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Abstract

i



This thesis aims to harness modern machine learning techniques to understand how

and why people interact in large and open, collaborative online platforms: task systems.

The participants who interact with the task systems have a diverse set of goals and

reasons for contributing and the data that is logged from their participation is often

observational. These two factors present many challenges for researchers who wish

to understand the motivations for continued contributions to these projects such as

Wikipedia and Stack Overflow. Existing approaches to scientific investigation in such

domains often take a “one-size-fits-all” approach where aggregated trends are studied

and conclusions are drawn from overview statistics.

In contrast to these approaches, I motivate a three-stage framework for scientific

enquiry into the behaviour of participants in task systems. First I propose a modelling

step where assumptions and hypotheses from Behavioural Sciences are encoded di-

rectly into a model’s structure. I will show that it is important to allow for multiple

competing hypotheses in one model. It is due to the diversity of the participants’ goals

and motivations that it is important to have a range of hypotheses that may account for

different interaction patterns present in the data.

Second, I design deep generative models for harnessing both the power of deep

learning and the structured inference of variational methods to infer parameters that

fit the structured models from the first step. Such methods allow us to perform max-

imum likelihood estimation of parameter values while harnessing amortised learning

across a dataset. The inference schemes proposed here allow for posterior assignment

of interaction data to specific hypotheses, giving insight into the validity of a hypoth-

esis. It also naturally allows for inference over both categorical and continuous latent

variables in one model - an aspect that is crucial in modelling data where competing

hypotheses that describe the users’ interaction are present.

Finally, in working to understand how and why people interact in such online set-

tings, we are required to understand the model parameters that are associated with the

various aspects of their interaction. In many cases, these parameters are given specific

meaning by construction of the model, however, I argue that it is still important to

evaluate the interpretability of such models and I, therefore, investigate several tests

for performing such an evaluation.

My contributions additionally entail designing bespoke models that describe peo-

ple’s interactions in complex and online domains. I present examples from real-world

domains where the data consist of people’s actual interactions with the system.
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Chapter 1. Introduction 2

Many online platforms rely on the motivation of their userbase to create the content

that their platform delivers (Ipeirotis and Gabrilovich, 2014). Examples of such “task

systems” include freely available, online encyclopedias like Wikipedia, Question and

Answer (Q&A) sites such as Stack Overflow (SO), citizen science platforms (Simp-

son et al., 2014) and even mapping applications such as Waze1, Prusik, and Fatmaps2.

However, due to the inherent diversity of a platform’s userbase, it can be a challenging

mechanism design problem to curate relevant rewards and pathways that ensure the

users are motivated and fulfilled in their contributions (Immorlica et al., 2015; Ander-

son et al., 2013).

A task system broadly consists of an online platform (e.g., SO or Waze) where

participants (e.g., users) work to complete tasks (e.g., ask or answer questions on SO

or log traffic events on Waze) on the platform (Segal, 2018). Importantly, each of the

participants in the task system can have a unique goal. For example, some SO users

ask questions with the goal of overcoming a challenge in their work or studies, other

users answer questions, sometimes with the goal of testing their knowledge (Hoernle

et al., 2020b), and still others, merely try to increase their online developer profile by

achieving as many badges and reputation points as possible. A task system must be

able to identify the major goals and working habits that are present in the user base

such that the environment can be designed to support the interaction of its users.

My thesis directly addresses this challenge by presenting a framework for under-
standing the behaviour of participants in task systems. This framework allows for

designing and testing models that can be fitted to the interaction data that are collected

from these online communities. The models’ fit to the data can be used to compare

different hypotheses for people’s behaviour, which stem from behavioural science re-

search, and thereby to validate the archetypal behaviours that are present in the inter-

action data from a task system’s userbase.

The remainder of this chapter provides an overview of the main content chapters of

this thesis. I also introduce the interesting (and sometimes novel) domains that I have

explored in my research. Studying and presenting examples of how to use the real-

world data that are generated from such domains is a theme throughout my research

and it forms an important contribution that I have made.

After the preliminary Background and Related Work Chapters A and 2, I present a

case study, in Chapter 3, where we apply the proposed framework to data from SO. We

1https://www.waze.com
2https://fatmap.com
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show the value of this methodology by identifying and characterising distinct groups

of different behaviour. In doing so, we validate a certain hypothesis from behavioural

science but we show that this only applies to a fraction of the user base. This chapter

corresponds to work that has been published at the 20th IEEE International Conference

on Data Mining (ICDM) in 2020 (Hoernle et al., 2020b).

In Chapter 4, I formalise the main inference task in this framework by identifying

how constraints can be introduced into a model of user behaviour. Inference over a

latent categorical variable is necessary to introduce different and competing hypotheses

for how people interact with task systems. Importantly, when there are two or more

different modes of interaction in a dataset, a model that aims to describe these data must

allow for the possibility of such diversity. This chapter corresponds to work that has

been submitted for peer review at the 36th AAAI Conference on Artificial Intelligence

2022.

The final content chapter, Chapter 5, addresses an important aspect of interpretabil-

ity in the framework. The proposed approach designs a model to implement hypotheses

from behavioural science. However, the nature of machine learning is that there are

still black-box and uninterpretable aspects to any complex model. Thus it is important

to have robust tests that allow for the comparison of the interpretability of competing

models. I investigate the design and evaluation of such tests in Chapter 5. I perform

this investigation in the context of another real-world domain: This is an immersive

exploratory learning environment where students interact together and with the sim-

ulation to learn about the causal and temporally delayed effect of their actions on an

environment. This chapter corresponds to work that has been published at the 30th

International Joint Conference on Artificial Intelligence 2020 (Hoernle et al., 2020a).

1.1 Contributions and Thesis Overview

The contributions of this thesis can be understood in the context of Figure 1.1. Here,

I have presented a version of Box’s loop that aims to distil the major undertakings

when investigating and validating hypotheses from data (Blei, 2014; Box and Hunter,

1962). In particular, I have tied the three undertakings to the specifics that should be

performed when attempting to understand how people behave when interacting with

task systems.

We first require a modelling phase, where we propose hypotheses about how people

might act in certain settings. It is important to define these hypotheses in terms of an



Chapter 1. Introduction 4

Figure 1.1: Overview of the main contributions of this thesis. Here, Box’s loop, showing

a standard Data Science investigation pipeline, has been tailored to the task of inferring

the behaviour of participants in task systems.

observable quantity that can be measured. For example, in Chapter 3, we use the

observed quantity count(actions)/day. The assumptions of the hypotheses should be

directly encoded into the allowable values for parameters in a model. In Chapter 4,

I explore how to perform this encoding when the assumptions of the model become

complex and atypical. I thereby allow for complex constraints in the form of a logical

program to dictate the parameters’ domain.

The inference step is performed separately from the modelling and the encoding

of domain assumptions. Here, we aim to fit parameter values to the hypotheses given

in step 1 (“Model”). In particular, a challenge arises in how to perform inference

over both categorical and continuous latent variables. The continuous latent variables

correspond to parameters that encode for the behavioural hypotheses, while the cate-

gorical variable allows inference to be performed between competing hypotheses. In

Appendix A I provide the necessary preliminaries to understand how inference in these

latent variable models is performed. In Chapter 3, I present an example of how this

is achieved, based on a case study on SO data. And in Chapter 4, I formalize these

inference tasks to allow for the specification of any set of behavioural models.

The final step is to criticise the model (1) on its fit to the data and (2) on its value

in understanding how people interact in task systems. Model evaluation is a well-

addressed subject in statistics and thus I use standard metrics of the likelihood of held-

out data to evaluate the fit of the models to unseen data. However, in Chapter 5, I

investigate how to evaluate a model based on its perceived interpretability to people. I

assign an interpretability score to different models, and I discuss a trade-off that may



Chapter 1. Introduction 5

be present between how interpretable a model might be and how well it fits the data.

In some cases, especially when comparing two models of different complexity, one

may achieve better statistical (e.g., predictive) performance while another might be

simpler for people to understand. This trade-off is especially important to consider

when investigating scientific hypotheses.

The main contributions of this thesis, therefore, touch on all three of the steps high-

lighted in Figure 1.1. These contributions are also summarised in the three conference

papers (two published and one under review) that each corresponds to the three con-

tent chapters of this thesis. However, I have worked on several other published works,

each connected to the themes that I have explored in this thesis. In Yanovsky et al.

(2019, 2021) we explored how the response of users to badge rewards is not homo-

geneous and we identified the presence of different groups of users in the SO dataset.

This work highlighted the need for a more detailed model of user behaviour and it was

highly inspirational for Chapter 3 and indeed much of the framework that this thesis

espouses.

In Geller et al. (2020), we modeled the interaction of students in a university course

discussion forum. Specifically, we identified traits that are associated with confusion

and we show that by using the students own use of hashtags, we can identify more

accurately, potential threads that display confusion. This work, along with Shillo et al.

(2019), where we modelled the creativity of users during an online ideation task, was

another example of how to use a machine learning solution to inform novel insights

about the behaviour of people when they contribute to a task system.

1.2 The Phantom Steering Effect in Q&A Websites (Chap-

ter 3)

Hull (1932) defined the goal gradient hypothesis as the tendency of animals to increase

their effort as they near a goal (e.g., rats run faster in a maze when they are closer to a

food reward). Kivetz et al. (2006) extended these results to humans, showing that by

framing (Kahneman, 2011) a reward in a particular way, customers can be influenced to

purchase coffee more frequently. The authors designed two types of loyalty card, one

type (the control) with 8 empty spaces and one type with 2 completed spaces and an

additional 8 empty spaces. Thus, both groups in the intervention study had to purchase

8 coffees before they received their reward of one free coffee. Their surprising result
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was that the customers in the second group (having two coffees already completed and

thus were relatively closer to their goal – 20% vs 0%) finished their cards faster than

the control group. This is an example of how a rewards can motivate behaviour from

their target audience.

Past work has shown that virtual badges “steer” people’s behaviour toward increas-

ing their overall contributions to online Q&A platforms (Anderson et al., 2013; Li

et al., 2012; Yanovsky et al., 2019). That is, users’ contribution levels rise as they

get closer to the threshold that is required for obtaining the badge, and they experi-

ence a sharp decline thereafter, returning to their baseline contribution levels. These

works all apply the goal gradient hypothesis from behavioural research (Hull, 1932) to

online domains and they use evidence from observational data collected from online

platforms to demonstrate the validity of this hypothesis in these domains.

In such settings, the mean of a large dataset has been used to study a population-

level response to an intervention (e.g., the presence of a badge). However, there is

no allowance for competing hypotheses that could also describe how users behave.

I show that we can build one model that contains two or more distinct hypotheses

for the data. The first is the null hypothesis that states people are not affected by a

badge reward: The users under this hypothesis do not change their behaviour around

a badge achievement event. A contrasting hypothesis is one that allows for adherence

to the goal gradient hypothesis. By allowing for both eventualities in one model, we

can perform inference over which of the users change their behaviour in response to

a badge and how this change is characterised. We thereby allow for the possibility of

heterogeneity in the users’ response to rewards.

Due to the variety of ways that a user can interact with a platform, it is critical

to allow for these different hypotheses when modelling the behaviour of users in task

systems. We show that by adopting this more nuanced view of user behaviour, we

arrive at more robust conclusions about steering in online domains. Specifically, we

show that the users who do change their behaviour appear to experience a much greater

effect than was previously identified. Unfortunately, we also show that a vast majority

of users on a platform who do achieve these rewards, do not experience the effects

of steering. Identifying this fact is important as future studies will be in a position to

design more relevant rewards that appeal to a greater portion of users.
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1.3 Constraining Deep Generative Networks by Domain

Knowledge (Chapter 4)

I present a general means for specifying constraints in a generative model. This for-

malises the empirical investigation introduced above by allowing any specification of

logical constraints for constraining the output domain of a network. Specifically, con-

straints can describe an expert’s prior knowledge about a domain (e.g., the predictions

of the goal gradient hypothesis). I explore how to encode these constraints directly and

tractably into a generative model.

We assume here that prior knowledge can be specified as a first-order logical for-

mula. This formula places a restriction on the allowable domain for a generative

model. Certain choices of observation distribution would place these constraints nat-

urally (e.g., a Poisson distribution implies the random variable being modelled is both

discrete and non-negative). However, in this framework, we look to introduce a flexi-

ble language for specifying more complex constraints. For example, in Chapter 3 we

will see that the predictions of the goal gradient hypothesis need to be encoded into a

model’s structure. Specifically, under the goal gradient hypothesis, users must expe-

rience an increase in the rate of behaviour before the goal is achieved and this should

return to a baseline level after the achievement of the goal.

I, therefore, propose a model that (1) accepts any general logical formula over the

target observation random variables, and (2) restricts the domain of the model to obey

these constraints. This goal of restricting a network’s output has been explored in

a number of contexts (Manhaeve et al., 2018; Xu et al., 2018; Fischer et al., 2019);

however, I show how it can be achieved in conjunction with a generative model. I

assume that the logical input can be compiled into a disjunctive normal form (DNF)

and I represent the choice of the correct term as a latent categorical variable in the

model. This naturally frames the problem as a latent variable problem and allows end-

to-end learning that benefits from the domain restrictions. By doing so, we can support

disjoint constraints (possibly modelling disjoint modes in the target distribution), and

the model learns a posterior assignment of data points to a specific mode.
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1.4 Interpretable Models for Understanding Immersive

Simulations (Chapter 5)

In designing models that provide useful insights into the behaviour of peoples’ inter-

actions in task systems, we have so far assumed that the models are interpretable by

construction. For example, the goal gradient hypothesis can be encoded into a model

by constraining certain parameters that are used to describe the changes to the users’

rate of interaction (as a function of time). The inclusion of a categorical variable that

reasons over the competing hypotheses, allows us to consider the parameters associ-

ated with each hypothesis in isolation. However, there are scenarios where it might be

useful to select a model, not only on its fit to data but also on how interpretable that

model is and how useful the insights from the model are. In this chapter, we investi-

gate one such setting — one where we design a new test for measuring interpretable

models.

