 

no guarantee that the top SNP is indeed the causal SNP for both traits, therefore 

formal tests for colocalisation are required. 

The summary data-based Mendelian Randomisation (SMR) 183 method proposed by 

Zhu et al. identifies genes whose expression levels are associated with a complex trait 

using GWAS and eQTL summary statistics. SMR estimates the effect of gene 

expression (exposure, ) on trait (outcome, ), , using a single SNP instrument 

( ): 
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Where  is the estimated effect of the SNP on outcome and  is the estimated 

effect of SNP on exposure. A limitation of using single SNPs is that this approach is 

usable to distinguish between causality and pleiotropy (Figure 4). In order to 

distinguish between pleiotropy and linkage, the SMR software pe rforms a 

Heterogeneity in dependent instruments  (HEIDI) test. If the association is due to 

pleiotropy, all SNPs in LD with the causal SNP will have the same estima ted . 

Therefore, testing against the null hypothesis of pleiotropy due to a single causal 

variant, is equivalent to testing if estimates of  for multiple SNPs in the cis-eQTL 

region are heterogeneous. 

 
Figure 4. Causality, Pleiotropy or Linkage. 

In contrast, the more recent colocalisation approach coloc 184 utilises a Bayesian 

method to assess whether two association signals from two different traits are 

consistent with a shared causal variant. Like SMR, coloc uses summary statistics 

rather than individual level data.  

Using a set of (Q) variants common to both datasets for which minor allele 

frequencies, effect sizes, standard errors are known, coloc creates vectors of length Q 

of (0,1) values for each trait, where a value of 1 indicates that the variant is causally 



 30 

associated with the trait of interest. All possible pairs of vectors or “configurations” 

are assigned to one of the following five hypotheses: 

H0 = No association with either trait 

H1 = Association with trait 1, not with trait 2 

H2 = Association with trait 2, not with trait 1 

H3 = Association with trait 1 and trait 2, two independent SNPs  

H4 = Association with trait 1 and trait 2, one shared SNP 

Using a Bayesian framework, coloc combines SNP level prior probabilities with the 

probability of the data at the configuration level , summed over all configurations to 

calculate a posterior probability for each of the 5 hypotheses. The posterior 

probability of H4 (PPH4) is of most interest as a large PPH4 suggests the two 

association signals are likely to share a causal variant and colocalise.  

This approach assumes that the population samples used in the two studies contain 

unrelated individuals and that these samples are drawn from populations with the  

same ancestry, specifically that both allele frequencies and patterns of LD are shared. 

It also has limitations, firstly it assumes that the causal variant is included in the Q 

SNPs included in the analysis and secondly that there is only one causal variant in the 

region being considered. 

These methods have been used in previous pQTL studies to look for evidence of pQTL 

acting via gene expression to cause the changes in the levels of circulating plasma 

proteins measured. Folkersen et al. found 125 associations between 96 genes and the 

levels of 54 proteins using SMR-HEIDI149. Sun et al. found that 78.5% of their testable 

cis-pQTL showed strong evidence (PPH4>0.8) of colocalisation with eQTL in at least 

one tissue185, suggesting these pQTL influence the level of the protein circulating in 

the plasma by altering the transcript level. 

1.6.8 Summary  

Previous GWAS of plasma protein levels  have utilised these methods leveraging 

genetic data that I have outlined. Thousands of genetic variants associated with 
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variation in plasma protein levels 115–121, complexities of underlying genetic 

architecture, overlap with eQTLs 116,149, causal relationships with disease116,149,153 and 

candidate novel therapeutic targets 149 have been reported. These studies highlight 

the potential further discoveries possible with even larger samples sizes.  

In combining GWAS of protein levels in ORCADES with summary statistics from 17 

cohorts from the SCALLOP Consortium, I will apply these methods to the largest 

GWAMA of 184 protein levels to date. This increased power will provide greater 

insight into the genetic regulation of protein levels and how they relate to disease as 

well as creating a resource of pQTL data available for future use in the field.  

1.7 Aims 

Despite the recent advance of technology that produced high-dimensional omics 

assays, their expense means that large cohorts with multiple omics assays are rare. I 

took advantage of the unique range of omics data available in the Orkney Complex 

Disease Study (ORCADES) to address gaps and broaden the scope of several research 

areas. 

In this thesis I exploited this resource of multi-omics data to investigate “Omics 

Measures of Ageing and Disease Susceptibility” in the following three diverse areas:  

1. How multiple omics assays compare as sources of potential biomarkers of 

biological age 

2. Investigating whether multi-omics biomarkers are associated with health-

related risk factors or prognostic of incident disease 

3. Leveraging the genetic architecture of proteomics to investigate the 

relationships between plasma protein levels and disease 

As such research could: elucidate mechanisms of biological ageing and disease; 

uncover biomarkers of incident disease and biological ageing, providing the 

opportunity for potential intervention or even prevention, therefore aiding precision 

medicine; infer causal relationships between c irculating omics biomarkers and health 
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outcomes; and discover potential novel therapeutic targets or candidates for drug 

repurposing.  

Answering these questions offers the potential to better our understanding of the 

underlying biology of ageing and diseas e. Only by understanding how biological 

mechanisms work end-to-end are we able to design interventions that will help 

reduce the burden of disease. Only by understanding why we are the way we are can 

we hope to improve our quality of life.  
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Chapter 2: Data & Methods 

2.1 Introduction 

2.1.1 Data 

This thesis used overlapping sets of cohorts for 3 different sets of analysis, some of 

which involved me processing individual level data, some of which were processed by 

the cohort analysts and meta-analysed by me. 

For each cohort used throughout this thesis Table 1 indicates which omics assay and 

to which of the three sets of analys es (Chapters) they contributed, as well as stating 

who carried out the pre-processing and quality control of the raw cohort level data, 

whether it was another analyst or me. 

Cohort Omics Assay Chapter QC Analysis 

ORCADES 

Genetics 5   

DNA Methylation 3,4   
PEA Proteomics 3,4,5   

UPLC IgG Glycomics 3,4   
NMR Metabolomics 3,4   

MS Metabolomics 3,4   

MS Complex Lipidomics 3,4   
MS Fatty Acid Lipidomics 3,4   

DEXA 3,4   
Clinomics 3,4   

Croatia-Vis 
Genetics 5   
PEA Proteomics 3,4,5   

UPLC IgG Glycomics 3   

Croatia-Korčula 
UPLC IgG Glycomics 3   

NMR Metabolomics 3   

UK Biobank 
Clinomics 3   
DEXA 3   

GS:SFHS DNA Methylation 3   

EGCUT 

Genetics 5   

PEA Proteomics 3,5   
NMR Metabolomics 3   

DNA Methylation 3   

ASAP 
Genetics 5   
PEA Proteomics 5   
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ARISTOTLE 
Genetics 5   

PEA Proteomics 5   

Biofinder 
Genetics 5   

PEA Proteomics 5   

COSM-C 
Genetics 5   
PEA Proteomics 5   

Epihealth 
Genetics 5   
PEA Proteomics 5   

Fenland 
Genetics 5   
PEA Proteomics 5   

FHS 
Genetics 5   

PEA Proteomics 5   

IMPROVE 
Genetics 5   

PEA Proteomics 5   

INTERVAL 
Genetics 5   

PEA Proteomics 5   

LifeLinesDeep 
Genetics 5   

PEA Proteomics 5   

MPP-RES 
Genetics 5   
PEA Proteomics 5   

NSPHS 
Genetics 5   
PEA Proteomics 5   

PIVUS 
Genetics 5   
PEA Proteomics 5   

SMCC 
Genetics 5   

PEA Proteomics 5   

ULSAM 
Genetics 5   

PEA Proteomics 5   
Table 1. Cohort Data used in Thesis. Cohort: indicating the cohorts used throughout the analyses 
presented in this thesis. Omics Assay: the omics assay used for analyses per-cohort. Chapter: the 
chapter in which the indicated data was used. QC: Indicating whether another analyst (green) or I 

(purple) carried out the pre-processing and QC of the raw data. Analysis: indicating whether 
another analyst (green) or I (purple) performed the cohort level analysis.  

Due to manuscripts being included in this thesis, descriptions of the data and 

methods are spread across multiple chapters, so I will here briefly outline where 

descriptions of cohorts, omics assays and both general and analysis specific quality 

control (QC) and pre-processing can be found. 

In this chapter I will also briefly describe the cohorts for which I handled individual 

level data and performed the cohort level analysis, these are the cohorts  used for the 

multi-omic analyses in chapters 3 and 4. Here I will also describe the called and 
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imputed genotype data for the ORCADES and Croatia -Vis cohorts that contributed to 

the meta-analysis discussed in chapter 5. 

Descriptions of the omics assays used for analysis in chapters 3 and 4 (all of the omics 

listed in Table 1 bar genetics) are described in the methods section of the submitted 

manuscript that comprises chapter 3. However, a detailed explanation of the data 

pre-processing and QC procedures that were common across all omics assays and 

used to create the final omics datasets used for these analyses is provided in this 

chapter. 

Both general and analysis-specific QC and pre-processing will be described, and it will 

be explicitly stated if the procedure described was carried out by another analyst or 

myself.  

The remaining 16 cohorts that provided summary statistics for the meta-analysis are 

described in the supplementary information for the manuscript that comprises 

chapter 5 (provided in the Appendix for chapter 5 in this thesis).  

2.1.2 Methods 

Similar to the cohort data, due to the inclusion of manuscripts in this thesis , 

descriptions of the methods used are also spread across chapters, so again I will 

indicate where the methods are located. 

As both chapters 3 and 5 contain manuscripts, the details of analysis -specific methods 

for these chapters are in the relevant results  chapter methods sections. To keep 

consistency between results chapters , I have also outlined analysis -specific methods 

in the methods section of chapter 4. 

However, the background of common methods used across chapters 3 and 4 is 

described here. Specifically, I detail three different penalised regression methods, the 

limitations in ordinary least squares regression that they overcome and discuss why 

specific approaches were selected for use in these analyses.  
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I will here also outline: the preparation of data for two Olink proteomics panels, the 

procedure I used to perform cohort-level GWAS of these plasma protein levels, the 

QC of cohort-level GWAS summary statistics from all contributing cohorts and the 

meta-analysis protocol in more detail than is present in the methods section of the 

attached manuscript in chapter 5.  

Details of the post-GWAS analyses performed are provided in the methods section of 

the attached manuscript in chapter 5, however the background and motivation 

behind these methods have already been outlined in the introduction (1.6 Leveraging 

Genetic Architecture of Protein Biomarkers). 

2.2 Cohorts 

2.2.1 ORCADES 

The Orkney Complex Disease Study (ORCADES) is a family-based, cross-sectional 

study that seeks to identify genetic factors influencing cardiovascular and other 

disease risk in the isolated archipelago of the Orkney Isles in northern Scotland. In 

order to participate individuals were required to have at least two grandparents from 

Orkney. 2,078 participants between the ages of 16 and 100 years were recruited from 

2005-2011186. There is decreased genetic diversity, alongside enrichment for rare 

variants, in this population compared to Mainland Scotland, consistent with high 

levels of endogamy historically. Fasting blood samples were collected, and many 

health-related phenotypes and environmental exposures were measured in each 

individual. Crucially for my purposes , it is also extremely densely annotated in terms 

of omics assays, having DNA methylation, proteomics, l ipidomics, IgG glycomics, 

metabolomics (both using nuclear magnetic resonance (NMR) and Mass spectrometry 

(MS)) and body composition measures from whole body scans measured.  
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ORCADES was the main cohort used in this thesis. It is the primary sample for 

analyses in chapters 3 and 4, and additionally contributes to the larger meta -analysis 

in chapter 5. DNA was extracted and the resultant genetic data was used in chapter 5.  

ORCADES Genetic Data 

A total of 2,267 samples had DNA extracted and were genotyped across three 

different Illumina arrays. Samples were removed if they had a call rate <98% or were 

identified as ethnic outliers, duplicates, gender mismatches or excess identity -by-

state (IBS) sharing incompatible with the pedigree. After sample quality control, 854 

samples remained on the Hap300, 301 on Omni1 and 1,067 on the OmniX. The 

number of markers and quality control filters applied across the three arrays are 

shown in Table 2.  

 Hap300 Omni1 OmniX 

N SNPs pre-QC 293,687 1,016,138 743,427 
MAF filter 1% monomorphic monomorphic 
HWE filter 10-6 10-6 10-6 
Call rate filter 97% 97% 97% 
N SNPs post-QC 287,208 843,723 654,651 

Table 2. Genotype Quality Control in ORCADES. The number of variants pre- and post-QC and the 
filters applied to each of the three different genotyping arrays.  

These markers were then phased using Shapeit187 v2.r873 and duohmm188 software 

and imputed to HRC.r1-1 (without INDELS) using the Positional Burrows -Wheeler 

Transform (PBWT) algorithm189 on the Sanger imputation server. The final dataset 

used for analysis comprised 12,696,745 SNPs (NCBI Build b37) for 2,215 samples. The 

preceding analysis was performed by others in the group and the resulting set of 

imputed genotypes passed to me. 

2.2.2 Croatia-Vis 

The CROATIA Vis study comprises 1,008 Croatian volunteers, aged 18 –93 years, who 

were recruited from the villages of Vis and Komiža on the Dalmatian Island of Vis 

during 2003 and 2004. Participants underwent a medical examination and intervie w, 
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led by research teams from the Institute for Anthropological Research and the Andrija 

Stampar School of Public Health, (Zagreb, Croatia). All subjects visited the clinical 

research centre in the region, where they were examined in person and where fasti ng 

blood was drawn and stored for future analyses. Many biochemical and physiological 

measurements were performed, and questionnaires of medical history as well as 

lifestyle and environmental exposures were collected. Akin to ORCADES, Croatia-Vis is 

a population isolate and has a similar study design. Several omics assays measured in 

Croatia-Vis overlap with those measured in ORCADES, specifically: UPLC IgG 

Glycomics and three Olink proteomics panels (inflammation 1 and cardiovascular 2 & 

3). I had access to individual level data for this cohort as it is managed by a 

collaborator at the University of Edinburgh. 

These omics assays were used in chapter 3 to replicate omics ageing clocks trained in 

ORCADES. Together with genetic data, proteomics data from two Olink panels in 

Croatia-Vis were used to perform genome-wide association studies that went on to 

contribute to the genome-wide association meta-analyses that are the subject of 

chapter 5. 

Croatia-Vis Genetic Data 

Extracted DNA samples from Croatia-Vis were genotyped using the Illumina 

HumanHap300v1 array and called using Beadstudio-Gencall v3.0. A total of 317,509 

markers were filtered based on: sample call rate (>97%), SNP call rate (98%), a HWE 

threshold (<1 x 10-6) and a MAF threshold ( 0.01). The 272,930 markers meeting 

these criteria were used for imputation using the HRC reference. Shapet v2.r873 and 

duohmm software was used to phase the genotypes after which the PBWT (Sanger 

server) was used for imputation with HRC.r1-1 reference panel (without INDELS). 

Genotypes were originally NCBI genome build b35 but were lifted over to build b37 

prior to imputation. 
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The final dataset used for analysis comprised 9,477,884 SNPs (NCBI Build b37) for 985 

samples. The preceding analysis was performed by others in the group and the 

resulting set of imputed genotypes, passed to me. 

2.2.3 Croatia-Korčula 

The Croatia-Korčula sample is part of the larger group of CROATIA population isolates 

that contains Croatia-Vis. It is a family-based cross-sectional study comprising ~2,800 

individuals from the Dalmatian Island of Korčula and used the same recruitment 

strategy and study design as Croatia-Vis. The study has two omics assays that overlap 

with those measured in ORCADES and was used in chapter 3 to replicate UPLC IgG 

Glycomics and NMR Metabolomics ageing clocks trained in ORCADES. Like Croatia -

Vis, this cohort is managed by collaborators at the University of Edinburgh, and I was 

able to access individual level data and perform the replication analysis myself.  

2.2.4 Generation Scotland 

Generation Scotland: Scottish Family Health Study (GS:SFHS) 190 is a family-based 

genetic epidemiology study with DNA, socio-demographic and clinical data from 

~24,000 volunteers aged 18-98 recruited between 2006 and 2011. The study was 

designed to create a resource for the study of the genetics of health, disease and 

quantitative traits that are important for public health. Adults from across Scotland 

from a range of socioeconomic status areas were invited to participate based on GP 

registry, with the additional criteria that they had at least one first degree relative 

who could also participate. The sample is 59% female with 87% of participants born in 

Scotland with 82% of parents and 75% of grandparents also born in Scotland. 

Participants completed a pre-clinic questionnaire before an in-person visit. Biological 

samples, cognitive function, personality traits, mental health data and lifestyle 

information were collected from participants as well as the study having linked 

electronic health records. 
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The family-based nature and increased kinship of the study allows the investigation of 

heritability, parent of origin effects, rare alleles and linkage mapping of health  and 

disease related traits. In this respect it is similar to the highly related ORCADES 

sample. GS:SFHS has DNA methylation data for ~5,000 participants and was used in 

my analysis in chapter 3 to replicate two epigenetic ageing clocks trained in 

ORCADES. Individual level data for the specific markers selected for inclusion in my 

ageing clocks were extracted by Rosie Walker and I performed the replication 

analysis. 

2.2.5 UK Biobank 

The UK Biobank (UKBB) cohort (described in detail in Sudlow et al.191) is a prospective 

cohort established to investigate the genetic and non-genetic determinants of 

diseases of middle and old age. It comprises over 500,000 participants aged between 

40 and 69 years at recruitment, which spanned 2006-2010. This age range was 

chosen to balance participants being old enough to be able to record incident health 

outcomes in the first few years of follow up, but also still young enough for the initial 

assessment to capture exposures before they are influenced by age -related 

morbidities. Participants were assessed at 22 assessment centres around the UK 

aiming to capture the heterogeneity in ethnicity, socio-economic status and the 

urban and rural mix that exists in the general population. Baseline measures including 

questionnaires, interviews, physical and functional measures, blood, urine and saliva 

samples were taken in person at assessment centres. Additional questionnaires have 

subsequently been sent to subsets of participants to complete online. The cohort has 

extensive phenotypic data available spanning questionnaires, physical measures, 

sample assays, accelerometery, multimodal imaging and longitudinal follow up 

including linked electronic health and primary care records. Since recruitment 

finished in 2010 the study has focussed on increasing the number of exposures and 

health-related outcomes it measures. 
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The UK Biobank is an extremely useful resource due to its large sample size and 

therefore power and the fact that it is publicly available. At the date of analysis omics 

data was not yet available for UKBB, however it did have a subset of ~5,000 

individuals with DEXA imaging derived phenotypes and the traditional health -related 

risk factors that comprise the Clinomics set of phenotypes in ORCADES. The UK 

Biobank was used in my analysis in chapter 3 to replicate the DEXA and Clinomics 

ageing clocks trained in ORCADES. 

2.2.6 Estonian Biobank 

The Estonian Biobank192 is a volunteer-based sample of the resident adult (18+) 

population in Estonia recruited between 2002 and 2019. The study was set up to 

establish a biobank with biological samples and health records from a large 

representative sample of the population to allow the investigation of genetic, 

environmental and behavioural background of common diseases. Individuals were 

invited to volunteer via their GPs as well as through promotional events. After the 

most recent round of recruitment the total sample size is >150,000 , with genetic data 

and biological samples available for ~50,000 participants. Baseline measures included 

a standard health examination from a GP, blood samples, interview, questionnaires 

on lifestyle, medical history, personality and diet. The study also has extensive omics 

phenotyping including metabolomics, epigenetic s, whole genome sequencing  and 

longitudinal data is available in the form of linked electronic health records and the 

re-examination of a subset of participants.  

The cohort has several omics assays that overlap with those measured in ORCADES 

and Estonian Biobank data was used in chapter 3 to replicate several omics age ing 

clocks trained in ORCADES. Specifically, the NMR Metabolomics, two DNA 

methylation clocks and a PEA Proteomics clock constructed from a subset of the Olink 

panels available in ORCADES. As discussed in section 2.3.2 QC of Omics Data in 

Replication Cohorts of this chapter, analysis was performed on the Estonian Biobank 
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data by Nele Taba using a quality control and analysis pipeline that I wrote, to avoid 

the requirement for access to individual level data by me. 

The Estonian Biobank also contributed GWAS summary statistics for the 184 Olink 

proteins on the cardiovascular II and cardiovascular III panels to the GWAMA 

discussed in chapter 5. 

2.3 Quality Control of Omics Data 

2.3.1 QC of ORCADES Omics Data 

For analyses in chapters 3 and 4, data from each omics assay in ORCADES was 

processed using the quality control (QC) pipeline outlined in Figure 5. For each assay 

in turn, single value omics measures (those that had the same value across all 

individuals in the sample) and outliers for the omics measures themselves were 

removed based on per assay z-score thresholds (Table 3). Omics data was then 

merged with outcome and covariate data. Age at venepuncture was the only 

outcome in analyses in chapter 3 whereas, in chapter 4 each assay was used to build 

models trained on 54 different outcomes spanning Martingale residuals for incident 

hospital admission for 44 disease blocks and 10 health related risk factors (Full list in  

Supplementary Table 20). 
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Figure 5. Quality control pipeline for ORCADES Omics data. Assays underwent the following steps 
as outlined, with assays with less missingness undergoing the NA removal procedure outlined in 

green and assays with more complex patterns of missingness the procedure in red. PEA Proteomics 
and Mega Omics assays were created by merging partly QC’d datasets as described and 
underwent the procedure highlighted in purple with NAs subsequently removed from the merged 
datasets according to the procedure outlined in red. 
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QC for Biological Ageing Clocks 

Omics measures were corrected for covariates using fixed effect linear regression 

(covariates fitted per assay in Table 4). For the assays indicated in Table 3, residual 

outliers were removed based on an assay level z-score thresholds that were chosen 

based on visualisation of the distributions . This was the procedure followed for the 

Hannum CpGs DNAme, Horvath CpG DNAme, NMR Metabolomics, Clinomics, DEXA, 

MS Fatty Acid Lipidomics, MS Metabolomics, MS Complex Lipids and UPLC IgG 

Glycomics datasets.  
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DEXA 1,302 53 6 3 1,158 28 

Clinomics 2,019 13 6 - 1,817 13 
Hannum CpGs DNAme 1,052 62 6 - 1,035 62 

Horvath CpGs DNAme 1,052 333 6 - 959 333 

UPLC IgG Glycomics 2,030 77 6 - 1,937 77 

NMR Metabolomics 2,015 225 5 3 1,645 86 

MS Fatty Acid Lipidomics 1,000 44 6 4 954 33 

MS Metabolomics 1,046 1,102 6 - 863 682 

MS Complex Lipids 1,040 1,028 6 - 941 908 

PEA Proteomics 1,057 1,102 6 - 805 886 
Mega Omics  4,033 6 - 796 2,471 

Table 3. QC Steps across Omics. N with omics data: the number of samples in ORCADES with the 

relevant assay measured. N Predictors: number of predictors measured in each assay. Raw Z -score 
threshold: Z-score cut-off for raw omics measures. Residual Z-score threshold: Z-score threshold 
for omics residuals after correction for covariates. N with Omics post QC: the number of samples 
remaining after QC. N Predictors post QC: the number of predictors in the final QC’d dataset (the 
removal of missing samples and predictors to get post QC data is described later in this section).  
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Omics Assay Covariates 

DEXA Sex 
Clinomics Sex 

Hannum CpGs DNAme Sex 

Horvath CpGs DNAme Sex 
UPLC IgG Glycomics Sex 

NMR Metabolomics Sex, statin use 
MS Fatty Acid 
Lipidomics 

Sex, statin use, box number, box position  

MS Metabolomics Sex, statin use, day of assay, box number, row, col  
MS Complex Lipids Sex, statin use, day of assay, box number, row, col  

PEA Proteomics - 
Mega Omics - 

Table 4. Covariates fitted per Omics Assay. Sex and statin use were fit as binary variables. Box 
number: categorical variable. Date of assay: categorical variable. Row and column were fitted as 
ordered factors. 

Due to the algorithm used to construct penalised regressions models (discussed in 

detail in next section) requiring complete non-missing data, missing values (NAs) had 

to be removed. Given the relatively small sample size of ~1,000 I wanted to avoid 

losing too many samples and thus power. On the other hand, given that the sheer 

number of omics predictors measured is a distinguishing feature of ORCADES, I 

wanted to minimise the number of predictors removed from the analysis. I therefore 

removed missing values while attempting to maximise the number of both samples 

and predictors with complete non-missing data for my analysis.  

For assays with relatively few missing values I removed samples based on a 

percentage missing threshold of 0, the procedure for removi ng NAs indicated in green 

in Figure 5. Hannum CpGs DNAme, Horvath CpGs DNAme and UPLC IgG Glycomics 

assays underwent this procedure. Assays with more complex patterns of missingness 

such as DEXA, Clinomics, NMR metabolomics, MS Fatty Acid Lipidomics, MS 

Metabolomics and MS Complex Lipids underwent the NA removal procedure outlined 

in red in Figure 5. This procedure involved removing missingness via a sequence of 

percentage missing thresholds, the thresholds alternating between being applied 

across samples and across predictors, details of the sequence of  thresholds per assay 

are shown in Table 5. These thresholds were determined by manual examination of 

the visualisation of the proportion missing across either samples or predictors. 
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 DEXA Clinomics NMR 
Metabolomics 

Fatty Acids 
Lipidomics Se

q
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0.3  0.3 0.08 0.3 
0.01 0.05 0 0.05 
0.01 0.04 - 0.04 
- - - 0 
MS 
Metabolomics 

MS Complex 
Lipidomics 

PEA 
Proteomics 

Mega Omics 

0.05 0.1 0.3 0.6  
0.08 0.08 0.025 0.4 
0.02 0.02 0.05 0.2 
0.0075 0.007 0.004 0.1 
0.015 0.01 0.005 0.05 
0.007 0.004 0.003 0.02 
0.01 0.007 0.003 0.02 
0.005 0.003 0.002 0.005 
0.0075 0.004 0  0.005 
0.004 0.002 - 0.002 
0.006 0.002 - 0 
0.003  0.001 - - 
0.003 - - - 
0.002 - - - 
0.002 - - - 
0.001 - - - 

Table 5. Sequence of percentage missing thresholds applied to Omics Data. The proportion of 
missing values threshold applied to samples (blue text) and predictors (red text) for the indicated 
omics assay, in the order that they were applied. 

As different Olink panels were assayed on different dates as panels became available 

over time, two different configurations of samples on plates were used. In order to 

minimise the effect of the position of the sample on the plate on protein level, I 

wanted to fit plate position as a covariate when processing the Olink data. The 

sample configuration differing across panels meant that each of the 12 panels of 92 

proteins underwent the QC process separately. The raw omic Z -score threshold for all 

12 panels was 6 standard deviations from the mean and there was no residual Z -score 

threshold applied. The same covariates were fitted for all panels namely: sex, season 

of venepuncture, time the sample had been in storage before assay (days), plate 

number, plate row and plate column. At the panel level , missing values were 

removed using the percentage missing threshold of 0 across samples approach 

(indicated in green in Figure 5). At this point the covariate corrected 12 panels were 

merged into the PEA Proteomics dataset which then underwent the sequential 
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threshold procedure (approach in red in Figure 5) to end up with only those samples 

that had measures for the final set of proteins across all panels that make up the final 

non-missing dataset. 

Similarly, to the PEA Proteomics dataset, the Mega Omics dataset was created by 

merging the 10 non-missing covariate corrected datasets , then removing missing 

values of the newly merged dataset using the sequential threshold procedure. As the 

creation of the PEA Proteomics and Mega Omics datasets merged the already QC’d 

assay data, the assay level covariates and Z-score threshold columns in Table 3 and 

Table 4 are not applicable. 

Finally, the omics measures in the 11 non-missing covariate corrected datasets were 

scaled and centred to have a mean of 0 and a standard deviation of 1. These 11 QC’d 

datasets were then split into training and testing to build my standard and core 

models detailed in the methods section of chapter 3. It was also these QC’d datasets 

that were used to calculate principal components (PCs) of each omics assay in 

chapter 3. 

QC for Omics Biomarker of Disease 

The quality control procedure to create the 11 omics da tasets used in the analyses in 

chapter 4 was identical, bar the inclusion of age at venepuncture as a covariate in 

addition to those listed in Table 4, for each assay. Age was not included as a covariate 

when creating the omics datasets for the ageing clocks analysis as  I was interested in 

omics measures’ relationship with age, whereas here the aim is to assess omics 

biomarkers association with risk factors and incident disease, independent of age. 

The assay level z-score thresholds, missingness removal procedure and thresholds 

were the same as indicated in Table 3 and Table 5 respectively for all omics. The 

number of predictors across omics assays are shown in Table 6, the number of 

samples per assay across risk factors are shown in Table 7 and across disease blocks 

in Supplementary Table 16.  
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Omics Assay N Predictors 

Clinomics 13 
DEXA 29 
Hannum CpGs DNAme 62 
Horvath CpGs DNAme 333 
UPLC IgG Glycomics 77 
NMR Metabolomics 68 
MS Fatty Acid Lipidomics 32 
MS Metabolomics 682 
MS Complex Lipids 908 
PEA Proteomics 967 
Mega Omics 2,534 

Table 6. Number of Predictors available for each Omics Assay. 
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Clinomics 917 940 890 940 940 940 923 931 940 901 
DEXA 984 1010 960 1033 1033 1032 991 1000 1033 989 

Hannum CpGs 
DNAme 

1081 1104 1088 1140 1140 1137 1083 1095 1140 1114 

Horvath CpGs 
DNAme 

909 934 886 957 957 956 917 924 957 919 

UPLC IgG 
Glycomics 

1766 1815 1694 - - 1807 - - 1815 1767 

NMR 
Metabolomics 

932 952 900 952 952 952 937 943 952 912 

MS Fatty Acid 
Lipidomics 

1806 1862 1778 1937 1937 1930 1766 1845 1937 1889 

MS 
Metabolomics 

842 861 814 861 861 861 846 854 861 827 

MS Complex 
Lipids 

1646 1692 1575 1693 1693 1688 1603 1677 1693 1647 

PEA 
Proteomics 

767 783 741 798 798 798 771 774 798 761 

Mega Omics 776 793 749 - - 793 - - 793 759 

Table 7. Number of Samples Across Omics Assays for Risk Factor Analysis. FRS: Framingham risk 
score. BMI: body mass index. HDL: high density lipoprotein. FEV1: forced expiratory volume in 1 
minute. Systolic BP: systolic blood pressure (mmHg). CRP: C-reactive protein. 

  



 49 

2.3.2 QC of Omics Data in Replication Cohorts 

Quality control of the omics data in cohorts used for replication of models trained in 

ORCADES followed a similar procedure to that described above. Omics measures 

outliers were removed using the Z -score thresholds indicated in Table 8, single value 

predictors were removed, and assay-specific covariates were fitted as indicated in 

Table 9. Covariate corrected omics residuals outliers were removed based on Z -score 

thresholds (Table 8). 

Cohort Omics Assay 
Raw Z-
score 
threshold 

Residual Z-
score 
threshold 

N with 
Omics 
post QC 

UKBB DEXA 6 6 3,740 

UKBB Clinomics 6 - 17,003 

GS:SHFS Hannum CpGs DNAme 6 - 5,048 

EGCUT Hannum CpGs DNAme 6 - 282 

GS:SHFS Horvath CpGs DNAme 6 - 4,950 

EGCUT Horvath CpGs DNAme 6 - 229 

Korčula UPLC IgG Glycomics 6 - 900 

Vis UPLC IgG Glycomics 6 - 382 

Korčula NMR Metabolomics 5 3 775 

EGCUT NMR Metabolomics 5 3 6,704 

Vis PEA Proteomics Subset 1 6 - 755 

EGCUT PEA Proteomics Subset 2 6 - 247 

Table 8. Omics Data Description for Replication Cohorts. Indicating the number of samples with 

omics data post-qc (N with omics post-qc), the z-score thresholds for raw omics measures (Raw z-
score threshold) and covariate-corrected residuals (residual z-score threshold) for each replication 
cohort for each assay they contributed. 
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Cohort Omics Assay Covariates 

UKBB DEXA 
Sex, genomic ethnicity, batch, assessment 
centre, withdrawn 

UKBB Clinomics 
Sex, genomic ethnicity, batch, assessment 
centre, withdrawn 

GS:SHFS Hannum CpGs DNAme Sex 
EGCUT Hannum CpGs DNAme Sex 
GS:SHFS Horvath CpGs DNAme Sex 
EGCUT Horvath CpGs DNAme Sex 
Korčula UPLC IgG Glycomics Sex 
Vis UPLC IgG Glycomics Sex 
Korčula NMR Metabolomics Sex, statin use 
EGCUT NMR Metabolomics Sex, statin use 

Vis PEA Proteomics Subset 1 
Sex, site, plate number, plate row, plate 
column 

EGCUT PEA Proteomics Subset 2 
Sex, season of venepuncture, time in storage 
(days), plate number, plate row, plate column 

Table 9. Omics Covariates for Replication Cohorts. The fixed effects covariates used to correct 
omics measures in each replication cohort for each assay they contributed. Withdrawn: binary 
variable indicating if the individual had withdrawn consent, only individuals that had not 
withdrawn consent by 28/07/2020 were included in the analysis. Genomic ethnicity: a binary 
variable indicating if the participant is genomically British, as all other cohorts used in the analysis 
contain only individuals of European ancestry. 

In contrast with the ORCADES QC pipeline, removal of missing values in replication 

cohorts was relatively simple, as only omics measures selected for model inclusion 

were required. Any samples that were missing any of the omics measures selected for 

model inclusion were removed. The remaining non-missing covariate corrected omics 

measures were scaled and centred to have a mean of 0 and a standard deviation of 1. 

These QC steps were performed by a pipeline that performed quality control, 

calculated predicted outcome and returned the Pearson correlation coef ficient (95% 

confidence intervals and p-value) of predicted and observed outcome and the results 

(effect size estimate, standard errors, p-values and R2) of a linear model fitting the 

predicted outcome on observed outcome. This meant that for the analysis of the 

Estonian Biobank (EGCUT) data, the pipeline was run by Nele Taba and these 

descriptive statistics were returned without any individual level data being disclosed. 

I performed the analysis in all of the other replication cohorts.  
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2.4 Penalised Regression 

As mentioned in the introduction, penalised regression techniques are the most 

common methods used to construct biological ageing clocks. Penalised regression is 

used extensively in chapters 3 and 4 to build multiple omics ageing clocks and to 

predict incident disease using omics biomarkers respectively. Penalised regression 

techniques overcome certain limitations of ordinary least squares (OLS) regression. 

OLS is the most common form of linear regression used for prediction and modelled 

as follows: 

 

where  is an  vector of the observed outcome for  samples,  is the  

matrix of the values of  predictors for  samples,  is the  vector of estimated 

effect sizes for  predictors and where  is the unmodelled error. OLS estimates the 

effect sizes for the predictors that minimise the sum of the squared differences 

between observed values of the outcome ( ) and values predicted by the model ( ̂). 

Under the assumption of normally distributed data, OLS is a method of maximum 

likelihood estimation as it estimates parameters that maximise the likelihood that the 

observed data is the most probable. 

A limitation of OLS is that it performs poorly in situations where the number of 

predictors ( ) approaches or surpasses the number of observations ( ). This results in 

a loss of power as degrees of freedom ( ) are lost with increasing . 

 

Multicollinearity, multiple predictors being correlated with each other, also becomes 

more likely with increasing . This is particularly an issue with omics assays, for 

example the NMR Metabolomics assay which contains a large number of cholesterol 

subfractions that are extremely intercorrelated. This redundancy between predictors 

creates inflation in the variance of the effect size  estimates. Overfitting also becomes 
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more likely with increasing , particularly when . With enough predictors it is 

possible to estimate effect sizes that perfectly predict the outcome in the training 

sample but will not be as predictive in other samples. In OLS having a large number of 

predictors also makes interpretation of results less clear, it is desirable to investigate 

relationships between fewer predictors and an outcome 193. 

Previous strategies to overcome these limitations of OLS regression, by reducing the 

number of predictors fitted in the model include: best subsets regression 194, stepwise 

regression and selection based on p-value. However, these approaches also have 

limitations, firstly testing all possible subsets of predictors included i n the model 

becomes computationally unfeasible as  increases. Secondly, stepwise procedures 

and selection of predictors based on p-values may be sensitive to small changes in the 

training data and therefore may be less effective in samples other than the  training 

set.  

The notion of penalised regression was first put forward in 1970 when  Hoerl & 

Kennard described their method ridge regression195. Ridge, together with least 

absolute shrinkage and selection operator (LASSO) 193 put forward by Tibshirani in 

1996 and elastic net196 by Ziu & Hastie in 2005 comprise the suite of penalised 

regression techniques. These approaches work by introducing a penalty or constraint 

for including too many predictors, hence the term “penalised regression”. These 

three techniques are also referred to as shrinkage methods as they reduce effect size 

estimates towards zero, utilising a shrinkage parameter . Rather than simply 

estimating parameters, , that maximise the log likelihood ( | ) and minimise the 

sum of squared residuals as in OLS regression, penalised approaches minimise the 

function: 

( ) ( | ) ( ) 

Where  is a loss function and is proportional to the residual sum of squares,  is the 

objective function whose value is to be minimised,  is the penalty function and  
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controls the trade-off between the two parts. The role of the penalty function is to 

penalise “unrealistic” effect size estimates, i.e. those that differ greatly from zero.  

Ridge regression utilises the “ -norm penalty”, the sum of squared coefficients:  

( ) ∑  

As the effect of the penalty is fine-tuned using , in cases where , the estimated 

coefficients will be the same as OLS estimates , as the penalty will have no effect. As  

increases towards infinity, the coefficients will be shrunk towards zero. The -norm 

penalty means that while ridge regression shrinks coefficients estimated towards 

zero, none actually become zero, thus all of the predictors presented will be present 

in the final model. 

On the other hand, LASSO regression utilises the “ -norm penalty”, the sum of the 

absolute coefficients: 

( ) ∑| | 

It often shrinks some coefficients to zero, therefore performing variable selection as 

well as shrinkage. Similarly, elastic net regression which utilises both the -norm and 

-norm penalties also performs both shrinkage and variable selection.  

These methods also vary in the way they handle groups of highly correlated 

predictors. Where LASSO will only retain one of a group of highly correlated 

predictors with little regard for which one and ridge regression will retain all, elastic 

net encourages a grouping effect where sets of highly  correlated predictors are 

retained or dropped from the model as a group196.  

This ability to produce sparse models makes LASSO and elastic net more appropriate 

for the construction of models that could be clinically useful. The ideal situation, both 
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in terms of being more cost effective and minimally invasive to participants , would be 

to measure as few biomarkers as possible while achieving effective prediction of the 

desired outcome. For this reason, in chapters 3 and 4 I compare only LASSO and 

elastic net regression, not ridge regression. In chapter 3 I show that there was no 

difference between LASSO and elastic net regression for constructing multiple omics 

ageing clocks. Elastic net was chos en to be taken forward and used for all the results 

presented in chapter 3 due to precedent, more previously published ageing clocks 

having used elastic net54,55,66. In chapter 4 I present the results  of predicting incident 

hospital admission for disease and health-related risk factors using both LASSO and 

elastic net and found however that LASSO was more effective. This finding is 

discussed in detail in chapter 4. 

As penalised regression techniques are sensitive to the variability of the predictors, all 

omics measures were standardised (scaled to have a standard deviation of 1 and a 

mean on 0) prior to model fitting. 

2.5 Genome Wide Association Studies 

I performed GWAS on plasma protein levels from the cardiovascular II and 

cardiovascular III panels from Olink proteomics in the cohorts ORCADES and Croatia -

Vis that contributed to the genome wide association meta-analysis (GWAMA) that is 

discussed in Chapter 5: Genome-wide Association Meta-analysis of 184 Plasma 

Protein Levels. GWAS were run on 183 proteins rather than 184 (2x92-proteins per 

panel) as in both cohorts the measures for the protein CCL22 were all NA, due to 

Olink swapping that protein out of their panel and replacing it with GP6 between the 

dates of initial assay and their returning below lower limit of detection values.  

The decision to include individual protein measures that were below the  limit of 

detection (LOD), the lowest quantity that can be distinguished from the background 

by the assay, was taken due to issues that arose in a parallel analysis of proteins on 

the inflammation 1 Olink panel by collaborators , because of high proportions of 
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below LOD measures. Two strategies commonly used with <LOD data: imputing these 

values to a single value for example, LOD/2 or zero, or setting them to NA and 

considering these measures missing, both res ult in a truncated distribution which is 

not ideal for linear association analysis. However, there is information in these values, 

as despite the assay being unable to accurately determine the quantity, we know the 

true measure is between zero and LOD. Given that LOD values for assays tend to be 

conservative with clinical use in mind, rather than having a complete distribution of 

values for GWAS, the decision was taken to use all available information and include 

the below LOD values returned by Olink. Collaborators found that this approach 

overcame the issues with association results observed using a truncated distribution.  

The values for protein measures returned from Olink Proteomics are in relative 

quantification units , referred to as Normalised Protein eXpression (NPX) units. These 

values are based on C t (also known as Cq) values that indicate the number of cycles of 

amplification that are required, during the qPCR process, for the fluorescent intensity 

from the protein in the sample to be distinguishable from background levels. C t 

values are therefore inverse to the amount of protein in the sample. In order to 

minimise the chance that technical differences rather than genuine biological 

differences in protein levels cause the values returned, normalisati on is performed to 

minimise both intra- and inter-assay variation. Final NPX values are inverted 

compared to C t values so that higher NPX value indicates a higher protein 

concentration. NPX values are on a log2 scale so that a 1 NPX unit change equates to a 

doubling of protein concentration. NPX values allow relative quantification as they 

indicate changes for individual protein levels across their sample set.  The preceding 

normalisation was carried out in house by Olink and I received protein measures in 

NPX units and carried out subsequent quality control.  

For the analysis in both ORCADES and Croatia -Vis, these raw protein NPX values, 

including those measures that were below the lower limit of detection, were inverse 

normal-rank transformed. A fixed effects linear model was then fitted to correct for 

the following covariates: age at venepuncture, sex, season of venepuncture 
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(ORCADES only), array (ORCADES only), plate number, plate row, plate column, time 

in storage days (ORCADES only) and the first 10 principal components of the 

genotypes. 

Array was fitted as a covariate in the ORCADES analysis only, as multiple different 

arrays were used to genotype this cohort as outlined previously, this was not the case 

for Croatia-Vis. Similarly, season of venepuncture was not fitted in the VIS analysis as 

all of the blood samples were drawn over a two-month period (March-April 2013) and 

therefore does not vary in this sample. 

Those fixed effects residuals along with a genomic relationship matrix were used to 

calculate GRAMMAR+ residuals using the “polygenic” function using the R package 

GenABEL197. The Kinship corrected residuals that were within 4 standard deviations of 

the mean were then inverse normal-rank normalised and used as the dependent 

variable for SNP associations . Residuals out with the z-score threshold were removed 

as outliers. 

 ORCADES VIS 

Phenotype QC CVD2 CVD3 CVD2 CVD3 

Total Individuals with genotype information 2027 2027 958 958 
Individuals with Olink data  1057 1057 903 915 
Individuals with Olink & covariate data 972 994 896 908 

Table 10. Summary of Phenotype Sample Size. Indicating the number of individuals with HRC-
imputed dosages, with Olink measures and the final sample size of individuals with both Olink and 
covariate data for ORCADES and Croatia-Vis for the CVD2 and CVD3 panels. 

A summary of phenotype sample size is shown in Table 10, REGSCAN198 v5 was used 

to perform SNP-phenotype associations with HRC imputed allele dosages, using an 

additive model. 

2.6 Meta-Analysis 

In order to increase power to detect variants with small effect sizes that are 

associated with plasma protein levels, I increased the sample size  by meta-analysing. I 

combined the GWAS results from 16 cohorts from the SCALLOP Consortium using 
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genome-wide association meta-analysis (GWAMA), thereby increasing my sample size 

from the ~2,000 individuals in ORCADES and Croatia -Vis that I had individual level 

data for. 

Summary statistics from 18 cohorts were collected centrally on a secure server. The 

number of cohorts providing summary statistics for each protein are detailed in 

Supplementary Table 37 and the imputation reference panels used by each cohort 

are indicated in Supplementary Table 25. All summary statistics used build b37. 

Harmonised cohort files prior to meta-analysis underwent the following quality 

control steps. Monomorphic SNPs and variants with missing allele frequency, effect 

size, standard error or p-values were removed from cohort level files. Similarly, any 

variants that had nonsensical information such as: standard errors of zero, infinite 

effect sizes, allele frequencies >1 or <0 or either effect or other alleles which 

contained any characters other than ‘A’, ‘C’, ‘T’, ’G’, ‘I’ or ‘D’ (Insertions or deletions)  

were also removed. P-values provided, and those two-sided p-values calculated from 

z-scores (effect size/standard error) using the “pnorm” function in R , were compared 

and found not to deviate, suggesting there were not systematic errors in the cohort 

level p-values.  

METAL software was used to perform the meta-analysis with the QC’d cohort level 

data. I used the inverse-variance-weighted meta-analysis (STDERR scheme) with the 

additional filter to include only variants with an imputation quality score >0.4. 

Wanting to utilise the diversity of the contributing cohorts and their imputation 

strategies, I did not use a minor allele frequency filter at this stage, however only 

included variants that were assessed in three or more cohorts. Minor allele filters 

were subsequently used in downstream analysis and are outlined in the appropriate 

sections. 

Separate significance thresholds , pre-correction for multiple testing, were used for cis 

(1 x 10-5) and trans-variants (5 x 10-8). Rather than correcting the significance 

threshold for 184 traits, as the protein levels are correlated, I calculated the number 

of PCs required to explain 95% of the variance in the 184 protein levels and took this 
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value as the number of independent traits tested, as done previously by Kettunen et 

al.122. I found that 85 PCs explained 95% of the variance in the levels of the 184 

proteins in ORCADES (using the “prcomp” function in R), I repeated the analysis in 

CROATIA-Vis and again found that 85 PCs explained 95% of the variance. The 

thresholds for significance were therefore 1.18 x 10-7 (Bonferroni 1 x 10-5/85) for cis- 

and 5.9 x 10-10 for trans-association variants. 

I also used the “ANALYZE HETEROGENEITY” option when running METAL to assess 

whether the test statistics were consistent across samples. To minimise the effect 

that heterogeneity between cohorts had on my results , I used additional criteria for 

variants to be designated genome-wide significant. Only variants that had an I2<30% 

(where I2 describes the percentage of variation across studies that is due to 

heterogeneity between studies rather than chance 199,200) or have both: i) effect 

direction consistent with the meta in at least 3 individual cohorts and ii)  be nominally 

significant (p<0.05) in at least 3 individual cohorts, were eligible to be considered 

genome-wide significant. 
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Chapter 3: Biological Ageing Clocks 

3.1 Introduction  

3.1.1 Context 

As outlined in the introduction, the idea of a measure that c aptures the underlying 

rate at which an individual ages and that is indicative of future health , beyond 

chronological age (chronAge), biological age (BA), is extremely attractive. Such a 

measure offers the potential to not only greater our understanding of  the ageing 

process, but potentially allow interventions that may slow or even reverse ageing.  

While second generation clocks such as DNAm PhenoAge and GrimAge have been 

shown to outperform previous ageing clocks by more accurately predicting mortality 

and health outcomes96,97. There has been insufficient work done to characterise the 

properties of ageing clocks trained on chronAge, given that there have been so many 

published and some have indeed been shown to be prognostic of future health 

outcomes beyond chronAge93–95. 

Additionally, the issue with clocks trained on chronAge,  that it is possible to create a 

perfect chronAge predictor with certain omics assays 91,92, has been raised in previous 

studies however has been under explored. It is essential that this issue is addressed, 

as a measure that predicts  chronAge with 100% accuracy will , by definition, be unable 

to distinguish health outlook between individuals of the same chronAge , thus 

defeating the purpose of trying to capture biological age.  

Ageing clocks trained on chronAge have been built using a variety of types of 

biomarkers: epigenetics55,66, proteomics54,88,89, metabolomics86, glycomics87, neuro-

imaging data82–85, immune cell counts 90, facial morphology81 and telomere length80. 

However, comparison between different omics clocks in a single sample have tended 
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to be limited to a few types of omics, often epigenetic or those based on clinical risk 

factors or frailty93–95,98,99. 

I sought to utilise the extremely densely phenotyped ORCADES cohort to build the 

widest spread of different omics ageing clocks to date in a single sample and to 

compare these different assays abilities as biomarkers of age. I also aim to explore 

the potential of a single clock built using biomarkers from multiple different assays. I 

further sought to characterise the properties of these multiple omics ageing clocks 

trained on chronAge and attempt to determine if they are capturing something 

biological or are merely artefacts of the statistical method used.  

I also assess the extent of redundancy between omics biomarkers  both within and 

between assays to simultaneously address two issues. First, the issue of too many 

predictors in a model being a perfect chronAge predictor and second, that for a 

model to be practical and suitable for use in the clinic, it should ideally contain as few 

biomarkers as possible. 

The implicit principal purpose of an ageing clock is to be indicative of the future 

health of individuals as they age. I therefore investigate if the age acceleration 

measures from these omics ageing clocks are associated with current health related 

risk factors, as these themselves are indicative of future health status. I also 

investigate whether they are prognostic of subsequent incident disease beyond 

chronAge. 

3.1.2 Contributions 

The idea for this project was conceived by Peter Joshi. Jim Wilson gathered all the 

study data and arranged and financed the lab assays. Lucija Klarić performed the pre-

processing described in the Methods section for the UPLC IgG Glycomics data in 

ORCADES, Croatia-Korčula and Croatia Vis. Azra Frkatović and Rosie Walker 

performed the pre-processing of the DNA methylation data as described in the 
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methods section, in ORCADES and GS:SHFS respectively. The remaining omics data 

were QC’d by me. 

Development of the omics clocks, given the QC’d omics inputs was carried out 

entirely by me. I wrote a pipeline that will for any input omics dataset perform quality 

control (as described in 2.3 Quality Control of Omics Data), specifically: the removal 

of outliers by a user-specified z-score threshold; correction for user specified 

covariates and removal of missing values according to a user configured bespoke 

script, in order to maximise both the number of test samples and number of 

predictors available. This pipeline splits the input dataset into training and testing 

according to a user-defined ratio. It also has the functionality to build penalised 

regression models incorporating the “glmnet” R package201. It gives the user the 

option to perform either: LASSO, ridge, elastic net with fixed (user-specified alpha) or 

elastic net with an alpha calculated via 10-fold cross validation in the training sample. 

This pipeline also creates principal components (PCs) of the input omics data, to allow 

for the model construction step to be run on PCs of the input omics. 

I packaged a subset of steps from my pipeline that would perform basic quality 

control and predict chronological age in validation datasets , based on effect sizes 

derived in ORCADES. Using this pipeline Nele Taba replicated a PEA Proteomics, NMR 

Metabolomics and DNA methylation clocks in the Estonian Biobank. I performed the 

validation in GS:SFHS, Croatia-Vis, Croatia-Korčula and the UK Biobank. 

I also performed the: construction of “Core” omics using a subset of biomarkers from 

each assay, the correlation analysis between omics clocks  and analysis of the overlap 

between clocks in the information they provide about chronological age. I also 

performed the association of omics clock age acceleration and health-related risk 

factors analysis. 

Peter Joshi extracted, pre-processed and performed quality control on the SMR01 

hospital admission data for ORCADES. I provided him with omics age  accelerations, 
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and he tested their association with the subsequent incident hospital admissions for 

disease. I organised the test results and integrated them into the manuscript. 

Subsequent to preparation of a complete first draft by me (other than his own 

description of the association method carried out by Peter Joshi), Peter Joshi and Jim 

Wilson contributed to the redrafting of the manuscript and all co-authors commented 

on the manuscript prior to submission. 

The following manuscript has been placed on bioRxiv doi: 

https://doi.org/10.1101/2021.02.01.429117 and at the time of writing is being 

revised based on reviewers comments for resubmission at the peer-reviewed journal 

Aging. 
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Hayward4, Tõnu Esko2,7, Chris Haley4, Krista Fischer2,8, James F Wilson1,4*, Peter K Joshi1* 

1: Centre for Global Health Research, Usher Institute, University of Edinburgh, Teviot Place, 
Edinburgh, EH8 9AG, UK 

2: Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Riia 23b, 51010, 
Estonia 

3: Institute of Molecular and Cell Biology, University of Tartu, Tartu, Riia 23, 51010, Estonia 

4: MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western 
General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK 

5: Genos Glycoscience Research Laboratory, Borongajska cesta 83H, 10000, Zagreb, Croatia 
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Abstract 

Biological age (BA), a measure of functional capacity and prognostic of health 

outcomes that discriminates between individuals of the same chronological age 

(chronAge), has been estimated using a variety of biomarkers. Previous comparative 

studies have mainly used epigenetic models (clocks), we use ~1000 participants to 

create eleven omics ageing clocks, with correlations of 0.45-0.97 with chronAge, even 

with substantial sub-setting of biomarkers. These clocks track common aspects of 

ageing with 94% of the variance in chronAge being shared among clocks. The 

difference between BA and chronAge - omics clock age acceleration (OCAA) - often 

associates with health measures. One year’s OCAA typically has the same effect on 

risk factors/10-year disease incidence as  0.46/0.45 years of chronAge. Epigenetic and 

IgG glycomics clocks appeared to track generalised ageing while others capture 

specific risks. We conclude BA is measurable and prognostic  and that future work 

should prioritise health outcomes over chronAge. 

Introduction 

Age is a phenotype that we are all familiar with, and is a major risk factor for 

numerous diseases including the largest causes of mortality49. We all become 

acquainted with visible changes that accompany ageing, such as greying hair, 

baldness, loss of skin elasticity and worsening of posture, and that these vary 

noticeably amongst individuals of the same chronological age (chronAge). However, 

there are also molecular hallmarks of ageing such as telomere shortening, genomic 

instability and cellular senescence that also show variation in individuals of the same 

chronAge49. It has previously been hypothesised that an underlying biological age 

(BA), likely tagged by these molecular hallmarks, is what gives rise to age -related 

disease risk96. Measuring BA therefore has the potential to be more prognostic of 

health and functional capacity than chronAge and, as importantly, BA may be 

reversible202, unlike chronAge56.  
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Since this concept was proposed, there has been a push to construct models of BA, 

using a variety of both statistical methods and types of biomarkers; the resultant 

estimates we shall term omics clock ages (OCAs). The first OCAs were epigenetic 

clocks that used methylation levels of CpG sites across the genome - DNA methylation 

(DNAme) - to estimate chronAge using penalised regression55,66. The excess of OCA 

over chronAge being omics clock age accelera tion (OCAA), hopefully measuring an 

underlying biological effect. DNAme’s verification as a meaningful BA measure, rather 

than a mere statistical artefact, was confirmed when DNAme OCAA as calculated by 

Horvath’s clock was shown to be associated with all -cause mortality203. Ageing clocks 

trained on chronAge have also been constructed using DNA methylation55,65,66, 

telomere length80, facial morphology81, neuro-imaging data82–85, metabolomics86, 

glycomics87, proteomics54,88,89 and immune cell counts 90. There has however, been 

limited comparison of the performance, for example accuracy and correlation, of 

different omics ageing clocks, particularly in the same set of individuals.  

Moreover, there has been inadequate additional progress in demonstrating that the 

various OCA measures are actually tracking underlying BA beyond chronAge, and 

whether some clocks’ OCAAs are more aligned to certain outcomes than others. For 

example, few significant associations of chronAge-trained OCAAs have been found 

with health outcomes other than mortality and those that do have low effect 

sizes94,204–206. 

The deep omic and health outcome annotation of the Scottish population-based 

Orkney Complex Disease Study186 cohort (ORCADES) permits interrogation of the 

utility and limitations of BA clocks. Here, we compare the performance of 11 ageing 

clocks built from 9 different omics assays in the same set of approximately 1000 

individuals in ORCADES, including whole body imaging and a clock based on the grand 

union of all the omics. Next, we assess the biological meaningfulness of the derived 

OCAA measures, by assessing their association with health-related phenotypes and 

incident hospital admissions (post-assessment) over up to 10 years follow-up. 
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The notion of BA raises fundamental questions. Is there one BA for a person, or a set 

of BAs, perhaps relating to different bodily systems 89,207. Are measured (chronAge 

trained) OCAs tracking a single BA, with differences arising due to their focus and 

accuracy, or are they tracking different underlying BAs? This study aims to shed some 

light on these issues.  

Results 

Performance of Omics Clocks 

We constructed eleven ageing clocks, training on chronAge, in the ORCADES cohort 

from assays already understood to be able to form effective ageing clocks 54,55,66,87, 

covering plasma Immunoglobulin G (IgG) glycans, proteins, metabolites, lipids, DNA 

methylation and a collection of commonly used clinical measures (such as weight, 

blood pressure, fasting glucose, etc), which we label Clinomics. To this we added two 

novel omics sets for clock construction: a DEXA whole body imaging set of body 

composition measures, and one based on all the omics assays considered 

simultaneously, which we term Mega-omics, as listed in Table 11 (see Methods for 

assay descriptions). Rather than creating completely novel DNAme clocks when 

effective and extensively studied published clocks exist, our methylation clocks’ 

potential predictor sets are the subsets of the CpG sites used in Hannum and 

Horvath’s epigenetic clocks available on the Illumina EPIC 850k methylation array. 

With this caveat, all clocks were derived from scratch using the set of available 

predictors and elastic net regression. 

We first assessed various forms of penalised regression: LASSO, elastic net with a 

fixed alpha of 0.5 and elastic net with alpha calculated via cross -validation, training 

clocks in 75% of the ORCADES cohort and evaluating in the remaining 25% (the  

testing sample). We found that clock performance in estimating chronAge was 

independent of penalised regression method used, across all the assays 



 66 

(Supplementary Figure 26) and so elastic net regression with a fixed alpha of 0.5 only 

was employed in subsequent analyses. 

Ages estimated by the model in the test set (i.e. OCAs) were highly correlated with 

chronAge for the majority of the omics clocks tested (Table 11), particularly PEA 

proteomics (r=0.93) and DNAme based (r=0.96 Hannum CpGs, r=0.93 Horvath CpGs) 

clocks (correlations in the training set in Supplementary Figure 27). Unsurprisingly, 

the mega-omics OCA had the highest correlation (r=0.97). Although all features were 

given equal opportunity to contribute to the mega-omics clock, those selected by the 

regression were predominantly DNAme- and PEA proteomics-based (34.6% CpGs, 

31.8% PEA Proteomics, 20.6% MS metabolites, 13.1% other). We found that the MS 

Fatty Acids Lipidomics OCA had the lowest correlation with chronAge (r=0.45; Figure 

6). The number of biomarkers available and then selected for model incl usion for 

each omics clock are indicated in Table 11 (Full list of biomarkers measured in each 

assay in Supplementary Table 17 and coefficients for all clocks in Supplementary 

Table 18). 

Omic 
N 
Individuals 

N Predictors 
Available 

N Predictors 
Selected 

r 

MS Fatty Acids Lipidomics 952 33 27 0.45 
DEXA 1158 28 28 0.66 
MS Complex Lipidomics 940 908 130 0.7 
NMR Metabolomics 1643 86 81 0.74 
UPLC IgG Glycomics 1937 77 50 0.74 
Clinomics 1815 13 12 0.8 
MS Metabolomics 861 682 181 0.81 
DNAme Horvath CpGs 957 333 155 0.93 
PEA Proteomics 805 886 203 0.93 
DNAme Hannum CpGs 1033 62 50 0.96 
Mega Omics 796 2471 214 0.97 

Table 11. Multiple omics make accurate ageing clocks. Indicating for each omics assay: N 
Individuals: the number of individuals in the ORCADES cohort that passes quality control, N 
Predictors Available: the number of predictors passing assay-level quality control and therefore 
available for selection for inclusion in the standard model, N Predictors Selected: the number of 
predictors selected for inclusion in the standard model, r: Pearson correlation of omics clock age 

(OCA) and chronAge. DEXA: Dual X-ray absorptiometry, DNAme: DNA methylation, CpG: cytosine 
nucleotide followed by guanine (5’ to 3’ direction), MS: mass spectrometry, NMR: nuclear 
magnetic resonance, PEA: proximity extension assay, UPLC: ultra-performance liquid 
chromatography, IgG: Immunoglobulin G. Within each omics assay, subject mean age at baseline 
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was 53-56 (SD~15) with an age range across clocks of 16-100, whilst the proportion female ranged 
from 55-61% (Supplementary Table 19). 

 
Figure 6. Multiple omics estimate chronological age, to varying degrees of accuracy, in a 
broadly unbiased manner. The correlations of chronAge on the y-axis with ages estimated by the 
omics ageing clock (OCA) on the x-axis, in the ORCADES testing sample. Pearson correlation 
coefficient (r) and the slope of the regression of OCA on chronAge are indicated in each panel.  
Identity line indicated in black. 

Validation of Clock Performance in Independent Cohorts 

We next used the clocks trained in ORCADES to estimate age in independent 

European cohorts to validate if they were more widely applicable beyond the Orkney 

population. We found that correlations between OCA and chronAge replicated to 

varying degrees in independent populations (Supplementary Figure 28). PEA 

proteomics and DNAme based clocks produced correlations of OCA and chronAge in 

the range of 0.89-0.98 in European cohorts replicating the range of 0.91-0.96 in 

ORCADES. UPLC IgG glycomics and Clinomics OCAs in independent populations 
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showed a range of OCA-chronAge correlations of 0.56-0.62 compared to the 0.74-

0.80 in ORCADES. Whilst the NMR metabolomics and DEXA did not replicate , with 

correlations of 0.26-0.55 in validation cohorts compared with 0.66-0.73 in ORCADES. 

Accurate Performance of Clocks with Substantial Core Subset of 

Biomarkers 

If the aim is to create BA clocks that have the potential to be clinically useful, it would 

be more efficient and cost effective to reduce the numbers of biomarkers that need 

to be measured in patients. To this end, we investigated the performance of our 

clocks using a reduced set of biomarkers. For each of our 11 omics clocks a “core” 

clock was constructed using only those biomarkers which were selected for model 

inclusion in >95% of 500 iterations of our clock construction procedure, as done by 

Enroth et al.54 (See Methods for details). Comparable correlations of OCA and 

chronAge were achieved across all 11 clocks with a substantial subset or core of 

biomarkers (Figure 7), highlighting the potential for accurate OCAs with a small 

number of predictors (e.g. 30s -60s of biomarkers). 
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Figure 7. Substantial subsetting of biomarkers results in little dilution of accuracy. Pearson’s 
correlation (r) and 95% confidence interval of chronAge and OCAs from standard and core models 
for each omics assay indicated on the y-axis in the ORCADES testing sample. The number of 
predictors selected for inclusion in the standard and then core models are indicated in the y-axis 
labels (standard|core). 

Comparison of Biological Age Between Clocks 

Omics Clock Age Accelerations (OCAAs) showed varying degrees of positive 

correlation between clocks (Figure 8). Unsurprisingly, the two DNAme based OCAAs 

were the most correlated with each other (r=0.73) and, in hierarchical clustering, 

formed a group on their own. The four clocks that are primarily c onstructed from lipid 

species and fractions, MS Fatty Acids Lipidomics, MS Complex lipidomics, NMR 

Metabolomics and MS Metabolomics clocks, all clustered together. The DEXA, 

Clinomics and UPLC IgG glycomics clocks formed a related group. Interestingly, the  

PEA Proteomics OCAA clustered between the DNAme and glycomics -DEXA-Clinomics-

lipidomics cluster, on its own.  
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Figure 8. Variable positive correlations between different omics age accelerations. Pearson 
correlation of OCAAs (omics clock age–chronAge) in ORCADES testing and training samples. Colour 
indicates the direction and the shade and number indicate the magnitude of the correlation. Rows 
and columns are ordered based on hierarchical clustering of the pairwise correlations.  

Proportions of Variance in Age Explained by Different Clocks 

To determine if our different clocks are explaining the same or different variance in 

chronAge, we partitioned the variance in chronAge explained among our clocks. We 

calculated the unique variance in chronAge explained by each OCA as the squared 

part correlations of chronAge and OCA, while controlling for all other clocks. 93.9% of 

the variance in chronAge is explained by two or more clocks , whilst 4.1% remains 

unexplained by the 10 ageing clocks  tested, with the remaining 1.9% being explained 

by one clock uniquely (Supplementary Figure 29a). The PEA proteomics  and Hannum 
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CpG clocks explain the most variance in chronAge uncaptured by any other clock 

(0.59% and 0.46% respectively; Supplementary Figure 29b). Pairwise clock 

comparisons are shown in Supplementary Figure 30. 

 
Figure 9. Bivariate analyses reveal that clock pairs tend to overlap more than expected by 
chance in the variance in ChronAge they explain. The amount of excess overlap that would be 
expected by chance is indicated for each pair of clocks. This is the deviation of the observed 
variance in chronAge explained by a bivariate model containing a pair of OCAs and the variance 
expected to be explained by that pair, given that we know how much variance in chronAge they 
explain individually, if each of the clocks were independent samples from a set of latent complete 
predictors. This measure of deviation of observed from expected is scaled (See Methods for details) 
so that a value of 1 means that the second clock is adding no more information than the first, 
meaning that they overlap entirely in the information they provide about chronAge. A value of 0 
would indicate the observed variance explained in chronAge is exactly what is expected if the two 
clocks were independently sampling. Negative values are possible on this scale but are not 

observed and would indicate disproportionately complementary components of chronAge were 
being tracked. 

Having found that clocks overlap in the information they provide about chronAge, we 

tested to see if, together, pairs of clocks jointly explained a different proportion of 

variance in chronAge than would be expected if the clocks were each independently 

sampling from a latent set of complete predictors of chronAge (ISLSP). This analysis 

should reveal whether the clocks were tracking complementary dimensions of ageing: 
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situations where the pair of clocks overlapped less than expected if they were 

independently sampling (negative values on this scale). Strikingly, excess overlap was 

found across all pairs of clocks (Figure 9), with the lowest excess overlap value 

measured at 0.41 (comparison of the NMR Metabolomics and DEXA clocks): all 10 

omics clocks, considered pairwise, track more common rather than complementary 

aspects of chronAge. 

The most overlapping were the MS Fatty Acids Lipidomics and the MS Complex 

Lipidomics clocks (excess overlap of 0.98; note on our scale, a clock shows 1.00 excess 

overlap with itself, whilst ISLSP would show 0.00). These two clocks formed a cluster 

with the clocks derived from NMR and MS Metabolomics (which both contain many 

lipid features). Similarly, the two DNAme-based clocks clustered tightly together with 

an excess overlap of 0.91. As these clocks are extremely accurate, a large amount of 

overlap in variance explained is inevitable; they are tracking common aspects of 

ageing. 

OCAAs compared to chronAge as predictors of disease risk 

We next sought to test the effect of OCAAs compared to chronAge on risk factors and 

post assessment disease incidence, as measured by hospitalisation in the ORCADES 

cohort, where the outcome was thought a priori to associate with age. For risk factors 

we chose body mass index (BMI), systolic blood pressure (SBP), cortisol, creatinine, C -

reactive protein (CRP), forced expiratory volume in 1 second (FEV1), Framingham Risk 

Score, and total cholesterol. For diseases we chose five International Statistical 

Classification of Diseases and Related Health Problems  (ICD)-10 Chapters: II 

(Neoplasms - codes C), IV (Endocrine, nutritional and metabolic diseases - codes E), IX 

(Diseases of the circulatory system - codes I), and X (Diseases of the respiratory 

system - codes J). The ICD-10 blocks used and their codings are listed in 

Supplementary Table 20. 

In order to compare OCAA and chronAge, we first quantified the effect of chronAge 

on disease and risk factors (Supplementary Figure 31 & Supplementary Figure 32). 
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All 8 risk factors and 32/44 disease blocks were taken forward as they were 

significantly associated with chronAge (beta>0, FDR<10%) and had > 5 incident cases 

(disease blocks). The effect of chronAge on (standardised) risk factors appeared to 

vary by trait, whereas for diseases, it appeared that the effect of chronAge (on the 

hazard ratio scale) might be similar across diseases, with a consistent doubling of risk 

every 14 years. 

We tested for risk factor and disease associations with OCAA, using chronAge and sex 

as covariates. Results were then rescaled to be per year of chronAge effect , by 

dividing the observed effect of OCAA by the effect of chronAge on the outcomes , as 

identified at the previous step. This was taken trait-by-trait for risk factors, and a 

single effect for all disease groups and chapters: -0.0492 loge HR. 

Despite limited power for detecting OCAA-disease associations, 6/352 tests were 

statistically significant (FDR<10%) as were 31/88 OCAA-risk factor associations. We 

also found evidence of enrichment of positive effects of OCAA on both risk factors 

(85%) and disease (74%), with 35% and 23% being nominally significant (one sided 

p<0.05), respectively. Across clocks, the inverse variance-weighted mean effect of 

one year of OCAA on risk factors/disease was the same as 0.45/0.46 years of 

chronAge (SE~0.01, note here and elsewhere ~ denotes indicative, see Methods for 

details). For risk factors, as might be expected, this was strongly influenced by an 

average effect of 1.23 years for Clinomics OCAA (0.16 without Clinomics). 

Interestingly, the mean effect across all diseases of one year’s DNAme 

Hannum/Horvath CpGs OCAA was similar to one year of chronAge (ratio: 1.03/0.85, 

SEs ~0.18), but the effect on risk factors was much lower (ratio: -0.03/-0.01, SEs ~ 

0.06). Complete results are shown in Supplementary Table 21 and inverse variance-

weighted effects are shown in Supplementary Figure 34. 

In general, only associations with the Clinomics OCAA passed FDR, however both 

DNAme OCAAs and the UPLC IgG Glycomics OCAA were nominally associated with 

eleven ICD10 blocks, one more than Clinomics (Figure 10). In contrast, the PEA 

proteomics clock (r=0.93 with chronAge) showed only one nominally significant 
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disease-OCAA association. Looking at disease groupings, E70-E90 Metabolic disorders 

and J09-J18 Influenza and Pneumonia showed the most nominal associations across 

all OCAAs. Curiously, on the other hand, C34-C44 Melanoma and C51-59 Malignant 

Neoplasms of the female genital organs, showed generally negative associations with 

OCAAs. 

The greater statistical power for risk factors results in considerably more significant 

associations at FDR<10% (Figure 11). Once more, Clinomics, as might be expected, 

has the greatest number of significant associations, however NMR metabolomics and 

UPLC IgG Glycomics OCAAs are nearly as broadly predictive. Mega -omics, MS and 

NMR Metabolomics OCAAs show positive associations with a ll risk factors. It should 

be noted that while the Clinomics OCAA showed most significant FDR<10% 

associations with diseases and risk factors, its predictors (e.g. cholesterol, FEV1 and 

SBP) are often close to and designed to predict clinical endpoints and  overlap with 

the risk factors considered here. Similarly, metabolite and lipid-based clocks contain 

cholesterol subfractions. All OCAAs were associated positively with BMI and total 

cholesterol. We found strong associations between OCAAs and the marker of  

inflammation CRP (often with effect sizes >1), meaning OCAA had a larger effect than 

chronAge. Overall, the averaged effect of OCAA on risk factors as a proportion of the 

effect on diseases was large for MS Fatty Acid Lipidomics/Clinomics/PEA proteomics 

(69%/230%/291%) suggesting they are directly tracking the risk factors we 

considered. Conversely, this proportion was small for Hannum CpGs/Horvath 

CpGs/UPLC IgG Glycomics (-3%/-1%/29%), suggesting they are prognostic of incident 

disease and therefore track more generalised ageing (Supplementary Figure 34). 

We wanted to check if observed OCAA-health associations were driven by the 

associations of health with smoking and of OCAA with smoking. Our analysis fitting 

smoking status as a confounder suggests they were not (Supplementary Figure 35a & 

b). 
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Figure 10. Positive age acceleration associations observed with increased disease risk. 
Associations with rates of hospitalisation. +/* Association nominally/FDR<10% significant in the 
frequentist test that OCAA has a positive effect on outcomes. Beta: the relative effect of a year of 

OCAA to a year of chronAge on disease (initially measured in loge hazard ratios, effect sizes are 
unitless after division). A value of one indicates that a year of OCAA is equally as deleterious as a 
year of chronAge and is indicated in salmon colour. To facilitate reading, note the DNAme Horvath 
CpGs-BMI beta is 1.02 and the DNAme Hannum CpGs-C81-C96I beta is 1.00. Clock: the omics clock 
on which OCAA was measured. Disease group: the set of diseases (defined by ICD10 codes) which 
were tested for first incidence after assessment against the clock, already prevalent cases were 
excluded (Case numbers for each disease block in Supplementary Table 21). 
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Figure 11. Positive age acceleration associations observed with increased disease risk. 
Associations with disease risk factors.+/* Association nominally/FDR<10% significant in the 
frequentist test that OCAA has a positive effect on Risk factors. Beta: the relative effect of a year 
of OCAA to a year of chronAge on risk factor (effect sizes are unitless after division). A value of one 
indicates that a year of OCAA is equally as deleterious as a year of chronAge and is indicated in 
salmon colour. Total cholesterol, which showed a particularly large effect from MS lipidomics 
OCAA, is excluded here to aid visualisation (the effects on cholesterol can be seen in 
Supplementary Figure 37). 

Comparison of predictive abilities of different OCAAs for risk factors and 

disease 

In order to determine which OCAAs could draw more meaningful distinctions 

between subjects in terms of health outcomes, we repeated the previous analysis 

using standardised OCAAs. As in principle, two OCAAs could have the same 

association effect size on disease, but one might be much more prognostic for the 

population as a whole than the other if it had much larger variation in its range.  We 

found that the standardised Clinomics OCAA showed the greatest predictive power, 

with an IVW-average effect across all risk factors of 0.39 compared to the range of 

0.05-0.12 for the other clocks, with Hannum and Horvath CpGs OCAA smaller still, at -

0.014 and 0.018, respectively (SEs ~0.01, in all cases). Conversely, FEV1 was  the risk 
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factor on which standardised OCAA had the largest effect (0.20, SEs ~0.01, IVW-

averaged across clocks), whilst standardised OCAA had the smallest effect on 

creatinine/reversed cortisol (0.02/0.04, SEs ~0.01).  

Standardised OCAA effects on disease showed an even more uniform pattern 

(Supplementary Figure 34): the IVW-average effect across diseases was between 

0.11 (MS Metabolomics) and 0.24 (Clinomics), except for the  0.016 of PEA Proteomics 

(SEs ~0.04). Despite limited power, the disease group showing the most sensitivity to 

standardised OCAA across clocks was J80-J84 (Other respiratory diseases principally 

affecting the interstitium; 0.76, SE~0.16), perhaps consistent with the FEV1 finding. 

Although predictive of risk factors, Clinomics OCAA does not appear unusually 

predictive of disease. Lung function appears particularly sensitive to both ageing 

(Supplementary Figure 32) and OCAA. 

Clocks built from few omics principal components are effective predictors 

of health outcomes 

Finally, we reduced dimensionality and assessed the underlying information about 

ageing being captured by different omics at the assay level, rather than simply the 

predictors selected for model inclusion. We constructed clocks using a few principal 

components (PCs) of omics measures as predictors and repeated the previous 

analyses with their (standardised) OCAAs, estimating chronAge (Supplementary 

Figure 38) and predicting health outcomes (Supplementary Figure 39 & 

Supplementary Figure 40). The pattern was striking, the IVW-mean effect sizes across 

all risk factors of 3 PC OCAAs were more than double our standard OCAAs 

(Supplementary Figure 39). For all OCAAs, bar DNAme-based, including more omics 

PCs in the clocks reduced their ability to estimate distinctions in risk factors. IVW-

mean effects on diseases were generally similar for the 3 PC and standard OCAAs, 

except for the PEA Proteomics OCAA, where 3 PCs - based clock outperformed the 

standard clock by a factor of 10. Overall, OCAAs derived from a few omic PCs 
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appeared equally predictive as our standard OCAAs for diseases and more  predictive 

for health risk factors. 

Discussion 

We have performed the most exhaustive comparison of different omics assays as 

potential biomarkers of age to date. We have shown firstly, it is possible to construct 

ageing clocks that produce highly accurate estimations of chronAge with a wide 

variety of omics biomarkers  (correlation of OCA with chronAge ranged 0.66-0.97). 

Secondly, ageing clocks built using PEA proteomics, DNAme, UPLC IgG glycomics and 

clinical risk factors in ORCADES were able to estimate c hronAge in independent 

populations. Thirdly, it is possible to achieve as highly accurate estimations of 

chronAge using a substantial subset of core biomarkers from each assay  compared to 

our standard clocks . Despite finding only modest positive correlations between our 

OCAAs, we showed that different clocks overlap in the variation they explain in 

chronAge, more than would be expected by chance if they were independently 

sampling from a latent set of complete predictors. We found associations of OCAAs 

with total cholesterol, Framingham Risk Score, C -reactive protein and systolic blood 

pressure. We found 6 statistically significant (FDR<10%) individual associations and 

strong evidence of enrichment of association of OCAA with incident disease 

collectively across our tests (20% were nominally significant p<0.05). We found more 

variation in OCAA predictiveness across risk factors, than across diseases. Overall, we 

estimated that one year of OCAA has an effect of 0.46/0.45 years of chronAge on risk 

factors/disease incidence and showed that OCAA based on clocks built using a few 

principal components of omics were as prognostic as those presented with all 

available features. 

The correlation of our PEA proteomics, DNAme, UPLC IgG glycomics OCAs and 

chronAge were similar to published models 54,55,66,87. Unsurprisingly, DNAme-based 

clocks built in ORCADES were able to estimate age in both Scottish (Generation 

Scotland) and Estonian Biobanks (EBB), as the Hannum and Horvath epigenetic clocks 
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have been used successfully in numerous populations. We showed for the first time 

that clocks built from Olink PEA-based proteomics replicate (in EBB and Croatia -Vis), 

while clocks built using the SOMAlogic89 proteomics platform have been shown to 

replicate across populations previously. Our UPLC IgG glycomics clock also replicated 

in an independent population, mirroring the applicability of published GlycanAge 

measures87. Conversely, our NMR metabolomics and DEXA clocks had much lower 

correlation with chronAge in EBB and UKB. The success of these clocks appears to be 

study-specific: differences in lifestyle and environmental factors that change with age 

between the populations of the Orkney Islands and general populations in the UK and 

Estonia are a plausible cause. This finding serves as a warning as to the 

generalisability of ageing clocks to new populations.  