This work used data from an exciting exploratory learning environment called Con-

nected Worlds (Mallavarapu et al., 2019; Hoernle et al., 2018) that is installed at the

New York Hall of Science. Here, students in groups of 10−20 interact with an envi-

ronment simulation and attempt to grow plants in different areas of the simulation. The

difficulty is that the shared resource (water) needs to be carefully managed to allow life

to flourish in all areas of the simulation. We designed time-series models that used the

log data from this simulation to attempt to infer periods of time where the students had

brought the simulation to a steady-state behaviour.

Specifically, we were interested in evaluating the interpretability of the various

models and as such we designed a number of tests that aimed to measure the inter-

pretability of a model. Higher scores on the tests suggest that one model might be

more interpretable than another. To this end, we ran an interpretability study that gath-

ered the responses from participants from Amazon Turk and a large undergraduate

university in Israel with a total of 240 experiment participants. We scored various

models based on their interpretability and we presented an example of how these mod-

els can be evaluated on this interpretability measure. Importantly, we also discuss how

a trade-off can be made between statistical measures of model fit (held out likelihood)

and the interpretability score when comparing models of different complexity.
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2.1 Introduction

This chapter relates my work to that of the broader community. First, I deal with the

related work of incentive and mechanism design in online spaces. This is presented

in Section 2.2 and the work relates to Chapter 3. Second, in Section 2.3, I consider

prior work that uses constraints in neural network design. The work presented in this

section is related to Chapter 4. Finally, I review the important work that has been done

on evaluating the interpretability of black-box models. This review is presented in

Section 2.4 and it relates to the work in Chapter 5.

2.2 Virtual Badges and the “Steering Effect”

I begin this section by relating to the general literature on the effect of badges in online

communities. I then present, in detail, the specific work of Anderson et al. (2013)

which helps to motivate the generative models that we develop in Chapter 3.

2.2.1 The Study of Online Badges

The goal-gradient hypothesis stems from behavioral research where animals were ob-

served to increase their effort as they approach a reward (Hull, 1932; Kivetz et al.,

2006). Kivetz et al. (2006) studied the behavior of different populations of people who

were working toward various rewards. They concluded that the goal-gradient hypoth-

esis also holds true for people. Subjects who received a loyalty card, which tracked the

number of coffees purchased from a local coffee chain, purchased coffee significantly

more frequently the closer they were to earning a free cup of coffee. The authors recog-

nized the existence of a group of participants who did not complete their coffee cards

for the duration of the study, and did not exhibit a noticeable change in their coffee

purchasing habits. They concluded that the loyalty card effect was constrained to the

population of participants who handed in their completed loyalty cards in exchange

for the free-coffee reward. However, the authors had no means for estimating what

fraction of users did not submit their cards and therefore they could not estimate how

pervasive this effect might be when evaluated on the population at large.

Anderson et al. (2013) and Mutter and Kundisch (2014) were the first to study the

goal-gradient hypothesis in online settings. They studied the observed effect of virtual

badge rewards on the behavior of participants in large Q&A sites. Both studies found

evidence that users increase their rate of work as they approach the badge threshold.
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However, they did not address the possibility that some users might achieve the badge

as a consequence of their routine interactions on the website rather than being steered

by the badge. There is a possibility that people’s actions are governed by motivations

other than badges. In Chapter 3, we extend these works by allowing for this possibility,

such that we can characterize the true changes to users’ behavior under the influence

of a badge, and distinguish this from the case where users do not noticeably change

their interaction behavior.

Other studies have independently confirmed that the presence of online badges in-

creases the probability that a user will act in a manner to achieve the badge, as well

as the rate at which the user will perform those actions (Kusmierczyk and Gomez-

Rodriguez, 2018; Yanovsky et al., 2019; Bornfeld and Rafaeli, 2017; Ipeirotis and

Gabrilovich, 2014). Kusmierczyk and Gomez-Rodriguez (2018) highlight the impor-

tance of modeling the “utility heterogeneity” among the users but they study badges

which have a threshold of 1 action and do not characterize how one might change

one’s behavior in the presence of the badge incentive. Yanovsky et al. (2019) study

the presence of different populations within the SO database by employing a cluster-

ing routine. They discovered notably different responses to the badge based on the

cluster that a user belongs to. Their study did not acknowledge the possibility that the

observed data might be consistent with a hypothesis that some users do not exhibit

steering. Anderson et al. (2014) studied the implementation of a badge system in a

massive open online course and they provide a prescriptive system for the design of

badges such that there is a maximum effect on the population. Zhang et al. (2019)

suggest that SO create new badges to encourage users to integrate helpful comments

into the accepted answers. They thereby present an example of how system designers

might use a badge to encourage a desired behavior from their user base. In contrast

to this, we suggest that badges have a limited scope and work should be completed to

understand other motivations that the users’ have such that better and more effective

rewards can be designed to motivate online communities.

2.2.2 A Utility Model for Steering

Most relevant to our work in Chapter 3 is the paper from Anderson et al. (2013) who

present a parametric description of a user’s utility when the user is steered by badges.

The model describes users as having their own preferred distribution from which ac-

tions are sampled. As users approach the required threshold for achieving a badge,
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they deviate from their preferred distributions. The deviation from the preferred dis-

tribution is controlled by the utility gained by achieving the badge and the cost for

deviating from the preferred distribution.

We let Ad
u refer to the distribution over the count of actions that a user u takes on

day d. The user’s utility is a function of Ad
u and it is the sum of three terms.1 The first

term, ∑b∈B IbVb, is the non-negative value that a user derives from already-attained

badge rewards (where Vb is the assumed value of a badge and Ib is the indicator that

the user has attained badge b). The second term, θEAd
u
[Uu,d+1(Ad+1

u )], describes the

user’s expected future utility, discounted by θ , when acting under the distribution Ad
u .

The final term, g(Ad
u,P

d
u ), is a cost function that penalises the user for deviating from

the preferred distribution Pd
u on that day. The cost g represents the unwillingness of

the users to change their behavior, and it is in tension with the users’ desire to achieve

future badges.

We note that the strictly positive “badge value term” (∑b∈B IbVb) and the strictly

negative “cost term” (g(Ad
u,P

d
u )) could be represented by one “reward” term (allowed

to be both positive or negative). However, Anderson et al. (2013) make assumptions

about the convexity of the cost term and thus find it useful to make this distinction. It

is due to the need for such assumptions that we motivate for modeling the behaviours

directly and not an abstract reward that might be hard to quantify.

The utility on day d for user u is then (Anderson et al., 2013):

Uu,d(Ad
u) = ∑

b∈B
IbV b

u +θEAd
u
[Uu,d+1(Ad+1

u )]−g(Ad
u,P

d
u )

It is important to note that the cost term g is non-zero only when users deviate

from their preferred distribution Pd
u . As such, this model assumes users deviate only to

attain the value from the badge and only if that value outweighs the cost that is paid for

deviating. This means that a deviation on the rate of actions which are incentivised by

the badge must be an increase before the badge is achieved and cannot be an increase

after the badge is achieved (under a standard utility-theoretic assumption that all the

utility of the badge is conveyed to the user upon receipt of the badge). We will make

these same assumptions in the models presented in Chapter 3.

This utility-based model presents a compelling description of how people respond

to badges; however, it was not evaluated or tested by fitting it to specific data from
1Our notation differs slightly from that of Anderson et al. (2013). Anderson et al. (2013) uses a

parameter xa to refer to a user’s distribution over the next action. We rather use Ad
u to denote the

distribution over the count of actions on a particular day. The two are linked (the distribution over the
next action influences the count of actions on a specific day), however, we choose to model directly the
data that is available from SO rather than a quantity that we do not observe.
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SO. Rather, predictions of the model were compared to aggregated data from SO and

we show in Section 3.6 that the aggregated analysis from these count data can lead

to incorrect conclusions. The lack of analysis on individual level predictions limits

the credibility of the study as well as its practical value — it is difficult to apply the

utility-based model to the mechanism design problem of badge placement without a

means for determining the appropriate model parameters for a given community of

contributors.

In Chapter 3 we address the shortcomings of the utility-based approach by intro-

ducing a probabilistic model which allows us to use the vast literature on posterior

inference in such models to assist with parameter estimation (Blei, 2014; Rezende and

Mohamed, 2015; Kingma and Welling, 2014; Kingma et al., 2016; Ranganath et al.,

2014). The probabilistic model has two advantages over this prior work: (1) posterior

distributions for latent parameters in the model can be learnt from real-world inter-

action data and (2) the model’s fit to data can be used to test and update scientific

hypotheses (for example, in this paper we propose and validate that while some users

may steer in a similar way, there exist users who do not experience steering).

2.3 Incorporating Domain Constraints into the Training

of Deep Neural Networks

The integration of domain knowledge into the training of neural networks is an emerg-

ing area of focus. Many previous studies attempt to translate logical constraints into

a numerical loss. The two most relevant works in this line are the DL2 framework

by Fischer et al. (2019) and the Semantic Loss approach by Xu et al. (2018). DL2 uses

a loss term that trades off data with the domain knowledge. It defines a non-negative

loss by interpreting the logical constraints using fuzzy logic and defining a measure

that quantifies how far a network’s output is from the nearest satisfying solution. Se-

mantic Loss also defines a term that is added to the standard network loss. Their loss

function uses weighted model counting (Chavira and Darwiche, 2008) to evaluate the

probability that a sample from a network’s output satisfies some Boolean constraint

formulation. The work in Chapter 4 differs from both of these approaches in that we

do not add a loss term to the network’s loss function, rather we compile the constraints

directly into its output. Furthermore, in contrast to the works above, any network out-

put from the approach in Chapter 4 will satisfy the domain constraints, which is crucial
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in certain settings; e.g., safety critical domains.

In Chapter 4 we introduce the MultiplexNet approach. It is important to com-

pare the expressiveness of the MultiplexNet constraints to those permitted by Fischer

et al. (2019) and Xu et al. (2018). The constraints in MultiplexNet can consist of any

quantifier-free linear arithmetic formula over the rationals. Thus, variables can be com-

bined over + and≥, and formulae over¬, ∨ and∧. For example, (x+y≥ 5)∧¬(z≥ 5)

but also (x+ y≥ z)∧ (z > 5∨ z < 3) are well defined formulae and therefore well de-

fined constraints in our framework. The expressiveness is significant — for example,

Xu et al. (2018) only allow for Boolean variables over {¬,∧,∨}. While Fischer et al.

(2019) allow non-Boolean variables to be combined over {≥,≤} and formulae to be

used over {¬,∨,∧}, it is not a probabilistic framework, but one that is based on fuzzy

logic. Thus, the work in Chapter 4 is probabilistic like the Semantic Loss (Xu et al.,

2018), but it is more expressive in that it also allows real-valued variables over sum-

mations too.

Hu et al. (2016) introduce “iterative rule knowledge distillation” which uses a stu-

dent and teacher framework to balance constraint satisfaction on first order logic for-

mulae with predictive accuracy on a classification task. During training, the student

is used to form a constrained teacher by projecting its weights onto a subspace that

ensures satisfaction of the logic. The student is then trained to imitate the teacher’s

restricted predictions. Hu et al. (2016) use soft logic (Bach et al., 2017) to encode

the logic, thereby allowing gradient estimation; however, the approach is unable to

express rules that constrain real-valued outputs. Xsat (Fu and Su, 2016) focuses on

the Satisfiability Modulo Theory (SMT) problem, which is concerned with deciding

whether a (usually a quantifier-free form) formula in first-order logic is satisfied against

a background arithmetic theory; similar to what we consider. They present a means for

solving SMT formulae but this is not differentiable. Manhaeve et al. (2018) present a

compelling method for integrating logical constraints, in the form of a ProbLog pro-

gram, into the training of a network. However, the networks are embedded into the

logic (represented by a Sentential Decision Diagram (Darwiche, 2011)), as “neural

predicates” and thus it is not clear how to handle the real-valued arithmetic constraints

that we represent in MultiplexNet.

Chapter 4 also relates to work on program synthesis (Solar-Lezama, 2009; Jha

et al., 2010; Feng et al., 2017; Osera, 2019) where the goal is to produce a valid pro-

gram for a given set of constraints. Here, the output of a program is designed to meet

a given specification. These works differ from Chapter 4 as they don’t focus on the
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core problem of aiding training with the constraints and ensuring that the constraints

are fully satisfied.

Other recent works have also explored how human expert knowledge can be used

to guide a network’s training. Ross and Doshi-Velez (2018); Ross et al. (2017) ex-

plore how the robustness of an image classifier can be improved by regularizing input

gradients towards regions of the image that contain information (as identified by a hu-

man expert). They highlight the difficulty in eliciting expert knowledge from people

but their technique is similar to the other works presented here in that the knowledge

loss is still represented as an additive term to the standard network loss. Takeishi and

Kawahara (2020) present an example of how the knowledge of relations of objects can

be used to regularise a generative model. Again, the solution involves appending terms

to the loss function, but they demonstrate that relational information can aid a learning

algorithm. Alternative works have also explored means for constraining the latent vari-

ables in a latent variable model (Ganchev et al., 2010; Graça et al., 2007). In contrast

to this, we focus on constraining the output space of a generative model, rather than

the latent space.

Finally, we mention work on the post-hoc verification of networks. Examples in-

clude the works of Katz et al. (2017) and Bunel et al. (2018) who present methods

for validating whether a network will operate within the bounds of pre-defined restric-

tions. Our own work in Chapter 4 focuses on how to guarantee that the networks

operate within given constraints, rather than how to validate their output.