For a measure of BA to be clinically useful and efficient, accurate biological age 

estimation based on as few predictors as possible is ideal. We subs tantially reduced 

the numbers of biomarkers from each assay that were included in our clocks and 

showed no dilution of performance across all of our clocks. Enroth et al.54 showed 

that this was possible with a protein-based clock, however, we reduced the number 

of proteins by a larger factor and achieved the same accuracy estimating chronAge. 

This high performance with a substantial subset of predictors has not previously be en 

shown systematically across nine different types of biomarkers.  

The extremely high correlations with chronAge reported, such as the r = 0.97 of the 

Mega-omics OCA, highlight an issue that has been discussed in prior work: that if 

enough biomarkers were included in the model, it would be possible to perfectly 

estimate chronAge and, by definition, fail to detect (distinct) BA. Lehallier et al.89 

showed that correlation between OCA and chronAge increases with the number of 

proteins included in the model. Further, it is possible to explain 100% of the variance 

in chronAge using DNAme data in large samples 92. A perfect age predictor would give 

no information about variation between individuals of the same age and even those 

which are near perfect will have too little variation in the OCAA to be indicative of 

health status or outcomes beyond chronAge208. We found this trend in our results, 
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that the most accurate estimators of chronAge: Mega -omics, PEA proteomics  and MS 

metabolomics OCAAs were not strongly associated with subsequent hospital 

admissions, nor DNAme-based OCAAs with risk factors. Of course extremely accurate 

estimators of chronAge do have their uses, for example in a forensic context 209, but 

are not useful in terms of BA. This does not mean the assays themselves cannot be 

used to estimate BA but highlights a limitation of training ageing clocks on chronAge.  

A useful BA must be an indicator of health status or outcomes beyond chronAge. We 

found DNAme-based OCAAs were better estimators of incident disease than risk 

factors, consistent with the known performance of Horvath’s epigenetic clock. 

Several groups have shown Horvath’s DNAme OCAA to be associated with 

subsequent all-cause mortality78,203,210–212 . Differences in Horvath’s OCAA between 

cases and controls have been found for numerous disease phenotypes 67,69–78. In 

contrast, Horvath’s OCAA has been found not to be associated with common risk 

factors including: LDL cholesterol and CRP206, a finding we confirmed. We found that 

Clinomics and lipid based OCAAs were better at predicting risk factors than disease, 

whereas the opposite was true for DNAme and UPLC IgG Glycomics OCAAs. The 

similarity between the predictors in the Clinomics and lipid-based clocks and some of 

the risk factors could be driving these associations. In contrast, DNAme and UPLC IgG 

Glycomics being prognostic of incident disease beyond chronAge suggests they are 

more likely to be capturing underlying BA. 

It is perhaps not surprising that the Clinomics OCAA showed the strongest evidence of 

association with disease - it used common clinical measures thought to be prognostic 

of health. Nonetheless, the pattern is a reassuring proof of concept. The overall 

enrichment of OCAA-disease and -risk factor association, strengthens the case for the 

notion of BA, trackable through omics markers. Previously, it has been shown that 

GlycanAge is associated with risk factors 87 and that IgG glycans (i.e. not an OCAA, 

rather the glycan levels themselves) are effective predictors of incident type 2 

diabetes and cardiovascular events 108,213,214. However, we are the first to s how UPLC 
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IgG glycomics OCAA to be prognostic of incident disease and highlight this is not 

simply due to tracking the risk factors we considered. 

As by definition, having a BA of +1 indicates that the individual has the same 

functional capacity and risk of age-related disease as the average individual that is 

one calendar year older than them, indicating the effect of true BA is the same as 1 

year of chronAge. Our estimate that the mean effect of 1 year of OCAA on disease 

incidence is the same as 0.45 years  of chronAge is important. BA thus appears to be 

real and measurable and have effects of similar magnitude to chronAge, albeit our 

estimates are significantly diluted compared to chronAge, possibly due to OCAA 

capturing only some aspects of BA, reflecting the types of assay and tissue, rather 

than BA itself. Better measures of BA seem worthy of pursuit, as do interventions that 

can reverse well-measured BA. The negative association between Melanoma and 

other malignant neoplasms of skin (C43-C44) and OCAAs for many clocks, contrasts 

with the trend of positive OCAA-disease block associations, suggests that there may 

be more than one BA. If replicated, this will highlight that skin BA and other BAs need 

not closely align, and we speculate this finding might also generalise across other 

organs. 

A strength of our work was the sheer number and range of assays and therefore 

omics ageing clocks whose performance we compared in the same individuals, 

whereas previous comparisons have been limited to DNAme -based clocks93,94,215 or 

DNAme, clinical risk factors and frailty measures 95. We have tried to validate our 

omics ageing clocks trained in ORCADES in independent populations where available, 

to illustrate their wider applicability. A limitation faced by previous studies was the 

narrow age range of individuals in the training sample, for example Lee et al.’s 

epigenetic clock trained in a pregnancy cohort produced extremely accurate 

estimations of chronAge for individuals under 45 but underestimated age in older 

individuals216. Our clocks avoid this limitation due to the wide age range (16-100) of 

individuals in the ORCADES cohort. 
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The novel assessment of excess overlap between clocks is a strength of this work, as 

it has not previously been shown that, across multiple different omics assays, OCAs 

overlap more than would be expected by chance if they were ISLSP, indicating these 

clocks are tracking more common rather complementary aspects of ageing. A further 

strength is the regularisation of effect sizes - we have measured the effect of OCAA 

per effect of year of chronAge - giving a natural and understandable scale. Another 

strength is its scope, with many clocks tested against many age -related diseases. Of 

course, this is also a weakness, as it reduces power after compensation for multiple 

testing. Nonetheless, the essentially agnostic view taken of individual disease 

groupings and clocks does mitigate the risk of publication bias.  

A limitation of this work is the relatively small sample size, both in terms of the 

number of individuals with multiple omics assays and within that, the number of 

incident hospital admissions over the follow-up period. Due to the low number of 

deaths in our sample we are as yet unable to test for the association of OCAA on 

mortality, as in previous studies. As the omics data available for ORCADES is cross -

sectional, we were unable to comment on the variation of OCAA within individuals 

over time. However, we were able to investigate the prognostic ability of single time 

point OCAAs on hospital admissions over a 10-year follow up. The nature of our 

sample, a population isolate, means there is potential for local factors to influence 

our results. We have shown this is not the case for several of our omics clocks’ 

accuracies (Supplementary Figure 28), as they were successfully replicated in 

additional populations, however, it could contribute to the poor replication seen for 

the DEXA and NMR metabolomics clocks . The use of hospitalisation as a measure of 

incidence is a limitation, particularly acute for diseases normally treated in the 

community such as type 2 diabetes and influenza. Nonetheless, we are likely to have 

captured the most severe cases and have tested whether this severity associates with 

OCAA and presumed frailty, giving rise to more severe experience of the disease. 

Secondly, the correlated nature of the assays and of the disease outcomes mean our 

tests have not been independent, although this means the FDR corrections have been 

conservative. A more powered study might also try to disentangle individual markers 
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especially those retained in our core omics clocks and consider their biological 

plausibility as sitting on the causal pathway. 

Of course, association does not imply causation. Although the use of a prospective 

cohort has reduced the risk of reverse causation, undiagnosed cases (at baseline) 

might still have contributed to the effects we observe, although confounding where a 

latent set of underlying traits is influencing disease susceptibility and the biomarkers 

is perhaps more likely. Nonetheless, even in the absence of causation, OCAA does 

appear to often be a biomarker of disease and underlying BA.  

In conclusion, our work has strongly further evidenced the existence of BA as distinct 

from chronAge, whilst highlighting a substantial part of the OCAA is noise. The data 

also suggested there may be more than one type of BA, as measured by different 

clocks and giving rise to differing amounts of disease susceptibility, most strongly 

implied by our evidence that skin age and heart age may move in opposite directions. 

We also highlight that some OCAAs (e.g. PEA proteomics) may capture specific risks 

and consequently associate with health, whilst others (e.g. DNAme and UPLC IgG 

glycomics) may capture more generalised ageing. Our observation that clocks derived 

from few PCs of omics are less accurate in estimating chronAge but better able to 

predict risk factors, suggests that the search for BA should be pursued through salient 

features of biology. This supports the recent success of ageing clocks trained on all -

cause mortality based measures 96,97, DNAmePhenoAge96 and GrimAge97, which have 

been shown to be more prognostic of health and mortality outcomes than DNAme 

clocks trained on chronAge directly94,95,204,217. We therefore suggest that the focus of 

future research should continue to shift to clocks trained on mortality, or more ideally 

all-cause morbidity, that are prognostic of subsequent health outcomes rather than 

accurate chronAge estimators. 
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Methods 

Cohort Data 

Analyses were predominantly carried out using the Orkney Complex Disease Study 

(ORCADES)186, a population-based isolate cohort that is extensively characterised in 

terms of both traditional phenotypes, omics assays and mean 12 years of follow up 

via linked electronic health records (EHR). The additional cohorts, Croatia -Vis and 

Croatia-Korčula218,219, were used to validate omics ageing clocks trained in ORCADES. 

Croatia-Vis was used to validate a clock trained in ORCADES using a subset of proteins 

(those measured on the Olink CVDII, CVDIII and INFI panels) referred to as protein 

subset 1 and the UPLC IgG glycomics clock. Replication of the NMR metabolomics and 

UPLC IgG glycomics clocks trained in ORCADES was carried out in Croatia -Korčula. The 

Estonian Biobank192 (EBB) cohort was used to validate a clock trained using a subset 

of proteins (those measured on the Olink CVII, CVDIII, INF1 and ONCII panels) 

referred to as protein subset 2 as well as the NMR Metabolomics clock. Both EBB and 

the Generation Scotland: Scottish Family Health Study (GS:SFHS) 190, a family-based 

cohort comprising volunteers across Scotland, were used to assess two DNAme -based 

ageing clocks. Finally, the UK Biobank191 (UKB) was used to test the Clinomics and 

DEXA clocks trained in ORCADES. 

Omics Assays 

Dual X-ray absorptiometry (DEXA): Whole body imaging was performed on the 

Hologic fan beam DEXA scanner (GE Healthcare) . Measures of body composition were 

derived from the DEXA scans using APEX2 software for bone, lean and fat tis sue and 
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APEX4 software for android, gynoid, visceral and lean fat mass content. 28 measures 

in the following broad categories: bone mineral density, bone mineral content, fat or 

lean mass percentages for head, trunk and limbs were selected for analyses. Th ese 

were measures that did not use chronAge in their calculation and were also available 

in the UK Biobank. Measures were removed as outliers based on a z-score cut-off of 6 

then pre-corrected for sex. Residuals were additionally subject to a threshold by 

removing outliers with a z-score cut-off of 3. 

DNA Methylation : The Illumina EPIC 850K array was used to measure DNA 

methylation levels in ORCADES. Quality control was carried out using the meffilQC 

pipeline220 and minfi package221. Samples were excluded as outliers : if >1% of probes 

had a detection p-value > 0.01, due to failure of sex concordance, if samples showed 

evidence of dye bias or failed median methylation signal z-score cut-off of 3. Probes 

were removed as outliers if the detection p-value was >0.01 in >1% of samples or had 

a bead count of <3 in at least 5% of samples. The preprocessNoob function in the 

“minfi” package was used for array normalisation to remove unwanted technical 

variation. M values were corrected for the technical covariates: plate number (as a 

random effect), season of venepuncture, year of venepuncture, plate position and 10 

principal components of the control probes (as fixed effects) using GCTA -REML145. 

Instead of creating novel DNA methylation clocks when there are l andmark clocks 

available in the literature, we constructed clocks based on Hannum and Horvath’s 

original epigenetic clocks, to compare with our other omics. As ORCADES used the 

Illumina EPIC 850k chip rather than the earlier 450k/27k chips used by Hannum a nd 

Horvath, our methylation clocks are subsets of Hannum and Horvath’s clocks. It has 

been shown that imputing probes that are absent from the 850k chip but present in 

the 450k/27k set leads to underestimation of both published ageing measures 33. 

Thus, for our clocks named Hannum CpGs and Horvath CpGs we presented 62/71 and 

333/353 of sites, respectively, that were present on the 850k chip to the penalised 

regression algorithm for model selection. Residuals from REML within a z -score 

threshold of 6 were then corrected for sex. 
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NMR Metabolomics: The high throughput NMR metabolomics assay of EDTA plasma 

(Nightingale Health Ltd., Helsinki, Finland) quantified 225 metabolomics measures in 

molar concentration units. The measures include amino acids, ketone bodies, low 

molecular weight metabolites and numerous lipid and lipoproteins subclasses. In 

both ORCADES and Croatia-Korčula, metabolite measures were removed as outliers 

based on a z-score cut-off of 6, pre-corrected for sex and the use of statins as a binary 

variable. Residuals were additionally removed as outliers with a z-score cut-off of 3. 

MS Fatty Acids Lipidomics: Shotgun lipidomics and liquid chromatography tandem 

mass spectrometry (LC-MS/MS) was used to quantify the molar concentrations of 44 

fatty acids as described previously222. Fatty acid measures were removed as outliers 

based on a z-score cut-off of 6, pre-corrected for sex, box number, plate position and 

use of statins. 

UPLC IgG Glycomics: The glycan data have previously been described in detail by 

Krištić et al., for the ORCADES87, Croatia-Vis and Croatia-Korčula218,219 studies. Raw 

glycan measures were total area normalised and batch corrected using the “ComBat” 

function of the sva package223 in R. The normalised glycan measures were excluded as 

outliers based on a z-score threshold of 6 and pre-corrected for sex. 

PEA Proteomics: 1,102 proteins were measured using a proximity extension assay 

method (Olink Bioscience, Uppsala, Sweden)224 from EDTA plasma in 12 x 92-protein 

panels designated by the manufacturer: cardiovascular 2, cardiovascular 3, 

inflammation 1, metabolism, cardiometabolic, cell regulation, development, immune 

response, organ damage, oncology 2, neurology and neuro-exploratory. Measures for 

all twelve panels are available for 1,057 individuals in ORCADES, with subsets 

available in Croatia-Vis (inflammation 1, cardiovascular 2 and cardiovascular 3) and 

EBB (inflammation 1, cardiovascular 2, cardiovascular 3 and oncology 2). PEA 

proteomics-based OCAs were re-derived using these subsets to allow comparison 

across populations. NPX values of proteins (on the log2 scale) including those non -

missing below the lower limit of detection (LOD), were removed as outliers with a z -

score cut-off of 6. These measures were then pre-corrected for the following 
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covariates via fixed effects linear regression: sex, season of venepuncture, time the 

plasma sample was in storage between collection and assay (days), plate number, 

plate row and plate column. 

Clinomics: This dataset consisted of 13 selected clinical measures that are routinely 

measured during visits with general practitioners and clinicians: albumin, fasting 

plasma glucose, calcium, uric acid, high density lipoprotein cholesterol  (HDL), total 

cholesterol (TC), triglycerides, height, weight, forced expiratory volume in 1 second 

(FEV1), and diastolic (DBP) and systolic blood pressure (SBP). 

MS Metabolomics & MS Complex Lipidomics: Non-targeted metabolomic and 

lipidomic features were detected and quantified using Metabolon as described 

previously225. The HD4 dataset comprised measures of 1,143 biochemicals while the 

complex lipids dataset measured 1,052 biochemicals, these were treated as two 

separate omics assays referred to as MS Metabolomics and MS Complex Lipidomics 

respectively. Measures were removed as outliers with a z-score cut-off of 6. These 

measures were then pre-corrected for the following covariates via fixed effects linear 

regression: sex, statin use, assay run day, plate number and plate row and plate 

column. 

EHR: The ORCADES cohort has record linkage to hospital admission records (Scottish 

Morbidity Records: SMR01). The first occurrence of any hospital admission with 

ICD10 diagnosis, was taken as incidence. NHS Scotland records moved from ICD9 to 

ICD10 in April 1996, so diagnoses since ~12 years prior to assessment were capture d. 

The disease groupings analysed included each ICD10 block within 5 Chapters thought 

a priori to associate with age II (Neoplasms - codes C), IV (Endocrine, nutritional and 

metabolic diseases - codes E), IX (Diseases of the circulatory system - codes I), and X 

(Diseases of the respiratory system - codes J). For Chapter II only C codes (malignant) 

were included in our analyses. Chapters as a whole were also analysed, as were all 

the diseases from these chapters simultaneously. Incident disease was defined a s the 

time of first hospital admission with a diagnostic code recorded (in any position in the 

admission record) for any disease within the grouping being analysed. For each 
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disease grouping, subjects with recorded admission prior to the date of venepunctu re 

were then excluded entirely in the subsequent analysis, as already prevalent.  

Quality Control of Omics Measures 

Outliers were defined based on z-score thresholds that varied between omics 

datasets depending on the distributions of the raw measures. Omic s measures were 

pre-corrected for known batch effects and covariates (specified above) using fixed 

effects linear regression or other specified methods. A second pass z -score threshold 

on the residuals was used to detect further outliers for a subset of as says and all 

missing values were removed. The residuals produced from covariate correction were 

then scaled and centred to have a mean of zero and a standard deviation of one to 

ensure that effect sizes of any variables included in the models were comparab le. 

Clock Construction 

Per Omics Assay: The individuals in the ORCADES cohort were split into 75% training, 

25% testing. For the analysis comparing clock performance across omics platforms 

the testing 25% of samples were taken preferentially from the pool of individuals that 

possess measures for all of the omics platforms. Tenfold cross validation in the 

training sample was used to select the shrinkage parameter, , for the penalised 

regression that was estimated to produce the model with the minimum mean 

squared error. Models were constructed us ing three different procedures 

implemented using the glmnet201 and caret packages in R with chronAge at 

venepuncture as the dependent variable: i) least absolute shrinkage and selection 

operator (LASSO) regression ii) elastic net regression with an alpha of 0.5 iii) elastic 

net regression with alpha selected using 10-fold cross validation in the training 

sample. We found no difference in performance between the three methods , so 

construction using elastic net regression with an alpha of 0.5 was used throughout 

the analyses presented. This model was then used to estimate chronAge in the 

testing sample and an independent out of cohort sample if available.  
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As stochasticity is present in the procedure, the variables selected for model inclusion 

will vary depending on the individuals selected to be in the training sample. Clock 

construction was repeated 500 times and the features selected for inclusion and the 

correlation between chronAge and age estimated by the model were recorded . This 

was done to ensure that the model performance results presented here are 

representative, and not an outlier due to individuals at extreme ends of distributions 

contributing to the training sample and a rare model being used to draw conclusions 

(data not shown). 

Mega-Omics: model that was presented with all of the features from all of the omics 

platforms. The dataset itself was created by merging all of the corrected omics 

measures (residuals) after platform level quality control, again standardising all 

features to have a mean of zero and standard deviation of one. The clock was crea ted 

using the same construction procedure outlined above.  

Core Models: were constructed per omics assay. The elastic net regression algorithm 

was presented with only those predictors that were selected for model inclusion in 

>95% of the 500 iterations of clock construction for the relevant omics platform. This 

reduced set of predictors then underwent clock construction as described above.  

Principal Component Clocks: To ensure that the differences in variance explained in 

chronAge by different omics clocks is not due to the discrepancy between the 

number of features available and hence the number of features selected for model 

inclusion across omics types . But rather is a genuine difference in the information 

about ageing captured by different omics; clocks were built using principal 

components (PCs) of the relevant omics platform as features. The first 3, 5, 10 and 20 

PCs were extracted from the covariate corrected scaled and centred omics data at the 

platform level using the prcomp function in R. These PCs were then presented to the 

elastic net algorithm and clocks built. 
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Correlation of OCAAs 

Pairwise Pearson correlations between 10 of our OCAAs were calculated, Mega -omics 

OCAA was excluded from this and all between clock comparisons as it contains 

predictors spanning multiple assays. 

Partitioning Variance Explained in ChronAge 

The unique variance in chronAge explained by each clock, , was calculated as the 

squared part correlation of chronAge ( ) and age estimated by clock  while 

controlling for all of the other  clocks. Part correlations were calculated using the 

spcor.test function in the “ppcor” package in R 226. The portion of variance in 

chronAge explained by all of the  clocks together, the  from the following model: 

 

Where  is chronAge and  are age estimated by clocks 1 to , was used to 

partition the total variance of chronAge further into that which remains unexplained 

by the 10 clocks ( ) and that which is explained by overlapping clocks: 

( ) ∑  

To gain a more detailed insight into the relationship between clocks we carried out 

pairwise comparisons. Following the same procedure as outlined above, the uni que 

variance in chronAge explained by each clock in the pair is the squared part 

correlation of chronAge and age estimated by one clock while controlling for age 

estimated by the other clock in the pair. The variance remaining unexplained by 

either of the clocks was  of a bivariate model. The overlap, calculated by 

subtraction, is specifically the variance in chronAge explained by both of the clocks in 

the pair. This is unlike overlap calculated in the previous step, where we were only 
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able to state that this variance was not unique to a particular clock but unable to 

deconstruct further. 

Assessing the Overlap between Clocks 

We assessed whether the combined variance in chronAge explained by pairs of clocks 

deviated from what would be expected by chance if both clocks were independently 

sampling from a latent set predictors (ISLSP) of chronAge . The combined variance in 

chronAge explained by both clocks together was calculated as the multiple  from a 

bivariate model, with chronAge being the dependent va riable and the estimated ages 

from the two clocks in the pair the independent variables. The variance explained in 

chronAge ( ) by each clock ( ) individually was the univariate  from the regression 

of estimated age on chronAge. The expected varianc e in chronAge explained by two 

clocks by chance ( ) was calculated as follows:  

( )( ) 

The idea being that the variance in chronAge not already explained by the first clock 

is . With the null hypothesis that the two clocks are independent s amples from 

the latent set of complete predictors and thus explain partly overlapping information 

about age. The expected left unexplained after the addition of the second clock is 

thus ( )( ). 

To allow for the comparison of the deviation of observed variance explained in 

chronAge ( ) from expected ( ) across pairs of clocks, this deviation was re-scaled. 

As the magnitude of  effects the possible range of values  could take. The 

theoretical minimum variance explained ( ) by two clocks is the variance 

explained by the larger of the two clocks alone (the second clock only providing 

information already captured by the first). The theoretical maximum ( ) is 

 or 1 if  (the clocks are explaining entirely non-overlapping 

variance). Comparisons containing clocks with high  will have a much smaller range 

of possible  than those with low  so directly comparing the magnitude of the 
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deviation of observed from expected is not ideal. The results presented are on a scale 

of excess overlap calculated as follows: 

 

With a value of 0 meaning that the observed variance explained equals that expected 

by chance if the clocks were independent. A value of 1 denoting that no additional 

variance was explained with the addition of the second clock. Negative values are 

possible and mean that the two clocks overlap less than expected and track separate 

aspects of chronological ageing, but in practice, we see that the clocks always track 

more common aspects than would be expected under the null hypothesis, albeit to 

varying degrees. 

Association with health-related phenotypes & Incident Disease 

OCAAs were tested for association with health-related risk factors and age-related 

incident diseases, as measured by hospital admission. 

Association with chronAge: We first tested whether the risk factors and disease 

outcomes were associated with chronAge. For incident disease: time from 

assessment to incidence or to study end (the date when SMR01 records were 

extracted: December 2017, around ten years after assessment) was modelled using a 

Cox proportional hazard model227 and the Surv function in the “survival” package in R. 

Subjects with prevalent disease were excluded. The baseline hazard was dependent 

on time since assessment, and hazards ratios dependent on chronAge and sex. We 

used time since assessment as the determinant of base hazard rather than chronAge, 

so that we could determine which groupings had stronger age -related effects and 

compare the effects of OCAA to those of chronAge. P-values for association with 

chronAge (and later OCAA) were calculated using a one -sided test, with H1 being that 

chronAge increased risk. 



 95 

Association with OCAAs: with standardised risk factors (units of phenotypic standard 

deviation) were carried out using linear regression with chronAge and sex fitted as 

fixed effects covariates. To restrict the burden of multiple testing we only tested the 

association of OCAAs on risk factors or disease blocks which showed a statistically 

significant association (effect size >0) with chronAge at outset (Benjamini -Hochberg 

FDR<10%) and had >5 incident cases (disease blocks). We tested the effect of OCAAs 

on each disease grouping using the same model as for chronAge, including chronAge 

and OCAA as effects. OCAA was  not standardised but observed effect sizes were 

rescaled (divided) by the effect of chronAge, using the same model, enabling a 

comparison of the effect of one year's OCAA with one year's chronAge, with a value 

of 1 denoting the same effect. False discovery rate was again determined using the 

Benjamini-Hochberg method (FDR<10%). 

Across both risk factors and disease, we found that large estimated effects arose in 

the context of large SEs. To facilitate visualising the results we had most confidence in 

we applied a shrinkage method, imposing a prior assumption on the distribution of 

beta (mean 0, SD 1) to the likelihood of our observed beta, shrinking resultant 

estimates with larger SEs more towards 0. 

Individual tests of association generally had limited powe r due to multiple testing and 

the low variance of OCAA (compared with chronAge). We therefore considered the 

results of each OCAA across multiple outcomes by inverse variance weighting (IVW) 

observed results  for individual outcomes . The covariance amongst outcomes and 

predictors, mean that the independence assumption for meta -analysis (or sign 

testing) is violated. Whilst this should not bias estimates, their precision will be 

overstated. We consider these results to be descriptive, and not conformable to 

formal testing. We use “~” to denote SEs calculated under the violated independence 

assumption, but still consider these useful to give a sense of magnitude. Conversely, 

for the same reason, the formal tests we perform (FDRs) are likely to be conservative.   
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We repeated these analyses with standardised OCAAs to compare the prognostic 

ability of different OCAAs at a population level, across risk factors and diseases and 

with our PC clocks OCAAs. 

3.3 Conclusion 

By performing the most exhaustive comparison of different types of omics assays as 

potential sources of biomarkers of biological age, we found that it is possible to build 

models that produce OCA estimates that are highly correlated with chronAge from a 

wide range of omics assays. We showed systematically across omics, that a 

substantial subset of biomarkers is required to achieve the same performance as with 

standard models and that omics ageing clocks overlap in the information they provide 

about age, with 94% of the variance in chronAge not being unique to one clock. 

Finally, we showed that omics clock age acceleration estimates (OCAAs) are 

associated with health-related risk factors and are prognostic of incident disease over 

and above chronAge. 

This work highlighted several issues for the field that require further discussion. First 

that lots of sources of data could be used to produce accurate chronAge estimates , 

given enough predictors. On the one ha nd, this may be useful as numerous high 

dimensional omics assays are expensive and the flexibility to use only one or the ones 

that are already measured in the sample is reassuring. On the other hand, too many 

predictors will exacerbate the issue of overfitting discussed previously and will make 

ageing clocks study population specific, thus reducing their potential clinical 

applicability. Larger sample sizes and greater diversity in the sample used for model 

training will increase the chance of producing ageing clocks that will be effective 

across populations . 

Second, that there is biomarker redundancy both within and between omics assays in 

terms of chronAge estimation. Our core models highlight the predictor redundancy 

within assays. The finding that pairs of OCAs overlap in the variance in chronAge that 
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they explain, more than would be expected if they were independently sampling from 

a complete set of latent predictors , emphasises the redundancy between assays. 

Although taking steps to minimise the number of biomarkers included in BA clocks 

has been done before54, we were the first to show that it is possible systematically 

across 9 different assays. Further, it is not common practice in the field and would be 

beneficial given the desire for ageing clocks to be clinically useful. 

Third, we quantified the proportion of our OCAA that may be capturing noise rather 

than true underlying BA. As mentioned in the discussion, due to training on chronAge, 

by definition the effect on functional capacity and risk of age-related disease of one 

additional year of underlying BA is the same as 1 year of chronAge.  The estimate that 

the mean effect of one year of OCAA on incident disease is the same as 0.45 years of 

chronAge rather than 1, highlights how much our estimate is attenuated due to OCAA 

containing noise. This is not usually addressed in the field and has not previously 

been quantified. Routine quantification of the proportion of OCAA that is capturing 

noise rather than potentially true BA, would be a substantial step forward in 

evidencing whether these models are indeed effective biomarkers of underlying BA. 

Fourth, all of the omics assays bar DEXA scans were carried out on blood samples . 

This is an advantage in that it is minimally invasive and convenient to measure, 

however does mean that we did not consider tissue specific or multi -tissue clocks, 

which may prove useful to create system or organ specific ageing models.  If such 

datasets become available, it would be invaluable to the field to capture the 

potentially different BA of different organs and tissues.  

Despite showing that OCAA are associated with health-related risk factors and 

prognostic of incident disease beyond chronAge, effect sizes were modest. In our 

case this may be due to low sample size, but in general this is the case for clocks that 

are trained on chronAge93–95. 

As mentioned previously, promising results have been found using the ageing clocks 

DNAm PhenoAge and GrimAge that have been trained on all-cause mortality based 
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measures96,97 rather than chronAge. With DNAm PhenoAge, shown to be more 

prognostic of all-cause mortality, number of co-morbidities, probability of being 

disease free and increase in physical functioning problems than either Hannum or 

Horvath’s epigenetic clocks 96. In turn, AgeAccelGrim has also been shown to be 

prognostic of incident coronary heart disease, time-to-congestive heart failure, 

hypertension and type 2 diabetes as well as to outperform other DNAme-based 

OCAAs in predicting time to any cancer. 

This trend that ageing clocks trained on mortality measures rather than chronAge, are 

more indicative of future health status was also reported by three groups comparing 

multiple DNAme based ageing models. Maddock et al. found that OCAAs from 

GrimAge and DNAm PhenoAge were associated with physical performance, cognitive 

performance and subsequent decline in performance. These associations were not 

found with OCAAs based on Hannum and Horvath clocks 94. Upon fitting 9 different 

DNAme- or clinical risk factor-based OCAs simultaneously, Li et al.95 showed that 

GrimAge, Horvath’s DNAmAge and frailty index (FI) 228 based OCAA were prognostic of 

all-cause mortality, independent of chronAge and the 6 remaining OCAAs. When 

comparing GrimAge, DNAm PhenoAge, Horvath DNAm Age, Hannum DNAm Age and 

a DNAme based estimator of telomere length (DNAm TL) 229, Hillary et al. showed that 

only GrimAge and DNAm PhenoAge were statistically significantly associated with 

incident disease (COPD, type 2 diabetes, and heart disease) after correction for 

multiple testing204, while none of the clocks trained on chronAge were prognostic.  

Our work therefore supports the shift of focus of the field to concentrate on ageing 

clocks trained on mortality, or more ideally multiple morbidity, that are prognostic of 

incident disease rather than those that are merely accurate predictors of chronAge. In 

the next chapter, I investigate the potential of the multiple omics assays discussed in 

this chapter, as potential sources of biomarkers of health-related risk factors and 

incident disease directly, rather than their derived OCAAs.    
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Chapter 4: Biomarkers of Incident Disease 

4.1 Introduction 

In the previous chapter we sought to understand how omic s profiles varied with age 

and the degree to which OCAA is predictive of disease, inferring that successful 

prediction meant that OCA is biomedically meaningful beyond chronAge, and not just 

a regression artefact. Whilst such an approach is hoped to capture  generalised 

ageing, as age is  the most significant risk factor for late-onset diseases, it seems likely 

that individual predictions of specific diseases would be  more accurate if a more 

direct approach were taken: basing predictions on the omics measures directly, 

rather than OCAA. 

Historically, research into biomarkers and risk scores has focussed on traditional 

clinical measures to build risk scores for clinical outcomes, for example incidence 101–

103, or recurrence104 of diseases, outcome post-surgery105,106 and response to 

different therapies 107. 

But recently, as assay technology and computing have advanced, so have the range of 

predictors used beyond conventional clinical measures to include high-dimensional 

omics assays108–111 and image analysis 112. These studies have used a variety of 

statistical methods to create multivariable scores, ranging from stepwise 

regression108 and penalised regression113 to more sophisticated machine learning 

techniques such as: random forest110, neural networks83 and deep learning112. 

Several of the omics assays that are available for ORCADES have previously been 

shown to be biomarkers for several different risk scores and outcomes . Menni et al. 

showed that 46 IgG glycans from the same ULPC assay as in ORCADES, were 

associated with 10-year atherosclerotic cardiovascular disease risk score (ASCVD) 230, a 

leading measure of CVD risk. PEA Proteomics have also been found to be signif icant 

disease biomarkers. Scores containing 11 plasma protein levels prognostic of cervical 
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cancer114 and ovarian cancer109 have been reported by Berggrund et al. and Enroth et 

al., respectively. Gisby et al. found 203 plasma protein levels associated with the 

clinical severity of COVID-19 patients as well as using random forests to create a score 

that predicts COVID-19 severity110. 

Plasma metabolite levels from the MS Metabolomics assay have been shown to be 

biomarkers for numerous incident diseases and of multimorbidity 111. This study by 

Pietzner et al. emphasised that 65.6% of metabolite levels were significant 

biomarkers for multiple incident disease phenotypes and highlighted relationships 

between risk factors and incident disease that were mediated by metabolites, thus 

indicating actionable shared pathways. 

As ORCADES has neither a large sample size in terms of number of individuals with 

omics measures nor incident disease cases, I instead, aim to take advantage of the 

breadth of phenotypes available. This is a unique opportunity to investigate omics  

measures as biomarkers of health outcomes in a curated dataset with 10-year follow-

up for many diseases, however this required caution with regards to multiple testing 

and a rigorous training-testing split. This therefore has the potential to yield an 

interesting exploratory analysis, revealing perhaps which omics assays or biomarkers 

and diseases are most tractable, as well as what increases in sample size or years of 

exposure might be required in future ana lyses.  

I also intend to investigate the relative importance of the omics biomarkers selected 

for inclusion in risk scores, to identify and highlight the most promising predictors of 

subsequent incident disease. 

With this in mind, in this chapter I: investigate the potential of these omics measures 

as biomarkers of health-related risk factors and incident diseases directly, without 

going through an OCAA; use the multiple omics assays and electronic health record 

data available in ORCADES and use the pipelines set up for the analysis in the 

previous chapter. This investigation of whether omics make suitable biomarkers for 
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risk factors/disease either on their own or in composite models is thus likely to be of 

great value. 

4.2 Methods 

4.2.1 Data 

Cohort Data 

Analyses described in this chapter were carried out using data that has been 

previously described in Chapter 2: Data & Methods and Chapter 3: Biological Ageing 

Clocks. Namely, the same samples, omics assays, electronic health records and other 

phenotypic information, subject to the same quality controls. 

Analyses were carried out using record linkage of the ORCADES cohort to hospital 

admission records, Scottish Morbidity Record: SMR01. The same disease blocks and 

risk factors were considered as in Chapter 3: Biological Ageing Clocks (list of disease 

blocks Supplementary Table 20) with the addition of educational attainment 

measured in years of schooling completed. 

Omics Data 

The same omics assays: DEXA, NMR Metabolomics, MS Fatty Acids Lipidomics, UPLC 

IgG Glycomics, PEA Proteomics, Clinomics, MS Metabolomics, MS Complex 

Lipidomics, and two sets CpGs (DNA methylation), subsets of those used in Hannum 

and Horvath’s epigenetic c locks. The complete list of biomarkers per assay is in 

Supplementary Table 17. 

Each omics assay underwent assay level quality control as described in Chapter 2: 

Data & Methods Table 3. The only difference in assay level quality control from the 

previous chapter, is that all assays were also corrected for chronological age at 

venepuncture, in addition to the previously stated covariates. As in contrast to 
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Chapter 3: Biological Ageing Clocks, where I was interested in omics measures ’ 

relationship with age, here the aim is to assess omics biomarkers association with risk 

factors and incident disease, independent of age. A complete list of biomarkers for 

each assay passing quality control for this analysis is in Supplementary Table 22. 

Martingale Residuals 

As the pipeline for quality control and construction of penalised regression models 

that I have used throughout this thesis is set up to work with quantitative traits, the 

use of time-to-event data is not ideal. However, Therneau et al.231 demonstrated an 

approach to calculate covariate-corrected residuals from a Cox proportional hazard 

model that can then be used as a quantitative trait. These residuals named 

“Martingale residuals” are calculated for each individual as the difference between 

the number of observed events during the study period and the number of events 

expected given the model/values of the covariates in the study population. For this 

analysis Martingale residuals were calculated by Peter Joshi using an already 

established group pipeline as  follows. Cox proportional hazard models for time to first 

hospital admission for each of the 44 disease blocks were fitted with age at 

venepuncture and sex as covariates (as described in chapter 3). Martingale residuals 

were then scaled by the proportion of events in the population, any linear association 

effect on this scale estimates the log hazard ratios 231,232 in the Cox model. 

4.2.2 Univariate Associations of Omics measures with 

Martingale residuals 

Univariate linear regressions were performed for each of the 3,30 2 QC’d omics 

measures on the Martingale residuals (units log eHR) of 44 disease blocks and 10 

standardised risk factors (units of phenotypic standard deviation), with age at 

venepuncture and sex fitted as covariates. As the risk factors: HDL cholesterol, total 

cholesterol, FEV1 and systolic blood pressure are also Clinomics predictors  they were 

not included in the 3,302 omics biomarkers , reducing the total number of tests from 
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178,524 ( ) to 178,308. Omics-outcome associations that passed 5% FDR 

using the Benjamini and Hochberg method233 were considered significant. Plots were 

generated using the circlize R package. 

4.2.3 Penalised Regression 

Each omics assay was  then considered in turn, the individuals in ORCADES with both 

assay measures and outcome measures were split into training and testing. For 

analyses where the outcome was a risk factor, the sample was split randomly into 

75% training and 25% testing. For analyses with Martingale residuals as an outcome, 

cases and controls were still split randomly but separately into 75% training and 25% 

testing, to ensure that the case-control ratio was consistent between training and 

testing samples. 

Two penalised regression models were built for each combination of omics assay and 

outcome: LASSO and elastic net with a fixed alpha of 0.5 using the glmnet package in 

R201. The linear association of the outcome predicted by the penalised regression 

model on observed outcome was used to compare performance across all omics and 

outcomes. 

Biomarkers selected for model inclusion for each assa y-outcome combination using 

LASSO regression and their coefficients are indicated in Supplementary Table 23. 

4.2.4 Controlling Multiple Testing 

Given the number of omics assays, 11, and outcomes , 54 (44 diseases and 10 risk 

factors), and the limited power due to small sample size and low numbers of cases for 

many of the disease blocks, I sought to limit the number of tests I performed to 

maximise the chance of achieving statistically significant results.  
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Diseases and risk factors were considered as two separate experiments, and for each, 

the following procedure was followed to identify which analyses would be sufficiently 

powered and would be taken forward for formal statistical testing.  