2.4 Evaluating the Interpretability of Machine Learning

Models

Doshi-Velez and Kim (2017) suggested three tests to evaluate how interpretable a

model’s representations are to people. Forward Simulation: requires a human evalua-

tor to predict the output of a model for a given input. Binary Forced Choice: requires

an evaluator to choose one of two plausible model explanations for a data instance.

Counterfactual Simulation: requires an evaluator to identify what must be changed in

an explanation to correct it for a given data instance.

In follow-up work Lage et al. (2018) propose a model selection process that con-

siders both a model’s accuracy and its degree of interpretability, according to one of

the above tests. They provide a framework for iteratively optimizing the interpretabil-
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ity of a model with a human-in-the-loop optimization procedure. Their work applied

this framework to tests in the lab in which human judgment was used to optimize su-

pervised learning models. Other works that studied interpretability tests for supervised

learning settings include Wu et al. (2018); Ribeiro et al. (2016); Choi et al. (2016);

Lipton (2016). In Chapter 5, we extend this literature on interpretability by adapting

the model selection process to an unsupervised learning setting, that of segmenting

a multi-dimensional time series into periods. Moreover, we implement examples of

the Forward Simulation and Binary Forced Choice tests suggested by Doshi-Velez and

Kim (2017) and apply them to a high dimensional time series setting.

Our work was inspired by Chang et al. (2009) who were the first to show that

optimizing machine learning models in unsupervised settings using predictive log-

likelihood may not induce models that are interpretable to people. They focused on

the use of topic models for finding meaningful structure in documents and they com-

pared the models that are selected to optimize perplexity (analogous to held-out log-

likelihood) to the models that were selected by the human interpretability tests that

they designed. Chang et al. (2009) operationalized two Forward Simulation tests for

evaluating the interpretability of a topic model: word intrusion, in which the evaluator

is required to identify which of several words does not belong together in one topic

represented by the other words; and topic intrusion, in which the evaluator is required

to identify which of several topics is not associated with a given document. We extend

this work to a multi-dimensional time series domain and we introduce a Binary Forced

Choice test to complement the “intrusion” Forward Simulation test.
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3.1 Introduction

A well-known finding from behavioural science research is that efforts towards a goal

increase with proximity to that goal. This phenomenon, termed the goal-gradient hy-

pothesis, has been demonstrated in a variety of settings, from animal studies in the

lab to consumer purchasing behavior (Hull, 1932; Kivetz et al., 2006). More recently,

the goal-gradient effect was observed in people’s behaviour in online communities that

use virtual rewards, such as badges and reputation points, to increase users’ contribu-

tions to the site (Mutter and Kundisch, 2014; Anderson et al., 2013). In these contexts,

the goal-gradient hypothesis has been referred to as “steering” Anderson et al. (2013,

2014). Recent examples of online settings that use badges include communication

platforms such as MS teams, ride-sharing platforms such as Lyft and online learning

platforms such as Duolingo.

In this chapter, we study the steering phenomenon, in one such community, that

of Stack Overflow (SO), where users can acquire badges and obtain reputation points

for making different contributions to the platform, such as editing or voting on posts.

We identify who exhibits steering, who does not, and how this steering behaviour can

be characterised from observational data. Our surprising result is that a large popula-

tion (at least 60%) of highly active badge achievers, do not appear to exhibit steering

towards those badges.

We present a generative model of steering which models users as having default ac-

tivity rates that they can deviate from when approaching the requirements for achieving

a badge. The model can fit a complex multimodal distribution over the parameters that

govern users’ activities. This allows it to capture different levels of steering in the

population. We apply the model to data collected from thousands of SO users, and

investigate the following research questions:

1. Are all badge achievers affected by the steering (or goal-gradient) hypothesis in

the same way?

2. If some users do not steer, what portion of the population falls under this cate-

gory?

3. Does the presence of these users in the dataset change any conclusions that were

previously drawn about the phenomenon of steering?

Our results revealed the following insights: First, more than 60% of the users are

not steered, in that they exhibit a consistent activity rate in SO that is not affected
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by the badge. We prove that a “bump” in the activity that is conveyed by prior work

arises as an artefact of centring the data on the date of badge achievement (Anderson

et al., 2013; Yanovsky et al., 2019). Conceptually, given i.i.d draws from a static,

non-negative distribution (e.g., draws from a Poisson distribution with a constant rate

parameter), we are interested in studying the mean value of the draw that crosses some

predefined threshold. A larger draw is more likely to cross the threshold than any other

draw and thus the mean of the draw that crosses the threshold is higher than the mean of

the original random variable. It is also evident that a draw of 0 is always possible from

a Poisson distribution. However, 0 makes no progress toward crossing the threshold,

this fact alone means the mean of the draw that crosses the threshold must be higher

than the original distribution’s mean. We call this phenomenon the Phantom Steering

Effect and we formalise this intuition with a discussion and a proof in Appendix B.1.

Second, about 5%− 30% of users are steered, in that they dramatically increase their

rate of activity before achieving the badge. It is the effect that this small population

of steered users has on aggregate measures that have led to the previous and broader

claims of steering (Anderson et al., 2013; Yanovsky et al., 2019; Mutter and Kundisch,

2014). Third, a large portion of these steered users decrease their activity rate beyond

what is claimed in prior work (Anderson et al., 2013), reaching close to 0 after the

badge has been achieved. Our conclusions are supported by responses to a user survey

that included 70 active SO participants, in which only 24% of participants selected

badges as a motivating factor for their contribution.

We extend our approach to modelling people’s behaviour under another popular

incentive mechanism in SO, that of reputation points thresholds. When users cross pre-

defined thresholds, they earn privileges on the site. For example, crossing 200 points

results in a reduction of advertisements; 1K points denotes users as “established” and

gives them the option to see the total count of both up and down votes on a post; and

20K points unlocks further editing, deletion and un-deletion privileges. There are other

thresholds, all associated with privileges on SO that can be found on the SO webpage.1

We argue that crossing a threshold and earning the associated privileges, can be viewed

in the same light as earning a badge (Immorlica et al., 2015). Thus, in this work, we

occasionally refer to the achievement of a reputation threshold and the achievement of

a badge synonymously. This investigation applies the same model used for badges to

the reputation point threshold and investigates whether the above hypotheses hold in

this new setting.

1https://stackoverflow.com/help/privileges/
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Our results revealed that more than 90% of the threshold achievers were not steered

by the threshold. For the small minority of users that did change their behaviour, this

change mirrored that from the badge study. Moreover, we find an inconsistency be-

tween the qualitative, self-reported results from the user survey and the computational

results that are presented. Users claimed that the privileges were a motivating factor

towards further contribution to SO but our computational results suggest that the ef-

fect is limited. As such, we posit that such rewards may still contribute towards an

ecosystem that can keep users engaged even if the goal gradient effect is not directly

displayed.

Our study has important ramifications for system designers who invest resources

into the implementation of badge rewards systems and for researchers who wish to

understand the factors that contribute towards users’ continued participation in online

communities. It provides a sobering perspective on the efficacy of badges and repu-

tation point thresholds as effective incentives, in that for much of the population, the

steering effect does not appear to hold. This does not mean that the ecosystem fails to

incentivise users. It is possible that rewards that foster a “sense of community” (Im-

morlica et al., 2015) engage users toward continued contribution. However, our results

do suggest that the steering effect (goal gradient hypothesis) holds only in a limited

capacity (Anderson et al., 2013; Mutter and Kundisch, 2014).

3.1.1 Contributions

In the work that follows, I was the main contributor to this project. I designed the ex-

periments, implemented the algorithms for the experiment, designed the user study and

deployed and collected these data. My co-author, Greg Kehne, helped greatly in pro-

viding the mathematical expertise that resulted in our proof in Section 3.6. Of course,

this chapter would not have been possible without the guidance from our supervisors

Kobi Gal and Ariel Procaccia.

3.2 Modeling User Activities

We model users’ activities in SO as a distribution over their action counts. The model

aims to incorporate the major aspects of the utility model from Anderson et al. (2013)

but it frames the problem such that parameters can be estimated from data and the

models can be tested on their fit to unseen user action data to allow for model compari-
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son (Box and Hunter, 1962; Blei, 2014). Moreover, the model allows for different users

to experience different levels of steering allowing for a more detailed investigation into

the steering phenomenon.

3.2.1 A Generative Model of Steering

Let Pu be a latent parameter that controls the rate of activity for user u; this is the

preferred distribution of user u. Pu induces a probability distribution over the action

counts Au of user u. Let β denote the deviation of the user’s activity from Pu as a result

of steering. The observed data for each user, Au, consists of daily action counts for

a predetermined number of weeks before and after achieving the badge. Thus, for D

days of interaction, Pu, Au and β are all vectors of length D.

Figure 3.1 presents four plausible generative models of user behaviour in SO where

each model presents an increasingly complex description of how people might respond

to badge incentives. White circles denote latent random variables and coloured cir-

cles denote observed random variables; solid lines represent conditional dependence

between the random variables. Model 0 (Figure 3.1, left) describes a non-steering sce-

nario, in which the observed action counts, Au, depend only on the user’s preferred

distribution, Pu. Model 1 (Figure 3.1, center-left) is a steering model in which all users

deviate systematically from Pu in a manner that is controlled by β . As the values for β

increase (above 0), the users experience an increased activity rate (above their preferred

distribution). Similarly, as β decreases (below 0), the users experience a decreased ac-

tivity rate. Model 1 assumes that all users are steered in the same way. Model 2 (Fig-

ure 3.1, center-right) relaxes this assumption by introducing a user-specific Bernoulli

parameter Su ∈ {0,1} dictating whether or not user u adheres to the effect of β . Fi-

nally, we introduce Model 3 (Figure 3.1, right) which allows for K different deviations

where each deviation, β k, describes a different response to the badge incentive. For

this model, Su ∈ {0, . . . ,K} now represents a Categorical random variable that selects

which deviation, β k, that user u adheres to.

The parameter β , which controls how a user responds to a badge, is a vector of

length D (each day relative to the date of badge achievement). Reflecting the intuition

that steering positively influences a user before the badge achievement, we constrain

β to be strictly positive before day 0 — the day when the user achieves the badge.

Moreover, for the Models 1 and 2, we constrain β to be strictly negative after this day

to reflect the intuition that a user gains no further utility from the badge once it has
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Deviation from Pu Model 0 Model 1 Model 2 Model 3

β 1 Set to 0; No deviation. X X X X

β 2 Non-negative before badge;

Non-positive after badge.
X X X

β 3 Non-negative before badge;

0 after badge.
X

Table 3.1: Table detailing the constraints on the β k parameters and which models these

parameters apply to

been achieved (and thus does not work harder than his preferred distribution Pu). β

therefore implicitly includes the trade-off between the cost function g and the badge

utility V that is discussed in Section 2.2.2. We relax this second constraint for Model

3 to test the hypothesis that users maintain their base rate of activity well after the

achievement of the badge, as is described by Anderson et al. (2013); Yanovsky et al.

(2019).

Model 3 includes three possibilities for β k; k ∈ {1,2,3}. β 1 sets the deviation to

0 implying no deviation and capturing the assumptions of Model 0. β 2 uses the same

assumptions from the Models 1 and 2 above in that β 2 is strictly positive before the

badge is achieved and strictly negative after this day. Finally, β 3 is strictly positive be-

fore the badge is achieved but it is set to 0 after this day. These details are summarised

in Table 3.1.

3.2.2 Likelihood of Action Counts

In this section, we define the parameters that govern the distribution over users’ ac-

tion counts in SO. We wish to describe a variety of behaviours, including users who

contribute sporadically and those who are more consistent. We therefore model action

counts using a zero-inflated Poisson distribution. The zero-inflated Poisson distribu-

tion has a rate parameter, λ d
u , and a Bernoulli probability, αd

u , associated with each

user u and each day d of interaction. The Bernoulli parameter, αd
u , describes the prob-

ability that user u is active or not on a given day d. The rate parameter, λ d
u , describes

the expected count of actions that the user will perform under a Poisson distribution,

conditioned on the user being active on the platform. Note that a user can be active on

the platform without acting (e.g., logs on to the SO website but does not contribute).

Conceptually, this would correspond to drawing a 1 from the Bernoulli distribution but

a count of 0 actions from the Poisson distribution.
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Figure 3.1: Model 0 (baseline model) has no notion of a badge — only a user’s preferred

distribution induces the distribution over the observed actions. Model 1 allows for a

global badge deviation (β ) from a user’s preferred distribution and it is experienced by

all users. Model 2 has a user-specific strength parameter (Su) that selects whether or

not user u adheres to β . Model 3 allows for multiple parameters (β k,k ∈ 1, . . . ,K) that

the users might adhere to, in this model (Su) becomes a switching variable that chooses

between the β k parameters.

The probability that user u performs m actions on day d is presented in (3.1). We

refer to the parameters αd
u and λ d

u as a user’s rate parameters for day d.

Pr[Ad
u = m] =

(1−αd
u )+αd

u Pois(0 | λ d
u ), if m = 0

αd
u Pois(m | λ d

u ), otherwise
(3.1)

3.2.3 Deriving the Rate Parameters αu and λu

This section connects the rate parameters, αu and λu, to the generative models of Sec-

tion 3.2.1. Each of Pu, β k and Su includes one component for αu and one component

for λu. As such, for D days of interaction, Pu = (Pu,α ,Pu,λ ) comprises two real-valued

vectors, each of length D. Pu,α is the user’s preferred distribution that is associated

with αu and Pu,λ is the user’s preferred distribution associated with the parameter λu.