Models predicting each of the outcomes were built using each of the different omics 

assays in the training sample, and the fit of predicted outcome on observed outcome 

assessed. In order to determine which analyses were expected to be powered in the 

testing sample, I calculated the p-value expected in the testing sample. This was 

possible as, if the model is not overfit, the effect size in the testing sample is expected 

to equal the effect size in the training sample. Because the testing sample is one third 

of the size of the training sample, and under the assumption that the observed 

training effect is the true effect, the expected t-test statistic in the testing sample is : 

 

Where the standard error expected in the testing sample is: 

√  

Under these assumptions, expected two-sided p-values in the testing sample were 

then calculated using the “pnorm” function in R. An iterative process was then used 

to select analyses that were expected to pass a 5% FDR significance threshold. All  

possible analyses were ranked based on expected p-value, and expected q-values 

were calculated using the Benjamini and Hochberg method233. This process was 

repeated using the top  … analyses (ranked by expected p-value), 

until all of the top  analyses expected q-values were less than 5%. These were the  

analyses that were plausibly powered to detect statistically significant signals , taking 

into account correction for multiple testing.  

Importantly, no use of the testing data had been made at the point of determination 

of this list. This list was therefore being taken forward to an independent testing set, 

and so whatever the merits of the selection criteria for the list, the FDR measured in 
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the test set is valid. The naïve expectation was of course that every test would be 

passed, but should this turn out not to be true, even to a material extent, it does not 

invalidate the independent test set FDRs, but indicates that the predicted p-values 

from training were not always borne out, perhaps due to chance or overfitting.  

Thus, for the  analyses taken forward for formal statistical testing, those whose 

observed q-values in the testing sample passed an FDR 5% significance threshold are 

presented as statistically significant results. For associations with both diseases and 

risk factors, standardised effect sizes are presented (both score and outcome in 

standard deviation units). This means for interpretation, effect sizes for score-

outcome associations indicate the change in outcome (in outcome standard deviation 

units) for every standard deviation increase in the score. 

4.2.5 Score Profiling 

As discussed in the introduction, I sought to understand the relative importance of 

each predictor within each score. Scores were of course a linear combination of the 

predictors. However, as the predictors within omics ass ays are not orthogonal, simply 

taking the squared multivariable or univariable standardised effect sizes of the 

predictors on the score, is not an appropriate way to partition the variance 

contribution to the score amongst the predictors. At its simplest the sum of such 

measures will not equal one. 

In an attempt to minimise the contribution estimates being down to an artefact of 

the method, I used two different approaches to partition the variance explained in 

the score amongst the predictors. First, I used the hierarchical partitioning algorithm 

implemented by the hier.part package in R 234. This package is based on the algorithm 

proposed by Chevan & Sutherland in 1991 that averages over all possible orders of 

variables, producing an estimate of the independent effects of each variable as a 

proportion of the total R2 235. The implementation of this approach by the hier.pa rt 

package however, is optimised for models with 10 predictors or fewer. For this 

reason, I was only able to use this approach to partition the variance explained in 
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scores with <10 predictors , so I also used an alternative approach for all of the scores 

of interest, allowing comparison between approaches for those with <10 predictors.  

As for scores with large numbers of predictors it is not feasible to average over all 

possible orders, I used an iterative approach to rank predictors based on their 

univariate R2, to determine an order of importance of predictors. This approach I 

have termed “iterative ranking” consisted of first ranking the predictors based on the 

estimate of their univariate variance explained, when fit in a model against the score. 

The predictor with the largest estimated R 2 (best single predictor) was then fit against 

the score and the residuals of this linear model calculated. These residuals 

conceptually being what remains of the score after having the variance explained by 

the first predictor removed and  are considered as the “corrected outcome”. The 

remaining predictors were then, one at a time, fit in a linear model against the 

corrected outcome and ranked based on the univariate R 2. The predictor with the 

largest R2 from this step was then considered the second-best predictor. This process 

of finding the next best predictor based on ranking of univariate R 2, fitting this next 

best predictor against the previously corrected outcome and cal culating residuals, 

fitting the remaining predictors one-by-one against the new corrected outcome and 

ranking again continues until an order of importance (the length of the number of 

predictors in the score) is determined. The predictors were then fit aga inst the score, 

one-by-one, in this determined order of importance and the additional multivariate 

R2 added by the addition of each predictor created the profile for the score.  

I produced profiles for 5 Clinomics scores for: I20-I25 Ischaemic heart disease, I10-I15 

Hypertensive diseases, E65-E68 Obesity and other hyperalimentation, E10-E14 

Diabetes mellitus  and “E” all block E metabolism related disorders  and 4 scores for 

E10-E14 Diabetes mellitus  constructed from: DEXA, Mega-Omics, MS Metabolomics, 

NMR Metabolomics and PEA Proteomics. I was also interested to see how the profile 

for my Clinomics score for FRS compared to the FRS used in clinical practice. For all of 

the scores discussed previously, the total multivariate R2 of the fit of predictors on 

score was equal to one however, FRS is not a linear combination of its components 
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(Formula for FRS Equation 1 101) and contains components that are not part of my 

Clinomics dataset. This meant that the total R 2 of a linear model fitting the 

components of FRS that overlap with Clinomics against FRS was <1 . So in order to 

compare like with like, I considered the proportion of the total R 2 that was 

additionally explained by the addition of each predictor in the determi ned predictor 

order. 

[ ( ) ] [ ( ) ]

 

( ) 

Equation 1. Formula for Framingham Risk Score. 

Where age is age at venepuncture, TotalChol is total cholesterol (mg/dl), HDLChol is 

HDL cholesterol (mg/dl), SysBP is systolic blood pressure (mmHg) and the coefficients 

for individuals of European ancestry are in Table 12. 

Coefficient  Men  Women Note 
AgeFactor 3.06117 2.32888   
TotalCholFactor 1.1237 1.20904   
HDlCholFactor -0.93263 -0.70833   
SysBPFactorUntreated 1.93303 2.76157 not on HTN treatment 
SysBPFactorTreated 1.99881 2.82263 on HTN treatment 
Cig 0.65451 0.52873 if current smoker 
DM 0.57367 0.69154 if T2D 
AvgRisk 23.9802 26.1931   
RiskPeriodFactor 0.88936 0.95012   

Table 12. Coefficients for Framingham Risk Score for European Ancestry Individuals. Indicating 
the coefficient for the above formula for both sexes of European ancestry. HTN: hypertension. T2D: 
type II diabetes. These coefficients are optimised for individuals between the ages of 30-74 who 
have not had previous cardiac events such as myocardial infarction and strokes.  
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4.3 Results 

4.3.1 Martingale Residuals vs Cox Proportional Hazard Models 

Prior to assessing the potential of omics biomarkers to directly predict incident 

disease (using incident hospital admissions as a proxy), I first investigated whether 

using Martingale residuals of incident disease with my data was a valid approach, 

rather than fitting Cox proportional hazard models and using time to event data 

throughout subsequent analyses.  

To do so, I repeated the analysis in Chapter 3: Biological Ageing Clocks Figure 10, that 

fit Cox proportional hazard models of OCAA with age (at venepuncture) and sex as 

covariates, against time to hospital admission. This time fitting linear models testing 

each of the 11 OCAAs against Martingale residuals of 44 disease blocks.  Again, I 

included age and sex as fixed effects covariates and assessed the concordance 

between the effect size estimates and standard errors from the two approaches. 

Visual inspection of the effect size estimates from both approaches appear to concur 

across both omics assays and disease blocks (Supplementary Figure 41). This, 

together with the consistency of effect size estimates over 3 different concordance 

measures across all OCAA-disease block associations (Table 13), led to the use of 

Martingale residuals for incident disease as the outcome and the use of linear models 

for the remaining analyses presented in this chapter.  

Concordance Measure Beta Standard Error 
X1/X2 0.891 0.914 
X1-X2 -0.0195 -0.0403 
abs(X1-X2) 0.0953 0.0763 

Table 13. Concordance of Effect Size Estimates from Cox models and Martingale residuals. 
Indicating the mean estimate of concordance across all OCAA-disease block associations for each 
measure when X is Beta (effect size in units of logeHR/standard deviation of OCAA) and standard 
error are X, estimates from the Cox model are estimate 1 and those from Martingale residuals are 
2. For example, 0.891 is the mean of ⁄  estimates across all OCAA-disease 
block associations. 
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4.3.2 Univariate Associations of omics biomarkers and 

outcomes 

To determine if single omics measures are potential biomarkers of health outcomes, I 

performed linear associations fitting age and sex as covariates for 3,30 2 omics 

predictors against the 54 outcomes. I found 8,526 (4.78% of all tests) significant (5% 

FDR) biomarker-outcome associations between 2,686 single omics biomarkers and 54 

outcomes (Figure 12), with evidence of enrichment of associations as 12.77% of the 

tests were nominally significant (p<0.05). The ratio of monounsaturated fatty acids to 

total fatty acids (MUFA/FA) from the NMR Metabolomics assay was significantly 

associated with the most outcomes (12: 7 risk factors and 5 diseases ). 

(Supplementary Figure 42). Additionally, 7 biomarkers had 11 significant outcome 

associations including plasma glucose levels, weight, total trunk mass, three 

metabolites from the MS Metabolomics assay and tumour necrosis factor receptor 

superfamily member 6B (TNFRSF6B) protein level. In contrast, 629 biomarkers (across 

7 omics assays) were only associated with one outcome and 616 associated with no 

outcomes. 

All omics assays had at least one significant biomarker-outcome association, with 

Clinomics showing the highest number of associations relative to the number of 

measures in the assay and the Hannum and Horvath subsets of CpGs the least ( Table 

14). All biomarkers in the Clinomics, NMR Metabolomics and MS Fatty Acid 

Lipidomics assays had a significant association with at least one outcome. 

Interestingly, despite only 33.6% of the Horvath subset of CpGs having significant 

outcome associations, they were associated with the greatest number of different 

outcomes (44/54). This is in direct contrast to the MS Fatty Acid Lipidomics assay, 

100% of whose biomarkers were associated with only 11 different outcomes. 
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MS Complex Lipidomics 908 3318 3.65 97.58 41 6.77 
MS Fatty Acid Lipidomics 32 144 4.5 100 11 8.33 
PEA Proteomics 1102 2776 2.52 83.39 53 4.66 
MS Metabolomics 682 1460 2.14 80.94 53 3.96 
DNAme Hannum CpGs 62 46 0.74 51.61 22 1.37 
DNAme Horvath CpGs 333 150 0.45 33.63 44 0.8 
NMR Metabolomics 68 356 5.24 100 18 9.69 
UPLC IgG Glycomics 77 91 1.18 62.34 14 2.19 
Clinomics 9 57 6.33 100 20 11.73 
DEXA 29 128 4.41 96.55 19 8.17 

Table 14. Omics Assay Level Associations with Health Outcomes . N Biomarkers: number of 
biomarkers in omics assay included in association analyses. N Associations: number of significant 
(5% FDR) biomarker-outcome associations. N Associations Per Biomarker: number of significant 
(5% FDR) biomarker-outcome associations divided by the number of biomarkers in the assay. 
Percentage of Biomarkers with Associations: the percentage of biomarkers that were significantly 
associated with at least one outcome. N Outcomes: the number of different outcomes that 
biomarkers in each assay were associated with. Percentage of tests significant: the percentage of 
significant (5% FDR) biomarker-outcome associations out of those tested for that assay, calculated 
as (N Associations/(N Biomarkers*N Outcomes tested))*100. 

Outcome Description 
N 
Associations N Assays 

Percentage 
of 
Significant 
Tests 

all ALL 35 6 1.06 

bmi BMI 1231 10 37.28 
bp_sys SBP 331 8 10.02 

c Cancers 3 2 0.09 
c00.c14 MN Lip/Throat 42 4 1.27 

c15.c26 MN Digestive 11 5 0.33 

c30.c39 MN Respiratory 17 4 0.51 
c43.c44 MN Skin 17 6 0.51 

c45.c49 MN Soft Tissue 13 4 0.39 
c50.c50 MN Breast 11 3 0.33 

c51.c58 MN Female Genitals 6 3 0.18 
c60.c63 MN Male Genitals 6 4 0.18 

c64.c68 MN Urinary Tract 61 7 1.85 

c69.c72 MN eye/brain/CNS 98 6 2.97 
c73.c75 MN Thyroid 12 3 0.36 

c76.c80 MN 2nd Site 10 2 0.30 
c81.c96 MN Lymphoid 89 6 2.70 

cortisol_nmol_l Cortisol 386 8 11.69 
creat Creatinine 692 8 20.96 
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crp CRP 480 10 14.54 

e Metabolic/Endocrine 128 8 3.88 
e00.e07 Thyroid 42 7 1.27 

e10.e14 Diabetes 140 6 4.24 

e15.e16 Other Glucose 28 5 0.85 
e20.e35 Other Endocrine 5 4 0.15 

e50.e64 Other Nutritional 18 4 0.55 
e65.e68 Obesity 50 7 1.51 

e70.e90 Metabolic 71 6 2.15 
edu EDU 65 4 1.97 

fev1 FEV1 284 9 8.60 

frs FRS 945 10 28.62 
hdl HDL 1256 10 38.04 

i Vascular 27 5 0.818 
i05.i09 Chronic HD 12 4 0.36 

i10.i15 Hypertensive 76 7 2.30 
i20.i25 IHD 15 6 0.45 

i26.i28 Pulmonary 9 5 0.27 

i30.i52 Other HD 31 5 0.94 
i60.i69 Cerebrovascular 15 4 0.45 

i70.i79 Arteries 14 3 0.42 
i80.i89 Veins 23 4 0.70 

i95.i99 Other Circulatory 9 4 0.27 
j Infectious 28 5 0.85 

j00.j06 Acute Respiratory 33 6 1.00 

j09.j18 Flu/Pneumonia 32 5 0.97 
j20.j22 Acute LR 86 4 2.60 

j30.j39 Upper R 12 5 0.36 
j40.j47 Chronic LR 19 5 0.58 

j60.j70 Lung 10 3 0.30 
j80.j84 Other Respiratory Int 103 5 3.12 

j85.j86 SN LR 18 4 0.55 

j90.j94 Other Pleura 11 4 0.33 
j95.j99 Other Respiratory 9 3 0.27 

totchol TC 1351 10 40.91 
Table 15. Outcome Level Associations with Omics Biomarkers. Outcome: disease block (ICD10 
code chapter) or health-related risk factor. Description: description of disorders covered. N 
Associations: number of significant (5% FDR) biomarker-outcome associations. N Assays: number 
of omics assays that the outcome has significant (5% FDR) associations with. Percentage of tests 

significant: the percentage of significant (5% FDR) biomarker-outcome associations out of those 
tested for that outcome, calculated as (N Associations/(N tests))*100. FRS: Framingham risk score. 
BMI: body mass index. EDU: educational attainment. HDL: high density lipoprotein cholesterol. TC: 
total cholesterol. SBP: systolic blood pressure. FEV1: forced expiratory volume in 1 minute. CRP: c-
reactive protein. HD: heart disease. CNS: central nervous system. IHD: ischaemic heart disease. 
MN: malignant neoplasm. LR: lower respiratory tract. Upper R: upper respiratory tract. SN LR: 
Suppurative & necrotic conditions of the lower respiratory tract. Other Respiratory Int: other 
respiratory diseases affecting the interstitium. 
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As 76.6% of the significant biomarkers were associated with more than one outcome, 

I looked at the pattern of associations across outcomes (Figure 12). Total cholesterol, 

HDL cholesterol and BMI each had >1000 significantly associated omics biomarkers 

(Table 15, Supplementary Table 24). Diabetes Mellitus (E10-E14) and all 

metabolic/endocrine disorders combined (E) were the disease blocks with the most 

associations (140 and 128 respectively). Interestingly, all cancers (C) had the fewest 

associations (3) however, all of the disease blocks containing specific cancer subsets 

had >3 significant associations. 
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Figure 12. Connectivity between Risk Factors and Incident Disease Blocks based on Associated 
Omics Measures. Each segment represents an outcome (risk factor or disease block). The size of 
the segment indicates the number of single omics biomarkers that the outcome was significantly 
(5% FDR) associated with. Each segment is split to show the number of associations with at least 
one other disease (purple) or biomarkers that were uniquely associated with that outcome (blue).  
Lines connecting two outcomes indicates that they are associated with shared omics biomarkers, 
with the thickness of the line depending on the number of biomarker associations they share. FRS: 

Framingham risk score. BMI: body mass index. EDU: educational attainment. HDL: high density 
lipoprotein cholesterol. TC: total cholesterol. SBP: systolic blood pressure. FEV1: forced expiratory 
volume in 1 minute. CRP: c-reactive protein. HD: heart disease. CNS: central nervous system. IHD: 
ischaemic heart disease. MN: malignant neoplasm. LR: lower respiratory tract. Upper R: upper 
respiratory tract. SN LR: Suppurative & necrotic conditions of the lower respiratory tract. Other 
Respiratory Int: other respiratory diseases affecting the interstitium.  

In terms of biomarker specificity, outcomes ranged from malignant neoplasms of 

mesothelial and soft tissue (C45-C49), with the largest percentage of disease specific 

associations (69.2%), to Malignant neoplasms of the digestive organs (C15-C26) with 

all significantly associated biomarkers also being associated with at least one other 

outcome. Figure 12 highlights how interconnected different outcomes are, with the 

connections (in grey) indicating two outcomes were significantly associated with 
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common biomarkers. The width of the connection denotes the number of biomarkers 

shared. HDL and total cholesterol shared the most biomarkers (891) with HDL and 

BMI also sharing >800. However, 221 outcome pairs share only 1 common biomarker. 

BMI and Creatinine levels had the most connections with other outcomes (50) with 

malignant neoplasms of female genital organs the having the least with 4 

(Supplementary Figure 43). As all outcomes were significantly associated with >1 

biomarker, I next assessed multivariable omics models.  

4.3.3 Penalised Regression Models 

Selection of Penalised Regression Method 

To see which penalised regression approach was the most effective for creating omics 

prediction models for the outcomes, I compared LASSO and elastic net regression 

with an alpha of 0.5. For each of these two methods , I constructed models from 11 

omics assays trained on 54 health related risk factors and incident disease blocks. 

Given the aim to create clinically useful prediction models , ridge regression was 

excluded as a potential approach as it does not produce sparse models , and models 

with hundreds of predictors are not suitable for my purposes. Figure 13 highlights 

that LASSO was the more effective method, as the effect sizes from the regression of 

predicted outcome on observed outcome were consistent between the training and 

testing samples across the majority of outcomes. Elastic net regression, however, was 

extremely inconsistent across outcomes, suggesting possible overfitting to the 

training samples. Results for Clinomics and DEXA scores are shown here as examples, 

full results across omics are included in Supplementary Figure 44, however, the 

pattern of LASSO having consistent effect size and direction estimates across training 

and testing samples continued across all omics assays. Based on this evidence LASSO 

was the method taken forward and used in subsequent analysis.  
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Figure 13. Comparison of LASSO and Elastic Net Regression. Effect size 
and 95% confidence intervals from regression of outcome predicted by 
the model and observed outcome in training and testing samples. These 
estimates are across outcomes (y axis) and between methods (panels) 
for a) Clinomics and b) DEXA. Results for all 11 omics in Supplementary 
Figure 44.Not all 54 possible outcomes are listed for each omics assay-

method pair. For a subset of pairs, using optimised lambda from the 

a 

b 
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cross-validation in the training sample, the algorithm selected to include 
no predictors, as none outperformed the sample mean in predicting the 
Martingale residual of the outcome. This could be due to the limited 
number of cases for these disease blocks. Therefore, these pairs are not 
shown and were not taken forward. 

 

Controlling Multiple Testing 

Once LASSO was chosen as the penalised regression approach for the analysis, I 

considered the issue of multiple testing. A number of aspects of this  study design 

make multiple testing a concern i) the limited sample sizes for each omics assay ii) 

that these small sample sizes will be reduced further during model construction when 

split into training and testing iii) the low number of cases in many of the disease 

blocks (mean number of cases for each disease block across omic s assays in Figure 

14, numbers of cases and controls across all omics -disease blocks in Supplementary 

Table 16) and iv) the number of outcomes considered in our exploratory analysis.  

 
Figure 14. Mean Number of Disease Cases Across Omics. Mean number of cases available across 
the 11 omics assays for each of the 44 disease blocks. 

In order to maximise the robust statistically significant results possible with my data, I 

limited the number of formal statistical tests performed. Only tests that were 

expected to pass 5% FDR in the testing sample, based on observed effect sizes in the 

training sample, were taken forward for formal testing (See Methods for details). 
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Testing was limited to 82 tests of omics scores trained on risk factors and 144 for 

omics scores trained on Martingale residuals for incident diseases.  

Omics Models Associated with Risk factors and Incident Disease 

The number of predictors selected for model inclusion for each omics assay -outcome 

pair are shown in Supplementary Table 23. 69 omics scores were significantly (5% 

FDR) associated with health-related risk factors and 12 with disease blocks (Figure 15, 

Training and Testing comparison in Figure 16 and Figure 17). 

First, assessing the effectiveness of omics scores across outcomes: unsurprisingly, 

Clinomics scores were significantly associated across multiple outcomes, as measures 

included in the Clinomics assay were selected for their clinical use to indicate health 

status and prognosis. Further, the only outcomes in Figure 15 that Clinomics scores 

were not associated with (grey cross on white background), were those that were not 

run to avoid circularity as Total cholesterol, systolic blood pressure, HDL cholesterol 

and FEV1 were predictors available for selection in the Clinomics assay. Interestingly, 

UPLC IgG Glycomics score was significantly associated with all 10 risk factors but with 

low effect sizes. Mega-omics scores were associated with BMI, plasma Cortisol, 

Creatinine and CRP levels with standardised effect sizes 0.999 (0.02), 0.89 (0.04), 0.93 

(0.07) and 0.73 (0.07) respectively. 

Under the perpendicular view, looking at risk factors across omics scores: BMI was 

associated with 9 different omics scores, with Mega-omics, Clinomics, PEA 

Proteomics and DEXA scores having standardised effect sizes >0.88.  This effect size of 

0.9 of the PEA Proteomics score on BMI is of particular interest as, unlike DEXA and 

Clinomics, protein levels are not a priori BMI related. The Mega-omics score’s effect 

size of 0.998 on BMI contained only three biomarkers however, they were height, 

weight and the level of FBP1 (Fructose-Bisphosphatase 1) protein that is involved in 

glucose metabolism. Total and HDL cholesterol were each associated with the same 7 

omics scores, with larger effect sizes evident from scores that were built from 

predominantly lipid-based omics assays. 
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Several other large effect sizes were found, the association of Creatinine levels and 

Mega-omics (Beta: 0.92, SE: 0.07) and CRP levels with both PEA Proteomics (Beta: 

0.74, SE: 0.05) and MS Complex Lipidomics (Beta: 0.76, SE: 0.06)  scores. 

 
Figure 15. Omics Scores Predict Risk Factors and Subsequent Incident Disease. Beta: the 
standardised effect size (both score and outcome in standard deviation units) of the omics scores 
(x axis) on the outcomes on the y axis. Results for health-related risk factors on the left and disease 
blocks on the right. Only results that passed 5% FDR significance threshold are shown. FRS: 
Framingham Risk Score. E10.E14: Diabetes mellitus. E: All block E metabolism related disorders. 
I10.I15: Hypertensive diseases. E65.E68: Obesity and other hyperalimentation. I20.I25: Ischaemic 
heart diseases. 
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Figure 16. Significant Omics Scores Predict Incident Disease in Training and Testing Samples. 
Showing the standardised effect size (both score and outcome in units of phenotypic standard 
deviation) of the omics scores (panels) on the outcomes on the y axis. Only results that passed 5% 
FDR significance threshold are shown. E10.E14: Diabetes mellitus. E: All block E metabolism 
related disorders. I10.I15: Hypertensive diseases. E65.E68: Obesity and other hyperalimentation. 
I20.I25: Ischaemic heart diseases. 
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Figure 17. Significant Omics Scores Predict Risk Factors in Training and Testing Samples. 

Showing the standardised effect size (both score and outcome in units of phenotypic standard 
deviation) of the omics scores (panels) on the outcomes on the y axis. Only results that passed 5% 
FDR significance threshold are shown. FRS: Framingham Risk Score. E10.E14: Diabetes mellitus. E: 
All block E metabolism related disorders. I10.I15: Hypertensive diseases. E65.E68: Obesity and 
other hyperalimentation. I20.I25: Ischaemic heart diseases.  

There is a distinct L-shape pattern of disease block results (Figure 15): Clinomics 

scores show significant associations with the most (5) different disease blocks and 

Diabetes Mellitus (E10-E14) was associated with 6 different omics scores. The 

reasonable sample size for diabetes (N Average cases across omics = 36.9), including 

both types I and II, compared to other disease blocks could contribute to the 

performance of the score. The Mega-omics score for Diabetes mellitus had the largest 

effect size 0.43 (SE: 0.12), with PEA Proteomics and Clinomics scores also with 

standardised effect sizes >0.4. 
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In general, omics scores for health-related risk factors were more effective (based on 

standardised effect s izes) than those trained on incident disease blocks. The lower 

sample size and in particular low number of incident cases for disease blocks could 

contribute to the difference in performance observed.  

To investigate patterns of biomarker specificity, I looked at the number of different 

outcomes for which each biomarker was selected for score inclusion. 52.7% were 

outcome specific, with 83.5% selected for inclusion in scores for <4 outcomes (Figure 

18). In contrast, glucose and albumin were selected for inclusion in scores for 19 

different outcomes, with glucose having a positive coefficient in scores for 16 

different outcomes and 3 negative, with albumin being included in 11 scores with a 

positive effect and 8 negative. Three biomarkers were selected for inclusion in scores 

for 18 different outcomes: height (11+ve and 7-ve), the essential amino acid histidine 

(6+ve and 12-ve) and the ratio of monounsaturated fatty acids to total fatty acids 

(MUFA/FA) (15+ve and 3-ve). 

 
Figure 18. Omics Predictors Selected for Inclusion in Scores for Multiple Outcomes. The frequency 
of predictors (y axis) selected for inclusion in scores for the number of outcomes indicated on the x 
axis. 
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4.3.4 Score Profiling 

For the omics scores that were most prognostic of incident disease, I wanted to 

investigate which of the included biomarkers were contributing most to the 

performance of the score. I limited this analysis to the L-shape of significant omics 

scores highlighted in the previous section (Figure 15). That is the 5 Clinomics scores 

and 4 scores for E10-E14 Diabetes mellitus. For each score I partitioned the variance 

explained in the score amongst the included biomarkers, creating score profiles.  

I used two different methods for variance partitioning: hierarchical partitioning and 

iterative ranking. As the hierarchical partitioning approach implemented by the 

hier.part R package is designed for models with 10 predictors or less, an additional 

method termed iterative ranking (See Methods for Details) was used,  allowing 

comparison between methods for scores including <10 biomarkers.  

I was also interested to see how the profile of my Clinomics score for FRS compared 

to that of the Framingham risk score itself (FRS Clin). As the FRS Clin is not a linear 

combination of its components (Equation 1), I constructed a score that was a linear 

combination of the predictors in my Clinomics assay that overlapped with those  in 

FRS Clin. However, as the multivariate R 2 from fitting this score on FRS Clin is less than 

1, it is this total that I then partitioned, meaning that in Figure 19 segments are the 

proportions of this multivariate R 2 that were additionally explained by the addition of 

each predictor in the score, rather than the absolute additional R 2, as is the case with 

the other Clinomics scores , as their total multivariate R2 was 1. The profile for my 

Clinomics score for FRS is almost identical to the profile of FRS Clin, with systolic 

blood pressure dominating and with total and HDL cholesterol also contributing to 

the variance explained in the scores. 

Encouragingly, profiles created using the two methods were comparable for 

Clinomics scores across outcomes (Figure 19). The scores for four outcomes were 

dominated by one predictor. The Clinomics score for Diabetes mellitus (E10-E14) was 

96.2% explained by glucose levels. Weight is contributing 95% of the Clinomics score 
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for obesity (E65-E68). Glucose levels accounted for 98.4% of the Clinomics score for 

Ischaemic heart disease (I20-I25) and SBP accounted for 79.5% of the Clinomics 

prediction of FRS. Glucose also appears to be contributing the majority of the 

variance explained in the score for metabolic disorders (E). This is likely due to E being 

predominantly cases of diabetes and therefore glucose driving the score. 

Unsurprisingly, weight is contributing 95% of the Clinomics score for obesity (E65-

E68), with height and glucose levels making small contributions. The Clinomics score 

for hypertensive diseases (I10-I15) was distributed amongst more biomarkers than 

other Clinomics scores, systolic blood pressure having the largest contribution 

(53.7%) however, weight, glucose, uric acid and LDL chol esterol also contributed. 

 
Figure 19. Clinomics Score Profiles. Indicating the proportion of variance explained in the score by 
each of the predictors in the score. Only Clinomics scores for outcomes that passed 5% FDR 
significance threshold are shown. For each outcome (panel), the estimates of variance explained 
by each component from two different methods are shown (x axis) hier.part: hierarchical 
partitioning and it_rank: iterative ranking (See Methods for details). Only results from the iterative 
ranking method are shown for the disease block E score, as it is a linear combination of >10 
predictors. FRS: Framingham Risk Score. FRS Clin: a score that is a linear combination of the 

components of the clinically used Framingham risk score (Equation 1) that overlap with the 

E E10.E14 E65.E68 I10.I15 I20.I25 FRS FRS Clin
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Clinomics set of predictors. E10.E14: Diabetes mellitus. E: All block E metabolism related disorders. 
I10.I15: Hypertensive diseases. E65.E68: Obesity and other hyperalimentation. I20.I25: Ischaemic 
heart diseases. 

Interestingly, we found a stark contrast between the profiles for the Clinomics score 

for subsequent ischaemic heart disease (I20-I25) and FRS, given that FRS is prognostic 

of incident cardiac outcomes , one may therefore expect these scores to have similar 

profiles. This could be due in part to the differences in sample size , there were N=97 

incident cases of I20-I25 with the Clinomics assay and 1669 individuals with FRS 

values. However, both the Clinomics score for I20-25 and the FRS in clinical use had 

comparable standardised effects on subsequent incident ischaemic heart disease 

(Figure 20). 

 
Figure 20. Clinomics score and FRS show comparable standardised effect on Ischaemic Heart 
Disease. Beta: standardised effect size (both score and outcome in standard deviation units) and 

95% confidence intervals of the Clinomics score for Ischaemic heart disease (I20-I25) and FRS on 
Ischaemic heart disease.  

A distinct pattern was found across the 4 sig nificant omics score profiles for Diabetes 

Mellitus (Figure 21). Namely, that 4 or fewer biomarkers were contributing greater 

than two thirds of the variance explained in the scores, independent of the number of 

included biomarkers. This suggests that scores containing only a few biomarkers 

could be prognostic of incident disease. The circulating plasma protein levels of 

Mevalonate kinase (MVK), carboxyles terase 1 (CES1) and adhesion G protein-coupled 

receptor 1 (ADGRG1) are shown to be contributing large portions of the variance 

explained in the PEA Proteomics score. Interestingly, these three protein levels are 

amongst the 5 biomarkers contributing the greatest proportion of variance explained 

in the Mega omics score alongside the levels of Matrilin 3 (MATN3) protein and a 
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metabolite level from the MS Metabolomics platform. These proteins are involved in 

sterol synthesis (MVK), drug metabolism (CES1), brain cortical patterning (ADGRG1) 

and development and homeostasis of bone and cartilage  (MATN3). 

As glucose contributed 96.2% of the Clinomics score for Diabetes mellitus (E10-E14), 

it was notable by its absence from the profile of the Mega -omics for diabetes . 

However, this was due to circulating glucose levels being absent from the final Mega -

omics dataset for diabetes, having been removed during the quality control process 

of creating a complete non-missing dataset. 
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Figure 21. Score Profiles for Diabetes Mellitus. Indicating the proportion of variance explained in the score by each of the 
predictors in the score. Only scores for Diabetes Mellitus that passed 5% FDR significance threshold are shown. For each omics 
score, the estimates of variance explained by each component from the it_rank: iterative ranking (See Methods for details) as all 
4 scores are linear combinations of >10 predictors. The three predictors with the largest contribution to the variance explained in 
the score are indicated under the assay name. 
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4.4 Discussion 

I found that 2,686 single omics biomarkers were significantly associated with 10 

health-related risk factors and 44 incident disease blocks. 23.4% of significant 

biomarkers had outcome specific associations, with 76.6% associated with multiple 

outcomes. I showed that multivariable Clinomics scores were prognostic of incident 

Diabetes mellitus, obesity, hypertensive disorders and ischaemic heart disease and 

that DEXA, MS Metabolomics, PEA Proteomics and Mega omics scores were 

prognostic of subsequent incident Diabetes mellitus. 9 omics scores were 

significantly associated with BMI, and Clinomics and UPLC IgG Glycomics scores 

were significantly associated with the most health-related risk factors. By creating 

profiles for the significant omics scores, I highlight that only a handful of biomarkers 

are contributing the majority of the variance explained in the score, suggesting that 

it would be possible in the future to construct scores with even fewer biomarkers. 

This analysis also indicated MVK, CES1, ADGRG1 and MATN3 plasma protein levels 

as potential biomarkers for diabetes mellitus. 

Pietzner et al.’s finding that 65.6% of significant metabolites associated with at least 

2 different diseases is comparable to the 67.9% (375/552) I reported. My results 

suggest that this pattern, of more biomarkers being associated with multiple 

outcomes rather than being outcome specific, holds across omics assays with 76.6% 

of significant biomarkers associated with more than one outcome. Pietzner et al. 

reported that the outcome with the most metabolite associations was all -cause 

mortality, out of all-cause mortality and 27 incident noncommunicable diseases. 

Due to the low number of deaths in the ORCADES cohort, I was unable to assess 

mortality as an outcome but found that Diabetes mellitus was the disease block 

with the most significant biomarker associations (140) , with Total cholesterol, HDL 

cholesterol and BMI being the health-related risk factors with the most associations 

(Supplementary Table 24). 
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A consistent pattern was observed across results from both single omics biomarker-

outcome associations and multivariable omics score-outcome associations: that 

superior performance, either in terms of number of significant outcome 

associations or larger standardised effect size on outcome, were observed for more 

specific outcomes, compared to more broad outcomes. For single biomarker-

outcome associations, I found that all cancers (C ) had fewest associations but 

disease blocks that contained specific cancer subtypes had >3 significant (5% FDR) 

associations. Conceptually this makes sense, as the heterogeneity of phenotypes 

and therefore biological pathways involved across all types of cancer will limit the 

number of single omics biomarker associations. Whereas specific types of cancer 

will have a more homogeneous omics profile , allowing significant associations to be 

discovered. Similarly, the Clinomics score for diabetes had a larger effect than the 

Clinomics score for all metabolic/endocrine disorders (E). This mirrors the results 

found in Supplementary Table 24, and again suggests that a score trained on an 

outcome that is capturing a broad range of heterogeneous phenotypes , such as all 

of block E disorders, despite its larger number of cases , will be less effective than 

one trained on a more specific outcome (e.g. diabetes).  

In order to limit multiple testing of omics score-outcome associations, I estimated 

that 82 risk factor- and 144 disease block-omics score associations were likely to 

pass a 5% FDR significance threshold (See Methods for Details). For risk factors, 

84.1% of those estimated passed the significance threshold in the testing sample 

however, for disease blocks, only 8.3% of the expected associations were significant 

in the testing sample. The conservative use of two-sided p-values given our issue 

with power, with disease blocks having considerably lower sample sizes (Figure 14, 

Supplementary Table 16), could have contributed to this considerable difference 

between risk factors and disease blocks . Additionally, the bimodal distribution of 

Martingale residuals compared to the risk factors, which more closely approximated 

normal distributions could have had an impact however, the comparison of effect 

sizes between training and testing samples were predominantly comparable 

(Supplementary Figure 44).  
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I observed that Clinomics, both in regard to single biomarkers and multivariable 

scores, showed the most significant outcome associations. This mirrors the results 

in Chapter 3: Biological Ageing Clocks, where Clinomics OCAA showed most 

significant health outcome associations compared to those built from other omics 

assays. Again, this is unsurprising given that the predictors that comprise the 

Clinomics assay were chosen for their common clinical use as prognostic indicators 

of adverse health outcomes. The effectiveness of these common traditional risk 

factors is why they are often the bas is of risk scores in clinical use101,230, therefore 

my results support their utility.  

Interestingly, we found that very few biomarkers contribute the majority of the 

predictive power of our significant omics risk scores. For, DEXA, MS Metabolomics, 

PEA Proteomics and Mega-omics scores for Diabetes mellitus 4 biomarkers 

contributed >66% of the variance explained in the score. For the Clinomics scores 

for obesity, diabetes mellitus, FRS, hypertensive diseases and ischaemic heart 

disease only a single predictor dominated the scores , providing >79.5% of the 

variance. This is a major finding as it suggests that effective risk scores prognostic of 

subsequent incident disease can be made using only a few predictors. Not only is 

this desirable due to being less invasive for patients , but it is also likely to be more 

cost effective, to be able to provide personalised advice to patients based on less 

than four or even one measure. 

I showed that 3 protein levels, MVK, CES1 and ADGRG1, dominated the PEA 

Proteomics score for diabetes , and with the addition of MATN3, also contributed 

63.4% of the variance explained in the Mega-omics score for diabetes. This 

domination of Mega-omics by proteins was also observed in the composition of the 

Mega-omics ageing clocks in Chapter 3: Biological Ageing Clocks, with 26.6% of 

omics predictors selected for model inclusion coming from the PEA Proteomics 

assay.  

These four protein levels are potential novel biomarkers of subsequent incident 

diabetes mellitus. While each has been previously implicated as associated with 
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related traits, through significant SNPs from GWAS being mapped to their encoding 

genes, none has been reported associated with either type 1 or 2 diabetes. 

Mevalonate kinase (MVK) is involved in cholesterol synthesis 236 and has been 

previously associated with weight237, height238, BMI239, HDL cholesterol236,240, 

various fat mass percentages 237, SBP and coronary artery disease (CAD)241. 

Carboxylesterase 1 (CES1) is involved in drug metabolism and has been reported 

associated with LDL cholesterol242 and DBP243.  Adhesion G Protein-Coupled 

Receptor G1 (ADGRG1), involved in brain cortical patterning , has been significantly 

associated with HDL cholesterol240, systemic lupus erythematosus (SLE)244 and 

prostate cancer245. Matrilin 3 (MATN3), contributing to the extracellular matrix, is 

involved in development and homeostasis of bone and cartilage  has been 

associated with height238, LDL cholesterol242, HDL cholesterol240, triglyceride 

levels240, DBP243, CAD246, MI, WHR and BMI. The fact that the levels of these 

proteins dominate the variance explained in risk scores for diabetes  mellitus 

suggests that they should be further investigated as potential novel biomarkers for 

diabetes. 

I found that 18 single UPLC IgG Glycomics measures were significantly associated 

with FRS, 6 of these glycans (GP6, GP14, GP6n, FBS1/FS1, FBStotal/FStotal and 

FBS1/(FS1+FBS1)) have been shown to be associated with ASCVD, the 10-year 

atherosclerotic cardiovascular risk score230, by Menni et al.108. All six had consistent 

effect directions between associations with FRS and ASCVD. Additionally, it is this 

UPLC IgG Glycomics data from ORCADES that provided the replication for Menni et 

al.’s associations with ASCVD, so by definition the 10 glycans that they reported 

associated with ASCVD in TwinsUK replicated in ORCADES. 