Similarly, β k = (β k
α ,β

k
λ
) comprises two real-valued vectors of length D that are asso-

ciated with αu and λu respectively. Finally, Su is a tuple of two Categorical variables

(of order K) that selects among the steering parameters β k. When there is only one

steering parameter, Model 2 is accurately described by Model 3 by setting K = 2 and

β 1 := 0. In this special case, the variable Su becomes a Bernoulli random variable that

indicates the presence (or lack thereof) of the steering parameter β 2. As such Model 2

is a simplification of Model 3; similarly, Models 0 and 1 can be seen to simplify Model
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2.

Equation (3.2) derives a vector of probability values αu (one for each day of inter-

action) as the element-wise sigmoid transformation of a vector that is the addition of

the user’s preferred distribution Pu,α with β
j

α where β
j

α is the steering parameter that is

selected by Su,α = j. Equation (3.2) also derives a vector of strictly positive rate values

λu (one for each day of interaction) as the element-wise softplus transformation of the

vector Pu,λ + S j
u,λ ×β

j
λ

. Below, 1 j refers to the indicator variable that is 1 if Su, . = j

and 0 otherwise.

αu = σ

(
Pu,α +

K

∑
j=1

1
j
Su,α
×β

k
α

)

λu = so f t plus

(
Pu,λ +

K

∑
j=1

1
j
Su,λ
×β

k
λ

) (3.2)

The complete generative description for Model 3 is as follows in Algorithm 1. Models

2, 1 and 0 are generated in the same way with the corresponding restrictions on β and

Su and the algorithms are given in Appendix B.4.

Algorithm 1 Generative Pseudocode for Model 3

Zu ∼N (0,I) {Sample Z from standard normal prior (see Section 3.3)}
Su ∼Categorical(1) {Sample S from Categorical Prior (see Section 3.3)}
Pu = fθ (Zu) {Compute Pu as a forward pass of the network fθ}
Use Eq. (3.2) to compute αu and λu from Pu and Su.

Sample Au from zero-inflated Poisson likelihood Eq. (3.1)

In practice, we wish to model the activity of users on SO as they progress through

time as accurately as possible. We, therefore, employ a recurrent model, and in our

experiments, we used a GRU with a single hidden layer (Chung et al., 2014). This

approach uses the product rule of probability to factor the joint distribution over actions

through time (recalling that the actions also depend on the users’ steering parameters,

Su, and their preferred distributions, Pu). Below the notation Au,<T is used to refer to

all actions users u performs before time step T :

p(Au,≤T | Pu,Su) = p(Au,T | Au,<T ,Pu,Su) . . .

p(Au,T−n | Au,<T−n,Pu,Su) . . . p(Au,1,Pu,Su)
(3.3)



Chapter 3. The Phantom Steering Effect in Q&A Websites 25

3.3 Amortized Variational Inference for Steering

A fully-specified generative model defines a joint distribution over some latent ran-

dom variables, Pu and Su, and the observed random variables, Au. The challenge is to

infer the posterior of the latent parameters given the data that was actually observed:

p(Pu,Su | Au). For all but a handful of conjugate models, the posterior is intractable to

derive analytically (Neal, 1993; Blei et al., 2003; Hoffman et al., 2013).

Rather, to infer the underlying parameters in the latent space, we use amortized

variational inference (Ranganath et al., 2014; Kingma and Welling, 2014; Kingma

et al., 2014). Amortized inference uses a neural network to encode a data point into the

latent parameters that are associated with its approximate posterior distribution. More-

over, the inference objective allows model comparison such that hypotheses about the

data can be tested (e.g., allowing us to validate the inclusion of the steering parameter,

Su).

Variational inference is a popular method for approximating the intractable poste-

rior distribution by introducing a different (and more easily sampled from and eval-

uated) distribution over the same latent variables: q(Au,Su) = q(Au)q(Su). By mini-

mizing the KL-divergence between q(Au,Su) and the true posterior p(Au,Su | Au), one

obtains an approximation to the true posterior (Hoffman et al., 2013).

It is important to note that minimizing the KL-divergence between q(Au,Su) and

p(Au,Su | Au) is equivalent to maximizing the variational objective, called the Evi-

dence Lower BOund (see Hoffman et al. (2013) for a derivation and discussion of

the ELBO). This ELBO derives its namesake from the fact that it lower-bounds the

marginal log-likelihood of the data under the assumptions of the model, a fact easily

derived in Equations 3.4 and 3.5, where Jensen’s inequality is applied in the second

line of Equation 3.5 (Bishop, 2006). It is due to this lower bound on the marginal log-

likelihood, that it is also common to use the ELBO for model comparison, as is done

in Section 3.5.1 (Burda et al., 2015).

log p(Au) = log
∫

∑
Su

p(Au,Pu,Su)∂Pu

= log
∫

∑
Su

q(Pu,Su)
p(Au,Pu,Su)

q(Pu,Su)
∂Pu

(3.4)

The second line in Equation 3.4 can be recognised as computing the expectation

of p(Au,Pu,Su)
q(Pu,Su)

with respect to the approximating distributions q(Pu,Su) = q(Pu)q(Su).
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Moreover, we assume q(Pu) exists in a distributional family where it is possible to

compute the pathwise derivative via the reparameterisation trick (Kingma and Welling,

2014). As the steering parameter, Su, is not continuous, this same reparameterisation

cannot be done. It is possible to replace the Categorical variable with a continuous

approximation as is done by Maddison et al. (2017) and Jang et al. (2016); or, if the

dimensionality of the Categorical variable is small, it can be marginalised out (Kingma

et al., 2014). We choose this latter approach leading to the ELBO as defined in Equa-

tion 3.5.

log p(Au) = logEq(Pu,Su)

[
p(Au,Pu,Su)

q(Pu,Su)

]
≥ Eq(Pu,Su)

[
log

p(Au,Pu,Su)

q(Pu,Su)

]
= ∑

Su

Eq(Pu) [q(Su)(log p(Au,Pu,Su)− logq(Pu)− logq(Su))]

:= ELBO(Au)

(3.5)

Throughout this discussion, we have assumed that Pu is directly related to the rate

parameters α and λ , made explicit in Equation (3.2). However, we do not implement

this quantity directly. Rather, we represent Pu as the output from a transformation of an

isotropic Gaussian: Pu = fθ (Z) where Z is a standard normal, and fθ is a parameterised

network. This is done partly for convenience and partly as we are not interested in the

explicit posterior of Pu. Pu is therefore not a distribution in this construction, however,

should the case arise that we do need to explicitly model Pu, we can change the im-

plementation to correctly represent a valid distribution. For example, a normalizing

flow (Rezende and Mohamed, 2015) would correctly constrain Pu to be a distribution.

Therefore, following standard practice q(Z) is assumed to be an isotropic Gaussian

with µΦ(Au) and σ2
Φ
(Au) computed by an inference (encoding) network with parame-

ters Φ. The prior p(Z) is a standard normal Gaussian distribution (again emphasizing

that Pu = fθ (Z)). Similarly, the categorical encoding distribution q(Su) simply com-

putes the probability that user u belongs to class j, j ∈ {1, . . . ,K}.2

2All modeling and inference code can be found at the repository: https://github.com/
NickHoernle/icdm2020
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3.4 Data Domains for Empirical Study

We consider two types of threshold rewards that are present on SO. The first is the

threshold badge rewards that are awarded for completing common actions on the web-

site. Completing the required action directly progresses a user toward the threshold

for achieving the badge. The second type of threshold reward are the privileges that

are awarded for reaching a predefined number of reputation points. These privileges

“control what [users] can do on Stack Overflow [and users] gain more privileges by in-

creasing their reputation.”3 The privilege rewards are in contrast to the badge rewards

that we study in that the reputation point system requires feedback from other users, in

the form of accepts and upvotes, whereas a user can progress toward a threshold badge

directly by completing the requisite action (Anderson et al., 2013). We aim to inves-

tigate the prevalence of steering in these two settings and to document any structural

differences in how people respond to these different reward types.

We consider four common badge types on SO. Table 3.2 details the different badges

that we study. We present: Incentivised Action – the specific action(s) that the badge

is designed to incentivise; Threshold – the required number of that actions that should

be completed to achieve the badge; and, # Users – the number of users in the sam-

ple that have achieved the badge. Note that the Electorate badge incentivises one of

the same actions (question-votes) as the Civic Duty badge but it has a higher require-

ment for achievement. We have removed all the users who achieved the Electorate

badge from our study of the Civic Duty badge, to remove the confounding effect of

the Electorate badge on the users who achieved Civic Duty. The same holds for the

Copy Editor badge which incentivises the same action (edits) as the Civic Duty badge.

Additional details can be found about these badges, and others, on the SO website.4

If more than one action is directly incentivised by the badge (e.g., for the Electorate

badge), we model the combined activity by summing over the different action types.

The interaction data was kindly supplied by SO in an anonymized form and it consists

of the action counts per day of users on the website from January 2017 to April 2019.

Figure 3.2 presents the mean number of actions per day averaged across the entire

user base for 70 days before and 70 days after the users achieved the badge. We plot

only the actions that are directly incentivised by the badge. The steering effect, as

described by Anderson et al. (2013) and Mutter and Kundisch (2014), can be seen

3https://stackoverflow.com/help/privileges
4https://stackoverflow.com/help/badges
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Badge Incentivised Action Threshold # Users

Electorate Votes on Questions 600 5,701

Civic Duty Votes on Questions and Answers 300 20,880

Copy Editor Edits 500 750

Strunk & White Edits 80 3,101

Table 3.2: Table detailing the badge rewards under study

by the increase in the rate of actions leading into the badge achievement date. After

the badge has been achieved, the rate of activity rapidly drops and returns to a more

constant rate of interaction (Anderson et al., 2013). The steering effect is most evident

on the interaction data from the Electorate and Copy Editor users (Figure 3.2a) but

the same general increase and then decrease can be seen in the trends from the other

badges.
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Figure 3.2: Plot of the mean count of actions per user per day 10 weeks before and 10

weeks after the users achieved the corresponding badges. Notice the different limits on

the y-axis for the average number of actions that are performed.

Next, we consider four different reputation point thresholds that unlock different

privileges on SO. Users achieve reputation points on SO by completing several dif-

ferent actions and critically by having other users validate their contributions. For ex-

ample, users achieve reputation points by having their questions and answers upvoted,

by having their answers accepted or by having their edits accepted. Table 3.3 details

the different thresholds for gaining privileges that we study. We present: Threshold
– the required number of reputation points that should be achieved to unlock the priv-

ilege; # Users – the number of users in our dataset that have achieved the privilege;
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Threshold # Users Unlocked Privileges

1K 71,795 Established User: View the vote counts on posts.

2K 29,161 Edit Questions and Answers: Edits to posts are applied immediately without

being reviewed.

20K 1,316 Trusted User: Expanding editing, deletion and un-deletion privileges.

25K 966 Access to Site Analytics: Access to internal and Google site analytics.

Table 3.3: Table detailing the reputation privileges under study

and, Unlocked Privileges – a brief description of the privileges that are unlocked on

the website. Other reputation thresholds and their associated privileges can be found

on the SO website.5 The reputation data was obtained from the publicly available SO

data dump6 and it was filtered to users who joined SO after 2012/01/01. We study the

interaction data aggregated by week due to the sparsity of the actions through time.

Figure 3.3 shows the mean number of actions per week, averaged across users, for

20 weeks before and 20 weeks after crossing the defined reputation threshold. Differ-

ences in the rates of activity can be seen before and after the threshold was achieved;

with a higher rate before the threshold and a lower rate after the threshold. Again,

this appears to reflect the steering hypothesis — especially for the lower thresholds.

Moreover, different behaviours around the different reputation thresholds are evident.

The rates of answering are much lower for the lower thresholds than for the higher

thresholds.

A further point of interest is evident in Figure 3.3b: The rate of editing from these

users decreases to near 0 after the badge has been achieved. This is in comparison to

the 1K threshold where the change in editing behaviour appears symmetric around the

origin and the 20K and 25K thresholds where this rate is consistently low. A plausible

reason for this is that once a user crosses the 2K reputation threshold, they no longer

receive reputation points for editing posts.7 This provides evidence that, for some

users, the points that they receive for editing do serve to motivate their contributions.

3.5 Empirical Study

We begin by detailing the evaluation criteria for comparing the models, and for select-

ing the most appropriate model for each domain. Thereafter, we compile the results

5https://stackoverflow.com/help/privileges/
6https://archive.org/details/stackexchange
7https://meta.stackexchange.com/questions/201728
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Figure 3.3: Plot of the mean count of actions per user per day 10 weeks before and 10

weeks after the users achieved the corresponding reputation threshold.

from the models, for each of the domains, to investigate the conclusions that we can

draw about steering in online settings.

3.5.1 Model Comparison

For all models, we report two measures of performance: The evidence lower bound

(the ELBO), which is the lower-bound on the marginal log-likelihood of the data under

the model assumptions (Kingma and Welling, 2014; Hoffman et al., 2013; Rezende and

Mohamed, 2015); and the mean square error (MSE) of the model for reconstructing the

original number of actions for each user. To compute the ELBO, we use the importance

sampled weighted estimator (with K=10 samples) from Burda et al. (2015), shown to

produce a tighter bound on the true negative log likelihood of the model. Parameter

estimation is done in Pytorch and Adam is used to maximize the ELBO with an initial

learning rate of 0.01 (Kingma and Ba, 2014). The learning rate was decreased with an

exponential decay factor. We set the dimensionality of the latent space to m := 10.