A key finding was that glucose explained 98.4% of the variance in the Clinomics 

score for subsequent incident ischaemic heart disease. This result could be 

spurious, as despite the score being significantly associated with incident ischaemic 

heart disease it only explained 2.31% of variance in the outcome (Supplementary 

Figure 45). This is considerably lower than the R2 for the other significant Clinomics 
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scores but does not appear to be due to lack of power as there were more cases of 

ischaemic heart disease (N=97 with Clinomics) than of Diabetes mellitus (N=49 with 

Clinomics). Moreover, glucose was not a large contributor to the profile of FRS, 

given that these two scores would be expected to capture similar underlying 

biology, as are prognostic of overlapping outcomes, this was surprising. However, 

the consistent effect size of the Clinomics score on incident ischaemic heart disease 

between training and testing samples (Figure 16) indicates that overfitting was not 

the issue, and that the association is likely to be valid. I also took the additional step 

of comparing the standardised effect sizes of the Clinomics score for ischaemic 

heart disease and the FRS in clinical use on subsequent incident ischaemic heart 

disease, demonstrating their comparable predictive ability (Figure 20). Overall my 

results point to glucose being a significant biomarker for ischaemic heart disease . 

This is further supported by the literature as glucose levels and glucose metabolism 

have been shown to be risk factors for cardiovascular disease even below diabetic 

levels247, and implicated in tissue remodelling in the heart in ischaemic heart 

disease patients248 respectively. Together this suggests that glucose has the 

potential to be a significant biomarker of ischaemic heart disease and future work 

should seek to investigate the integration of glucose into clinical cardiovascular risk 

scores. 

A strength of this analysis was the sheer number of biomarkers assessed across a 

wide range of different omics assays, previous studies investigating omics 

biomarkers of disease have been limited to one high-dimensional assay or 

platform108–111. However, this aspect of the study, when combined with the small 

sample size and in particular, low numbers of cases for some disease blocks,  limited 

the power to detect associations and to retain those we did find due to correction 

for multiple testing. For example, our finding that 616 single omics biomarkers 

showed no significant association with any of the 54 different health outcomes 

assessed, could be in part due to this lack of power. Being aware that this would be 

a limitation when designing the analysis, I took steps to minimise the  number of 
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formal statistical tests by only performing those powered to produce significant 

associations.  

In addition to constructing omics scores for health outcomes, I took a step further in 

creating score profiles and investigated which biomarkers incl uded were 

contributing most to the scores. As mentioned in the Methods section, I was unable 

to use square standardised effect size estimates to calculate the variance explained 

in the score by each included biomarker, due to the measures within omics assays 

not being orthogonal. To circumvent this issue, I used an established hierarchical 

partitioning approach235, unfortunately I was only able to apply this method to 

scores that contained <10 biomarkers and used an iterative ranking approach on 

scores with 10 or more biomarkers. This approach is not being presented as the 

definitive partition of variance explained amongst predictors, as by only fitting the 

predictors in one order to calculate the additional multivariate R 2 this is not 

possible. However, as an important aim was to highlight predictors which are 

driving the predictive power of the score, by producing the largest contribution to 

the variance explained. Selecting an order to fit the predictors based on an iterative 

ranking of their univariate R2, will produce an estimate of the partition of variance 

in which the largest contributors will predominate. This was sufficient given our 

interest in the few biomarkers with the largest predictive contribution however, to 

comment on the underlying biology or causation a more balanced approach such as 

hierarchical partitioning would have been more suitable. It is therefore with this 

caveat that I present profiles calculated using this method. 

For the analysis is this chapter I restricted the omics measures to those included in 

the biological ageing clocks chapter, meaning that for DNA methylation, only CpG 

sites that were included in the Hannum and Horvath epigenetic ageing clocks were 

assessed55,66. While for the analysis in Chapter 3: Biological Ageing Clocks, as 

extensive work had been done previously to find CpG sites that track biological  and 

chronological age, it was deemed unnecessary to seek to repeat this process when 

the likelihood of improving on the results was poor considering my much smaller 
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sample size. As the aim for this chapter was to use the methods and pipelines 

already in place in an exploratory analysis to investigate  whether this range of 

omics measures were biomarkers of, or could be used to create scores for, disease, 

I did not include all 850,000 CpG sites for two reasons. First, it would have required 

fundamental structural changes to the pipeline and its implementation to allow for 

850,000 predictors. Second, for the single omics biomarker-outcome associations, it 

would have massively exacerbated the issue of multiple testing and would have 

reduced the power to detect associations that were not false positives. However, 

future research dedicated to unravelling the relationshi p between DNA methylation 

and incident disease would be extremely worthwhile . Particularly given the known 

link between DNA methylation pattern and environmental factors that are 

themselves risk factors for disease such as smoking 32,249,250. 

The use of first hospital admission for a disease block defined by multiple ICD10 

codes over a 10-year follow up period as a proxy for subsequent incident disease 

was a limitation of this analysis and is discussed in detail in Chapter 6: Discussion . 

Unlike several previous studies that identified omics biomarkers of incident 

disease108–111,114, I used Martingale residuals for incident disease blocks as 

outcomes and performed linear associations , rather than fitting full Cox 

proportional hazard models. This approach has been used in GWAS for time -to-

event outcomes such as parental lifespan232,251,252. Cox proportional hazard models 

with fixed effects covariates were fitted, Martingale residuals calculated and then 

used as the quantitative trait for linear SNP associations. Additionally, the existing 

pipeline for constructing omics scores using penalised regression techniques was 

optimised for continuous variables as outcomes. I tested the suitability of this 

approach for this analysis, and showed that effect size estimates of OCAA on 

incident disease were consistent using Martingale residuals and fitting Cox 

proportional hazard models (Supplementary Figure 41 and Table 13). A 

consequence of choosing this approach, however, was applying penalised 

regression techniques that assume normality of both predictors and outcome to 
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bimodally distributed Martingale residuals. As Martingale residuals vary between 1 

and  (individuals with an event in the study period) and 0 and  (individuals 

without an event in the study period), they are therefore bimodally rather than 

normally distributed. The central limit theorem states that, with increasing sample 

size any variable will tend towards a normal distribution, but the small sample sizes 

in this analysis means that this is unlikely to apply. This issue could have contributed 

towards: the failure of elastic net regression to produce consistent estimated effect 

directions between training and testing samples , several omics assay-outcome pairs 

LASSO being unable to construct models and in general for omics scores explaining 

small proportions of variance in outcomes. But the declared results are valid due to 

the rigorous training testing split. 

A potential additional verification step to increase confidence in the score -outcome 

association results, would be to cross -check if fitting Cox proportional hazard 

models produce the same estimated effect sizes as those obtained using linear 

models and Martingale residuals. 

An alternative approach would be to repeat the analysis using regularised Cox 

regression to build multivariable omics scores 201. 

4.5 Conclusion 

I have shown with exploratory analysis that these omics assays are useful sources of 

potential biomarkers for numerous outcomes  and highlighted that <4 biomarkers, 

in some cases one biomarker, can dominate the predictive power of multivariable 

omics risk scores for incident disease. This analysis reported significant biomarker-

outcome associations, omics scores prognostic of incident diabetes, obesity, 

hypertensive disorders and ischaemic heart disease  and the importance of 

biomarkers selected for score inclusion. I also highlighted glucose as a biomarker of 

incident ischaemic heart disease and the levels of MVK, CES1, ADGRG1 and MATN3 

as novel biomarkers of subsequent incident diabetes mellitus.  
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Despite these discoveries, this analysis has been held back due to sample size. This 

was a limitation on multiple levels: i) the limited number of samples with omics 

assays ii) the low number of cases in several disease blocks (<5) iii) that these 

extremely low case numbers  were further reduced splitting the data into training 

and testing (3:1) and iv) that the number of cases were reduced again during 10-

fold cross-validation in the training sample. I suggest that future work should seek 

to replicate my findings and repeat this analysis with a larger sample size , both in 

terms of individuals with omics biomarkers and cases of incident disease. Future 

work should also investigate if there are potential advantages in using penalised Cox 

proportional hazard models given the Martingale residual distribution issue 

discussed above. Overall, this analysis has demonstrated the potential of these 

omics assays as disease biomarkers. 
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Chapter 5: Genome-wide Association Meta-

analysis of 184 Plasma Protein Levels 

5.1 Introduction 

5.1.1 Context 

So far, this thesis has focussed on investigating how a broad range of omics 

measures from multiple assays have performed as potential biomarkers of 

biological ageing, health-related risk factors and subsequent incident disease. 

However, in this chapter I take a narrower view, focussing on only one of the omics 

assays available in ORCADES, specifically proteomics,  to take a more detailed look at 

the biology underpinning protein measures and how they relate to health and 

disease. 

The decision was made to focus on proteomics as proteins that circulate in the 

plasma are potential druggable targets. Many approved drugs target circulating 

proteins37–39,128–130 and recently genetic studies, using Mendelian randomisation, 

have inferred causal relationships between protein levels and disease 116,149,153,178 and 

prioritised several proteins as potential  novel drug targets116,149.  

The techniques that leverage genetic information such as genome-wide association, 

colocalisation, genetic correlation and Mendelian randomisation that facilitate  

investigations of this type, however, rely on sample size to power 

discoveries157,160,163,184,253. If limited to only ORCADES and Croatia-Vis, where I had 

access to both individual level genetic and proteomics data, the combined sample 

size would have been ~2,000 and I would have most likely only been able to detect 

extremely strong association signals in close proximity to the gene encoding the 

protein (cis-signals) and little else. I therefore sought to increase the sample size , as 

previous genetic studies of plasma protein levels have shown that increased sample 
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size increased: the total number of protein quantitative trait loci (pQTL) discovered, 

the number of trans-pQTL detected as well as providing more power for 

downstream analyses. 

As ORCADES had already contributed to a previous genome -wide association meta-

analysis (GWAMA) lead by the SCALLOP Consortium149, this existing collaboration 

provided a framework to organise a GWAMA of the 184 plasma proteins whose 

levels were measured on the cardiovascular II and c ardiovascular III Olink panels. 

These two panels were chosen as, at time of data collection, these were the panels 

available in the most collaborating cohorts, unsurprising given the importance of 

cardiovascular disease to global health11.  

With 16 cohorts from the SCALLOP Consortium contributing GWAS summary 

statistics, in addition to ORCADES and Croatia -Vis, I had a maximum sample size of 

N=26,494. This is larger than those used in previously published GWAMAs of plasma 

protein levels 115,116,120,149,153,254,255, giving my analysis the potential to build on previous 

discoveries. 

The aims of the analysis presented in this chapter were as follows:  

 To find genetic loci associated with the variation in plasma protei n levels 

 Elucidate potential mechanisms of action of these associated loci  

 Investigate the relationships between protein levels and disease  

 Highlight any potential therapeutic targets  

5.1.2 Contributions 

The SCALLOP Consortium and Jim Wilson conceived the idea for this project, based 

on a previous similar SCALLOP Consortium project that focussed on a different set 

of proteins149. The principal investigators of the 18 participating cohorts 

(Supplementary Table 25) gathered the data and organised the collection of the 

Olink Proteomics assay for their respective cohorts.  
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QC of the genotype data and its subsequent imputation for the ORCADES and 

Croatia-Vis cohorts was carried out as described in Chapter 2: Data & Methods by 

other analysts and I was given access to the QC’d HRC imputed data. I received the 

proteomics data for both ORCDAES and Croatia -Vis from Olink having already 

undergone normalisation and in NPX units (2.5 Genome Wide Association Studies). 

I then performed the removal of outliers, trait transformation and genome -wide 

association study for the levels of the 184 plasma protein levels in these two 

cohorts.  

I used an existing pipeline to perform the GWA studies created by Peter Joshi, David 

Clark, Paul Timmers and Andrew Bretherick. 

Analysts from each of the remaining 16 cohorts contributing data carried out 

genome-wide association analyses (GWAS) of as many of the 184 proteins in our set 

as they had available. These GWAS followed the analysis plan drawn up by Jim 

Wilson, Peter Joshi and me. GWAS summary statistics were collected on the 

University of Edinburgh secure server.  

I performed the harmonisation of the summary statistics from all contributing 

cohorts, using scripts that I adapted from Lasse Folkersen and performed basic 

quality control. I also performed the 184 GWAMAs and the following downstream 

analysis: conditional analysis, definition of significant loci, heritability, colocalisation 

of discovered pQTL with publicly available eQTL datasets , genetic correlations and 

the Mendelian randomisation analysis.  

Lucija Klarić prepared the list of significant pQTL from 22 previously published 

GWAS on plasma proteins levels and prepared the list of drugs and drug targets 

from the drugbank database256 that were used to derive the results in the relevant 

sections. Further I adapted an existing pipeline written by Paul Timmers to perform 

the SMR-HEIDI analysis.  
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I compiled all of the results, created the figures and wrote the first draft of the 

manuscript. Jim Wilson and Peter Joshi contributed to the redrafting of the 

manuscript and all co-authors commented on the manuscript prior to submission to 

medRxiv. 

The following manuscript has been placed on medRxiv 

https://doi.org/10.1101/2021.08.03.21261494 and at the time of writing is being 

revised prior to submission to a peer-reviewed journal. 
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Abstract 

We performed the largest genome-wide meta-analysis (GWAMA) (Max N=26,494) 

of the levels of 184 cardiovascular-related plasma protein levels to date and 

reported 592 independent loci (pQTL) associated with the level of at least one 

protein (1308 significant associations, median 6 per protein). We estimated that 

only between 8-37% of testable pQTL overlap with established expression 

quantitative trait loci (eQTL) using multiple methods, while 132  out of 1064 lead 

variants show evidence for transcription factor binding and found that 75% of our 

pQTL are known DNA methylation QTL. We highlight the variation in  genetic 

architecture between proteins and that proteins share genetic architecture with 

cardiometabolic complex traits. Using cis-instrument Mendelian randomisation 

(MR), we infer causal relationships for 11 proteins, recapitulating the previously 

reported relationship between PCSK9 and LDL cholesterol, replicating previous 

pQTL MR findings and discovering 16 causal relationships between protein levels 

and disease. Our MR results highlight IL2-RA as a candidate for drug repurposing for 

Crohn’s Disease as well as 2 novel therapeutic targets : IL-27 (Crohn’s disease) and 

TNFRSF14 (Inflammatory bowel disease, Multiple sclerosis and Ulcerative colitis). 

We have demonstrated the discoveries possible using our pQTL and highlight the 

potential of this work as a res ource for genetic epidemiology.  

Introduction 

Proteins are the key functional elements in the body and are instrumental in most 

biological processes including, growth, repair, transport and signalling. 

Dysregulation of proteins circulating in the blood is often observed in disease and, 

moreover, is often part of the causal pathway, making them ideal candidate drug 

targets. The plasma proteome, which consists of both proteins which are actively 

secreted and passively leaked from cells, is an attractive and a ccessible system to 

study. As samples are easy to store, collection is minimally invasive for study 

participants, and hundreds to thousands of different proteins  can be measured, 
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plasma proteins have been investigated as biomarkers for numerous diseases 109. 

The recent advances in targeted proteomics technologies have allowed thousands 

of circulating plasma protein levels to be measured simultaneously, even in large 

sample sizes115,116,153,254,257–260. Uncovering relationships between protein 

biomarkers and disease has the potential to aid in prediction of risk, diagnosis and 

development of new therapies for disease261. Cardiovascular disease (CVD)-related 

proteins are of particular interest as CVD was the leading cause of morbidity and 

mortality globally in 201911, being responsible for 18.6 million deaths and 393 

million disability adjusted life years (DALYs). 

As circulating plasma protein levels are partly heritable262, genome-wide association 

studies (GWAS) have been used to discover genetic loci that are associated with 

regulation of protein levels; protein quantitative trait loci (pQTL) 115–121. Previous 

pQTL studies have uncovered potential mechanisms of action for how common 

genetic variants affect circulating protein levels 116,149. 

Using Mendelian Randomisation (MR) to assess potential causal relationships 

between biomarkers and disease phenotypes has become an increasingly utilised 

approach for drug target discovery and validation and has also successfully 

predicted outcomes of randomised controlled trials (RCTs) 263. Despite many 

associations between levels of circulating biomarkers and various diseases in the 

literature, positing causal roles for these biomarkers has only been possible through 

the application of methods such as MR. The study of the genetics of circulating 

biomarkers such as plasma protein levels therefore has the capacity to unc over 

pathways, disease aetiology, therapeutic targets and biomarkers to aid detection 

and diagnosis of disease261. Unlike GWAS of complex traits, targets highlighted 

studying the plasma proteome are themselves directly actionable.  

Previous large GWAS of plasma protein levels have discovered hundreds of 

associated loci, uncovered mechanisms for pQTL, causal relationships between 

proteins and diseases and posited how plasma protein levels may act to influence 

disease risk115,116,120,149,153,254,255. In order to maximise the potential for pQTL 
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discovery and MR to find causal associations with disease and build on previous 

work, we performed genome-wide meta-analysis with the largest sample size for 

184 cardiovascular-related plasma proteins. We uncovered insights into the genetic 

architecture of these proteins, indicating potential mechanisms for pQTL from 

altering gene expression and beyond. Using a broad exploratory analysis, we 

demonstrate the power of pQTL as genetic instruments in MR and highlight 

potential causal relationships between proteins and disease. These results suggest 

putative drug targets and repurposing opportunities. With this work we have 

created a resource of pQTL data that will aid the field of genetic epidemiology and 

provide tools for targeted experiments in the future. 

Results 

Discovery of Protein Quantitative Trait Loci 

We performed genome-wide association meta-analyses (GWAMA) of the levels of 

184 cardiovascular-related plasma protein levels measured by the Olink proximity 

extension assay in a maximum of 26,494 individuals of European ancestry from 18 

cohorts. We identified 1,073 significant protein-locus associations (cis: p<1.18 x 10-

7, trans: p<5.55 x 10-10, where cis was defined as 1 Mb flanking the protein-coding 

region). After performing conditional analysis, we report a further 235 

conditionally-independent protein-variant associations. In total we found 1,308 

significant lead variant-protein associations, 288 cis-associations and 1,020 in trans 

(Figure 22a, Supplementary Table 26). This equates to the discovery of 592 

independent loci significantly associated with the levels of at least one protein 

(Supplementary Table 27). 
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Figure 22. Significantly associated loci from GWAMA of 184 proteins. a) Points indicate the 
genomic position of 1,308 significant pQTL against the genomic position of the transcriptional 
start site (TSS) of the gene encoding the protein that the variant is associated with. Colour 
indicates if the variant is a cis- or trans-pQTL. Cis- is defined as any variant within 1 Mb of the 
coding region of the gene encoding the protein, trans- defined as any variant outside that 
region. b) Histogram of the counts of significant pQTL per protein. c) Relationship between -log 
P-value and distance of each cis-pQTL from the TSS of the gene. d) Magnitude of effect size 

(absolute beta) shows a typical L-shaped relationship with minor allele frequency (MAF) of our 
pQTL (cis in blue, trans in pink). e) The frequency of predicted effect of the sentinel variants. 

Only two proteins, growth hormone 1 (GH) and Inhibitor of nuclear factor kappa B 

kinase regulatory subunit (NEMO), had no significant pQTL. For an additional 16 

proteins we found no significant cis-signals (ACE2, CCL22, CD40-L, CD93, Ep-CAM, 

GDF-2, HAOX1, ICAM-2, IL-6, ITGB1BP2, MB, PDGF subunit B, PECAM-1, SRC, t-PA, 

VEGF-D). For five of the above eighteen proteins, ACE2, CD40-L, NEMO, ITGB1BP2 

and VEGF-D, this is expected as they are encoded on the X chromosome, which was 

not studied here. For the remaining 13 proteins, the minimum p-value and cis 

regions are shown in Supplementary Figure 46. Altogether, we report significant 

cis-pQTL for 92.7% of the plasma proteins (where cis-regions were tested). 182 out 

of the 184 proteins analysed had a pQTL, 155 proteins had both cis- and trans-pQTL, 

11 cis-only and 16 trans-only. 
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The majority of proteins had 6 or fewer significant pQTL (Median N pQ TL = 6), with 

3 proteins (CD163, CTSL1 and RAGE) having more than 20 (Figure 22b). In general 

proteins with multiple significant pQTL had 1-3 cis-associated pQTL with any 

additional associated loci being in trans (Supplementary Figure 47). Interestingly, 

216 loci contained lead variants for pQTL for more than one protein, with the HLA 

and ABO regions being associated with the most proteins (Supplementary Table 

28). We saw a distinct pattern with our significant cis-associated variants, such that 

variants nearest the transcriptional start site (TSS) of the relevant gene displayed 

the strongest associations (Figure 22c). As seen for most complex traits, the 

magnitude of effect size increased with decreasing minor allele frequency (Figure 

22d). Using single variant annotation from Ensembl variant effect predictor264 we 

found that 70% of our lead variants are either intronic or intergenic (Figure 22e). 

Six hundred and twenty-one (47.5%) of our significant lead variants (or variants in 

LD, r2>0.5, with our lead variants) have previously been reported as genome -wide 

significantly associated with the relevant protein in previous GWAS of plasma 

protein levels (Details of previous studies summarised in Supplementary Table 29). 

Thus, 687 (52.5%) of our significant protein-variant associations are novel. We also 

reported 20 novel proteins with significant pQTL. 

Genetic Architecture of Plasma Protein Levels 

Unlike traditional complex polygenic traits, many of the proteins have an extremely 

strong cis-association signal and have individual variants that explain relatively large 

proportions of variance in the phenotype. Having very few (or one) strong signals is 

rare outside of molecular phenotypes , as many weak signals with small effects are 

common in complex traits . We found that 75 of our 1,308 lead variants have 

estimated phenotypic variance explained (R 2) of >5% (51 cis and 24 trans), with the 

highest being rs12141375:A, estimated to explain 32.7% of the variance in plasma 

CHIT1 levels (Supplementary Figure 48). 
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Figure 23. pQTL vs Polygenic Contribution to SNP heritability. The SNP heritability estimated for 
each protein, stratified by contributions from significant pQTL and polygenic effects. Polygenic: 
LDSC-estimated SNP heritability excluding variants indexed by the lead variants, pQTL: sum of 
the estimated variance in protein level explained by the lead variants (See Methods for details). 
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Standard methods for estimating single nucleotide polymorphism (SNP) heritability 

from association summary statistics assume a polygenic model that is unlikely to 

hold for proteins. We therefore calculated the heritability  contributed by significant 

pQTL (pQTL component) and the remaining genome-wide SNP heritability 

(polygenic component), separately for each protein (Figure 23). The pQTL 

component was calculated as the sum of the estimated variance in protein level 

explained by the lead SNPs and the polygenic component estimated using LD -score 

regression157,160 (see methods for details). Estimates of total genetic component 

ranged from 2.9% for NEMO protein levels to 40.2% for CHIT1. Genetic architecture, 

however, varied across proteins with IL -6RA and CHIT1 protein levels having 

identified pQTL accounting for 96.5% and 93% of their SNP heritabilities, 

respectively. Conversely, the genetic components of NEMO and GH protein levels 

appear entirely polygenic, having no significant pQTL in this analysis.  

We observed that there is a relationship between the number of significant pQTL 

we found and the estimated SNP heritability, with increasing heritabi lity estimates 

with increasing number of pQTL (Supplementary Figure 49). 

Colocalisation of pQTL & eQTL 

We sought to uncover potential mechanisms by which our pQTL might act to 

influence the level of proteins circulating in plasma. Biologically, the most direct 

route, would be for the significantly associated variants to affect protein levels by 

altering gene expression. 36.5% of the lead cis-variants have been previously 

reported as cis-expression QTL (eQTL) for the gene encoding the protein of interest 

(eQTLGen180, at 5% FDR (permutation-based)). However, for each of our pQTL, the 

lead variant (strongest association based on p-value) is not necessarily the causal 

variant. The lead variant commonly tags the signal for multiple variants in high LD, 

any of which could be the true causal variant. 

To further define whether the signals were shared we used two different 

approaches. We first looked for evidence of gene expression mediating the effect of 
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our pQTL on plasma protein abundances using summary based Mendelian 

Randomisation (SMR) and tested that these estimates were not due to linkage using 

the heterogeneity in dependent instruments (HEIDI) test183. We found associations 

between 1,371 transcripts and 168 proteins (PSMR<1.68 x 10-7, PHEIDI 0.01) in at 

least one of four eQTL datasets (eQTLGen180,GTEx v7, Westra et al.181 and Cage182). 

The number of significant transcript-protein associations across different eQTL 

resources are shown in Supplementary Table 30, as well as how many of our 

proteins are associated with the expression level of the transcript encoding the 

protein, compared to other transcripts. 

Secondly, to formally test whether the association signals with gene expression and 

protein level share the same causal variant or are driven by different variants, we 

looked for evidence of colocalisation. The Bayesian framework implemented by 

coloc184 assesses several hypotheses simultaneously by estimating separate 

posterior probabilities (PP) of the eQTL and pQTL i) sharing a single causal variant or 

ii) being caused by two independent variants. We found that 18 out of 220 testable 

cis-pQTL showed strong evidence of colocalisation (PP>0.8) with the cis-eQTL in 

whole blood using the eQTLgen summary statistics, with an additional 2 being likely 

to share a causal variant (PP>0.5). Using eQTL  data for 48 different tissues from 

GTEx v7, we found that 40 out of 277 testable cis-pQTL colocalise (PP>0.8) with the 

cis-eQTL in at least one tissue, with 12 more being likely to share a causal variant 

(PP>0.5). The majority of pQTL which colocalise with eQTL do so in <6 tissues, 

however there are several that colocalise with eQTL across >20 tissues 

(Supplementary Figure 50). Interestingly, there are very few that appear to be 

tissue specific. 

Both of these approaches share the caveat that they are unable to distinguish 

causality from pleiotropy. However, given that we are assessing the effect of 

genetic variants on gene expression and protein levels, the central dogma suggests 

these relationships are likely to be causal , but a definitive statement of causality for 

individual associations cannot be made using current methods.  
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Other Potential Mechanisms 

As not all pQTL appear to act by altering gene expression, we looked for other 

potential mechanisms of action. For some proteins we found trans-pQTL that map 

to that protein’s receptor or vice versa. For example, despite having no significant 

cis-pQTL, IL-6 has an extremely strong association in the IL -6 receptor (IL6-RA) 

region. 

Given that 70% of our lead variants are intronic or intergenic, we next looked for 

existing annotation of regulatory function using RegulomeDB265 (Supplementary 

Figure 51a). Of the 1064 of our 1093 lead variants that have an entry in 

RegulomeDB, 50 (8 cis and 42 trans) were placed in category 1, meaning they are 

known eQTL with varying additional levels of support (e.g. transcription factor (TF) 

binding, TF motif, DNase footprint), for the variant being located in a functional 

region. 82 of our lead variants (25 cis, 56 trans & 1 both cis and trans, but for 

different proteins) were scored in category 2, meaning that despite not being 

known eQTL, variants have direct evidence of binding from ChIP-seq and DNase 

footprinting. These results suggest that a substantial minority of pQTL that are not 

yet reported as being significant eQTL influence TF-binding. 

To uncover potential mechanisms for our trans-pQTL, we used annotation 

databases to see if trans-genes share pathways or are known to interact with the 

protein of interest. We defined trans-genes as all genes whose coding regions 

overlapped with a 1 Mb window centred on the lead variant of the trans-pQTL. We 

found that 85 of our trans-pQTL have a trans-gene with a known interaction with 

the protein of interest using STRINGdb266. Similarly, 37 trans-pQTL have a trans-

gene that shares a common KEGG267 pathway with the gene encoding the protein of 

interest, 158 share common gene ontology (GO) terms and 816 have a trans-gene 

that is mentioned in a publication together with the protein of interest 

(Supplementary Table 31). 
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pQTL Associated with Metabolites, DNA methylation levels & Complex 

Traits 

Aside from affecting gene expression and plasma protein levels, our pQTL have also 

been previously associated with the levels of metabolites circulating in the plasma, 

with methylation of CpG dinucleotides and with complex traits.  Using 

Phenoscanner268 we established that, of our 1093 unique lead variants: 96 have 

been reported as significantly (p<5 x 10-8) associated with circulating metabolite 

levels, 816 with DNA methylation and 547 with complex traits in GWAS 

(Supplementary Figure 51b). 

The 547 lead variants reported in previous GWA studies , have been significantly 

associated with a broad range of phenotypes , from cardiovascular-related 

phenotypes to immune and inflammatory diseases (Supplementary Table 32). Lead 

variants were also associated with anthropometric and adiposity-related traits, 

which are themselves risk factors for cardiovascular health; several causes of death 

in the UK Biobank (e.g. heart failure, vascular disease); and, unsurprisingly, blood 

protein, lipid and metabolite levels, as well as various red blood cell and immune 

cell counts. 

As these results are association-based, they do not confirm the causal direction of 

the relationship between protein level and disease phenotype. Similarly, the 

observation that the lead variant at a pQTL is associated with another trait provides 

no evidence that the same variant is causal for both traits. An alternative approach 

to detect evidence of shared genetic risk variants, rather than these single -SNP 

associations, is to look systematically across the whole genome to see if alleles that 

increase plasma protein levels also increase disease risk.  

Genetic Correlations 

To investigate if our proteins share genetic architecture with complex traits or 

cardiometabolic risk factors, we used High definition likelihood161 to estimate 
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genetic correlations of our proteins with 14 important risk factors or outcomes 

(Supplementary Table 33, full results are in Supplementary Figure 52). Genetic 

correlations that remained statistically significant after Bonferroni correction for 

multiple testing (p<1.95 x 10-5) are shown in Figure 24. Interestingly, the traits with 

the most significant correlations with protein levels were BMI, WHR, creatinine and 

T2D; for BMI, WHR and T2D the majority were positive correlations, whereas all 

significant correlations between protein levels and creatinine were negative. IGFBP-

2 levels are significantly genetically correlated with the most (8) traits including: 

lower BMI, WHR, total triglyceride levels, Type II diabetes and creatinine, but with 

increased HDL levels. 

Several genetic correlations recapitulated known relationships. For example, we 

find that leptin levels (LEP) are genetically correlated with increased BMI, WHR, 

type II diabetes, coronary artery disease (CAD), risk of myocardial infarction (MI), 

and lower HDL levels. This finding recapitulates known biology as leptin is involved 

in the regulation of energy homeostasis and is linked to type II diabetes and 

cardiovascular phenotypes 269. 

We also discovered novel correlations. The levels of LTBR (lymphotoxin beta 

receptor) circulating in the plasma were genetically correlated with increased BMI 

while BOC (Brother of CDO) and VSIG2 (V-set and immunoglobulin domain 

containing 2) levels correlated with WHR. None of these three proteins has been 

previously associated with adiposity-related traits. 

In summary, our plasma protein levels share risk variants across the genome with 

health-related risk factors and disease outcomes, although an important caveat is 

that we are unable to distinguish the direction of these relationships from this 

analysis. 
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Figure 24. Genetic correlations show shared architecture between plasma protein levels and 
complex traits. Genetic correlation coefficients (rg) calculated using High definition likelihood for 
protein levels and complex traits. Only traits passing Bonferroni significance (p<1.95 x 10

-5
) are 

included (full results in Supplementary Figure 52). Error bars indicate 95% confidence intervals 
of rg estimation. BMI: Body mass index, WHR: waist-to-hip ratio, TG: triglyceride level, CAD: 
coronary artery disease, MI: myocardial infarction, T2D: type II diabetes mellitus, HDL: high 
density lipoprotein. 
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Causal inference using Mendelian Randomisation 

To identify potential causal relationships between plasma protein levels and disease 

we used Mendelian Randomisation (MR). We limited our analysis to only using cis-

associated variants as instrumental variables (IVs) to reduce the influence of 

pleiotropy on our results. We also excluded any variants in the highly pleiotropic 

HLA and ABO regions. An LD threshold of r2>0.001 was used to remove correlated 

variants. We tested the association of the 169 proteins that had IVs meeting these 

criteria with 121 outcomes available from MR -Base170 (outcomes listed in 

Supplementary Table 34). 96 protein-outcome causal effect estimates passed a 1% 

FDR (Benjamini-Hochberg method233) significance threshold. 

MR relies on assumptions that are difficult to test empirically. To increase 

confidence in our results, we therefore performed additional sensitivity analysis 

(Supplementary Table 35). To test the consistency of the causal estimates across 

IVs, we excluded any protein-outcome pairs if there was evidence of significant 

heterogeneity using Cochran’s Q test (q-value <0.05)270. To limit the chance of 

reverse causality influencing our results we performed bidirectional MR 271 and 

excluded protein-outcome pairs that had significant causal effect estimates of 

outcome on protein level (p<3.62 x 10-6). For proteins with multiple cis IVs, we 

performed the pleiotropy-robust method MR-Egger272. An MR-Egger intercept 

estimate that is significantly different from zero can be interpreted as indicative of 

horizontal pleiotropy272,273. We therefore excluded protein-outcome MR estimates 

that had MR-Egger intercept p-values <0.05, leaving 59 significant protein-outcome 

causal estimates. Finally, to distinguish causal relationships from confounding due 

to LD we performed colocalisation analysis to look for evidence of a shared causal 

variant underpinning the genetic associations with protein and outcome. We used 

coloc184 and only considered protein-outcome pairs with a posterior probability (PP) 

of >0.8 of the hypothesis of a shared causal variant. We report 20 protein-outcome 

causal effect estimates that meet all of these criteria, involving 11 proteins 

associated with 16 different outcomes (Figure 25). 
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Figure 25. Cis-Instrument Mendelian Randomisation of plasma protein levels on complex 
diseases and health-related risk factors. MR causal effect estimates and 95% confidence 
intervals of the effect of plasma protein levels on outcome. Results from the fixed effects Inverse 
variance-weighted (IVW) method that passed 1% FDR, had a heterogeneity Q-value >0.05, an 
MR-Egger intercept p-value of >0.05, as well as evidence of a shared causal variant from 
colocalisation analysis (posterior probability of a shared causal variant >0.8) are shown. 
Associations are grouped by type of outcome. Causal effect estimates from additional MR 
methods that are robust to horizontal pleiotropy and relax the assumption of IVW allowing 
correlations between genetic associations with the exposure and outcome are in Supplementary 
Figure 53, as further sensitivity analyses. BMI: body mass index, DBP: diastolic blood pressure, 
SBP: systolic blood pressure, CHD: coronary heart disease, MI: myocardial infarction, IBD: 
inflammatory bowel disease, LDL: low density lipoprotein cholesterol levels. 

The significant MR causal effect estimate of increased PCSK9 levels increasing LDL 

cholesterol levels (beta:0.74, SE:0.026) provides validation of the approach since 

the causal relationship of PCSK9 levels and LDL and total c holesterol levels is firmly 



 157 

established274; pharmacological inhibition of PSCK9 results in dramatic reductions in 

LDL cholesterol. In addition, our MR analysis confirmed previous reports indicating 

that PCSK9 increases risk of cardiovascular disease. This result is consistent with the 

findings of reduction in cardiovascular events in randomised clinical trials of PCSK9 

inhibitors37. We also replicated other results from previous MR studies examining 

the role of circulating proteins in cardiovascular diseases a nd traits. This included 

the finding that a genetic tendency to higher placenta growth factor (PlGF) protein 

levels decreases the risk of CHD149, and that a genetic tendency to higher C-X-C 

Motif Chemokine Ligand 16 (CXCL16) protein levels decreases diastolic blood 

pressure178. 

Variation in the genes encoding several of the proteins examined in our study have 

been associated with particular phenotypes. For example, SNPs mapped to Serine 

Protease 8 (PRSS8), Interleukin 2 Receptor Subunit Alpha ( IL2RA) and Tissue Factor 

Pathway Inhibitor (TFPI) have been associated with DBP237, Crohn’s disease 

(CD)207,262,275 and waist circumference237, respectively. Here, we advance these 

associations by demonstrating likely causal relations hips between the circulating 

protein and the corresponding phenotypes through MR for the first time.  

Our MR analysis provides novel insight into the pathogenesis of inflammatory 

bowel disease (IBD), which encompasses Crohn’s disease (CD) and ulcerative col itis 

(UC). IL27 is a heterodimeric cytokine that has complex biological functions 

including both pro- and anti-inflammatory effects in the intestine. IL27 can inhibit 

differentiation of Th17 cells, an important cell type in the pathogenesis of IBD. 

There are conflicting data on IL27’s role in IBD. In most276,277, although not all278, 

murine models of gut inflammation, IL27 is protective: IL27R genetic knockout 

worsens colitis while exogenous administration of IL27 ameliorates disease. In 

patients with IBD, IL27 gene expression is elevated compared to controls 279. Here 

we show that, in contrast to the observational human data, a genetic tendency to 

higher circulating IL27 is associated with lower risk of CD. This raises the possibility 

that the IL27 elevation in IBD patients results from reverse causation, perhaps as a 



 158 

response to dysregulated gut inflammation. Our data is in keeping with the 

observation that individuals with the risk allele for CD have lower IL27 gene 

expression280. Together this supports the concept that IL27 acts to protect the gut 

from aberrant inflammatory responses and raises the possibility that IL27 might be 

of therapeutic benefit in IBD. 

By evaluating whether proteins play a causal role in disease aetiology, MR provides 

a valuable tool to identify and validate potential drug targets before embarking on 

costly clinical trials. We therefore examined whether any of the 11 proteins with 

inferred causal relationships in our MR analysis (Figure 25), were already current 

targets, using the DrugBank database256. In addition to PCSK9, which, as described 

previously, is a target of existing drugs used successfully in the treatment of 

hypercholesterolaemia and cardiovascular disease 37,38,281,282, we found that 5 other 

proteins: PlGF, PRSS8, IL2-RA, MMP-9 (Matrix Metallopeptidase 9) and TFPI are also 

targets for drugs in various stages of development (Supplementary Table 36). 

Our results highlighted IL2-RA as a potential candidate for drug repurposing. IL2-RA 

is the target for three approved drugs, two of these: Denileukin diftitox and 

Basiliximab, inhibit IL2-RA and are used for cutaneous T-cell Lymphoma (CTCL)39 and 

to prevent kidney transplant rejection129, respectively. The third, Aldesleukin, is an 

agonist and increases IL2-RA activity, inducing the adaptive immune response in the 

treatment of renal cell carcinoma40,128. Basiliximab has been piloted for use in IBD 

(UC) patients with apparent success in an uncontrolled open-label study283, 

however no benefit was found in an RCT284. Our finding that genetically increased 

levels of IL2-RA protein increase risk of CD (Beta: 0.26, SE: 0.06) suggest that further 

investigation is warranted into whether the suitability of Basiliximab (given the 

previous contradictory findings) may have a role in the management of CD.  

Our inference that genetic predisposition to elevated MMP-9 decreases the risk of 

CD (Beta: -0.7, SE: 0.15) aligns with previous GWAS results: SNPs mapped to the 

MMP9 gene have been associated (p<5 x 10-8) with lower risk of CD262,275. These 

genetics results are contrary to previous observational findings that increased 
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serum MMP-9 levels were prognostic of clinical flare ups in CD patients 285. Since MR 

is less prone to confounding and reverse causation than observational studies, we 

hypothesise that raised MMP-9 levels during flares of CD are likely to arise from 

reverse causation, perhaps reflecting an injury response. In keeping with this the 

MMP-9 inhibitor, Andecaliximab, was ineffective in phase 2 trials 286, as would have 

been predicted by MR. This example highlights how integrating genetics and 

proteomics can be useful in deprioritising therapeutic targets.  