We first report the results for the badge studies in Table 3.4. All models are trained

on 60% of the data, with 20% of the data left for a validation set for model selection

and 20% of the data is held out for a test set. Table 3.4 compares the performance of the

models on the same test set (the standard deviation is in parentheses). The results from

Table 3.4 show that Model 2 outperforms the other models achieving a higher bound

on the marginal log-likelihood (ELBO) and a lower mean-squared reconstruction error

on unseen data (MSE) on all instances except the Civic Duty (where it is still near-

optimal) and on the MSE metric for the Strunk & White badge. Models 1, 2 and 3
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Badge Model 0 Model 1 Model 2 Model 3

ELBO MSE ELBO MSE ELBO MSE ELBO MSE

Electorate −256.94(6.95) 2881 −254.6(6.19) 2855 −235(7.18) 2629 −239.0(7.59) 2717

Civic Duty −137.3(5.36) 798 −137.1(4.10) 794 −133.6(4.20) 761 −132.7(7.99) 754

Copy Editor −392.2(7.96) 10122 −409.1(6.86) 10003 −385.2(9.85) 9951 −408.9(5.28) 10609

Strunk & White −120.0(5.14) 669 −119.4(4.39) 655.1 −118.7(4.34) 654 −119.1(5.97) 651

Table 3.4: ELBO and MSE on held out data for badge study.

all outperform Model 0, suggesting that the inclusion of the steering parameter β does

increase the probability of the activity data. Similarly, Models 2 and 3 outperform

Model 1 which suggests that the steering strength parameter, Su, is a useful way to

segment the population of users. However, the additional complexity of Model 3 does

not appear to help the model in better describing the data. While the results do suggest

that models 2 and 3 do outperform models 0 and 1, the comparison of models 2 to 3

is not robust. The standard errors overlap and thus this interpretation could be due to

the experimental setup. It is entirely plausible that the goal gradient effect is not the

only factor influencing the behaviour of people and thus further investigate is required

to reach stronger conclusions.

Table 3.5 presents the results for the reputation thresholds study. We use the same

60%, 20% and 20% splits for the train, validation and test sets respectively. Due to the

large data sizes for the 1K and 2K thresholds, we limit the data to a maximum of 10K

users for each of the splits. Similar to the badge study, we report the ELBO and MSE

on the held-out test set. We also extend Model 2 to allow for an additional response to

the reward that might be present in the data: As a user unlocks a privilege, she might

choose to interact more on the website to explore the newly available features (Chou,

2019). Thus this model has an additional steering parameter, β 3, that is restricted to be

0 before the threshold is reached and non-negative after the threshold is reached. The

other models remain the same as those used in the badge study.

In general, the Models 2 and 3 do outperform Models 0 and 1; however, the differ-

ences in their performance is less pronounced than those observed in the badge study.

We also note that the standard error suggests the results could be due to chance. While

we are led towards the same conclusion as above that the steering parameter Su plays

an important role in segmenting the behaviour of the users, we do note that the simpler

models still capture the interaction dynamics well which suggests a more homoge-

neous set of reactions to the threshold. We choose Model 2 as the simplest model

that describes the data for these three thresholds (it is optimal for the 1K, 2K and 25K
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Threshold Model 0 Model 1 Model 2 Model 3

ELBO MSE ELBO MSE ELBO MSE ELBO MSE

1K −20.3(1.14) 90 −20.2(1.24) 88 −19.9(1.40) 87 −20.0(1.24) 87

2K −19.4(1.39) 53 −19.4(1.05) 52 −19.2(1.18) 50 −19.0(1.26) 50

20K −63.1(4.70) 315 −57.4(2.03) 263 −56.1(2.84) 260 −58.6(3.22) 268

25K −63.2(1.50) 417 −71.4(1.98) 511 −62.6(1.56) 435 −63.4(2.71) 455

Table 3.5: ELBO and MSE on held out data for reputation study.

thresholds and it is near-optimal for the 2K). In all cases, it is important to note how

well Model 0 performs, suggesting that many users do not, in fact, deviate from their

preferred distributions for interaction and the null hypothesis (that steering does not

occur) is a broadly good hypothesis for these reputation point threshold domains.

3.5.2 Analysis of Steering

This section studies separately the steering effect that is inferred by Model 2 on the

Electorate badge population (Section 3.5.2.1) and the effect inferred by Model 2 on

the 1K reputation threshold population (Section 3.5.2.2). Although we study in detail

only the Electorate badge, in particular, the conclusions that are reached for the other

badges are similar and thus we omit them for clarity; replicated plots for these domains

can be found in Appendix B.2. Similarly, our focus below is on the 1K threshold for

the reputation study. There are some subtleties regarding the behaviour of the SO users

when they cross the different thresholds; most notably, the user behaviour around the

higher thresholds appears to be different to that when they cross the lower thresholds.

When discussing these results, we note when the activity around a specific threshold

departs from the general trend that we observe. As with the badge study, the replicated

plots on the other datasets are available in Appendix B.3.

3.5.2.1 Analysis of Steering Towards Badges

We analyse the inferred parameters from Model 2 on the Electorate dataset to make

conclusions about how people steer towards badges. Model 2 allows for four different

types of users:

Type 1 (Non-Steerers): Users who do not deviate from their preferred distribution. In

this case Su = (0,0) and there is no effect of β on their activity.

Type 2 (Strong-and-Steady): Users who experience the full adherence to βλ on their

activity parameter λu but do not change how often they interact on the platform
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(e.g., in a given day, they will complete more work but they do not work on more

days). In this case Su = (0,1).

Type 3 (Dropouts): Users who appear to work on more days before the badge has

been achieved and on fewer days after the badge has been achieved, thereby

experiencing the effect of βα . They do not appear to change the number of

actions that they will perform on a given day. In this case Su = (1,0).

Type 4 (Strong-Steerers): Users who adhere to the full steering effect described by

β = (βα ,βλ ), both on how often they act on the platform and on how many

actions they are likely to perform on any given day. In this case Su = (1,1).

Figure 3.4 presents the inferred assignment of users to the four user types (when

considering the entire dataset). We can see that the most common assignment type is

Non-Steerers making up 63.2% (3602 users) of the user base. The next most com-

mon type is the Strong-and-Steady group (19.8%; 1130 users) followed by the Strong-

Steerers (13.5%; 772 users) and finally the Dropouts (3.5%; 197 users). A key finding

is that the largest group that is inferred in the data does not appear to respond to the

badge incentives in a way that has been predicted by previous works (Anderson et al.,

2013; Mutter and Kundisch, 2014; Yanovsky et al., 2019). We highlight the fact that

this Non-Steerer population is twice as large as the Strong-Steerer and Strong-and-

Steady groups together! While these “steering groups” form a smaller population of

users, it is the highly engaged interactions from these users that drive the aggregated

trends that we notice in Figure 3.2a.

We demonstrate the markedly different behaviour of the users from each group by

presenting samples from their interaction data, along with the models’ reconstruction

of their activity. Figure 3.5 shows 10 random samples from these users who achieved

the Electorate badge for each of the 4 user types. The plots show the true count of ac-

tions as a function of time alongside the expected number of actions under the assump-

tions of Model 2. The black vertical line, on day 0, corresponds to the day that the user

achieved the Electorate badge. The left-most column of Figure 3.5 presents samples

from the Type 1 (Non-Steerer) population. The counts of actions appear to show no

change around day 0; these users appear not to change their behaviour in the presence

of the badge. This is in stark contrast to all the other columns where there does appear

to be a change around day 0. On the right-hand column, we present samples from the

Type 4 (Strong-Steerer) population of user. It is important to note the high number of

actions (both expected and true) before day 0 when the badge was achieved. After day
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Figure 3.4: Cluster assignments (as inferred by Su from Model 2) for the users who

achieved the Electorate badge.

0, both the true and expected numbers of actions drops dramatically. The centre-left

column of Figure 3.5 presents samples from the Type 2 (Strong-and-Steady) popula-

tion. These users appear to increase the number of actions that they perform on a day

leading into the badge achievement. They continue to work even after the badge has

been achieved but at a reduced rate. This suggests that they have other reasons than

merely the badge, for contributing to SO. Finally, the centre-right column of the plot

shows samples from Type 3 (Dropouts). These users appear to hold a steady (and low)

rate of interaction leading to the badge achievement followed by a decrease in their

rate of activity after the badge is achieved.

Figure 3.6 shows the effect of steering on users, plotting β as a function of time.

The magnitude of the values of β indicates direct changes to the probability that the

user is active, as well as expected changes in the number of actions on a given day.

In accordance with related work, and the predictions of the goal gradient hypothesis,

users increase their rate of activity as they approach the day upon which they achieved

the badge (Anderson et al., 2013; Bornfeld and Rafaeli, 2017; Mutter and Kundisch,

2014).

A novel insight from our model is that the βα parameter, affecting both the Strong-

Steerer and the Dropout groups, decreases well below 0 after the badge has been

achieved. That is, users may decrease their activity well beyond their preferred dis-

tribution after they have achieved the badge. This result suggests that some of the

users who are steered strongly may stop contributing altogether once the badge has
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Figure 3.5: 10 samples of users’ interaction data, with the corresponding model re-

constructions, for each type of user as inferred by Model 2. The left column is the

Non-Steerer group who appear to show no change in their behaviour around the badge

achievement. Center-left is the Strong-and-Steady group that increase the number of

actions they perform in a given day before achieving the badge. These users mainly

continue to interact even after the badge has been achieved. Center-right presents

samples from the Dropout users who appear to decrease their activity after achieving

the badge. The right column presents the Strong-Steerer population who increase their

rate of activity strongly before achieving the badge but decrease their activity rate to

near 0 after the badge is achieved.
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been achieved. This would align with a utility theoretic model of the behaviour where

all the utility of the badge is conveyed upon receipt of the badge and thus there is no

reason to continue to contribute (Immorlica et al., 2015). This does not hold for all

of the users as evidenced by the comparatively large size of the Strong-and-Steady

population.
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Figure 3.6: Plot of the inferred magnitude of β : the expected deviation from a user’s

preferred distribution Pu under the assumptions of Model 2.

Figure 3.7 presents the mean number of interactions per user as a function of the

number of days until/after the badge is achieved. The four lines correspond to the four

groups that are inferred by Model 2. The mean interaction rates of these groups show

the vastly different behaviours that are described above. In particular, we make the

comparison of this plot to that in Figure 3.2a. We can see that the steering behaviour

that is evident in Figure 3.2a is mainly driven by the Strong-Steer and the Strong-

and-Steady groups (together accounting for 33.36% of the population). Notice that

the mean interaction count from the Strong-Steerer and Dropout groups drops past the

other groups to close to 0 after they achieve the badge. Of interest is the Strong-and-

Steady group (13.6%) who act exactly as Anderson et al. (2013) describes in that they

return to a baseline level of work and continue to interact after the badge has been

achieved. The thin dotted line for the Dropout user group is used to indicated that this

group consists of less than 5% of the user base.

The Non-Steered population (63.2%) show no change in their interaction rates be-

fore or after the receipt of the badge. There is a distinct uptick in the mean number

of question-vote actions on the day before and on the day of the badge achievement

(Figure 3.7, blue line). It is possible that this “bump” might mistakenly be seen as

the response of the users to the badge incentive. In fact, this bump is an artefact of

the analysis technique which centres trajectories around a threshold that is crossed by

the cumulative sum of the trajectory entries (see Section 3.6 and Appendix B.1 for a



Chapter 3. The Phantom Steering Effect in Q&A Websites 37

-70-63-56-49-42-35-28-21-14 -7 0 7 14 21 28 35 42 49 56 63 70
Days before/after threshold

0

10

20

M
ea

n 
# 

Ac
tio

ns Non-Steerers
Strong-and-Steady
Dropouts
Strong-Steerers

Figure 3.7: Mean number of actions per day for users who are classified by their steer-

ing parameters (Su). The thin dotted line for the Dropout user group indicates that this

group consists of less than 5% of the user base.

discussion and proof of this claim).

3.5.2.2 Analysis of Steering Towards Reputation Points

In studying the response of the users to the reputation thresholds, we use the same

grouping as that introduced above for the analysis of the Electorate badge. Figure 3.8

shows that the Non-Steerer population is again the dominant group that is inferred

in this reputation threshold dataset. These users account for approximately 96.0%

(68,941 users) of the user base whereas the Strong-and-Steady, the Dropouts and the

Strong-Steerers only account for 1.6% (1146), 0.04% (34) and 2.3% (1674) respec-

tively. The inferred fraction of Non-Steerers for the reputation thresholds is, therefore,

greater than what is inferred for the badges thresholds. This holds for all the reputation

thresholds and badges that we study in Appendices B.2 and B.3.

Figure 3.9 shows the mean plot of activity for the groups, as inferred by the Su vari-

able. The Non-Steering group is striking in that it shows the same low activity rates as

those observed in Section 3.5.2.1 but for an even larger fraction of the population. The

general trend that we observed in Figure 3.3a is driven by the < 5% of the population

who appear to respond to the badge. The Strong-and-Steady group shows the steering

effect by a rapid increase in actions into the goal achievement, followed by a return to

their base level of interaction. The thin dotted lines in the plot emphasise that each of

these groups consist of less than 5% of the users who achieved the 1K threshold.

The Strong-Steerer group that was inferred for the 25K threshold consisted of

5.3% of the population with the Strong-and-Steady accounting for 4.0% (Figures B.16

and B.17 where the line for the Strong-Steering group is dark to reflect this). The

higher portion of steerers for this population could be due to the lack of further thresh-
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Figure 3.8: Cluster assignments, as inferred by Su from Model 2, for the users who

achieved the 1K reputation point threshold.

olds/privileges but we also note that the sample size for this population is the smallest

and thus it could be due to the small sample who achieved this threshold.
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Figure 3.9: Mean number of actions per day for users who are classified by their steer-

ing parameters (Su) for the users who passed the 1K reputation threshold.

3.5.3 Limitations of Empirical Study

The empirical study of steering that is presented in this section has several limitations

which we list here. We only studying 4 of the threshold badges, 4 reputation thresholds

and the study is limited to studying user behaviour on one platform: SO.