We demonstrate the novel finding that MR identifies TNFRSF14 (HVEM) as 

protective against multiple immune-mediated diseases (IBD and MS). Notably, MS is 

also associated with polymorphisms in the TNFSF14 gene region, which encodes 

LIGHT, the ligand for TNFRSF14. The MS risk allele at TNFSF14 (LIGHT) is associated 

with lower serum levels of this protein287. This, together with our data, demonstrate 

that higher levels of both the ligand and its receptor are protective against MS, 

clearly indicating a causal role for this pathway in the maintenance of immune 

tolerance and raising the possibility that it could be manipulated for therapeutic 

benefit. 

Discussion 

We have performed the largest pQTL study (Max N=26,494) on 184 plasma protein 

levels to date and report 592 independent loci significantly associated with the 

levels of at least one protein (1,308 protein-lead variant associations), with 687 lead 

variant-protein associations being novel. We found that estimates of the proportion 

of pQTL that overlap with eQTL ranges from 8.2-36.5% using multiple publicly 

available eQTL datasets and methods. Our results highlight that the majority of 

pQTL do not appear to be explained by eQTL. Given this finding, we highlight other 

potential mechanisms of action such as regulation of ligand-receptor pairs and 

transcription factor binding. The genetic architecture of plasma protein levels varies 

across proteins, from entirely polygenic (NEMO, GH) to single loci explaining almost 

all of the estimated genetic component (IL6-RA). Plasma protein levels also share 



 160 

genetic architecture with health-related risk factors and complex traits, with 52 

protein levels being genetically correlated with BMI and 21 sharing heritability with 

CAD and MI. We also performed an extensive exploratory MR analysis using cis-

pQTL as instruments, and found significant causal effect estimates for the levels of 

11 proteins on 16 different outcomes. Our MR analysis highlighted plasma proteins 

that are candidate novel therapeutic targets and a candidate for drug repurposing. 

In line with the larger size of our study, the discovery of a significant cis-pQTL for 

92.7% of the plasma protein levels (where we tested the cis-regions) surpasses 

previous GWAS of plasma protein levels (18.5% Sun et al. N~5,000, 86% Folkersen 

et al. N~15,000)116,149. Additionally, CD93, ICAM-2, IL-6, PECAM-1 and t-PA levels 

had variants with p-values passing the genome-wide significance threshold for cis-

signals (p<1 x 10-5) but were lost after correction for multiple testing, suggesting 

that our analyses were still underpowered and further cis-pQTL could be found in 

larger studies. Other than an issue of power, it is possible that our definition of cis 

( 1 Mb surrounding the coding region of the gene encoding the protein) is not 

capturing all signals however, no additional  signals were found when the  cis-region 

was widened to 2 Mb. Ep-CAM, CD93, HAOX1, ICAM-2, MB, PECAM-1 and SRC 

proteins are intracellular288, which could contribute to significant signals not being 

found in samples from plasma. Expanding on previous studies, 78% of our 

significant pQTL were trans-associated compared to 68% in Folkersen et al. and 72% 

Sun et al. This is most likely due to our increased sample size, as like the 

aforementioned studies we found that proteins tended to have at most about 3 cis-

pQTL, with any additional pQTL being trans-associated (Supplementary Figure 47), 

indicating that the increase in power allows the discovery of further trans-signals, 

which are likely to have smaller effect s izes (Welch T Test Two-sided p-value=1.48 x 

10-9). 

Akin to findings by Folkersen et al.149, we found that proteins varied in terms  of 

their genetic architecture, with some proteins almost monogenic while others have 

polygenic architecture. 



 161 

In terms of eQTL/pQTL overlap, our results based on direct lookup of lead variants 

found that 36.5% of our cis-pQTL had been previously reported as significant cis-

eQTL (5% FDR). This is comparable to the 26% overlap based on variant lookup 

reported by Folkersen et al. and the 40% (including proxies LD r2 0.8) by Sun et al. 

However, only 8.2% and 14.4% of our cis-pQTL showed strong evidence of 

colocalisation (PP>0.8) with the eQTL for the corresponding gene in eQTLgen and 

GTEx (at least one tissue), respectively. Additionally, coloc assumes that a single 

causal variant, included in the analysis, is driving the association signal in the region 

being considered. Given the strength of some of our cis-pQTL in particular, it is 

possible that the assumption of only one independent association signal could be 

violated. We limited the pQTL regions to  200 kb flanking the lead variant in our 

analysis, to minimise the chance of including multiple association signals. However, 

our findings are considerably lower than the reported 78.5% of 228 testable pQTL 

that showed evidence of colocalisation with eQTL in at least one tissue (PP>0.8) by 

Sun et al. One reason for this could be due to the difference in study design. Coloc 

assumes that the populations used to derive association statistics for the two traits 

have the same underlying pattern of LD. By meta -analysing multiple different 

populations, the LD structure in our sample will be different from those used to 

generate the eQTL datasets, whereas Sun et al. used only the INTERVAL cohort of 

English blood donors which may be a closer match to the GTEx population which 

was the source of their eQTL comparison. Recent methods that allow for multiple 

causal variants could overcome some of these issues. For example, the sum of 

single effects (SuSiE) regression framework coloc method289, however, this 

approach does require LD matrices for both populations and the use of a reference 

such as UK Biobank or 1000 Genomes will still not completely capture the LD 

structure in a multi-cohort GWAMA sample. 

More generally, there are several reasons why colocalisation approaches might fail 

to indicate eQTL/pQTL overlap other than eQTL and pQTL having two independent 

causal variants: namely, differences in: sample size, assay technology or tissues 

between the two traits. The issue of tissue of origin is of particular concern here as, 
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despite plasma having benefits as a medium, it does not accurately capture the 

levels of proteins in the tissues or cell types in which they are expressed and 

subsequently secreted, an inherent limitation when drawing conclusions about 

mechanisms. It is likely that higher eQTL/pQTL overlap would be observed if high -

powered eQTL or pQTL datasets  were available for the tissues from which the genes 

encoding these proteins are expressed. Despite GTEx having multiple different 

tissues, the small sample size means that its power is limited. This could also 

contribute to the low number of apparent tiss ue-specific overlapping eQTL/pQTL 

found using GTEx, as only those strong and robust cis-eQTL that are shared between 

tissues were able to be detected. 

Our finding that 74.7% of our pQTL have been previously reported as DNA 

methylation QTL (meQTL) mirrors previous findings that 82% of cis-pQTL120,255 are 

also cis-meQTL290. These results highlight the link between DNA methylation and 

regulation of protein expression and exploring the interaction between plasma 

proteins and the epigenome would be an interesting avenue for further study, as 

would whether pQTL act by influencing mRNA splicing.  

We restricted our MR analysis to cis IVs only, in contrast to previous 

studies153,178,291. This decision was made to fully take advantage of the direct 

biological link between cis-pQTL and protein level and to prevent highly pleiotropic 

trans-pQTL influencing our results by breaking the assumptions underlying MR. A 

systematic assessment of cis vs trans Ivs would require the use of all of the most 

recent MR methods292,293 and meaningful results would be lost due to multiple 

testing. Additionally, we performed sensitivity analysis in line with the procedure 

set out by Zheng et al.178, for using pQTL as Ivs and showed that our causal effect 

estimates were consistent across multiple MR methods with varying assumptions 

(Supplementary Figure 53), therefore increasing confidence in the robustness of 

our results291. 

Our exploratory MR analysis for plasma protein levels with a broad range of 

outcomes using the cis Ivs was able to recapitulate the well-documented causal 
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associations (PCSK9 with LDL and total cholesterol levels) and replicate findings 

reported by previous pQTL MR studies: genetically increased levels of CXCL16 and 

PlGF decreasing DBP178 and the risk of CHD respectively149. We also found evidence 

of novel causal associations between circulating protein levels (PRSS8, IL2-RA, TFPI 

and IL-27) and traits where the corresponding gene was already known to be 

associated, and novel causal protein-outcome relationships for ADM and IDUA. 

Using pQTL as Ivs also highlighted IL2-RA as a potential candidate for drug 

repurposing and TNFRSF14 (IBD and MS) and IL-27 as novel therapeutic targets. 

Together these findings demonstrate the strength of our cis-pQTL as Ivs and the 

potential for future discoveries by disease-specific analyses using this resource291. 

Our increased sample size compared with previous pQTL studies115,116,149,153, is a 

particular strength of this work as it allowed us to discover novel pQTL for use as 

instruments. Additionally, the breadth of our approach exhibits the range of 

possible downstream uses of GWAS of circulating plasma protein levels. However, 

this breadth is also a limitation, as our work has uncovered numerous findings that 

inspire further research. For example, we found a significant proportion of pQTL did 

not overlap with the corresponding eQTL. This could be due in part to pQTL acting 

to influence the protein levels via other mechanisms such as influencing translation, 

clearing of the protein, export or expression of the protein’s receptor. However, this 

could also be due to the predominant use of whole blood eQTL datasets and the 

limited power of the multi-tissue dataset (GTEx), given that our proteins are also 

secreted in several tissues other than blood. Further analyses using high-powered 

eQTL datasets from the relevant tissues would be required to untangle the 

mechanisms of action of these pQTL. Similarly, we emphasise that the potential 

therapeutic targets identified by MR are preliminary, and extensive investigations 

into other factors (e.g. druggability, safety) will also play a key role in determining 

the suitability of therapeutic intervention. As novel targets, TNFRSF14, ADM and IL -

27, are either secreted into blood or retained membrane-bound or intracellular, 

dependent on isoform, further research into the specific functions of different 

isoforms is needed to validate their candidacy. 
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Our work builds on previous pQTL studies using a larger sample size for more 

proteins allowing the discovery of 1,308 significant protein-locus associations. By 

studying the genetic architecture of plasma protein levels, we have provided insight 

into the genetic regulation of protein levels, disease aetiology and casual 

relationships between circulating protein levels and cardiovascular disease 

phenotypes. In highlighting the power of our pQTL as IV to uncover candidate novel 

therapeutic targets in a broad exploratory analysis, we showcase the potential of 

this study as a resource to drive highly targeted research questions in the future. 
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Data Availability 

Meta-analyses summary statistics will be made publicly available upon publication.  

Code Availability 

METAL software for meta-analysis is available from 

http://csg.sph.umich.edu/abecasis/metal/download/. SMR-HEIDI is available from 

https://cnsgenomics.com/software/smr/#Download. The Coloc R package is 

available from https://github.com/chr1swallace/coloc. 

Methods 

Proteomics Assay 

Participating cohorts performed protein measurement using an antibody -based 

proximity extension assay (Olink Bioscience, Uppsala, Sweden) 224 from EDTA plasma 

in 2 x 92-protein panels: ‘cvd2’ and ‘cvd3’. These targeted assays contained 

promising cardiovascular related proteins that also had two specific antibodies 

available for different epitopes. Analysis of all cohorts were conducted at one of 

two core laboratories with Olink Bioscience of SciLifeLab in Uppsala, Sweden. 

Genome-wide Association 

Summary statistics were obtained from 18 cohorts of European ancestry. Details of 

which cohorts contributed data for each protein are in Supplementary Table 37. 

http://csg.sph.umich.edu/abecasis/metal/download/
https://cnsgenomics.com/software/smr/#Download
https://github.com/chr1swallace/coloc
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The maximum sample size across all proteins was 26,494 however, average per-

protein maximum and mean sample sizes were 23,981 and 18,141 respectively. It is 

worth noting that the CCL22 GWAS had a considerably smaller sample size (Max 

N=7460) than the other proteins as it was removed from the CVDIII panel by Olink 

during the data collection phase of this study, meaning only a subset of contributing 

cohorts returned CCL22 summary statistics. 

The majority of cohorts provided data imputed with 1000 Genomes Project phase 3 

or higher or to the Haplotype Reference Consortium (HRC) reference 

(Supplementary Table 25). Cohorts applied quality control filters for call rates, 

gender mismatch, cryptic relatedness and ancestry outliers. Cohorts performed 

genome-wide association studies on the inverse rank normalised NPX values. Below 

lower-limit-of-detection values (<LOD) were included in the analysis. Cohorts ran 

linear models adjusting for study-specific covariates such as batch or genotyping 

array as well as: age, sex, first 10 principal components of the genotypes to account 

for population structure, plate number, plate row, plate column, sample time in 

storage (days) and season of venepuncture. Studies containing related individuals 

corrected for kinship. 

Meta-analysis 

METAL253 software was used to perform inverse-variance-weighted meta-analysis 

(STDERR scheme) with the additional filters that only variants with an imputation 

quality score >0.4 and that were assessed in three or more cohorts were included. 

Heterogeneity of variant effect estimates between cohorts were also calculated 

using METAL. 

Locus definition 

In order to prevent heterogeneity influencing our results, only variants that had an 

I2<30% or have both: i) effect direction consistent with the meta in at least 3 

individual cohorts and ii) be nominally significant (p<0.05) in at least 3 individual 
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cohorts, were eligible to be considered genome-wide significant. Separate 

significance thresholds pre-correction for multiple testing were used for cis- (1 x 10-

5) and trans-variants (5 x 10-8). A more liberal threshold was used for cis-signals as 

by only testing variants in the cis-region rather than genome-wide, fewer tests were 

performed. As the protein levels are correlated, rather than correcting the 

significance threshold for 184 traits, we calculated the number of PCs required to 

explain 95% of the variance in the 184 protein levels and took this value as the 

number of independent traits tested, as done previously by Kettunen et al.122. We 

found that 85 PCs explained 95% of the variance in the levels of 184 protein in 

ORCADES (using the “prcomp” function in R), we repeated the analysis in CROATIA -

Vis and again found that 85 PCs explained 95% of the varianc e. Our thresholds for 

significance were therefore 1.18 x1 0-7 (Bonferroni 1 x 10-5/85) for cis- and 5.9 x 10-

10 for trans-associated variants. 

In order to identify non-overlapping loci associated with a given protein, 1 Mb 

windows were created around every significant variant for that protein. Starting 

with the region with the lowest p-value, any overlapping windows were then 

merged, this was repeated until no more 1 Mb windows remained. To refine a list of 

non-overlapping loci that are associated with at least one of our 184 proteins we 

repeated this process of merging overlapping 1 Mb windows on the list of 

significant protein-locus associations. 

Conditional Analysis 

Conditional analysis was performed per protein using the --cojo-slct method from 

GCTA-cojo150. A minor allele frequency (MAF) filter of 1% and a p-value threshold of 

1 x 10-5 were used. A random 10,000 unrelated genetically genomically British 

individuals from the UK Biobank were used as linkage disequilibrium (LD) reference.  

Due to the particularly strong cis- signals we further filtered conditional varia nts, 

retaining per protein those with r2<0.001. The criteria to limit heterogeneity for our 

primary variants were also applied to conditionally associated variants, retaining 
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those with I2<30 or if I2>30 then at least 3 cohort level results that have consi stent 

effect direction with the meta-analysis and nominally significant at the cohort level 

(p<0.05). As with primary associated variants , the threshold for significance 

corrected for multiple testing was 5 x 10-8/85 for trans variants and 1 x 10-5/85 for 

cis variants. Finally, akin to the primary variants, for each protein 1 Mb windows 

were created around each significant conditionally independent variant, with 

overlapping windows being merged, starting with the lowest p-value, until none are 

remaining. 

Novelty of pQTL 

To establish novelty of pQTL, we tested whether our 1,308 lead variants (or variants 

in LD, r2>0.5, with our lead variants) had been previously associated with the 

relevant protein in 22 published GWAS or plasma protein levels (Supplementary 

Table 29). 

Heritability 

Estimates of total SNP heritability for each circulating plasma protein level were 

calculated as the sum of the contributions from two independent partitions of the 

SNPs: pQTL and the polygenic component. The pQTL component was calculated as 

the sum of the estimated variance explained (VE) in protein level by the lead 

variants of the primary pQTL. VE for each lead variant was estima ted as 

where  is the meta-analysis effect size,  is the effect allele frequency and 

. The polygenic component was estimated using linkage disequilibrium-

score regression (LDSC)157 using variants present in the European 1000 Genomes 

Phase 3 Reference sample294. To ensure that variance explained by SNPs in LD with 

lead variants was not counted twice, variants within 10 Mb of lead variants were 

excluded from calculations of the polygenic component.  
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Annotation of Significant Loci 

Previously reported associations of all 1,093 of our sig nificant variants and their 

proxies with an r2>0.8 based on a 1000 Genomes Phase 3 European reference with 

GWAS traits, eQTL, proteins, metabolites and methylation QTLs were extracted 

from Phenoscanner v2268,295, with a p-value threshold of 5 x 10-8. Lead variants were 

also queried for evidence of being in a regulatory region using RegulomeDB 265. 

For each of the trans-associated variants we defined a set of trans genes. These 

trans genes were any genes whose coding regions overlapped with a  500 kb 

window surrounding our significant variant using the Homo.sapiens 296 annotation 

package in R. For each of the trans genes we looked to see if the protein they 

encode have any known interactions with the protein we found it associated with 

using the STRINGdb266 R package (database version 10). Similarly, for each trans 

gene we looked to see if they had any known pathways, gene ontology (GO) terms 

or publications in common with the gene encoding the protein we found them 

associated with. This was done using the KEGGREST267 and org.Hs.eg.db297 R 

packages. 

Colocalisation of pQTL and eQTL 

We looked up whether any of our significant variants had been previously reported 

as a significant eQTL (5% FDR (permutation-based)) in whole blood expression data 

from eQTLgen180 and from 48 different tissues using the Genotype-Tissue 

Expression project (GTEx) v7. 

SMR-HEIDI183 was used to test whether a single causal variant is influencing gene 

expression and protein level due to either causality or ple iotropy, however it cannot 

distinguish between the two. We tested if 500 kb regions flanking all 1,308 of our 

significant lead variants were associated with gene expression using four publicly 

available eQTL datasets: 48 GTEx tissues, both cis and trans eQTLs from eQTLgen180, 

Westra et al.181 and Cage182. Correction for multiple testing was carried out per 
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eQTL dataset, with results with PSMR passing Bonferroni correction for number of 

proteins vs probes and PHEIDI 0.01 considered significant. 

In order to distinguish between causality and pleiotropy, we performed 

colocalisation using the “coloc.abf” function from the “coloc”184 R package, with 

default priors. This approach simultaneously calculates posterior probabilities (PP) 

of eQTL and pQTL i) sharing a single causal variant and ii) being driven by two 

independent variants. For each of our cis-pQTL, the region within 200 kb of the 

lead variant was tested for colocalisation with the gene encoding the protein in 

both the eQTLgen and 48 tissues from GTEx v7. We considered a PP>0.8 for the 

hypothesis that eQTL and pQTL share a causal variant as strong evidence of 

colocalisation and a PP>0.5 as likely to colocalise116. 

Genetic Correlations 

The High definition likelihood161 R package was used to estimate genetic 

correlations between the levels of our 184 proteins and the following 

cardiovascular-related traits using publicly available summary statistics (Download 

URLs in Supplementary Table 33): body mass index (BMI), coronary artery disease 

(CAD), chronic obstructive pulmonary disease (COPD), creatinine levels, Crohn’s 

Disease, high density lipoprotein cholesterol (HDL), low density lipoprotein 

cholesterol (LDL), myocardial infarction (MI), Rheumatoid arthritis (RA), type II 

diabetes (T2D), total cholesterol, triglyceride levels and waist-hip ratio (WHR). To 

aid visualisation, proteins and complex traits were ordered using Euclidean 

distance-based hierarchical clustering  with the hclust function in R. 

Mendelian Randomisation 

Instrument selection: For each protein, instruments were selected from genome -

wide significant variants that passed the additional criteria of i) having a meta-

analysis heterogeneity I2<30 or if I2>30, then ii) must have effect direction 

consistent with the meta-analysis in at least 3 cohorts and iii) be nominally 
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significant (p<0.05) in at least three cohorts. These varia nts were then clumped for 

LD using an r2 filter of 0.001 with the “TwoSampleMR”170 R package. For each 

protein, MR was run using cis variants, with any variants within the HLA 

(chr6:29645000-6:33365000, build 37) and ABO (chr9:136131052-9:136150605, 

build 37) regions excluded from selection as instruments.  

Primary MR Analysis: “TwoSampleMR” was used to perform Mendelian 

randomisation (MR) analysis. Protein level exposures were tested against 121 

outcomes available in the MR-Base database170 (the full list of outcomes tested is in 

Supplementary Table 34) using the fixed effects inverse variance-weighted (IVW) 

method. Outcomes were selected due to their relation to cardiovascular disease 

risk or immune-related disorders, given the proportion of immune system-related 

proteins in our set. For each outcome, summary statistics with the largest sample 

size and closest ancestry match with our GWAMA population were chosen.  

Sensitivity analyses: To minimise the risk of heterogeneity between IVs influencing 

our results, only those without evidence of significant heterogeneity, using 

Cochran’s Q test (q-value>0.05)270, were considered. Additionally, to limit the effect 

of horizontal pleiotropy, we excluded protein-outcome MR estimates that had MR-

Egger intercept significantly deviating from zero (P<0.05) 272,273. We also performed 

MR analysis using MR-Egger, weighted median and weighted mode methods , which 

are more robust to horizontal pleiotropy173,292 (Supplementary Figure 53). We also 

used the maximum likelihood (ML) method177 which relaxes the assumption used 

by the IVW method, allowing both: uncertainty in the effect size of the IVs with the 

exposure and correlations between the genetic associations with the exposure and 

outcome. Consistency in causal estimates across MR methods with varying 

assumptions increases the chance of robust results.  

Colocalisation: To distinguish causal relationships from confounding due to LD, we 

tested for evidence of a shared causal variant between each protein-exposure 

outcome pair using colocalisation. Variants within 200 kb of each IV were tested 

for colocalisation with the overlapping variants in the outcome GWAS (extracted 
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from MR-Base using the “associations” function from the ieugwasr R package). Only 

those with a posterior probability estimate of >0.8 for hypothesis 4 were considered 

further. Sample sizes for the 26 outcomes in the 59 protein-outcome associations 

passing 1% FDR heterogeneity and pleiotropy filters ranged from N=462,116 to 

N=173,082, for quantitative traits (N=119,731 to N=7,735 cases, for binary traits). 

Bi-directional analyses: We tested for evidence of causal associations of the 121 

outcomes on proteins using the IVW method. Protein-outcome pairs that had a 

causal effect estimate with p<3.62 x 10-6 (Bonferroni 0.05/13,810) were not 

considered further due to the potential for the estimate for the effect of protein on 

outcome to be influenced by reverse causality. 

Drug Targets 

The DrugBank Release Version 5.1.7256 was used to see if the 11 proteins that had 

evidence of significant causal associations (PMR passed 1% FDR & additional criteria 

described above) in our MR analysis are current drug targets.  

5.3 Conclusion 

The large sample size (Max N=26,494) of our genome-wide association meta-

analysis (GWAMA) of the levels of 184 circulating plasma proteins, surpassing 

previous pQTL studies 115,116,120,149,153,254,255, facilitated the discovery of 1,308 protein-

lead variant associations, with 687 being novel. We showed that between 8-37% of 

cis-pQTL overlap with published eQTL and therefore may act to influence the level 

of proteins circulating in the plasma by affecting the transcript of the encoding 

gene. We showed that 66 protein levels share g enetic architecture with health-

related risk factors such as BMI, WHR, Creatinine levels and HDL cholesterol levels 

and cardiometabolic diseases such as type 2 Diabetes mellitus, coronary artery 

disease (CAD) and history of myocardial infarction (MI). Fina lly, we inferred 20 

causal protein-outcome relationships: replicating RCTs 178,274, replicating previous MR 

findings from pQTL studies 149,178 and novel causal relationships. These results 
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allowed us to highlight IL2-RA as a potential candidate for drug repurposing to 

combat Crohn’s Disease (CD) and IL -27 and TNFRSF14 as novel therapeutic targets. 

The analysis presented in this chapter highlighted avenues for further research, for 

example, our finding that, of our lead variants, 8.8% had been previously reported 

as associated with circulating metabolite and 74.6% with DNA methylation levels. 

This emphasises the need for future research focussed on untangling the nature of 

the relationship between protein levels and the regulation of these other omics 

layers, particularly DNA methylation.  

An issue emphasised by this study is the growing need for large e QTL and indeed 

pQTL datasets derived from tissues other than blood. We were limited in our ability 

to detect colocalisation of pQTL with eQTL due to the fact than many of the 

proteins of interest are expressed and secreted from other tissues, not blood whe re 

both our protein measures and the well powered publicly available eQTL dataset 

from eQTLGen180, were derived from. Despite GTEx having data for multiple tissues, 

it is limited by its small sample size. Together this means that there may be pQTL 

that act by affecting the transcript level of the encoding gene, but only in the 

relevant tissue, meaning we were unable to detect them in our blood focussed 

analysis. The availability of high-powered eQTL and pQTL datasets (as this limitation 

applies to the protein levels  measured as well) from multiple tissues would 

substantially increase the field’s ability to form a more comprehensive 

understanding of where proteins are expressed, how their levels are altered by 

disease and the tissues or pathways that could be targeted by interventions.  

This work added to the field with our GWAMA discovering of 687 novel protein-lead 

variant associations and despite the broad exploratory Mendelian randomisation 

analysis, that primarily aimed to demonstrate the power of our pQTL as 

instrumental variables, we were able to infer causal relationships for 20 protein 

level-health outcome pairs. Further we reported a candidate for drug repurposing 

(mentioned above) due to the inferred causal relationships and highlighted 2 
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potential novel therapeutic targets for Crohn’s disease, Inflammatory bowel 

disease, Multiple sclerosis and Ulcerative colitis .  

Obviously, further rigorous assessment is required to determine if these proteins 

would make suitable candidates for therapy, however our ability to suggest them in 

the first place demonstrates the power of our pQTL as IVs. The resource of GWAMA 

summary statistics produced in this chapter have the potential to aid future 

researchers to answer highly targeted research questions.  
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Chapter 6: Discussion 

In this thesis, I sought to take advantage of the extremely broad range of omics  

assays available in ORCADES to improve our understanding of the underlying 

biology of ageing and disease. Specifically, I aimed to investigate the relationships 

between these omics measures and ageing, health-related risk factors and future 

health outcomes. 

6.1 Summary of Findings 

6.1.1 Biological Ageing Clocks 

I took advantage of the ORCADES cohort, unique in terms of its broad annotation, 

comprising 9 different omics assays: DNA methylation, PEA Proteomics, UPLC IgG 

Glycomics, NMR Metabolomics, MS Metabolomics, MS Complex Lipidomics, MS 

Fatty Acid Lipidomics , DEXA scans and a collection of common clinical measures 

which I termed Clinomics. Using this resource, I was able to perform the most 

comprehensive comparison of nine different omics assays as potential sources of 

biomarkers of biological age (BA). Previous comparisons of multiple omics ageing 

clocks had focussed on epigenetic clocks or those built from traditional risk factors 

and frailty93–95,98,99. While there are numerous publications detailing multiple 

epigenetic clocks, whose effects have replicated across studies, few have 

investigated how multiple other omics assays compare. I showed that is possible to 

construct an accurate chronological age (chronAge) predictor with 8 of the 9 omics 

assays tested (correlation of OCA with chronAge ranged 0.66-0.97). Moreover, 

despite the small sample size, the DNA methylation, PEA Proteomics, Clinomics and 

UPLC IgG Glycomics clocks trained in the isolated population ORCADES, replicated in 

independent populations, indicating their validity.  

I replicated inter-clock omics clock age acceleration (OCAA) correlation patterns 

reported by previous studies 93–95,97. I also investigated further and for the first time 
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showed that, as well as overlapping 94% in the variance they explain in chronAge, 

OCAAs built using different omics assays overlap more than would be expected if 

they were independently sampling from a complete set of latent predictors. 

In order to determine if OCAAs were capturing something biological, I tested 

whether they were tracking health-related risk factors, that are themselves 

biomarkers for disease. In addition to finding that OCAAs were significantly 

associated with the health-related risk factors: total cholesterol, Framingham Risk 

Score, C-reactive protein and systolic blood pressure, I found that OCAAs were also 

prognostic of incident disease, using hospital admission as a proxy. Clinomics OCAA 

was prognostic of diabetes mellitus, group E metabolic disorders, hypertensive 

diseases and chronic lower respiratory diseases, while DNAme Horvath CpGs and 

NMR Metabolomics OCAAs were prognostic of acute lower respiratory infections 

and other respiratory diseases principally affecting the interstitium respectively. As 

well as these 6 statistically significant (FDR<10%) OCAA-disease block associations, 

there was also strong evidence of enrichment of association of OCAA with incident 

disease collectively across all tests (20% were nominally significant p<0.05), 

suggesting that I was underpowered and that with a larger sample size, may have 

found more significant signals. 

A key finding was our estimate that one year of OCAA has an effect of 0.46/0.45 

years of chronAge on risk factors/disease incidence. No previous studies have 

quantified the proportion of their OCAA that may be capturing noise compared to 

potentially true underlying BA. In fact, our finding highlights how serious an issue 

noise is in omics ageing clocks trained on chronAge and suggests different 

approaches may produce more effective biomarkers of BA. 

My findings that the PEA Proteomics OCAA appears to track specific risk factors 

while UPLC IgG Glycomics and DNA methylation OCAAs appear to capture 

generalised ageing, indicate that there may be multiple distinct (sometimes organ-

specific) BAs as well as one underlying measure that encapsulates overall body 

ageing. The observation that 8 out of 11 omics ageing clocks had hazard ratios <1 
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for risk of Melanoma and other malignant neoplasms of the skin, in contrast with 

the overwhelming trend of OCAAs being associated with increased risk of incident 

disease, further supports the hypothesis that there may be multiple potentially 

organ-specific BAs. 

I showed that it is possible to reduce the dimensionality of the omics predictors 

presented to the clock construction algorithm and produce OCAAs that achieve the 

same performance as those presented with the full set of available predictors per 

assay. First, I showed that simply reducing the number of biomarkers available for 

model inclusion to a core set, produced comparable correlations between omics 

clock ages (OCAs) and chronAge to those achieved with my standard clocks. While, 

as mentioned previously, this has been s hown to be possible for PEA Proteomics by 

Enroth et al.54, this has not been shown to be the case systematically across 9 

different omics assays. Second, I showed for the first time that OCAA derived  from 

clocks built using a few principal components of omics assays were as prognostic as 

those presented with all available features. These are key findings if the purpose of 

building omics ageing clocks are for them to be clinically useful.  

Given the generally modest effect sizes of OCAA on incident disease found in both 

my analysis and in the literature93–95, I conclude that the shift of focus of ageing 

clocks from chronAge predictors to those trained on mortality and or morbidity is  

the best approach to derive OCAAs that capture underlying BA and are likely to be 

more prognostic of health outcomes. 

6.1.2 Omics Biomarkers of Incident Disease 

In addition to assessing OCAA measures as potential biomarkers for health-related 

risk factors and incident disease, we wanted to take advantage of the extensive 

assays available in ORCADES and investigate whether these omics measures are 

themselves biomarkers of diseases and risk factors directly. 
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Even with our limited power due to the small sample size, we found 8,526 

significant (5% FDR) biomarker-outcome associations between 2,686 single omics 

biomarkers and 54 outcomes  (incident disease or risk factor). We also found 

evidence of enrichment of associations (12.8% of tests had a p-value less than 5%). 

The majority of significant biomarkers were associated with more than one 

outcome, with only 23.4% being outcome specific (Supplementary Figure 43). This 

mirrors the finding in Pietzner et al.’s , study of MS Metabolomics biomarkers of 

disease, that 65.6% of significant metabolites were associated with multiple 

outcomes. 

Starting with risk factors, by combining biomarkers into multivariable omics scores 

we found 69 omics scores significantly (5% FDR) associated with 10 health-related 

risk factors (Figure 15 & Figure 17). Clinomics and UPLC IgG Glycomics scores were 

associated with the most risk factors, although the UPLC IgG Glycomics with low 

effect sizes. This perhaps is unsurprising for Clinomics, as in the biological ageing 

clocks analyses, it outperformed other omics assays however, as discussed this 

could be due to its constituent predictors being highly correlated with the risk 

factors being considered.  

Turning now to disease blocks, we found fewer omics scores prognostic of 

subsequent incident disease blocks, with 12 significant (5% FDR) omics score -

disease associations  (Figure 15 & Figure 16). Again, Clinomics scores were 

prognostic of the most incident disease blocks: Metabolic disorders, Diabetes 

Mellitus, Obesity, hypertensive disorders and ischaemic heart disease. Conversely, 

we found 5 different omics scores associated with incident diabetes mellitus.  

A key finding upon investigating the relative importance of the biomarkers included 

in the omics scores, was that only a handful of biomarkers were actually driving 

each score. Four Clinomics scores were dominated by one biomarker, with between 

98.3-79.5% of variance in Diabetes Mellitus (glucose), obesity (weight), ischaemic 

heart disease (glucose) and FRS (systolic blood pressure) scores being explained. 

Similarly, 4 or fewer biomarkers contributed greater than two thirds of the variance 
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explained in four significant omics scores (DEXA, MS Metabolomics, PEA Proteomics 

and Mega-omics) for Diabetes mellitus. This pattern, suggesting a few biomarkers 

are necessary for an effective s core, mirrors the results in Chapter 3: Biological 

Ageing Clocks, where we showed that substantial sub-setting of biomarkers created 

OCAs with comparable correlations with chronAge to models presented with all 

available biomarkers (Figure 7). This is of course ideal for scores if the aim is for 

them to potentially be clinically useful. 

Similar to our findings in Chapter 3: Biological Ageing Clocks, where the Mega 

omics clock is predominantly (26.6%) composed of PEA Proteomics biomarkers, we 

found that proteins dominated the Mega omics score for Diabetes mellitus (Figure 

21). With the 3 proteins that together contribute 78.7% of the PEA Proteomics 

score for Diabetes mellitus contributing 63.4% of the variance explained in the 

Mega omics score. The levels of these three proteins: MVK, CES1, and ADGRG1 

along with the levels of MATN3 are four out of the top 5 largest contributors of 

variance explained in the Mega omics diabetes mellitus score. Our analysis 

therefore highlights these proteins as potential biomarkers of diabetes mellitus. 

Overall, despite our limited power, we demonstrated that both individually and 

combined in multivariable models, omics measures are effective biomarkers of 

health-related risk factors and subsequent incident disease. Further, we observed 

that Clinomics scores appear to be more effective than those derived from high 

throughput high dimensional platforms , at least for scores trained in the modest 

sample size we had available. 

6.1.3 GWAMA of Plasma Protein Levels 

By combining the proteomics data available in ORCADES with that of 17 other 

cohorts, I performed the largest genome-wide association meta-analysis of the 

levels of 184 plasma proteins to date. With the maximum sample size of N=26,494, 

we reported 1,308 significant protein-variant associations, 687 of them novel, 
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reporting the highest proportion of proteins tested (92.7%) with a significant cis-

pQTL, compared to previous pQTL studies 116,149.  

Mirroring results from Folkersen et al.149, we showed that genetic architecture 

varies across proteins, with some such as NEMO and GH, being extremely polygenic 

and others such as IL6-RA and CHIT1 being almost monogenic (Figure 23). For those 

proteins whose genetic architecture is characterised by a small number of loci, it is 

often due to extremely strong cis-signals, for example, CHIT1 where the lead variant 

rs12141375:A is estimated to explain 32.7% of the variation in the protein level. 

This is in stark contrast to most polygenic traits where individual variants explain 

low proportions of trait variation.  

In the search for potential mechanisms of action for our pQTL on circulating plasma 

protein levels, we showed that: between 8.2-36.5% (method dependent) of pQTL 

overlap with eQTL, suggesting these variants influence the transcript level of the 

encoding gene thus affecting circulating protein level. The fact that this proportion 

of pQTL-eQTL overlap is lower than reported in previous pQTL studies is discussed 

in detail in Chapter 5: Genome-wide Association Meta-analysis of 184 Plasma 

Protein Levels. 

However, we also found evidence that our pQTL are involved in other types of 

regulation: 132 out of our 1064 lead variants show evidence of transcription factor 

binding (Supplementary Figure 51) and 74.7% of our pQTL have been previously 

reported as significantly (p<5 x 10-8) associated with DNA methylation levels 

mirroring findings by Huan et al.290. These results highlight the variety of 

mechanisms by which genetic variants may act to influence the levels of protein 

circulating in the plasma and emphasise the interconnected nature of different 

omics layers with respect to function. 

We also demonstrated links between plasma protein levels and disease: 547 of our 

lead variants have been reported as significantly (p<5 x 10-8) associated in complex 

trait GWAS (Supplementary Figure 51b) and we found that 66 proteins share 
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genetic architecture with cardiovascular outcomes and risk factors such as BMI, 

Type 2 diabetes mellitus, total triglyceride levels, coronary artery disease (CAD) and 

myocardial infarction (MI) (Figure 24). These findings highlight the interplay 

between plasma protein levels and complex traits and prioritises protein-disease 

relationships for future highly targeted research. 

Similar to previous pQTL studies , we used Mendelian randomisation (MR) to 

investigate potential causal relationships between the levels of proteins circulating 

in the plasma and diseases 116,149,153,178. Using our cis-pQTL as instruments we first, 

recapitulated the well documented association between increased levels of PCSK9 

and increased levels of total and LDL cholesterol178,274, replicating findings from 

randomised control trials (RCTs). Second, we replicated MR findings from previous 

pQTL studies, namely the negative MR effects of PlGF on coronary heart disease 

risk149 and CXCL16 on diastolic blood pressure178. Third, for genes encoding 4 of our 

proteins (IL2RA, PRSS8, TFPI and IL27) that have been previously associated with 

specific disease outcomes in GWA studies, we inferred causal relationships between 

the levels of proteins circulating in the plasma with these phenotypes for the first 

time. Finally, we inferred 10 novel causal protein-disease associations (Figure 25), 

demonstrating the discoveries possible with our well powered pQTL instruments.  

Our MR analysis inferred causal relationships for 11 of our proteins, 6 of which are 

already current drug targets (Supplementary Table 36). We highlight a drug that 

targets one of our proteins as a potential candidate for repurposing in light of our 

inferred causal effect of genetically increased levels of IL2-RA on Crohn’s disease 

(CD). Finally, we highlight two proteins as potential novel therapeutic targets: IL-27 

for CD and TNFRSF14 for multiple sclerosis, ulcerative colitis and inflammatory 

bowel disease. Together these findings exemplar the discoveries possible and the 

potential of this study as a resource to drive highly targeted future research.  
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6.2 Strengths 

The two strengths of the research presented in this thesis are the range of omics 

assays available in the ORCADES cohort and the combined sample size possible due 

to collaboration with the SCALLOP Consortium. 

First, given the range of data available for the ORCADES cohort, both in terms of the 

range of omics assays and the 10-year follow in the form of electronic health 

records (EHR). I was able to take advantage of the breadth of omics assays in both 

the search for biomarkers of biological age, subsequent incident disease and health-

related risk factors. It provided the unique opportunity to test 3,30 2 different 

biomarkers in the same set of individuals and allowed me to investigate biomarkers 

capturing more areas of biology than previous studies.   

Second, the total sample size for the GWAMA of plasma protein levels and the 17 

SCALLOP Consortium cohorts  contributing summary statistics, was a major strength. 