There are alternative types of badges that are present on SO. For example, the
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Famous Question badge8 is awarded to a question that gets 10,000 views. It is not

clear how users can “work towards” a “qualitative” badge of this nature and thus our

study does not extend to badges of this type.

Secondly, we have focused our study on only 4 out of the total 26 privilege thresh-

olds that SO defines. Our overarching conclusion is that steering is a rare phenomenon

in these settings but there may be a threshold where users have exhibited a greater

steering effect than what we observed. Our choice of threshold ∈ {1K,2K,20K,25K}
was motivated by the fact that the 1K, 20K and 25K thresholds are three out of the five

“milestone” thresholds on SO. Moreover, the 2K threshold provides a very well defined

privilege that may have resulted in a behaviour change (as noted in Section 3.4).

A final limitation is that the study was conducted only on SO data. While the goal

gradient effect has been documented in many different domains Hull (1932); Kivetz

et al. (2006), and steering has even been noticed on other question and answer plat-

forms (Mutter and Kundisch, 2014; Yanovsky et al., 2019; Bornfeld and Rafaeli, 2017),

our results are limited to the behaviour of users on the SO platform.

3.6 Proving the Existence of Phantom Steering

The population of non-steerers in Figures 3.7 and 3.9 display a sharp uptick in the

mean of their action counts on the day before and on the day of the badge achievement.

We prove that such a bump arises as an artefact of centring the data on day 0, and it

is therefore expected to arise even in the absence of a steering effect. We show this

“phantom steering” bump occurs in the setting of Model 0 (Figure 3.1) where daily

action counts are independent draws from some unchanging latent distribution. Our

proof (and the intuition arising from it) suggests that a similar bump arises in the pres-

ence of steering as well. This bump may have served to inflate previous conclusions

about how users change their behaviour when working to achieve badges (Anderson

et al., 2013; Yanovsky et al., 2019; Mutter and Kundisch, 2014).

For users acting under Model 0 we present Theorem 3.6.1, which implies that for

sufficiently large badge thresholds the expected number of actions on day 0 (the day of

badge achievement) is greater than the expected number of actions on any other day.

We introduce this theorem via the following intuitive example: Suppose that the

badge threshold N is chosen randomly from some large range N ∈ [m,M] of possible

action counts. Let Sn be the cumulative number of actions from a user up to (and

8https://stackoverflow.com/help/badges/28/famous-question
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including) day n. As long as the user continues to act on the platform, Sn will eventually

traverse the interval [m,M]. Moreover, as the count of actions on any day n is a random

variable (drawn from the user’s preferred distribution), Sn is more likely to cross the

threshold N on a day on which the user makes relatively more contributions. This

claim holds even when actions are drawn under the no-steering assumptions of Model

0 which assumes that users’ action counts on each day are independent draws from

their preferred distribution Pu (which is not influenced by steering).

We formalize this intuition in Theorem 3.6.1, the proof of which appears in Ap-

pendix B.1. Recall that the random variable A0
u describes the number of actions that

user u performs on the day that they receive the badge. Denote the number of actions

required to achieve the badge by N, and let A0
u,N denote this random variable when the

badge threshold is N actions and user u acts according to Model 0.

Theorem 3.6.1. If Pu is bounded then:

lim
N→∞

E[A0
u,N ] = E[Pu]+

Var[Pu]

E[Pu]
.

This expected bump size holds in the limit as the badge threshold becomes large with

respect to the mean of Pu. For fixed Pu the convergence to this limit is exponential in

the threshold.

3.7 User Survey

As an additional form of validation for the analytical results that are presented in this

paper, we hosted a survey that recruited participants from SO to answer questions

relating to their motivations for contributing to the website. A clickable advertisement

was placed on SO and willing participants were directed to the survey. We paid each

survey participant $10 in an Amazon gift voucher for completing the survey. In total,

we received 86 responses from the community. We rejected 16 of these responses as

the account IDs that were associated with these users did not exist or the users had not

contributed to SO, making them not part of the target population. This left 70 valid

survey responses.

Figure 3.10 summarizes the responses to the question: “What are your reasons for

participating in SO?” The majority of users claimed to have personal and/or altruistic

reasons for contribution to the website with 87.1% claiming to contribute to increasing

their own knowledge (and 68.6% claiming to want to “contribute to the community”).
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In contrast to this, only 24.2% of the users selected the reason to “achieve badges”.

50% of users claimed that they had a goal of increasing their reputation score.
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Figure 3.10: Counts of responses to the reasons for contributing to Stack Overflow.

We also asked the users specifically about their voting contributions: “What mo-

tivates you to vote on other people’s posts?” The responses to this question are sum-

marised in Figure 3.11. Participants could select any combination of three different

reasons for voting: badge acquisition (“I wished to achieve one of the voting badges:

e.g., Supporter, Critic, Suffrage, Vox Populi, Civic Duty or Electorate”); altruism (“I

think it is important to provide feedback about other’s work”), or “other”. Only 12.9%

of participants who engage in voting actions reported badge acquisition is a motivating

factor for their work. (Eight of the participants in the study claimed to not engage in

voting actions and were not counted.)
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Figure 3.11: Counts of responses to the reasons for voting in Stack Overflow.

Together these results present further evidence to corroborate the model predictions

that only a minority of the SO participants are indeed steered by badges.

A surprising result, and one that stands in contradiction to the computational re-

sults presented in Section 3.5 is shown in Figure 3.12. Participants were asked if
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“Privileges that are associated with a high reputation score motivate [them] to achieve

a higher score?” The overwhelming response from the surveyed population was that

these privileges did motivate the users, however, our results from Section 3.5 suggest

that the steering hypothesis is weaker in this setting than in the badge setting (where

the reward is more explicit).
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Figure 3.12: Surveyed users’ answers to the question: “Do the privileges that are asso-

ciated with a high reputation score motivate you to achieve a higher score?”

We note the limitation of possible sample bias in the self-reported survey. A click-

able advertisement was placed on the SO website and from there users opted-in to

completing the survey. It is possible that the users who choose to complete such a

survey have a biased perspective toward the rewards on SO. These biases would then

show in our results. Moreover, we only had 70 users complete the survey and thus this

represents a very small sample from the SO user base.

3.8 Conclusion

We have presented a novel probabilistic model that describes how users interact on

the SO platform and in particular how these users respond to badge incentives and to

the reputation thresholds that unlock new privileges on the website. We demonstrated

how this model can be fit to the data that is provided by SO and we investigated the

distribution that is learnt over the latent space that describes the “steering effect”.

Our results provide a more informed understanding of how users respond to badges

in online communities. First, that some users do exhibit steering supports the claims

made by previous work. These users comprise approximately 30% of the users for the

badge studies and approximately 5% of the users for the reputation threshold studies.

The users in this group significantly increase their levels of activity leading into the

day when they achieve the goal. Some of the users, the “Strong-and-Steady” group,
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continue to interact at a base rate well after achieving the goal. This behaviour is well

documented by previous work (Anderson et al., 2013; Mutter and Kundisch, 2014;

Yanovsky et al., 2019; Li et al., 2012). However, other users, the “Strong-Steerers” and

the “Dropouts”, actually decrease their activity rates, well below any previous level

of activity, once the goal has been achieved. It is possible that assigning additional

badges, with thresholds beyond those already in place in SO will continue to motivate

such users.

Second, we identify the presence of a large population of users, approximately 60%

of the population for the badge study, who do not exhibit steering. In the case of the

reputation point thresholds, our results suggest that approximately 90% of the popula-

tion does not exhibit steering. These “Non-Steerer” users do not appear to change the

rate of their activity for the period under study (20 weeks for the badge studies and 40

weeks for the reputation points). Rather, they continue to act at the same rate well after

the goal has been achieved. This suggests that these users have reasons for performing

actions on SO which do not include specific receipt of the badge or privilege reward.

Third, any analysis of user behaviour around a goal must take into account the

presence of the phantom steering bump which has not previously been acknowledged

in the context of badges. This statistical artefact is model-independent and may lead to

inflated conclusions about the effect of badges on users’ behaviour.

Future work will extend the models of Section 3.2 to study the feedback mech-

anisms on Q&A websites such as SO. While our empirical results suggest a limited

effect of the reputation privileges, our survey results suggest that the reputation points

and the user-generated feedback that drives this system remains an important factor in

motivating further contributions from the community. We believe that this relationship

might depend on a tight feedback loop from action to response (vote or accept) and

back to action. For example, a user who answers many questions, and receives social

validation from many “upvotes” and “accepts” (leading to reputation points), might

experience an increased drive to continue interacting on the website. The model that is

presented in this paper can form the foundations for this work in that the β parameters

(i.e., the generic response to rewards) can be adapted to rather model this point process

style of feedback data. It will allow more detailed inference into who is motivated

by the current feedback mechanisms and it will provide insight into how the feedback

influences the behaviour of the users on such platforms.
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4.1 Introduction

An emerging theme in the development of deep learning is to provide expressive tools

that allow domain experts to encode their prior knowledge into the training of neural

networks. For example, in a manufacturing setting, we may wish to encode that an ac-

tuator for a robotic arm does not exceed some threshold (e.g., causing the arm to move

at a hazardous speed). Another example is a self-driving car, where a controller should

be known to operate within a predefined set of constraints (e.g., the car should always

stop completely at a stop street). In such safety critical domains, machine learning

solutions must guarantee to operate within distinct boundaries that are specified by

experts (Amodei et al., 2016).

One possible solution is to encode the relevant domain knowledge directly into a

network’s architecture which may require non-trivial and/or domain-specific engineer-

ing (Goodfellow et al., 2016). An alternative approach is to express domain knowledge

as logical constraints which can then be used to train neural networks (Xu et al., 2018;

Fischer et al., 2019; Allen et al., 2020). These approaches compile the constraints into

the loss function of the network, by quantifying the extent to which the output of the

network violates the constraints. This is appealing as logical constraints are easy to

elicit from people. However, the solution outputted by the network is designed to min-

imize the loss function — which combines both data and constraints — rather than

to guarantee the satisfaction of the domain constraints. Thus, representing constraints

in the loss function is not suitable for safety-critical domains where 100% constraint

satisfaction is desirable.

Safety-critical settings are not the only application for domain constraints. Another

common problem in the training of large networks is that of data inefficiency. Deep

models have shown unprecedented performance on a wide variety of tasks but these

come at the cost of large data requirements.1 We propose that, for tasks where domain

knowledge exists, we can also use this knowledge to structure a network’s training to

reduce the data burden that is placed on the learning process.

This paper directly addresses both of these challenges by providing a new way of

representing domain constraints directly in the output layer of a network. The proposed

approach represents domain knowledge as a logical formula in disjunctive normal form

(DNF). It augments the output layer of an existing neural network to include a separate

1For instance OpenAI’s GPT-3 (Brown et al., 2020) was trained on about 500 billion tokens and
ImageNet-21k, used to train the ViT network (Dosovitskiy et al., 2020), consists of 14 million images.
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transformation for each term in the DNF formula. We introduce a latent categorical

variable that selects the best transformation that optimizes the loss function of the data.

In this way, we can represent arbitrarily complex domain constraints in an automated

manner, and we are also able to guarantee that the output of the network satisfies the

specified constraints.

We show the efficacy of this MultiplexNet approach in three distinct experiments.

First, we present a density estimation task on synthetic data. It is a common goal in

machine learning to draw samples from a target distribution, and deep generative mod-

els have shown to be flexible and powerful tools for solving this problem. We show

that by including domain knowledge, a model can learn to approximate an unknown

distribution on fewer samples, and the model will (by construction) only produce sam-

ples that satisfy the domain constraints. This experiment speaks to both the data ef-

ficiency and the guaranteed constraint satisfaction desiderata. Second, we present an

experiment on the popular MNIST data set (LeCun et al., 2010) which combines struc-

tured data with domain knowledge. We structure the digits in a similar manner to the

MNIST experiment from Manhaeve et al. (2018); however, we train the network in

an entirely label-free manner (Stewart and Ermon, 2017). In our third experiment, we

apply our approach to the well-known image classification task on the CIFAR100 data

set (Krizhevsky et al., 2009). Images are clustered according to “super classes” (e.g.,

both maple tree and oak tree fall under the super class tree). We follow the example

of Fischer et al. (2019) and show that by including the knowledge that images within

a superclass are related, we can increase the classification accuracy at the superclass

level.

The chapter contributes a novel and general way to integrate domain knowledge in

the form of a logical specification, into the training of neural networks. We show that

domain knowledge may be used to restrict the network’s operating domain such that

any output is guaranteed to satisfy the constraints; and in certain cases, the domain

knowledge can help to train the networks on fewer samples of data.

4.1.1 Contributions

In the work that follows, I was the main contributor to this project. I designed the

experiments and implemented the algorithms for the experiment. For project ideation

and technical input on the logical constraints, I think my co-author Vaishak Belle and

as usual, thank you to Kobi Gal for his overall insights and writing expertise.
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4.1.2 Problem Specification

We consider a data set of N i.i.d. samples from a hybrid (some mixture of discrete

and/or continuous variables) probability density (Belle et al., 2015). Moreover, we

assume that: (1) the data set was generated by some random process p∗(x); and (2)

there exists domain or expert knowledge, in the form of a logical formula Φ, about the

random process p∗(x) that can express the domain where p∗(x) is feasible (non-zero).

Both of these assumptions are summarised in Eq. 4.1. In Eq. 4.1, the notation x |= Φ,

denotes that the sample x satisfies the formula Φ (Barrett et al., 2009). For example, if

Φ := x > 3.5∧ y > 0, and given some sample (x,y) = (5,2), we denote: (x,y) |= Φ.

x∼ p∗(x) =⇒ x |= Φ (4.1)

We aim to approximate p∗(x) with some parametric model pθ (x) and to incorpo-

rate the domain knowledge Φ into the maximum likelihood estimation of θ , on the

available data set.