Without this collaboration I would not have had sufficient power to discover novel: 

pQTL, causal relationships with disease and therapeutic targets. I reported a 

significant cis-pQTL in a higher percentage of proteins tested than previous plasma 

protein GWAMAs116,149, most likely possible due to larger sample size. Similarly, the 

increase in proportion of trans-pQTL discovered compared with previous 

studies116,149 can be explained by my increased power to detect trans-signals, as 

was the case with studies by Folkersen et al. when progressing from a single cohort 

to a GWAMA of the same set of 90 proteins 115,149 

6.3 Limitations & Future Work 

6.3.1 Sample Size 

Despite being a strength in the plasma protein level GWAMA, sample size in general 

was a limitation in the research presented in this thesis. The fact that only 



 184 

approximately 1,000 individuals in ORCADES were a nnotated with all 9 omics assays 

and that this number was further reduced by creating a complete non-missing 

sample, limited power in the biological ageing and biomarkers of incident disease 

analyses.  

This small sample size increased the risk of multivariable models being overfit 

however, the majority of omics ageing clocks showed consistent OCA-chronAge 

correlations between training and testing samples. PEA Proteomics, DNA 

methylation, UPLC IgG Glycomics and Clinomics clocks also replicated in 

independent populations. Together these results suggest that overfitting was 

successfully avoided in the omics ageing clocks analyses. There was some evidence 

of potential overfitting in the biomarkers of incident disease analysis however, 

LASSO regression was chosen over elastic net for construction of multivariable 

disease scores due to more consistent effect estimates of score on outcome 

between training and testing samples, to limit this issue influencing the results. 

In an attempt to limit the power lost while removing missing values, I used an 

approach that maximised both the number of samples and omics predictors 

available for selection for model inclusion. 

The low numbers of cases for incident disease blocks, as mentioned previously, 

limited power to build omics disease scores as well as the ability to assess how 

prognostic OCAAs were of incident health outcomes. Additionally, due to the low 

number of deaths recorded amongst the individuals in ORCADES with omics 

measures (as yet), I was unable to investigate these omics as potential biomarkers 

of mortality or assess whether OCAAs were prognostic of mortality.  

In order to overcome the sample size limitation in the future, these analyses should 

be repeated in samples with either: increased numbers of individuals wi th omics 

assays, incident disease cases or recorded deaths. Maximising the number of 

complete non-missing samples with omics measures for multivariable model 

construction, both clock and score, by imputing missing omics values using methods 
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such as predictive mean matching298 or k-nearest neighbours 299, would increase the 

sample size. Additionally, collaborating with cohorts with overlapping omics assays 

and meta-analysing would increase the power of future analyses.  

6.3.2 Multiple Testing 

The decision to capitalise on the breadth of omics assays also creates the inhere nt 

limitation of multiple testing. This meant that while finding numerous suggestive 

results, I was able to draw few conclusions based on formal statistical significance.  

I took active steps to limit the impact of multiple testing when assessing the effec t 

of omics scores on incident diseases and health-related risk factors. I used 

association results in the training sample to estimate which omics score -outcome 

pairs had sufficient power to detect associations in the testing sample passing a 5% 

FDR significance threshold. 

Any of the techniques to overcome limitations of sample size mentioned above will 

also aid to circumvent issues created by multiple testing. An alternative would be to 

select which tests to perform based on prior evidence possibly from pil ot studies, 

the literature or based on biological function of the biomarkers.  

6.3.3 Sex Differences 

All of the analyses presented in this thesis considered both sexes together in the 

study populations. Sex was explicitly accounted for in all of the analysi s by being 

included as a fixed effect covariate when correcting raw omics measures. For omics 

ageing clocks and omics scores for risk factors and incident disease , this is described 

in 2.3.1 QC of ORCADES Omics Data  and for GWAS of plasma protein levels, this is 

described in 2.5 Genome Wide Association Studies. However, we did not 

investigate sex-specific effects.  
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For the multi-omics analyses in ORCADES, both ageing clocks and biomarkers of 

disease, the decision to not perform sex stratified analysis was taken due to the 

small sample size, both in terms  of individuals with omics and incident disease 

cases, meaning doing so would most likely be underpowered. For the GWAS of 

plasma protein levels this was not investigated simply to limit the scope given the 

number of other analyses planned.  

Sex differences have been demonstrated in several areas , including GWA studies of 

a diverse range of phenotypes 300–302 and are worth investigating. Future work 

should seek to repeat the association analysis of OCAA and omics scores of health 

outcomes with risk factors and incident disease, stratifying by sex and assess 

whether the estimated effect directions are consistent between sexes. Similarly, 

GWAS of plasma protein levels should be repeated separately for each sex and 

results compared to the combined analysis to see if there any pQTL that have sex 

specific effects. This would massively improve our understanding of underlying 

biology, as sex is a factor that is too often not investigated303. If conclusions are 

drawn based on combined data with the assumption that the conclusion holds true 

for both sexes, when in fact this may not be the case 304, this could have dire 

consequences, particularly if these conclusions inform widespread medical 

treatment. 

6.3.4 Replication 

While I replicated 5 omics ageing clocks trained in ORCADES in independent 

populations, future work should seek to replicate the remaining: NMR 

Metabolomics, MS Metabolomics, DEXA, MS Complex Lipidomics and Fatty Acid 

Lipidomics clocks. Similarly, maximising sample size in the protein level GWAMAs 

rather than using a discovery and replication approach305, meant I was able to 

report 687 novel protein-variant associations, however I was unable to validate 

them in an independent replication sample and thus future analysis should seek to 
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do so. Making the GWAMA summary statistics publicly available upon publication, 

as planned, will facilitate other studies to replicate the novel pQTL. 

Both DEXA and NMR Metabolomics clocks trained in ORCADES showed considerably 

lower correlations between OCA and chronAge in the UK Biobank and the Estonian 

Biobank respectively than in the ORCADES training and testing samples 

(Supplementary Figure 28). This could be due in part to differences in underlying 

characteristics, environment or patterns of behaviour between the isolated 

population of the Orkney Islands and general population samples from the UK and 

Estonia. For example, the range of occupations of participants and climate between 

ORCADES and the UK Biobank differ drastically. For omics ageing clocks or disease 

risk scores to be generalisable they must be effective across populations, therefore 

training models using a meta-analysis containing individuals from a diverse range of 

populations would be ideal for such analyses. 

Further, all of the study populations used for analysis in this thesis are 

predominantly of European ancestry. This is an issue more generally in research , 

with an overwhelming proportion of human studies using participants of European 

ancestry. This homogeneity hinders research as it leads to bias and population 

specific results that will not hold true for millions of individuals. However, recently 

there has been a drive to use study populations from more diverse ancestries.   

This is a particularly well-documented issue in terms of genetic association studies 

(GWAS). Differing allele frequencies between populations can result in genetic 

variants that are significantly associated with a trait of interest in one population 

not being found in another306. The finding that polygenic risk scores are 

considerably more predictive in individuals from the population that the scores 

were trained in compared to their performance across ancestries, unless the 

training population contained a mix of ancestries , also illustrates this issue307. 

Further, LD patterns differ across ancestries meaning that, when considered 

together, they increase our ability to determine the causal variants in an LD block 

and therefore allow more informed estimates of the functional consequences of 
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these causal variants 308. As directions of effects of trait-associated genetic variants 

tend to be consistent across ancestries 309, methods of trans-ethnic GWAS that 

stratify by ancestry or adjust for admixture310, increase power to detect associated 

genetic variants. Heterogeneity in estimates of effect sizes for genetic variants 

across populations may arise due to differences in: disease prevalence, disease 

treatment, environmental exposures, lifestyle and diet311. However, methods to 

perform trans-ethnic GWAS that account for these forms of heterogeneity, 

minimising power loss given large enough sample sizes, have been developed 312,313. 

Future research should seek to replicate our reported pQTL in populations with 

non-European ancestries or use our summary statistics  to perform trans-ethnic 

GWAS. This is particularly important if the causal relationships between plasma 

protein levels and disease, inferred using pQTL instruments , are used to inform 

therapies. Then it is essential that these relationships hold across di fferent 

populations, otherwise conclusions could be drawn that lead to the misuse of 

therapies or incorrect diagnosis that may have negative consequences for millions 

of patients. 

6.3.5 Rare Variants 

Like the majority of genome-wide association meta-analyses, the GWAMA of 

plasma protein levels focussed on common variants (MAF>1%) 314. Despite not 

setting a MAF filter for the meta-analysis itself, we applied additional criteria that 

variants had to meet – i) being measured in ii) having effect directions consistent 

with the meta-analysis and iii) having a nominal p-value – in at least three of the 

contributing cohorts in order to be considered significant, that effectively ruled out 

rare variants. Further MAF thresholds of 1% were used for downstream analysis.  

Historically GWAS have focussed on common variants due to the common disease 

common variant hypothesis 315–318 and on a more practical note, due to the fact that 

the majority of cohorts rely on genotype or imputation data which are poor at 

capturing rare variants 319,320. However, given the large amount of missing 
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heritability not accounted for by GWAS of common variants it was suggested that 

rare variants with large effects could be a source of this heritability, which has been 

shown to be the case for a number of polygenic traits 321. As any variant with a large 

deleterious effect on fitness will be eliminated from the population by mutation -

selection balance, those with large effects are likely to be rare or recessive322. 

Additional issues arise in the use of rare variants: the rigorous quality control 

necessary323,324, the fact that statistical approximations used for common variant 

analysis assume large sample sizes which may not hold for rare variants 325 and 

exacerbate the issue of multiple testing326. Despite these issues, approaches have 

been developed that consider multiple variants simultaneously to overcome some 

of these limitations and facilitate association testing using rare variants327. These 

variants are potentially valuable sources of information and s hould be used to 

uncover missing heritability. 

The study, by Gilly et al., used whole genome sequence (WGS) data to find rare 

variants associated with circulating plasma protein levels 153, however with a sample 

size of N=1,328 the power is limited. Increasing the number of cohorts with both 

proteomics and WGS or exome-wide sequence (EWS) data could be the way 

forward. Future work should seek to perform dedicated analysis on plasma 

proteomics using WGS or EWS in larger sample sizes, possibly by meta-analysing to 

increase the power to detect rare variants with large effects. Given that rare 

variants are rarely considered in large scale studies, addressing this gap would allow 

us to form a more comprehensive picture of the genetic regulation of plasma 

protein levels. 

6.3.6 Publicly Available Ageing Clocks 

By constructing ageing clocks from scratch using each of the 9 omics assays 

available, we were only able to compare effect size estimates with previously 

published studies. Rather than directly compare the performance of published 

clocks in our sample.  
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For DNA methylation, our clocks were based on the Hannum55 and Horvath66 

published epigenetic clocks. Given how established these clocks are and the 

number of studies validating their ability to predict chronAge in the literature, there 

would have been little point in training rival DNA methylation clocks in our much 

smaller sample. However, due to data security protocols prior to GDPR 328, the 

subset of the CpG sites available in ORCADES were used to construct our DNA 

methylation clocks rather than uploading raw individual level data to Horvath’s 

online calculator (http://dnamage.genetics.ucla.edu/). 

Due to the updated regulations outlined in GDPR increasing the security around 

individual level data, future work should seek to use available online calculators for 

the Hannum and Horvath epigenetic clocks and van den Akker et al.’s for their NMR 

Metabolomics clock86 (https://metaboage.researchlumc.nl/) as well as calculating 

GlycanAge from Krištić et al.’s study87 in ORCADES. This would provide the 

opportunity to assess how these published BA measures replicate in an additional 

population and compare their performance to the naïve clocks trained in ORCADES 

as well as with each other in the same set of individuals.  

We also limited our analysis to clocks trained on chronAge, as the aim of our study 

was to characterise the properties of these OCAAs, which have been understudied 

across multiple omics due to the rise of second-generation clocks. However, future 

work could compare OCAAs trained on chronAge with second-generation ageing 

clocks such as GrimAge97 and DNAm PhenoAge96 in the same sample (again using 

http://dnamage.genetics.ucla.edu/), in order to systematically assess the 

differences in properties of first and second generation clocks.  

6.3.7 BA vs Risk Factors 

When assessing if my OCAA measures were prognostic of incident disease, I 

reported effect sizes scaled by the effect of chronAge on disease (Figure 10), to 

illustrate the effect of OCAA beyond chronAge. A potential further step would have 

http://dnamage.genetics.ucla.edu/
https://metaboage.researchlumc.nl/
http://dnamage.genetics.ucla.edu/
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been to investigate how OCAA compare with commonly used clinical risk factors  of 

incident disease, as carried out by previous studies 95,203.  

This was not an area explored in our analysis explicitly, we did however include the 

Clinomics OCAA in our comparison of the prognostic ability of OCAAs, which is a 

multivariable model entirely built of common clinical risk factors. As our primary 

aim was to characterise OCAAs derived from multiple omics clocks trained on 

chronAge and within this, establish if they were prognostic of future health 

outcomes, we focussed on their comparison with chronAge.  

However, testing whether models fitting both OCAA and clinical risk factors 

together, outperform models fitting clinical risk factors alone, in predicting incident 

disease is an exciting avenue for further research. On the one hand, if OCAA were 

found to add predictive value beyond clinical risk factors, this would evidence the 

practical utility of OCAAs trained on chronAge as biomarkers  of ageing. On the 

other, if OCAA were found to not contribute additional predictive ability or indeed 

contribute a small amount, this would concur with the suggestion that clocks 

trained on outcomes other than chronAge are the way forward95–97. 

6.3.8 Tissue- or Organ-Specific BA  

As mentioned in Chapter 3: Biological Ageing Clocks, both the work presented in 

this thesis and the majority of omics ageing clock studies in the literature assume 

that there is one single underlying BA that captures an individual’s ageing, risk of 

incident disease and mortality54,55,66,87,96,97. However, this may not be the only 

hypothesis to consider, what if different organ systems or tissues age at different 

rates? Is it possible that an individual could have a cardiovascular age that is 

different from their immune system age or their musculoskeletal age? 

My analysis of multiple omics ageing clocks found that certain clocks, UPLC IgG 

Glycomics and DNA methylation, appear to track generalised ageing as they were 

prognostic (positive association) of multiple incident diseases, whereas others such 
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as PEA proteomics appeared to track specific risk factors (Supplementary Figure 

34). Together with the observation that multiple OCAAs were negatively associated 

with incident malignant neoplasms of the skin, in contrast to the trend of positive 

OCAA-disease block associations, these results suggest that there be more than one 

type of BA. 

The only publication to touch on this, Lehallier et al., constructed multiple 

proteomics clocks based on subsets of proteins determined on their: functions as 

described in the literature, previously published associations with age and pathway 

enrichment scores 91. However, as the clocks based on pathway enrichment showed 

lower correlation with chronAge than models fitting more proteins, their properties 

were not further investigated.  

Future work should seek to further investigate the potential of organ system- or 

pathway-specific ageing clocks to provide a more comprehensive picture of how the 

body ages. Additionally, the use of omics measures derived from multiple tissues, 

rather than blood, which has been predominantly used by the field to date, would 

facilitate a more accurate understanding of the underlying biology of ageing.  

6.3.9 Risk-based Age 

Given the known limitations of BA clocks that are trained on chronAge, an 

alternative approach has been suggested (Fischer et al. Unpublished). Fischer et al. 

found that estimated effect directions of associations between OCAA’s trained on 

chronAge on risk factors, often oppose the expected (and observed) hazard ratios of 

those same risk factors on mortality. For example, previous cancer diagnosis and 

previous MI were associated with lower OCAA despite their hazard ratio of >1 for 

risk of all-cause mortality. These findings suggest the presence of confounding, 

possibly by chronAge, for risk factors such as smoking behaviour or risk factors 

having an effect on mortality that is not captured by omics biomarkers.  
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In order to overcome these limitations, Fischer et al. considered the definition of BA 

in terms of risk. As discussed previously the BA of an individual is defined as the 

chronAge of an average individual in the study population that has the same risk of 

future health outcomes and functional capacity as the individual of interest has at 

their current chronAge. However, if put in terms of “risk” meaning risk of death as 

captured in all-cause mortality then this risk-based BA could be calculated using 

survival functions. The risk-based BA for an individual , is the chronAge of the 

average individual in the cohort when their risk of mortality equals individual ’s 

current risk of death. 

Preliminary results show that risk-based BA outperforms omics clocks trained on 

chronAge. Framing BA in terms of risk provides a clearer interpretation than OCAA 

and the direct hazard ratios of risk factors on mortality. This is an extremely 

promising direction for future research and has the potential to change the way the 

field thinks about BA. 

6.3.10 Hospital Admissions 

Using first hospital admission for groups of ICD10 codes as proxies for incident 

disease has several limitations. 

First, using hospital admissions limits the scope of our investigation to only those 

conditions that are severe enough to require admission to hospital. On the one 

hand, this effective filtering by severity ensures that effect estimates or hazard 

ratios are less likely to be confounded by severity. On the other hand, it will not be 

an accurate reflection of all incident cases of disease. This approach will also fail to 

capture diseases that tend to be treated in the community such as dementia and 

multiple sclerosis. The use of GP records in conjunction with hospital admission 

data in future studies would help overcome this limitation.  

Additionally, hospital admission itself for any purpose is confounded due to 

differences in lifestyle, behaviour and socio-economic status329. Similarly, variation 
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or changes in admission and screening policies across hospitals over time will 

influence our results using this approach, as will coding inaccuracies often due to 

manual data entry. 

Second, limiting the analysis to the first admission for a particular disease block 

loses information about whether the disease recurs. Again, the use of GP records 

would help to overcome this issue, as being able to predict recurrence or relapses is 

of great value in terms of precision medicine.  

Third, considering groups of related ICD10 codes together as disease blocks rather 

than assessing individual diagnoses is a further limitation. This approach had 

practical advantages in that it limited the multiple testing burden and pooling 

multiple diseases increased the number of cases per disease block available with 

our limited numbers. By doing this however, we excluded subsequent diagnosis for 

any of the other diseases in a disease block after the first diagnosis, therefore losing 

disease cases.  

Similarly, we were unable to assess multi-morbidity within disease blocks for this 

reason. Finally, this meant that we were not able to assess individual diseases, this 

is an issue as despite ICD10 chapters containing broadly similar disorders there is 

still heterogeneity. The disease block E10-E14 is an ideal example of this, as it 

contains both type 1 and type 2 diabetes mellitus. Where type 1 is a chronic 

autoimmune disease, the bodies inability to produce insulin, is often diagnosed 

young, requires lifelong management with unknown cause 330. In contrast, type 2 is 

much more common, develops in later life, results in reduced insulin levels or 

receptors no longer recognising insulin with obesity and low physical activity as 

known risk factors 331. These are extremely different conditions, likely to have 

differing disease aetiologies and considering them in the same disease block limits 

our ability to draw conclusions. Well powered future work should seek to consider 

diseases individually, this would increase our understanding of the underlying 

biology of these conditions in a way that considering chapters based on ICD10 

codes does not. 
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6.3.11 Assessment of Prediction Accuracy 

Despite creating models in both chapters 3 and 4 that predict subsequent incident 

disease, using omics clock age acceleration (OCAA) measures and omics biomarkers 

respectively, I did not formally assess their prediction accuracy.  

As in the omics ageing clocks analysis , the aim was to determine if the OCAAs were 

associated with incident disease and risk factors, and if so, how this compared to 

chronological age. This was done by assessing to what extent OCAAs were 

associated with these health outcomes over and above chronological age. As one of 

the main aims of the omics ageing clocks chapter was to characterise what OCAAs 

are measuring, are they just capturing chronological age? Or are they capturing 

aspects of an underlying biological age? 

An additional reason for this focus on the comparison with chronAge, was due to 

the limited power in ORCADES. Both the limited number of samples with omics 

assays and the low number of cases in several disease blocks , means that the 

likelihood of producing an OCAA that would be prognostic of subsequent incident 

disease, with a high prediction accuracy in independent cohorts , is low.  

Similarly for the analysis in chapter 4, where I constructed omics scores predicting 

subsequent incident disease, the low numbers of disease cases (further reduced by 

the training-testing split and further still during 10-fold cross-validation in the 

training sample), limited my ability to make prediction models that would be 

suitable for use in independent populations. For this reason, I restricted my 

analyses to those scores that were significantly (5% FDR) associated with health 

outcomes, highlighting biomarkers that were selected for model inclusion and 

investigating which of these biomarkers are contributing most to the scores.  

For both of these analyses  (to a greater extent for the analysis in chapter 4), there 

were insufficient case numbers in the testing sample to determine a meaningful 
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estimate of prediction accuracy that would be a genuine reflection of the model’s 

performance in unseen data.  

Future studies with sufficient power, should assess the classification accuracy of 

such models  using methods such as  receiver operating curves (ROC) and area under 

the curve (AUC), to establish the ability of their models to distinguish between cases 

and controls332. Further, to account for the prevalence of subsequent incident cases 

for each disease, future studies should calculate the negative predictive value s 

(NPV) and positive predictive values (PPV) to indicate the proportions of predictions 

that are true negatives and true positives respectively, for each omics score or 

OCAA on each outcome333. Calculation of measures of prediction accuracy would 

therefore allow the comparison of novel prediction models to those published.  

6.3.12 Colocalisation & Mendelian Randomisation 

Limitations of the colocalisation and Mendelian randomisation analyses performed 

were mentioned in the discussion section of Chapter 5: Genome-wide Association 

Meta-analysis of 184 Plasma Protein Levels however, I will highlight three 

opportunities for future work worthy of further discussion.  

First, that the colocalisation of discovered pQTL with eQTL should be investigated 

using the recently proposed sum of single effects (SuSiE) regression method289. As 

this approach is not constrained by the assumption that there is only one causal 

variant in the region being considered, which as mentioned previously is potentially 

violated by broad peaks  observed in cis-regions that contain multiple genes. 

Second, in addition to sample size used for pQTL discovery, power for the 

colocalisation analysis also depends on the sample size of the eQTL study. A s 

mentioned previously, this is small for most publicly available multi -tissue eQTL 

datasets such as the GTEx data used in my analysis. The sizes of whole blood eQTL 

datasets are progressively increasing, with the eQTLgen data used reaching an N of 

~30,000180. However, these sample sizes are being achieved only for cis-eQTL, it is 
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still extremely difficult to identify trans-eQTL due to the increased multiple testing 

burden334. Until approaches to overcome this issue are developed studies will have 

to remain focussed on colocalisation with cis-eQTL. 

Third, we restricted the Mendelian randomisation (MR) analysis to cis-IVs only, as 

they are biologically more directly linked with the protein level and less likely to be 

affected by horizontal pleiotropy, therefore minimising the risk of violating the first 

and second assumptions of MR. We performed additional sensitivity analyses 

(described previously) in order to maximise the stringency of our results. For 

inferred causal relationships meeting these criteria, we assessed what difference 

repeating the MR analysis using both cis and trans IVs had on results 

(Supplementary Figure 53). We observed that estimated MR effect directions were 

not always consistent between cis and trans (pan) and cis only, suggesting that the 

effect of including trans IVs should be further investigated. Future studies dedicated 

to untangling the consequences of including trans IVs are required to determine if 

this is a robust approach for MR analysis at all, given the difficulty of horizontal 

pleiotropy in this scenario. A systematic investigation into this issue was beyond the 

scope of our exploratory analysis, however, it would be extremely valuable to the 

field given the rate of new MR studies. 

6.3.13 Potential Data Leakage  

In machine learning, data leakage is the phenomenon where information from 

outside the training dataset is used to create the model. This is an issue  as this 

additional information can give the model an unrealistic advantage to make better 

predictions, leading to overestimation of the performance of the model when 

making predictions in unseen data335. 

The quality control (QC) pipeline used for the preparation of the final multiple omics 

datasets used in the analyses presented in chapters 3 and 4 is a limitation. This is 

due to the order in which the steps were carried out, meaning that models 

constructed in these chapters were susceptible to potential indirect data leakage336. 
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Specifically, raw omics measures were pre-corrected for covariates (using linear 

regression), scaled and centred prior to splitting the sample into training and testing  

datasets. This means that information from the testing sample was implicitly 

involved in creating the final qc’d training dataset that was used for model 

construction therefore informing the final model. This also means that the testing 

set is not completely independent.  

Future work should swap the order of QC steps so that pre -correction for 

covariates, scaling and centring of the omics measures  occurs post training-testing 

split. Ideally these steps would occur within each fold of the 10 -fold cross validation 

in the training sample and in the testing sample separately.  

6.4 Conclusion 

In this thesis I took advantage of the range of omics assays available in ORCADES 

and investigated their relationships with ageing, health-related risk factors and 

subsequent incident disease.  

First, I showed that omics biomarkers can be used to build mea sures of biological 

age that contain more predictive information of risk factors and incident disease 

than chronological age alone. This exhaustive comparison of multiple omics ageing 

clocks produced several novel findings that further our understanding of  the 

properties of these models. Namely, that these ageing clocks built from multiple 

different omics overlap more than would be expected by chance, that clocks built 

using a substantial subset or a few principal components of omics biomarkers 

produce models that are just as effective and quantified the proportion of OCAA 

that is capturing noise rather than true underlying biological age by clocks trained 

on chronological age. 

Second, I demonstrated that these omics biomarkers , both individually and 

combined in multivariable models , are associated with health-related risk factors 

and are prognostic of subsequent incident diseases. I found that the majority of 
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single omics biomarkers were associated with multiple health outcomes rather than 

being outcome specific, emphasising how interconnected these omics layers are. 

While determining the relative importance of biomarkers included in omics scores, I 

found that only a handful of biomarkers, only one in extreme cases, were driving 

the effectiveness of the score. These omics biomarkers are therefore extremely 

promising candidates for risk scores that could be used to prevent disease.  

Third, I used methods that leverage genetic data to investigate how genetic 

variation affects the levels of cardiovascular-related proteins circulating in the 

plasma and how these protein levels affect disease risk. By performing the largest 

genome-wide association meta-analysis on the levels of 184 proteins, I: discovered 

592 associated regions of the genome, unravelled potential me chanisms and 

pathways by which these regions may act to influence the levels of the proteins we 

find circulating. I further inferred causal relationships between protein levels and 

diseases and by doing so identified novel therapeutic targets and an opportunity for 

drug repurposing. This analysis also created a resource of association summary 

statistics and protein instruments for causal inference that will continue to benefit 

the field. 

I conclude that with statistical techniques such as machine learning a nd large 

sample sizes, omics assays have the potential to deliver answers to questions 

regarding the mechanisms and pathways that underly ageing and disease that 

genomics alone has failed to answer. I would also like to stress how important it is 

to integrate multiple omics if we want to have a chance of filling the gaps in our 

understanding of why we are the way we are.   
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Appendix 

Chapter 2 Supplementary Information  

 Clinomics DEXA Hannum CpGs DNAme 

Outcome Total Cases Controls Total Cases Controls Total Cases Controls 

all 1388 463 925 881 308 573 812 314 498 
c 1636 98 1538 1040 67 973 938 69 869 
c00.c14 1662 3 1659 1058 1 1057 961 1 960 
c15.c26 1657 22 1635 1053 17 1036 957 16 941 
c30.c39 1661 5 1656 1058 4 1054 960 3 957 
c43.c44 1657 11 1646 1055 7 1048 958 8 950 
c45.c49 1661 2 1659 1057 2 1055 960 3 957 
c50.c50 1658 18 1640 1055 14 1041 956 12 944 
c51.c58 1661 8 1653 1058 3 1055 959 7 952 
c60.c63 1655 12 1643 1054 8 1046 955 7 948 
c64.c68 1661 10 1651 1057 9 1048 961 10 951 
c69.c72 1661 2 1659 1057 2 1055 960 2 958 
c73.c75 1662 2 1660 1058 2 1056 961 1 960 
c76.c80 1659 34 1625 1057 24 1033 959 25 934 
c81.c96 1662 16 1646 1058 12 1046 961 8 953 
e 1602 206 1396 1015 131 884 936 142 794 
e00.e07 1631 106 1525 1038 72 966 952 72 880 
e10.e14 1650 49 1601 1049 29 1020 954 39 915 
e15.e16 1661 2 1659 1058 2 1056 960 2 958 
e20.e35 1661 4 1657 1057 2 1055 961 4 957 
e50.e64 1662 10 1652 1058 8 1050 961 7 954 
e65.e68 1660 23 1637 1058 6 1052 960 14 946 
e70.e90 1640 61 1579 1040 35 1005 950 42 908 
i 1477 341 1136 935 230 705 856 229 627 
i05.i09 1661 14 1647 1058 12 1046 961 10 951 
i10.i15 1577 241 1336 1003 155 848 912 165 747 
i20.i25 1625 97 1528 1038 64 974 933 64 869 
i26.i28 1661 18 1643 1057 11 1046 959 10 949 
i30.i52 1632 122 1510 1038 81 957 942 80 862 
i60.i69 1658 33 1625 1054 22 1032 959 21 938 
i70.i79 1653 21 1632 1051 12 1039 957 18 939 
i80.i89 1596 79 1517 1015 61 954 930 58 872 
i95.i99 1660 23 1637 1057 13 1044 960 12 948 
j 1586 185 1401 1018 113 905 917 123 794 
j00.j06 1656 12 1644 1057 8 1049 960 10 950 
j09.j18 1660 36 1624 1057 21 1036 959 24 935 
j20.j22 1650 40 1610 1051 29 1022 954 24 930 
j30.j39 1636 30 1606 1044 19 1025 945 20 925 
j40.j47 1627 94 1533 1039 54 985 944 64 880 
j60.j70 1659 12 1647 1056 6 1050 958 9 949 
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j80.j84 1662 9 1653 1058 7 1051 961 5 956 
j85.j86 1662 2 1660 1058 1 1057 961 2 959 
j90.j94 1656 15 1641 1056 8 1048 959 10 949 
j95.j99 1662 14 1648 1058 8 1050 961 12 949 

 

 Horvath CpGs DNAme UPLC IgG Glyomics NMR Metabolomics 

Outcome Total Cases Controls Total Cases Controls Total Cases Controls 
all 757 288 469 1474 484 990 1297 425 872 
c 870 61 809 1735 97 1638 1525 89 1436 
c00.c14 889 1 888 1762 3 1759 1548 3 1545 
c15.c26 885 15 870 1757 21 1736 1544 20 1524 
c30.c39 888 3 885 1761 5 1756 1548 5 1543 
c43.c44 887 7 880 1757 9 1748 1543 10 1533 
c45.c49 888 3 885 1762 3 1759 1548 3 1545 
c50.c50 885 10 875 1757 19 1738 1544 17 1527 
c51.c58 888 6 882 1760 9 1751 1546 6 1540 
c60.c63 883 7 876 1755 12 1743 1542 9 1533 
c64.c68 889 8 881 1761 10 1751 1547 9 1538 
c69.c72 889 1 888 1761 2 1759 1547 2 1545 
c73.c75 889 1 888 1762 2 1760 1548 2 1546 
c76.c80 888 24 864 1759 38 1721 1545 31 1514 
c81.c96 889 6 883 1762 13 1749 1548 15 1533 
e 865 133 732 1691 217 1474 1488 187 1301 
e00.e07 880 65 815 1727 109 1618 1516 98 1418 
e10.e14 882 37 845 1743 57 1686 1538 43 1495 
e15.e16 888 2 886 1761 4 1757 1548 2 1546 
e20.e35 889 4 885 1761 4 1757 1548 4 1544 
e50.e64 889 7 882 1762 8 1754 1548 9 1539 
e65.e68 888 14 874 1759 23 1736 1545 20 1525 
e70.e90 879 40 839 1740 67 1673 1529 57 1472 
i 796 208 588 1570 361 1209 1383 315 1068 
i05.i09 889 9 880 1761 15 1746 1547 12 1535 
i10.i15 846 150 696 1674 250 1424 1471 216 1255 
i20.i25 865 57 808 1724 107 1617 1516 86 1430 
i26.i28 887 10 877 1760 18 1742 1547 14 1533 
i30.i52 873 70 803 1731 128 1603 1521 111 1410 
i60.i69 887 21 866 1756 38 1718 1546 29 1517 
i70.i79 885 15 870 1753 23 1730 1539 19 1520 
i80.i89 861 52 809 1695 87 1608 1488 81 1407 
i95.i99 888 12 876 1761 23 1738 1546 19 1527 
j 850 117 733 1686 196 1490 1482 173 1309 
j00.j06 889 10 879 1756 15 1741 1543 13 1530 
j09.j18 887 22 865 1761 40 1721 1546 33 1513 
j20.j22 882 21 861 1749 43 1706 1538 38 1500 
j30.j39 875 19 856 1738 32 1706 1526 29 1497 
j40.j47 873 62 811 1725 94 1631 1516 83 1433 
j60.j70 886 9 877 1760 12 1748 1546 11 1535 
j80.j84 889 5 884 1762 11 1751 1548 8 1540 



 221 

j85.j86 889 2 887 1762 2 1760 1548 2 1546 
j90.j94 888 8 880 1756 18 1738 1544 15 1529 
j95.j99 889 11 878 1762 14 1748 1548 14 1534 

 

 MS Fatty Acids 
Lipidomics 

MS Metabolomics MS Complex Lipidomics 

Outcome Total Cases Controls Total Cases Controls Total Cases Controls 
all 751 296 455 685 262 423 741 291 450 
c 864 60 804 785 55 730 852 60 792 
c00.c14 883 1 882 803 1 802 873 1 872 
c15.c26 878 15 863 799 13 786 869 16 853 
c30.c39 882 2 880 803 2 801 872 3 869 
c43.c44 881 6 875 801 5 796 870 5 865 
c45.c49 882 3 879 803 2 801 872 3 869 
c50.c50 881 12 869 799 11 788 870 12 858 
c51.c58 881 7 874 801 6 795 871 6 865 
c60.c63 878 6 872 798 6 792 867 6 861 
c64.c68 883 9 874 803 9 794 873 9 864 
c69.c72 882 2 880 802 1 801 872 1 871 
c73.c75 883 1 882 803 1 802 873 1 872 
c76.c80 881 20 861 801 19 782 871 20 851 
c81.c96 883 6 877 803 8 795 873 7 866 
e 863 132 731 782 115 667 852 127 725 
e00.e07 875 65 810 794 59 735 865 64 801 
e10.e14 877 35 842 799 30 769 867 36 831 
e15.e16 882 2 880 803 1 802 872 2 870 
e20.e35 883 4 879 803 3 800 873 3 870 
e50.e64 883 7 876 803 4 799 873 7 866 
e65.e68 882 13 869 802 10 792 873 10 863 
e70.e90 875 40 835 795 34 761 865 39 826 
i 791 220 571 722 187 535 781 215 566 
i05.i09 883 11 872 803 9 794 873 12 861 
i10.i15 838 158 680 767 132 635 831 156 675 
i20.i25 858 63 795 785 55 730 852 62 790 
i26.i28 883 9 874 801 7 794 872 8 864 
i30.i52 866 77 789 789 61 728 855 74 781 
i60.i69 882 20 862 802 16 786 872 19 853 
i70.i79 879 17 862 799 14 785 869 18 851 
i80.i89 855 51 804 776 46 730 843 53 790 
i95.i99 882 13 869 803 8 795 872 11 861 
j 842 116 726 768 98 670 831 110 721 
j00.j06 882 11 871 802 9 793 872 11 861 
j09.j18 882 21 861 801 16 785 871 20 851 
j20.j22 875 26 849 797 19 778 866 23 843 
j30.j39 868 18 850 789 16 773 858 16 842 
j40.j47 868 60 808 790 53 737 856 57 799 
j60.j70 880 8 872 802 5 797 870 9 861 
j80.j84 883 4 879 803 3 800 873 3 870 
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j85.j86 883 2 881 803 2 801 873 2 871 
j90.j94 881 10 871 801 7 794 872 9 863 
j95.j99 883 12 871 803 10 793 873 13 860 

 

 PEA Proteomics Mega Omics 

Outcome Total Cases Controls Total Cases Controls 
all 751 296 455 685 262 423 
c 864 60 804 785 55 730 
c00.c14 883 1 882 803 1 802 
c15.c26 878 15 863 799 13 786 
c30.c39 882 2 880 803 2 801 
c43.c44 881 6 875 801 5 796 
c45.c49 882 3 879 803 2 801 
c50.c50 881 12 869 799 11 788 
c51.c58 881 7 874 801 6 795 
c60.c63 878 6 872 798 6 792 
c64.c68 883 9 874 803 9 794 
c69.c72 882 2 880 802 1 801 
c73.c75 883 1 882 803 1 802 
c76.c80 881 20 861 801 19 782 
c81.c96 883 6 877 803 8 795 
e 863 132 731 782 115 667 
e00.e07 875 65 810 794 59 735 
e10.e14 877 35 842 799 30 769 
e15.e16 882 2 880 803 1 802 
e20.e35 883 4 879 803 3 800 
e50.e64 883 7 876 803 4 799 
e65.e68 882 13 869 802 10 792 
e70.e90 875 40 835 795 34 761 
i 791 220 571 722 187 535 
i05.i09 883 11 872 803 9 794 
i10.i15 838 158 680 767 132 635 
i20.i25 858 63 795 785 55 730 
i26.i28 883 9 874 801 7 794 
i30.i52 866 77 789 789 61 728 
i60.i69 882 20 862 802 16 786 
i70.i79 879 17 862 799 14 785 
i80.i89 855 51 804 776 46 730 
i95.i99 882 13 869 803 8 795 
j 842 116 726 768 98 670 
j00.j06 882 11 871 802 9 793 
j09.j18 882 21 861 801 16 785 
j20.j22 875 26 849 797 19 778 
j30.j39 868 18 850 789 16 773 
j40.j47 868 60 808 790 53 737 
j60.j70 880 8 872 802 5 797 
j80.j84 883 4 879 803 3 800 
j85.j86 883 2 881 803 2 801 
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j90.j94 881 10 871 801 7 794 
j95.j99 883 12 871 803 10 793 

Supplementary Table 16. Summary Cases and Controls for Disease Blocks in ORCADES. 
Outcome: the ICD10 codes defining a block. Total: Total number of samples in ORCADES with 
Martingale residuals for each disease block with each omics assay. Controls: the number of 
controls in the total. Cases: the number of cases in the total.  
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Chapter 3 Supplementary Information  

 
Supplementary Figure 26. Correlation of ChronAge and OCA were consistent, independent of 
penalised regression method. Correlation (r) with 95% of confidence intervals of chronAge with 
omics clock estimated age (OCA) indicated on the y-axis via elastic net regression with a fixed 
alpha of 0.5, cross validated alpha and LASSO regression in the ORCADES testing sample. 
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Supplementary Figure 27. Correlation of ChronAge and OCA in ORCADES Training and Testing 
Samples. Correlation (r) with 95% of confidence intervals of chronAge with OCA indicated on the 
y-axis in the ORCADES Training and Testing samples. 
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https://doi.org/10.7488/ds/3107  
Supplementary Table 17. Biomarkers Selected for Model Inclusion Across Assays. For each 
assay the description of each biomarker, variable_name: the biomarker ID for analysis. pass_qc: 
either 1 or 0 indicating whether each biomarker passed (1) or failed (0) quality control and 
therefore available for selection. selected: indicating whether the biomarker was selected for 
model inclusion (1) or not (0). available_core: if the biomarker was available for selection for the 
core model (1 available, 0 not) i.e. the biomarkers was selected for model inclusion in >95% of 
500 iterations of clock construction. selected_core: if the biomarker was selected (1) or not (0) 
for inclusion in the core model. For the PEA Proteomics assay avail_sub_x: indicates that the 
biomarker was available for selection in the indicated protein subset, subset 1 being in the 
inflammation 1, cardiovascular II or cardiovascular III Olink panels used for validation in Croatia-

Vis, subset 2 being in the Inflammation 1, cardiovascular II, cardiovascular III and Oncology II 
Olink panels used for validation in EGCUT. selected_sub_x: indicating that the biomarker was 
selected for model inclusion in the relevant protein subset clock, Panel: Olink panel.  

https://doi.org/10.7488/ds/3107  
Supplementary Table 18. Clock Coefficients. For each assay, predictor: the biomarker ID, 
coefficient: the clock coefficient. 