Given knowledge of the constraints Φ, we are interested in ways of integrating

these constraints into the training of a network that approximates p∗(x). We desire

an algorithm that does not require novel engineering to solve a reparameterisation of

the network and moreover, especially salient for safety-critical domains, any sample

x from the model, x ∼ pθ (x), should imply the constraints are satisfied. This is an

especially important aspect to consider when comparing this method to alternative

approaches, namely Fischer et al. (2019) and Xu et al. (2018), that do not give this

same guarantee.

4.2 Incorporating Domain Constraints into Model De-

sign

We begin by describing how a satisfiability problem can be hardcoded into the output

of a network. We then present how any specification of knowledge can be compiled

into a form that permits this encoding. An overview of the proposed architecture with

a general algorithm that details how to incorporate domain constraints into training a

network can be found in Appendix 4.2.3.



Chapter 4. MultiplexNet: Towards Fully Satisfied Logical Constraints in Neural Networks48

4.2.1 Satisfiability as Reparameterisation

Let x̃ denote the unconstrained output of a network. Let g be a network activation that

is element-wise non-negative (for example an exponential function, or a ReLU (Nair

and Hinton, 2010) or Softplus (Dugas et al., 2001) layer). If the property to be encoded

is a simple inequality Φ : ∀x cx≥ b, it is sufficient to constrain x̃ to be non-negative by

applying g and thereafter applying a linear transformation f such that: ∀x̃ : c f (g(x̃))≥
b. In this case, f can implement the transformation f (z) = sgn(c)z+ b

c where sgn is

the operator that returns the sign of c. By construction we have:

f (g(x̃)) |= Φ (4.2)

It follows that more complex conjunctions of constraints can be encoded by com-

posing transformations of the form presented in Eq. 4.2. We present below a few ex-

amples to demonstrate how this can be achieved for a number of common constraints

(where x̃ always refers to the unconstrained output of the network):

a < x < b → x =−g(−g(x̃)+ k(a,b))+b (4.3)

x = c → x = c (4.4)

x2 > h(x1) → x1 = x̃1 ; x2 = h(x1)+g(x̃2) (4.5)

In Eq 4.3, we introduce the function k(a,b). This is merely a function to compute

the correct offset for a given activation g. In the case of the Softplus function, which is

the function used in all of our experiments, k(a,b) = log(exp(b−a)−1).

In Section: Experiments, we implement three varied experiments that demonstrate

how complex constraints can be constructed from this basic primitive in Eq. 4.2. Con-

ceptually, appending additional conjunctions to Φ serves to restrict the space that the

output can represent. However, in many situations, domain knowledge will consist of

complicated formulae that exist well beyond mere conjunctions of inequalities.

While conjunctions serve to restrict the space permitted by the network’s output,

disjunctions serve to increase the permissible space. For two terms φ1 and φ2 in φ1∨φ2

there exist three possibilities: namely, that x |= φ1 or x |= φ2 or (x |= φ1)∧ (x |= φ2).

Given the fact that any unconstrained network output can be transformed to satisfy

some term φk, we propose to introduce multiple transformations of a network’s uncon-

strained output, each to model the different terms φk. In this sense, the network’s output

layer can be viewed as a multiplexor in a logical circuit that permits for a branching
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of logic. If h1(x̃) represents the transformation of x̃ that satisfies φ1 and h2(x̃) |= φ2

then we know the output must also satisfy φ1 ∨ φ2 by choosing either h1 or h2. It is

this branching technique for dealing with disjunctions that gives rise to the name of the

approach: MultiplexNet.

We finally turn to the desideratum of allowing any Boolean formula over linear

inequalities as the input for the domain constraints. The suggested approach can rep-

resent conjunctions of constraints and disjunctions between these conjunctive terms,

which is exactly a DNF representation. Thus, the approach can be used with any trans-

formed version of Φ that is in DNF (Darwiche and Marquis, 2002). We propose to use

an off-the-shelf solver, e.g., Z3 (De Moura and Bjørner, 2008), to provide the logical

input to the algorithm that is in DNF. We thus assume the domain knowledge Φ is

expressed as:

Φ = φ1∨φ2∨ . . .∨φk (4.6)

If hk is the branch of MultiplexNet that ensures the output of the network x |= φk

then it follows by construction that hk(x̃) |= Φ for all k ∈ [1, . . . ,K]. For example,

consider a network with a single real-valued output x̃ ∈ R. If the knowledge Φ :=

(x ≥ 2)∨ (x ≤ −2), we would then have the two terms h1(x̃) = g(x̃)+ 2 and h2(x̃) =

−g(−x̃)− 2. Here, g is the network activation that is element-wise non-negative that

was referred to in Section: Satisfiability as Reparameterisation. It is clear that both

x1 = h1(x̃) and x2 = h2(x̃) satisfy the formula Φ.

It is worth considering the case where two (or more) constraint terms overlap in

the output domain of the network. For example, if the logic is Φ := (x ≥ 2)∨ (x ≤ 3)

we have the case where both φ1 = (x ≥ 2) and φ2 = (x ≤ 3) could be true (namely

if x ∈ [2,3]). In this case, it still holds that MultiplexNet could choose either h1 (the

transformation corresponding to φ1) or h2 (the transformation corresponding to φ2).

This is important, because, for a formula with K terms, there only needs to be a choice

of K options (and not K2− 1 in the event that combinations of branches were neces-

sary). Moreover, in this example, we can further see that Φ itself could be simplified to

Φ := x (specifying that there is no transformation necessary as there is no constraint).

Although we do not implement the compilation of the logic in this manner, we can

reasonably expect a compiler to make this form of simplification.

Lemma 4.2.1. Suppose Φ is a quantifier free first-order formula in DNF over {x1, . . . ,xJ}
consisting of terms φ1 ∨ . . . ∨ φK . Since each branch of MultiplexNet (hk) is con-

structed to satisfy a specific term (φk), by construction, the output of MultiplexNet will
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satisfy Φ: {x̂1, . . . , x̂J} |= Φ.

4.2.2 MultiplexNet as a Latent Variable Problem

MultiplexNet introduces a latent categorical variable k that selects among the different

terms φk,k ∈ [1, . . . ,K]. The model then incorporates a constraint transformation term

hk conditional on the value of the categorical variable.

pθ (x) = pθ (hk(x)|k)p(k) (4.7)

A lower bound on the likelihood of the data can be obtained by introducing a vari-

ational approximation to the latent categorical variable k. This standard form of the

variational lower bound (ELBO) is presented in Eq. 4.8.

log pθ (x)≥ Eq(k)[log pθ (hk(x)|k)+ log p(k)− logq(k)] := ELBO(x) (4.8)

Gradient-based methods require calculating the derivative of Eq. 4.8. However, as

q(k) is a categorical distribution, the standard reparameterisation trick cannot be ap-

plied (Kingma and Welling, 2014). One possibility for dealing with this expectation

is to use the score function estimator, as in REINFORCE (Williams, 1992); however,

while the resulting estimator is unbiased, it has a high variance (Mnih and Gregor,

2014). It is also possible to replace the categorical variable with a continuous approx-

imation as is done by Maddison et al. (2017) and Jang et al. (2016); or, if the dimen-

sionality of the categorical variable is small, it can be marginalised out as in Kingma

et al. (2014). In the experiments in Section 4.3, we follow Kingma et al. (2014) and

marginalise this variable,2 leading to the following learning objective:

L (θ ;x) =−
K

∑
k=1

q(k) [log pθ (hk(x)|k)+ log p(k)− logq(k)] (4.9)

We show in Section 4.3 that this approach can be applied equally successfully for a

generative modelling task (where the goal is density estimation) as for a discriminative

task (where the goal is structured classification). This helps to demonstrate the univer-

sal applicability of incorporating domain knowledge into the training of networks.

4.2.3 Architecture of MultiplexNet

MultiplexNet accepts as input a data set consisting of samples from some target distri-

bution, p∗(x), and some constraints, Φ that are known about the data set. We assume
2Although we note that the alternatives should also be explored.
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that the constraints are correct, in that Eq. 4.1 holds for all x. We aim to model the

unknown density, p∗, by maximising the likelihood of a parameterised model, pθ (x)

on the given data set. Moreover, our goal is to incorporate the domain constraints, Φ,

into the training of this model.

We first assume that the domain constraints are provided in DNF. This is a rea-

sonable assumption as any logical formula can be compiled to DNF, although there

might be an exponential number of terms in worst case scenarios (discussed further in

Section 4.4). For each term φk in the DNF representation of Φ = φ1∨φ2∨·· ·∨φK , we

then introduce a transformation, hk, that ensures any real-valued input is transformed to

satisfy that term. Note that we assume efficient and non-redundant compilation of the

formula (thus for any two terms φk and φ j, for j! = k =⇒ φk! = φ j. Given a Softplus

transformation g, we can suitably restrict the domain of any real-valued variable such

that the output satisfies some specification of φk. For example, consider the constraint,

e.g., φ1 : x > y+ 2∧ x < 5. The transformation h1(x′) = −g(−(g(x′)+α)+β ) will

constrain the real-valued variable x′ such that φ1 is satisfied. In this example, y does not

need to be constrained. Here β = 5 and α = log(e5−(y+2)− 1). Any combination of

inequalities can be suitably restricted in this way. Equality constraints, can be handled

by simply setting the output to the value that is specified.

MultiplexNet therefore accepts the unconstrained output of a network, x′ ∈ R, and

introduces K constraint terms hk that each guarantee the constrained output xk = h(x′)

will satisfy a term, φk, in the DNF representation of the constraints. The output of

the network is then K transformed versions of x′ where each output xk is guaranteed

to satisfy Φ. The Categorical selection variable k ∼ q(k | x) can be marginalised out

leading to the following objective:

L (θ) =
20

∑
i=1

πk
[
L ′(xk)+ logπk

]
(4.10)

In Eq. 4.10, L ′ refers to the observation likelihood that would be used in the ab-

sence of any constraint. xk is the kth constrained term of the unconstrained output of

the network: xk = hk(x′). This architecture is represented pictorially in Fig. 4.1.
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Figure 4.1: Architecture of the MultiplexNet. We show how to append this framework

to an existing learning scheme. The unconstrained output of the network x′, along with

the constrain transformation terms h1, . . . ,hK are used to create K constrained output

terms x1, . . . ,xK . The latent Categorical variable k is used to select which term is active

for a given input. In this paper, we marginalise the Categorical variable leading to the

specified loss function.

4.3 Experiments

We apply MultiplexNet to three separate experimental domains. The first domain

demonstrates a density estimation task on synthetic data when the number of available

data samples is limited. We show how the value of the domain constraints improves

the training when the number of data samples decreases; this demonstrates the power

of adding domain knowledge into the training pipeline. The second domain applies

MultiplexNet to labelling MNIST images in an unsupervised manner by exploiting a

structured problem and data set. We use a similar experimental setup to the MNIST

experiment from DeepProbLog (Manhaeve et al., 2018); however, we present a natural

integration with a generative model that is not possible with DeepProbLog. The third

experiment uses hierarchical domain knowledge to facilitate an image classification

task taken from Fischer et al. (2019) and Xu et al. (2018). We show how the use of this

knowledge can help to improve classification accuracy at the superclass level.

4.3.1 Synthetic Data

In this illustrative experiment, we consider a target data set that consists of the six rect-

angular modes that are shown in Figure 4.2. The samples from the true target density
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Figure 4.2: Simulated data from an unknown density. We assume that we know some

constraints about the domain; these are represented by the red boxes. We aim to

represent the unknown density, subject to the knowledge that the constraints must be

satisfied.

are shown, along with 8 rectangular boxes in red. The rectangular boxes represent

the domain constraints for this experiment. Here, we show that an expert might know

where the data can exist but that the domain knowledge does not capture all of the de-

tails of the target density. Thus, the network is still tasked with learning the intricacies

of the data that the domain constraints fail to address (e.g., not all of the area within the

constraints contains data). However, we desire that the knowledge leads the network

towards a better solution, and also to achieve this on fewer data samples from the true

distribution.

This experiment represents a density estimation task and thus we use a likelihood-

based generative model to represent the unknown target density, using both data sam-
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ples and domain knowledge. We use a variational autoencoder (VAE) which opti-

mizes a lower bound to the marginal log-likelihood of the data. However, a different

generative model, for example, a normalizing flow (Papamakarios et al., 2019) or a

GAN (Goodfellow et al., 2014), could as easily be used in this framework. We opti-

mize Eq. 4.9 where, for this experiment, the likelihood term log pθ (· | k) is replaced

by the standard VAE loss. Additional experimental details, as well as the full loss

function, can be found in Appendix C.1.1.

We vary the size of the training data set with N ∈ {100,250,500,1000} as the four

experimental conditions. We compare the lower bound to the marginal log-likelihood

under three conditions: the MultiplexNet approach, as well as two baselines. The first

baseline (Unaware VAE) is a vanilla VAE that is unaware of the domain constraints.

This scenario represents the standard-setting where domain knowledge is simply ig-

nored in the training of a deep generative network. The second baseline (DL2-VAE)

represents a method that appends a loss term to the standard VAE loss. It is important

to note that this approach, from DL2 (Fischer et al., 2019), does not guarantee that

the constraints are satisfied (clearly seen in Figure 4.3b). A possible alternative base-

line would be rejection sampling whereby any produced sample from the VAE output

could be accepted / rejected based on the validation of the sample via the logic. This

approach could be used to compare as a baseline for the data likelihood metric; how-

ever, one of the goals of this work is to use the logic to inform a more efficient traning

regime (i.e., we are able to back-propagate through the logic transformation terms hk).

Thus, we chose not to implement this as a baseline as it could not be used to achieve

this result (mainly seen in the discussion on sample efficiency below).