  

https://doi.org/10.7488/ds/3107
https://doi.org/10.7488/ds/3107
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Omic N Mean Age SD Age Min Age Max Age % Female 

DEXA 1158 55.85 14.19 18.02 88 59.93 

DNAme Horvath CpGs 957 52.93 15.66 17.12 100.18 55.38 

MS Fatty Acids Lipidomics 952 53.41 15.49 16.84 91.47 55.78 

MS Metabolomics 861 52.81 15.05 17.12 90.79 57.38 

Clinomics 1815 53.35 15.03 16.5 91.47 59.56 

DNAme Hannum CpGs 1033 53.43 15.68 17.12 100.18 55.86 

UPLC IgG Glycomics 1937 53.13 15.29 16.5 100.18 60.51 

MS Complex Lipidomics 940 53.54 15.27 17.12 91.47 55.74 

NMR Metabolomics 1643 52.96 14.91 16.5 91.47 59.95 

PEA Proteomics 805 52.88 15.59 17.12 91.47 54.91 

Mega Omics 796 53.1 15.31 17.12 91.47 56.78 

Supplementary Table 19. Age Characteristic of ORCADES Cohort. Omic: Omic assay. N: number 
of individuals in ORCADES with the omics assay passing quality control.  Mean Age: mean 
chronological age at venepuncture of ORCADES subset. SD Age: standard deviation of 
chronological age at venepuncture of ORCADES subset. Min Age: minimum chronological age at 
venepuncture of ORCADES subset. Max Age: maximum chronological age at venepuncture of 
ORCADES subset. % Female: percentage of ORCADES subset that is female. 
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Supplementary Figure 28. Omics clocks trained in ORCADES predict chronAge in unrelated 
cohorts. The correlation of OCA with ChronAge (x-axis) by the specified clock (y-axis). With the 
correlation in the ORCADES testing sample in black and additional populations as specified. The 

correlation in a restricted age range (40-75) ORCADES testing sample is shown in comparisons 
involving the UKBB shown in grey.  

We found clocks built using the subsets of PEA proteomics measures available in our 
validation cohorts correlating with chronAge nearly as highly in Croatia-Vis (r=0.89) and EBB 
(r=0.91) as in the ORCADES testing sample (r=0.91 and r=0.93). Similarly, both Hannum and 
Horvath CpG based clocks achieved comparable correlations between OCA and chronAge in 
EBB (Hannum: r=0.98, Horvath: r=0.97) and GS:SHFS (Hannum: r=0.96, Horvath r=0.93) as in 
the ORCADES testing sample (Hannum: r=0.96, Horvath r=0.93). The UPLC IgG glycomics 
and Clinomics OCA were still correlated with chronAge in independent cohorts (UPLC IgG 
glycomics: r= 0.62 Croatia-Vis, r=0.61 Croatia-Korčula, Clinomics: r=0.56 UKBB) but less than 
in the ORCADES testing sample (UPLC IgG glycomics: r=0.74, Clinomics: r=0.80). There was 
correlation between NMR metabolomics estimated and chronAge in Croatia-Korčula, r=0.55 
compared to r=0.73 in ORCADES however only a correlation of r=0.26 in EBB. Similarly, we 
found that the DEXA estimated age in UKBB correlated substantially lower with chronAge 
than in ORCADES (UKBB: r=0.30, ORCADES: r=0.66). 

To assess whether the poor correlation of DEXA OCA and chronAge in UKBB was due to the 
difference in the ranges of chronAge of individuals in ORCADES compared to the UKBB we 
also compared a clock that was evaluated in ORCADES individuals between 40-75 (the 
recruiting age range of UKBB, compared to the 16-100 in the full ORCADES dataset). 
Despite the DEXA OCA having a lower correlation with chronAge in the age restricted 
ORCADES sample, r=0.60 compared with r=0.66 in the full age range sample, it is still 
drastically higher than the r=0.30 found in UKBB.  
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Supplementary Figure 29. Overlapping and unique variance in ChronAge explained across 10 
omics clocks. A) Partition of variance in ChronAge explained into that explained by 2 or more 
clocks (overlap), that not explained by any clock (unexplained), and that explained by each of the 
10 clocks uniquely. Segments coloured by component explaining the variance in chronAge. B) 
squared part correlations (sr2) (bars): unique variance in chronAge explained by each of the 10 

clocks from figure A on the left-hand y-axis. R
2
 (points) indicate the total variance explained in 

chronAge by each clock (right hand y-axis). 

Interestingly, the proportion of unique variance in chronAge explained by each OCA does 
not entirely mirror the univariate R2 (black dots). It is important to note that the similarity 
between assays likely influences the proportion of unique variance in chronAge explained 
(at its most extreme, were a clock duplicated, it would explain no unique variance). This 
may explain why NMR metabolomics and MS complex lipidomics clocks have some of the 
lowest proportions of unique variance explained, despite NMR metabolomics and MS 
complex lipidomics having an R2 higher than DEXA OCA and comparable to Clinomics. 
Interestingly, the DEXA and MS fatty acids lipidomics OCAs explain more unique variance 
than several clocks with higher R2. 
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Supplementary Figure 30. Pairwise Comparisons of Variance Explained in ChronAge. Pairwise 
comparison of variance in chronAge explained by OCA of the pairs of clocks in ORCADES. 
Comparison indicated on the x-axis, with the variance in chronAge explained on the y-axis. The 
colour of the bar indicates the aspect explaining the variance. For each comparison the 
proportion of variance explained by both clocks in the comparison (Overlap), the variance that 
remains unexplained fitting a bivariate model (unexplained) and the unique variance in 
chronAge explained by each of the two clocks in the comparison.  

Partly to consider the effect of two similar clocks affecting the unique variance explained, 
we performed pairwise comparisons, the unique variance in chronAge explained by each 
clock in the comparison was again calculated as the squared part correlation while 
controlling for the other clock in the pair. The overlap indicated is therefore the proportion 
of variance in chronAge explained by both clocks in the pair. Reiterating the results in 
Supplementary Figure 29a, Supplementary Figure 30 shows that for 8 out of 10 clocks the 
mean percentage of variance explained in chronAge by both clocks (the overlap) is greater 
than 45%. The MS Fatty Acids Lipidomics and DEXA clocks had lower mean overlap, 23.2% 
and 36.9% respectively. Interestingly clocks that had higher correlations between OCA and 
chronAge, such as PEA Proteomics and DNAme based clocks were found to be contributing 
most of the additional variance in chronAge not explained by the overlap of both clocks. 
Conversely, the MS Fatty Acids Lipidomics clock, the clock with the lowest correlation 
between OCA and chronAge appears to contribute little of the additional variance in 
chronAge not already explained by the other clock across all comparisons.  
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Block Title 

J95-J99  Other diseases of the respiratory system 
J90-J94  Other diseases of pleura 
J85-J86  Suppurative and necrotic conditions of lower respiratory tract 
J80-J84  Other respiratory diseases principally affecting the interstitium 
J60-J70  Lung diseases due to external agents 
J40-J47  Chronic lower respiratory diseases 
J30-J39  Other diseases of upper respiratory tract 
J20-J22  Other acute lower respiratory infections 
J09-J18  Influenza and pneumonia 
J00-J06  Acute respiratory infections 
I95-I99  Other and unspecified disorders of the circulatory system 
I80-I89  Diseases of veins, lymphatic vessels and lymph nodes, not elsewhere classified 
I70-I79  Diseases of arteries, arterioles and capillaries 
I60-I69  Cerebrovascular diseases 
I30-I52  Other forms of heart disease 
I26-I28  Pulmonary heart disease and diseases of pulmonary circulation 
I20-I25  Ischaemic heart diseases 
I10-I15  Hypertensive diseases 
I05-I09  Chronic rheumatic heart diseases 
E70-E90  Metabolic disorders 
E65-E68  Obesity and other hyperalimentation 
E50-E64  Other nutritional deficiencies 
E20-E35  Disorders of other endocrine glands 
E15-E16  Other disorders of glucose regulation and pancreatic internal secretion 
E10-E14  Diabetes mellitus 
E00-E07  Disorders of thyroid gland 
C81-C96  Malignant neoplasm of lymphoid, haematopoietic and related tissue 
C76-C80  Malignant neoplasms of ill-defined, secondary and unspecified sites 
C73-C75  Malignant neoplasms of thyroid and other endocrine glands 
C69-C72  Malignant neoplasms of eye, brain and other parts of central nervous system 
C64-C68  Malignant neoplasm of urinary tract 
C60-C63  Malignant neoplasms of male genital organs 
C51-C58  Malignant neoplasms of female genital organs 
C50-C50  Malignant neoplasm of breast 
C45-C49  Malignant neoplasms of mesothelial and soft tissue 
C43-C44  Melanoma and other malignant neoplasms of skin 
C30-C39  Malignant neoplasm of respiratory and intrathoracic organs 
C15-C26  Malignant neoplasms of digestive organs 
C00-C14  Malignant neoplasms of lip, oral cavity and pharynx 
Supplementary Table 20. ICD Block Definitions. Block: block coding. Title: ICD meaning.  
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Supplementary Figure 31. Associations of disease incidence with chronAge. Effect and its 95% 
CI: the logeHR of chronAge on the incidence of the disease since participation, using a Cox 
Model. ICD 10 Chapters (i.e. whole Categories) count the first occurrence (post assessment) of 

any disease within the letter/category/chapter (including those blocks dropped from the 
individual block analysis due to lack of power) as incidence. Participants prevalent at assessment 
(i.e. a recorded prior incidence) within any grouping at assessment were excluded from the 
analysis of that grouping. The dashed line represents the hazard of age on any occurrence of the 
disease chapters under consideration, a hazard ratio of 0.0492, representing a doubling of 
incidence rate every 14 years. Distinctions in observed individual effects sizes from this were 
(visually) judged more materially due to sampling variance than true effects, and so that single 
factor was chosen as our best estimate of the age effect on each disease. MNs: Malignant 
neoplasms. Associations are only shown for those disease groups that passed QC and were 
taken forward to association testing with OCAA. 

8/8 risk factors and 43/44 disease groupings associated with chronAge in the expected 
positive direction, except for cortisol and FEV1 which decline with chronAge. The disease 
exception, J00-J06 Acute respiratory infections, was not nominally significantly different 
from zero (logeHR/SE -0.025/0.017). All the risk factors, and 34 of the disease groupings 
associations were significant after allowing for multiple testing (passed FDR 10% risk factors 
and diseases considered separately, one sided test H1:b>0). For these 34 groupings there 
thus was reasonable power to detect associations with chronAge and so potentially 
biological OCAA. 2 disease groups had fewer than 5 cases and were excluded from the 
subsequent analysis, to further limit the burden of multiple testing.  

The effect (logeHR/SE) of one year of chronAge at outset on the first incidence of any of the 
diseases was 0.0492/0.00323, a doubling roughly every 14 years. This pattern was generally 
similar to the estimated effects for each disease individually, noting these are on the same 
(logistic) scale. With the largest observed differences arising from diseases with larger 
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standard errors. However, the effect (logeHR/SE) of one year of chronAge on the risk factors 
varied more, although again they were on the same (standardised) scale. FRS and FEV1 
(0.054/0.00083 and -0.041/0.00088) were most sensitive, whilst CRP and creatinine were 
less sensitive (effect/SE of 1 year of chronAge on standardised trait 0.0092/0.0012 and 
0.0090/0.0015 respectively) as shown in Supplementary Figure 6b, whilst standard errors of 
the effect sizes were generally smaller (as a proportion of the effect).  

The remaining 32 disease groups along with all the risk factors were taken forward to 
association testing with OCAA, using the same models, with age and sex as covariates. 
Power was expected to be lower, due to lower variation and attenuation in OCAA 
compared to chronAge. As our principal purpose was to examine the effect of OCAA 
compared to chronAge, effect sizes of OCAA were rescaled so that the effect of one year of 
chronAge was one. This was done by dividing the observed effect of OCAA by the effect of 
chronAge on the outcomes. Given the similarities of the chronAge effects (and wide SEs) for 
diseases, this was done using the single factor 0.049187 logeHR. Whereas for risk factors 
this was done trait-by-trait (the effect of chronAge on the single trait) as these effects 
varied more and had lower standard errors. 
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Supplementary Figure 32. The strength of associations of risk factors with chronAge varies. 

FEV1: Forced expiratory volume one second, CRP: C-reactive Protein, BMI: Body Mass Index. 
Effect: the estimated increase (and 95% CI) in standardised trait per year of chronAge using a 
linear model, with sex as a covariate. Traits which decrease as age increases (FEV1, cortisol) 
have been converted to ageing traits, by reversing their signs.  
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Supplementary Figure 33. Average effect across clocks of standardised OCAA upon outcome. 
Beta: the observed effect of OCAAs on outcome. Beta was IVW averaged across OCAAs. SEs were 
calculated as the inverse root sum of the precisions (not strictly valid given correlated tests). 
Error bars shown are  2SEs. OCAA: omics clock estimated age acceleration.  
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Supplementary Figure 34. Averaged effects of OCAA across diseases and risk factors. The Left-
hand side shows the effect of OCAA in years per year of chronAge effect (OCAA effect divided by 

chronAge effect) IVW averaged across outcomes (either risk factors or diseases as specified on 
the y-axis). The right-hand side shows the effect of standardised OCAA (units of phenotypic 
standard deviation) IVW averaged across outcomes. Beta: the observed effect of OCAA on 
outcome. Beta was IVW averaged across outcomes. SEs were calculated as the inverse root sum 
of the precisions (not strictly valid given correlated tests). Error bars shown are  2SEs. OCAA: 
omics clock estimated age acceleration.  
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Supplementary Figure 35. Fitting smoking as a covariate does not appear to materially affect 
the association between OCAA and a) diseases or b) risk factors. Beta OCAA - the observed 
effect of OCAA on the outcome under the models (see main text). Beta OCAA with smoker 
covariate - the observed effect of OCAA on the outcome under the same model, but with 
smoking fitted. 

Across all the associations studied for 11 clocks against 32 diseases and 8 risk factors, we 
found that the IVW ratio of the estimated effect of OCAA with and without smoking fitted 
as a covariate were 1.023 and 1.008 respectively. Individual test p-values for the ratio of 
the effects not being one all exceeded 0.4. Visual analysis confirmed these results: that 
smoking was not a material confounder of health-OCAA associations. 

  

b 

a 
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https://doi.org/10.7488/ds/3107 
Supplementary Table 21. Summary of the association test between health outcomes, 
Chronological age and OCAA. For diseases, A Cox model was fitted with time since outset 
specifying the base hazard and age as a proportional hazard, with first occurrence of 
hospitalisation for any disease in the ICD-10 block as event. Prevalent cases at outset were 
excluded. For quantitative traits, a linear model testing the effect of age on the outcome was 
tested. FEV1 and Cortisol were made negative to give traits which associate positively with age. 
Outcome: the quantitative trait or disease outcome under consideration. ICD blocks were 
analysed as a whole as were Chapters (single letters) for the sets of blocks considered, in which 
case first occurrence of any disease in the chapter was considered the event. ALL was defined as 
any disease in the chapters considered. N: the number of subjects included. Cases: the number of 

cases observed. BETA: the linear effect/loge Cox hazard ratio effect for the hazard (age). SE: the 
standard error of beta. Z: the z-statistic for the test of association (BETA/SE). P: the one-sided p-
value for the test of positive association. Trait Mean: mean of the trait across the subjects in the 
analysis. Trait SD: the standard deviation of the trait across the subjects in the analysis. Q: the 
Benjamini-Hochberg FDR, allowing for all tests of age, within the disease and risk factors 
separately. 

  

https://doi.org/10.7488/ds/3107
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Supplementary Figure 36. OCAA positively (pink), and often significantly, associates with 
disease incidence in most cases where there is reasonable power. +/* Association nominally 
(p<5%)/FDR 10% significant in the frequentist test of H1: b>0 (FDR is determined across all tests 

shown in Supplementary Table 21, not just those shown here). Beta: the relative effect of a year 
of OCAA to a year on chronAge on outcome (measured in loge hazard ratios). A value of one 
means the estimate of the effect of chronAge and OCAA are the same. Clock: the omics clock on 
which OCAA was measured. The mega-omics clock is not shown as it never met the SE<0.5 
criterion. Disease group: the set of diseases (defined by ICD 10 codes) which were tested for first 
incidence after assessment against the clock (already prevalent cases were excluded).  

The presence of an entry in this figure denotes power, whilst its intensity denotes the size 
of the effect. Clinomics OCAA is thus relatively powerful and has large effects, as does the 
UPLC IgG Glycomics OCAA, albeit to a lesser extent. The more accurate clocks at estimating 
chronAge such as DNAme and PEA Proteomics based clocks on the other hand, show less 
power, although the Horvath CpGs clock does show some reasonably strong effect sizes. 

  



 240 

 
Supplementary Figure 37. OCAA positively (pink) and often significantly associates with risk 
factors in most cases where there is reasonable power. +/* Association nominally 
(p<5%)/FDR10 % significant in the frequentist test of H1: b>0 (FDR is determined across all tests 
shown in Supplementary Table 21, not just those shown here). Beta: the relative effect of a year 
of OCAA to a year on chronAge on outcome. A value of one means the estimate of the effect of 
chronAge and OCAA are the same.  
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Supplementary Figure 38. Correlation of chronAge and OCA from clocks built using 3, 5, 10, 20 
PCs. Correlation (r) and 95% confidence interval of chronAge and OCA indicated on the y-axis 
using models constructed from 3, 5, 10 and 20 principal components of the assay in the 
ORCADES testing sample compared to the standard clock (black).  
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Supplementary Figure 39. Reducing dimensionality of omics dataset used to build clocks 
increases the predictive ability of OCAA for risk factors.  Beta: the effect of a year of 

standardised (within clock) OCAA on outcome (effect sizes for standardised risk factors). 
Estimates were shrunk using a prior to reduce the possibility that frequentist best estimate beta 
was predominantly a consequence of a large SE. Clock: the omics clock on which OCAA was 
measured. Cholesterol/BMI which showed a particularly large effect from MS Fatty Acids 
Lipidomics/DEXA OCAA, excluded here to aid visualisation. X PCs: the number of PCs of the omic 
used as predictors to create the chronAge and OCAA measures.  

OCAAs (and risk factors) were standardised, whilst hazards were left on their loge scale. The 
resultant measures of the effect of OCAA on outcome gave a measure of the ability of the 
OCAA to distinguish amongst individuals. 

Clinomics was excluded from this analysis as it was based on only 12 predictors. We 
continued to exclude Total Cholesterol, but also excluded BMI as too close in nature to 
some of the predictors used. 
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Supplementary Figure 40. Reducing dimensionality of omics dataset to train ChronAge makes little difference to the predictive ability of OCAA for 
diseases. Beta: the effect of a year of standardised (within clock) OCAA on outcome (measured in loge hazard ratios). Estimates were shrunk using a prior to 
reduce the possibility that frequentist best estimate beta was predominantly a consequence of a large SE. Clock: the omics clock on which OCAA was 
measured. Disease group: the set of diseases (defined by ICD 10 codes) which were tested for first incidence after assessment  against the clock (already 
prevalent cases were excluded). X PCs: the number of PCs of the omic used as predictors to create the chronAge and OCAA measures.  
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Chapter 4 Supplementary Information 

https://doi.org/10.7488/ds/3107  
Supplementary Table 22. Biomarkers from all Assays Passing QC. For each assay the predictor: 
the biomarker ID for analysis. available: either 1 or 0 indicating whether each biomarker passed 
(1) or failed (0) quality control and therefore available for selection across any of the outcomes.  

https://doi.org/10.7488/ds/3107  
Supplementary Table 23. Coefficients for all Assay-Outcome LASSO regression Models. 

https://doi.org/10.7488/ds/3107
https://doi.org/10.7488/ds/3107
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Supplementary Figure 41. Effect sizes using full 
Cox model and Martingale residuals are 
concordant for EHR modelling in the ORCADES 
dataset. The disease block and the number of 
cases of that disease block in parenthesis are 
indicated on the y-axis. The effect size estimate 
and 95% confidence intervals for the effect of 
OCAA on disease block (logeHR/standard 
deviation of OCAA) for each of the 11 OCAAs. 
Estimates from Cox models are in green and 

Martingale residuals in red. 
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Supplementary Figure 42. Histogram of Significant Outcome Associations Across Single Omics 
Biomarkers. Number of biomarkers (y axis) which had the number of significant outcome 
associations indicated on the x axis. Results shown for biomarker-outcome associations that 
passed 5% FDR significance.  
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c60.c63 6 1 5 i60.i69 15 2 13 
c64.c68 61 4 57 i70.i79 14 2 12 
c69.c72 98 6 92 i80.i89 23 5 18 
c73.c75 12 3 9 i95.i99 9 3 6 
c76.c80 10 6 4 j 28 2 26 
c81.c96 89 9 80 j00.j06 33 5 28 
e 128 4 124 j09.j18 32 6 26 
e00.e07 42 2 40 j20.j22 86 6 80 
e10.e14 140 2 138 j30.j39 12 4 8 
e15.e16 28 4 24 j40.j47 19 2 17 
all 35 2 33 c00.c14 42 10 32 
e20.e35 5 1 4 j60.j70 10 2 8 
e50.e64 18 1 17 j80.j84 103 12 91 
e65.e68 50 4 46 j85.j86 18 3 15 
e70.e90 71 3 68 j90.j94 11 2 9 
i 27 1 26 j95.j99 9 1 8 
i05.i09 12 1 11 FRS 945 9 936 
i10.i15 76 3 73 BMI 1231 47 1184 
i20.i25 15 2 13 EDU 65 7 58 
i26.i28 9 2 7 HDL 1256 28 1228 
i30.i52 31 7 24 c15.c26 11 0 11 
c 3 1 2 TC 1351 142 1209 

Supplementary Table 24. Shared vs Unique Biomarker Associations Across Outcomes . Trait: 
outcome. N Associations: number significant (5% FDR) biomarker-outcome associations. N 
Unique Associations: number of significantly associated biomarkers that are only associated 
with that trait. N Shared Associations: number of associated biomarkers that are associated 
with at least one other outcome.  
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Supplementary Figure 43. Connectivity Across Outcomes. Showing the number of other 
outcomes (y axis) that each outcome (x axis) shares significant biomarker associations with.  
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Mega Omics 

 
Supplementary Figure 44. Effect size and 95% confidence intervals from regression of outcome 
predicted by the model and observed outcome in training and testing samples. These 
estimates are across outcomes (y axis) and between methods (panels) across omics.  
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Supplementary Figure 45. Variance Explained in Outcome by Clinomics Scores. FRS: 
Framingham Risk Score. E10.E14: Diabetes mellitus. E: All block E metabolism related disorders. 
I10.I15: Hypertensive diseases. E65.E68: Obesity and other hyperalimentation. I20.I25: Ischaemic 
heart diseases. 
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Chapter 5 Supplementary Information  

https://doi.org/10.7488/ds/3107  
Supplementary Table 25. Contributing Cohorts. For each cohort the full cohort name, study 
design, PMID, cohort description, ethics, matrix for proteomics, genotyping array, imputation 
panel, phasing software, imputation software, GWAS software and cohort specific 
acknowledgements.  

https://doi.org/10.7488/ds/3107  
Supplementary Table 26. 1,308 Significant SNP-Protein Associations. RSID: rsid, MARKERID: 

indicating chromosome position (b37) with the two alleles (alphabetical order),  SNPID: 
chromosome_position (b37), EFFECT_ALLELE: the effect allele, REFERECE_ALLELE: other allele, 
FREQ1: frequency of the effect allele, FREQSE: standard error of the average frequency across 
cohorts, MIN_FREQ: minimum frequency of the effect allele across cohorts, MAX_FREQ: 
maximum frequency of the effect allele across cohorts, BETA: effect size of effect allele on 
protein, SE: standard error of the coefficient estimate, PVAL: p-value, DIRECTION: direction of 
cohort level effect, HETISQ: heterogeneity I

2
 statistic, HETCHISQ: heterogeneity chi squared 

statistic, HETDF: heterogeneity degrees of freedom, HETPVAL: heterogeneity P-value, N: sample 
size, RQC_IMP: imputation quality score, CHR: chromosome, POS: position (b37), TRAIT: protein 
the variant is associated with, TYPE: cis- or trans-association, with cis defined as any variant 
within  1 Mb surrounding the coding region of the gene encoding the protein, p_s: whether the 
variant was discovered in the primary analysis or secondary (conditional analysis), pJ: the 

conditional joint p-value, NA if variant found in primary analysis, locus: indicating the 
independent locus the SNP-Protein association was assigned to, the name is the MARKERID of 
the top SNP of the assigned locus in Supplementary Table 27. 

https://doi.org/10.7488/ds/3107  
Supplementary Table 27. 592 Significant Loci. The association result with the lowest P-value is 
indicated for each loci. RSID: rsid, MARKERID: indicating chromosome position (b37) with the 
two alleles (alphabetical order), SNPID: chromosome_position (b37), EFFECT_ALLELE: the effect 
allele, REFERECE_ALLELE: other allele, FREQ1: frequency of the effect allele, FREQSE: standard 
error of the average frequency across cohorts, MIN_FREQ: minimum frequency of the effect 
allele across cohorts ,MAX_FREQ: maximum frequency of the effect allele across cohorts, BETA: 
effect size of effect allele on protein, SE: standard error of the coefficient estimate, PVAL: p-
value, DIRECTION: direction of cohort level effect, HETISQ: heterogeneity I 2 statistic, HETCHISQ: 
heterogeneity chi squared statistic, HETDF: heterogeneity degrees of freedom, HETPVAL: 
heterogeneity P-value, N: sample size, RQC_IMP: imputation quality score, CHR: chromosome, 

POS: position (b37), TRAIT: protein the variant is associated with, TYPE: cis- or trans-association, 
with cis defined as any variant within  1 Mb surrounding the coding region of the gene 
encoding the protein, p_s: whether the variant was discovered in the primary analysis or 
secondary (conditional analysis), pJ: the conditional joint p-value, NA if variant found in primary 
analysis, locus: indicating the independent locus the SNP-Protein association was assigned to, 
the name is the MARKERID of the top SNP. 

  

https://doi.org/10.7488/ds/3107
https://doi.org/10.7488/ds/3107
https://doi.org/10.7488/ds/3107
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Supplementary Figure 46. Underpowered to find cis-pQTL for 13 proteins. a) Indicates the SNP 
with the lowest P-value in the cis region for the protein specified. b) Manhattan plot for the cis 
region for the protein Ep-CAM with points indicating the -log10(p-value). c) Manhattan plot for 
the cis regions of the 12 remaining proteins with no significant cis-signals. Genome-wide 

significance threshold for the cis region (1 x 10-5) indicated in blue and Bonferroni significance 
threshold (1.18 x 10-7) indicated in red.   
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Supplementary Figure 47. Number of Cis & Trans pQTL per Protein. Histogram of the number of 
Cis and trans pQTL across proteins. 
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https://doi.org/10.7488/ds/3107  
Supplementary Table 28. Pleiotropic Loci. RSID: rsid of lead variant, Locus: 
chromosome_position build 37, indicating the 592 independent loci in Supplementary Table 27, 
count: Number significant SNP-Protein associations assigned to each independent locus. 

https://doi.org/10.7488/ds/3107  
Supplementary Table 29. pQTL from 22 previous GWAS of Plasma Protein Levels. 
hgnc_protein: human gene nomenclature committee (HGNC) protein names, snp: rsid, pub_p: P-
value in publication, hgnc_gene: human gene nomenclature committee (HGNC) gene names, 
study: publication, n: sample size, chr: chromosome, pos38: position (b38).  

  

https://doi.org/10.7488/ds/3107
https://doi.org/10.7488/ds/3107
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Supplementary Figure 48. Variance Explained by pQTL. Variance explained in protein level on 
the x axis and the SNP (effect allele indicated) and the associated protein on the y axis. Points 
are coloured based on whether the variants are cis- or trans-associated with the plasma protein 
level. Only variants that have a variance explained of >10% are shown.  
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Supplementary Figure 49. Number of pQTL increases with increasing SNP heritability. 
Estimates of heritability of the plasma protein levels on the y-axis with number of significant 
pQTL on the x-axis. Panels indicate the component of heritability. pQTL: the sum of the 
estimated variance explained in protein level from each of the lead variants. Polygenic: LDSC 
estimated SNP heritability excluding variants indexed by the lead variants. Total: the sum of the 
pQTL and Polygenic SNP heritability estimates.  
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Võsa (Cis) 431 265 102 5 101 261 
Võsa (Trans) 6852 765 90 2 90 765 
Cage 136 92 52 3 51 89 
Westra 147 121 82 9 82 121 
GTEx 965 642 156 72 150 590 

Supplementary Table 30. SMR-HEIDI: Association of Gene Expression and Protein Levels. eQTL 
Dataset: the eQTL dataset used for analysis. N Associations: the number of significant (within 
Dataset Bonferroni PSMR, PHEIDI 0.01) probe-protein associations. N Genes: the number of genes 

that probes in significant associations map to. N Proteins: the number of plasma protein levels 
that had significant associations. N Gene encoding protein: The number of associations where 
the probe maps to the gene that encodes the protein it was found associated with. N Proteins 
other Genes (Not gene encoding protein): number of proteins that were associated with the 
expression levels of genes other than the coding gene. N other Genes: the number of genes other 
than the coding gene the protein was significantly associated with.  
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Supplementary Figure 50. Density Plot of the number of different tissues pQTL colocalise with 
eQTL in. Results for strong evidence of colocalisation PP>0.8 and likely to colocalise PP>0.5.  
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Supplementary Figure 51. Lead Variant Annotation. a) number of pQTL lead variants assigned 
each rank by RegulomeDB indicating evidence for being located in a regulatory/functional 
region. b) Number of lead variants that have previously been reported as significantly associated 

(p<5 x 10-8) with complex trait GWAS, eQTL: expression QTL, pQTL: protein QTL, mQTL: 
metabolite QTL, methQTL: CpG dinucleotide methylation QTL. Type of variant indicated by 
colour: Cis, Trans or both Cis & trans for different proteins.  
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https://doi.org/10.7488/ds/3107  
Supplementary Table 31. Trans gene-Protein Relationships. TRAIT: the protein of interest, RSID: 
the rsid of the lead variants of the trans-pQTL in question, symbol: the symbols for the trans 
genes for that protein. Trans genes were defined as any gene whose coding region overlaps with 
a 1 MB window surrounding the lead variant of a trans-pQTL for that protein. known_int: 
indicating whether the trans gene had a known interaction with the protein of interest (1) or not 
(NA) in the STRING protein-protein interaction database (version 10). data_base: source 
database. KEGG: the KEGG pathway database, GO: gene ontology (GO) database of GO terms, 
PMID: pubmed. common_item: the commonality between trans gene and protein of interest. For 
queries against the KEGG database this is the pathway name_KEGG pathway ID, for queries 
against the GO database this is the GO term that the trans gene had in common with the protein 

of interest, for queries in pubmed, this is the pubmed ID for publications that mention both the 
trans gene and the protein of interest. 

https://doi.org/10.7488/ds/3107  
Supplementary Table 32. Phenoscanner Results.  

https://doi.org/10.7488/ds/3107  
Supplementary Table 33. Publicly Available Summary Statistics used for Genetic Correlations. 
Phenotype: trait, Name of Phenotype: name of phenotype as appears in figures, Source: 

Consortium/cohort of summary statistics, Author: first author of publication or Neale indicating 
http://www.nealelab.is/uk-biobank. PMID: PubMed ID of publication, File: name of file 
downloaded from source, URL: download link. 

https://doi.org/10.7488/ds/3107
https://doi.org/10.7488/ds/3107
https://doi.org/10.7488/ds/3107
http://www.nealelab.is/uk-biobank
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Supplementary Figure 52. Genetic correlations (rg) of plasma protein levels and complex traits. 
Estimates of genetic correlations of protein levels and complex traits and health risk factors 
calculated using high definition likelihood. The shade indicates the magnitude of the rg estimate 
with the colour denoting the direction of the correlation. 5% FDR correlations and those 
statistically significant after Bonferroni correction for multiple testing are indicated with (+) and 
(*) respectively. Proteins and complex traits are ordered based on hierarchical clustering of the 
correlation coefficient (rg).  
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https://doi.org/10.7488/ds/3107  
Supplementary Table 34. MR Outcomes. Indicating the MRBase & TwoSampleMR outcome id 
and full outcome name. Full Name: descriptive name of outcome. id: MRBase ID. year: year of 
publication. author: author of publication. consortium: consortium if study used a consortium. 
sex: sex of participants used in outcome study. pmid: pubmed ID for publication. population: 
ancestry of outcome study population. nsnp: number of SNPs in outcome study. sample_size: 
total samples size for outcome study. build: genome build used in outcome study. ncase: number 
of cases if case control study. ncontrol: number of controls if case control study. 

https://doi.org/10.7488/ds/3107  
Supplementary Table 35. Significant Mendelian Randomisation Results. exposure: exposure 
protein, outcome: full name of outcome (MRBase), method: indicating the MR method used, 
nsnp: the number of variants used as instruments in the MR analysis, beta: inferred causal effect 
estimate of protein level on outcome, se: standard error of effect size estimate, p: p-value of 
effect of protein level on outcome, correct_causal_direction: indicating the results of the Steiger 

test for directionality of the causal relationship, all were TRUE in this analysis indicating that the 
direction of effect is exposure to outcome, steiger_pval: the p-value for the Steiger test for 
directionality of causality, Q: Cochran's Q value for heterogeneity between instruments (NA for 
analyses with single SNPs as IVs), Q_df: the degrees of freedom for Cochran's Q statistic, Q_pval: 
p-value for Cochran's Q, with significant values indicating significant instrument heterogeneity 
therefore values of Q_pval>0.05 indicate no significant heterogeneity, egger_intercept: the 
intercept from MR-Egger, its divergence from zero indicating horizontal pleiotropy, pval: the p-
value for the egger_intercept, with significant (p<0.05) indicating evidence of horizontal 
pleiotropy, bi_dir: indicating whether there was significant evidence of a causal effect of 
outcome on exposure in bidirectional MR was performed (all 20 significant protein-outcomes 
relationships showed no significant evidence of causal effect of outcome on exposure therefore 

passed this sensitivity analysis), outcome_id, q: the adjusted MR p-value using Benjamini-
Hochberg method, coloc: the posterior probability of hypothesis 4 - that protein and outcome 
share a causal variant - results from colocalisation of pQTL used as instruments in the MR 
analysis and the outcome GWAS. 
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Supplementary Figure 53. Additional Sensitivity Analysis for Significant Proteins. Panels for 
each significant MR estimate the effect size and 95% confidence intervals (x axis) for the MR 
method or individual IV (y axis). Left hand panels show results of cis IVs only analysis and right-
hand panels show comparison of cis only and cis and trans combined termed pan.  



 274 

 

Protein MR 
Outcome 

Drugs Drug Status Drug Use Protein Location 

PlGF CHD Aflibercept Approved Branch Retinal Vein Occlusion With 
Macular Edema |Central Retinal Vein 
Occlusion With Macular Edema 
|Diabetic Macular Edema (DME) 
|Diabetic Retinopathy (DR) | Macular 
Edema |Metastatic Colorectal Cancer 
(MCRC) |Myopic Choroidal 
Neovascularization |Neovascular Age-
Related Macular Degeneration |Wet 
Age-Related Macular Degeneration 

Secreted to blood 

PRSS8 DBP 1-[4-
(hydroxymethyl)phenyl]guani
dine 

Experiment
al 

- 
Membrane/Secreted 

IL2-RA Crohns Denileukin diftitox 
Basiliximab 
Aldesleukin 

Approved 
Approved 
Approved 

Cutaneous T-cell Lymphoma (CTCL) 
Kidney Transplant Rejection 
Renal Cell Carcinoma 

Intracellular/Membrane 
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MMP-9 Crohns Minocycline Approved Bartonellosis, Brucellosis | 
Campylobacter fetus |Chancroid | 
Cholera | Conjunctivitis, Inclusion 
|Granuloma Inguinale | 
Lymphogranuloma Venereum 
|Nongonococcal urethritis 
|Periodontitis | Plague |Psittacosis | 
Q Fever | Relapsing Fever |Respiratory 
Tract Infections (RTI) |Rickettsia 
Infections | Rickettsialpox |Rocky 
Mountain Spotted Fever | Trachoma 
|Tularemia | Typhus Fever | 
Inflammatory lesions 

Secreted to Blood 

Captopril Approved Aldosteronism | Anatomic renal artery 
stenosis |Congestive Heart Failure 
(CHF) | Diabetic Nephropathy | Heart 
Failure | High Blood Pressure 
(Hypertension) |Hypertensive crisis 
|Non ST Segment Elevation Acute 
Coronary Syndrome |Raynaud's 
Phenomenon |Ejection fraction of 
40% or less Left ventricular 
dysfunction 
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PCSK9 CHD 
Chronic 
ischaemic 
heart 
disease 
MI 
LDL 

Alirocumab Approved Heterozygous Familial 
Hypercholesterolemia |Myocardial 
Infarction | Stroke |Unstable Angina 
Pectoris | Primary Hyperlipidemia Secreted to Blood 

Evolocumab Approved Atherosclerotic Cardiovascular 
Diseases |Heterozygous Familial 
Hypercholesterolemia |Homozygous 
Familial Hypercholesterolemia 

 

Inclisiran Approved Mixed Dyslipidemias | Primary 
Hypercholesterolemia 

 

TFPI Waist Circ 
Hypertensio
n 

Coagulation factor VIIa Approved Bleeding | Severe Bleeding 

Secreted to Blood 

Recombinant Human 
Dalteparin 

Approved Cardiovascular Events | Clotting | 
Deep Vein Thrombosis | Symptomatic 
Venous Thromboembolism |Venous 
Thromboembolism 

Andexanet alfa Approved Severe Life-threatening, 
uncontrollable Bleeding 

ADM Varicose 
veins 

- - - Intracellular/Secreted to 
blood 

CXCL16 DBP - - - Intracellular/Membrane/
Secreted to blood 

IDUA SBP - - - Intracellular 
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IL-27 BMI 
Hip Circ 
Crohn’s 

- - - 
Intracellular/Secreted to 

blood 

TNFRSF14 IBD 
MS 
Ulcerative 
colitis 

- - - 

Intracellular/Membrane 

Supplementary Table 36. Drug Target Status of Proteins with significant MR estimates. For each of the 11 proteins highlighted in our MR analysis: MR 
outcome is associated with. Drugs: the drugs the protein is a current target for. Drug Status: the status of associated drugs. Drug Use: phenotypes associated 
drugs are used to combat. Protein Location: location of the expressed protein in vivo (Human Protein Atlas

337
 available from http://www.proteinatlas.org). 

http://www.proteinatlas.org/
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Supplementary Table 37. Cohort Sample Sizes.  
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