Figure 4.3 presents the results where we run the experiment on the specified range

of training data set sizes. The top plot shows the variational loss as a function of the

number of epochs. For all sizes of training data, the MultiplexNet loss on a test set can

be seen to outperform the baselines. By including domain knowledge, we can reach a

better result, and on fewer samples of data, than by not including the constraints. More

important than the likelihood of held-out data is that the samples from the models’

posterior should conform with the constraints. Figure 4.3b shows that the baselines

struggle to learn the structure of the constraints. While the MultiplexNet solution

is unsurprising, the constraints are followed by construction, the comparison to the

baselines is stark. We also present samples from both the prior and the posterior for all

of these models in Appendix C.1.1. In all of these, MultiplexNet learns to approximate

the unknown density within the predefined boundaries of the provided constraints.
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(a)

(b)

Figure 4.3: Results from the synthetic data experiment (a) Negative lower bound to the

held-out likelihood of data (-ELBO). The MultiplexNet approach learns to represent the

data with a higher likelihood, and faster than the baselines. (b) % of reconstruction

samples from the VAE that obey the domain constraints. The MultiplexNet approach,

by construction, can only generate samples within the specified constraints.
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4.3.2 MNIST - Label-free Structured Learning

We demonstrate how a structured data set, in combination with the relevant domain

knowledge, can be used to make novel inferences in that domain. Here, we use a

similar experiment to that from Kingma et al. (2014) where we model the MNIST digit

data set in an unsupervised manner. Moreover, we take inspiration from Manhaeve

et al. (2018) for constructing a structured data set were the images represent the terms

in a summation (e.g., image(2)+ image(3) = 5). However, we add to the complexity of

the task by (1) using no labels for any of the images;3 and, (2) considering a generative

task.

Kingma et al. (2014) propose a generative model that reasons about the cluster

assignment of a data point (a single image). In particular, in their popular “Model

2,” they describe a generative model for an image x such that the probability of the

image pixel values are conditioned on a latent variable (z) and a class label (y): pθ (x |
z,y)p(z | y)p(y). We can interpret this model using the MultiplexNet framework where

the cluster assignment label y = k implies that the image x was generated from cluster

k. Given a reconstruction loss for image x, conditioned on class label y (L (x,y)), the

domain knowledge in this setting is: Φ :=
∨10

k=1 L (x,y)∧(y = k). We can successfully

model the clustering of the data using this setup but there is no means for determining

which label corresponds to which cluster assignment.

We therefore propose to augment the data set such that each input is a quintuple of

four images (x1,x2,x3,x4) in the form label(x1)+ label(x2) = (label(x3), label(x4)).

Here, the inputs label(x1) and label(x2) can be any integer from 0 to 9 and the result

(label(x3), label(x4)) is a two digit number from (00) to (18). While we do not know

explicitly any of the cluster labels, we do know that the data conform to this standard.

Thus for all i, j,k where k = i+ j, the domain knowledge is of the form:

Φ :=
∨
i, j,k

[
(y1 = i)∧ (y2 = j)∧ (y3 = 1k>9)∧ (y4 = k mod 10)

4∧
n=1

L (xn,yn)
]

(4.11)

In this setting, the categorical variable in the MultiplexNet chooses among the 100

combinations that satisfy label(x1)+ label(x2) = (label(x3), label(x4)). This experi-

ment has similarities to DeepProbLog (Manhaeve et al., 2018) as the primitive L (x,y)

is repeated for each digit. In this sense, it is similar to the “neural predicate” used by
3In the MNIST experiment from Manhaeve et al. (2018), the authors use the result of the summation

as labels for the algorithm. We have no such analogy in this experiment and thus cannot use their
DeepProbLog implementation as a baseline.
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Figure 4.4: Reconstructed/Decoded samples from the prior, z, of the trained model

where each column conditions on a different value for y. It can be seen that the model

has learnt to represent all of the digits [0−9] with the correct class label, even though

no labels were supplied to the training process.

Manhaeve et al. (2018), and the MultiplexNet output layer implements what would be

the logical program from DeepProbLog. However, it is not clear how to implement

this label-free, generative task within the DeepProbLog framework.

In Figure 4.4, we present samples from the prior, conditioned on the different class

labels. The model can learn a class-conditional representation for the data, given no la-

bels for the images. This is in contrast to a vanilla model (from Kingma et al. (2014))

which does not use the structure of the data set to make inferences about the class

labels. We present these baseline samples as well as the experimental details and ad-

ditional notes in Appendix A. Empirically, the results from this experiment were sen-

sitive to the network’s initialisation and thus we report the accuracy of the top 5 runs.

We selected the runs based on the loss (the ELBO) on a validation set (i.e., the labels

were still not used in selecting the run). The accuracy of the inferred labels on held-out

data is 97.5±0.3.

4.3.3 Hierarchical Domain Knowledge on CIFAR100

The final experiment demonstrates how to encode hierarchical domain knowledge into

the output layer of a network. The CIFAR100 (Krizhevsky et al., 2009) data set con-

sists of 100 classes of images where the 100 classes are in turn broken into 20 super-

classes (SC). We wish to encode the belief that images from the same SC are semanti-

cally related. Following the encoding in Fischer et al. (2019), we consider constraints

that specify that groups of classes should together be very likely or very unlikely. For

example, suppose that the SC label is trees and the class label is maple. Our domain

knowledge should state that the trees group must be very likely even if there is uncer-

tainty in the specific label maple. Intuitively, it is egregious to misclassify this example

as a tractor but it would be acceptable to make the mistake of oak. This can be im-

plemented by training a network to predict first the SC for an unknown image and

thereafter the class label, conditioned on the value for the SC.
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We chose rather to implement this same knowledge using the MultiplexNet frame-

work. Let xk ∈ SCi denote the output of a network that predicts the kth class label

within the ith SC. Let α ∈ [0,1] denote the minimum requirement for a SC prediction

(e.g., if α = 0.95, we require that a SC be predicted with probability 0.95 or more).

The domain knowledge is:

Φ :=
20∨

i=1

[ ∧
k∈SCi

(
xk > log(

α

1−α
)+ log ∑

j/∈SCi

exp{x j}
)]

(4.12)

Eq. 4.12 states that for all labels within an SC group, the unnormalised logits of the

network should be greater than the normalised sum of the other labels belonging to the

other SCs with a margin of log( α

1−α
). We explain Eq. 4.12 further and present other

experimental details in Appendix C.1.3. This constraint places a semantic grouping on

the data as the network is forced into a low entropy prediction at the superclass level.

We compare the performance of MultiplexNet to three baselines and report the pre-

diction accuracy on the fine class label as well that on the superclass label. We use a

Wide ResNet 28-10 (Zagoruyko and Komodakis, 2016) model in all of the experimen-

tal conditions. The first two baselines (Vanilla) only use the Wide ResNet model and

are trained to predict the fine class and the superclass labels respectively. The sec-

ond baseline (Hierarchical) is trained to predict the superclass label and thereafter the

fine class label, conditioned on the value for the superclass label. This represents the

bespoke engineering solution to this hierarchical problem. The final baseline (DL2)

implements the same logical specification that is used for MultiplexNet but uses the

DL2 framework to append to the standard cross-entropy loss function.

Table 4.1 presents the results for this experiment. Firstly, it is important to note

the difficulty of this task. The Vanilla ResNet that predicts only the super-class labels

for the images underperforms the baseline that is tasked with predicting the true class

label. Moreover, while the hierarchical baseline does outperform the vanilla models on

the task of super-class prediction, this comes at a cost to the true class accuracy. The

MultiplexNet approach provides a slight improvement at the SC classification accuracy

and importantly, the domain constraints are always met. Surprisingly, the DL2 baseline

improves upon the class accuracy but it has a limited impact on the superclass accuracy

and on the constraint satisfaction.
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Table 4.1: Accuracy on class label prediction and super-class label prediction, and

constraint satisfaction on CIFAR100 data set

Model Class Accuracy Super-class Accuracy Constraint Satisfaction

Vanilla ResNet 75.0± (0.1) 84.0± (0.2) 83.8± (0.1)

Vanilla ResNet (SC only) NA 83.2± (0.2) NA

Hierarchical Model 71.2± (0.2) 84.7± (0.1) 100.0± (0.0)
DL2 75.3± (0.1) 84.3± (0.1) 85.8± (0.2)

MultiplexNet 74.4± (0.2) 85.4± (0.3) 100.0± (0.0)

4.4 Limitations and Discussion

The limitations of the suggested approach relate to the technical specification of the

domain knowledge and to the practical implementation of this knowledge. We discuss

first these two aspects and then we discuss a potential negative societal impact.

First, we require that experts be able to express precisely, in the form of a logi-

cal formula, the constraints that are valid for their domain. This may not always be

possible. For example, given an image classification task, we may wish to describe

our knowledge about the content of the images. Consider an example where images

contain pictures of dogs and fish and that we wish to express the knowledge that dogs

must have four legs and fish must be in water. It is not clear how these conceptual

constraints would then be mapped to a pixel level for actual specification. Moreover,

it is entirely plausible to have images of dogs that do not include their legs or images

of fish where the fish is out of the water. The logical statement itself is brittle in these

instances and would serve to hinder the training, rather than to help it. This example

serves to present the inherent difficulty that is present when expressing robust domain

knowledge in the form of logical formulae.

The second major limitation of this approach deals with the DNF requirement on

the input formula. We require that knowledge be expressed in this form such that

the “or” condition is controlled by the latent categorical variable of MultiplexNet. It

is well known that certain formulae have worst-case representations in DNF that are

exponential in the number of variables. This is undesirable in that the network would

have to learn to choose among the exponentially many terms.

One of the overarching motivations for this work is to constrain networks for

safety-critical domains. While constrained operation might be desired on many ac-

counts, there may exist edge cases where an autonomously acting agent should act in
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an undesirable manner to avoid an even more undesirable outcome (a thought exper-

iment of this spirit is the well known Trolley Problem (Hammond and Belle, 2021)).

By guaranteeing that the operating conditions of a system be restricted to some range,

our approach does encounter vulnerability with respect to edge, and unforeseen, cases.

However, to counter this point, we argue it is still necessary for experts to define the

boundaries over the operation domain of a system in order to explicitly test and design

for known worst-case scenario settings.

4.5 Conclusion

This work studied how logical knowledge in an expressive language could be used to

constrain the output of a network. It provides a new and general way to encode domain

knowledge as logical constraints directly in the output layer of a network. Compared

to alternative approaches, we go beyond propositional logic by allowing for arithmetic

operators in our constraints. We can guarantee that the network output is 100% com-

pliant with the domain constraints, which the alternative approaches, which append a

“constraint loss,” are unable to match. Thus our approach is especially relevant for

safety-critical settings in which the network must guarantee to operate within prede-

fined constraints. In a series of experiments, we demonstrated that our approach leads

to better results in terms of data efficiency (the amount of training data that is required

for good performance), reducing the data burden that is placed on the training process.

In the future, we are excited about exploring the prospects for using this framework on

downstream tasks, such as robustness to adversarial attacks.
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5.1 Introduction

This chapter investigates methods for evaluating the interpretability of models of time

series data arising from people’s interactions in immersive simulations such as those

used for teaching in healthcare, disaster response and science education (Alinier et al.,

2014; Amir and Gal, 2013). In such simulations, people’s interactions engender a

rich array of emergent outcomes and yield diverse opportunities for learning (Smørdal

et al., 2012). In the immersive simulation used in this study, Connected Worlds1 (CW),

students interact with an ecological simulation to learn about the causal effects of their

actions on environments over time (Mallavarapu et al., 2019).

Rich causal relationships, simultaneous participation from students and the chang-

ing dynamics of immersive simulations can make it difficult for people to determine

how their interactions with the simulation caused the changes they observe in the sim-

ulated world. Machine learning methods can be used to summarize the effects of par-

ticipants’ actions over various time periods. For such methods to be effective, though,

they must meet the challenge of identifying a model that is both “true to the data” and

understandable to the target audience interested in uncovering the causal relationships.

This chapter applies the general framework from Doshi-Velez and Kim (2017) and

demonstrates an application of how to design tests that evaluate models in an immer-

sive simulation setting. To this end, we show how to: determine that machine learning

model, from a set of candidates, that people understand best (Caruana et al., 2015). It

compares the selection of a model according to a criterion that optimizes for maximum

statistical information with one that optimizes for interpretability. The ability to iden-

tify the model that is best (or among the top choices) for interpretability is essential to

a system’s capability to explain its conclusions (Rosenfeld and Richardson, 2019).

Our approach to addressing the interpretability problem comprises the following:

(1) select a set of machine learning models for segmenting time series data; in the

domain we investigated, the segmentation is of students’ interactions with CW into

coherent periods of time; (2) design tests for computing the interpretability score of

a model for a given input; (3) empirically evaluate the models with respect to their

interpretability score in a user study.

To infer the boundaries of stable periods in the data of CW dynamics, we use

a family of hidden Markov models (HMMs). These HMMs are augmented with an

1Installed at the New York Hall of Science (NYSCI): https://nysci.org/home/exhibits/
connected-worlds/
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additional “sticky” hyperparameter which biases the transition dynamics of the latent

state-space (Fox et al., 2008). The input to each HMM is a multidimensional time

series representing the response of the CW system to actions performed by students in

the simulation. The output of the HMM is a segmentation of the time series into a set

of periods, which are contiguous lengths of time during which the system dynamics

form a stable linear process.

We implemented two tests of interpretability for CW models: the Forward Sim-

ulation and Binary Forced Choice (Doshi-Velez and Kim, 2017). These tests each

determine the extent to which the learnt representations are interpretable to people, al-

beit in different ways. They both use a visualization of the inferred periods that shows

experimental subjects snapshots of the CW system’s state from the selected periods

that the HMM inferred.

The results showed that the interpretability of the different models varied accord-

ing to the value(s) of HMM parameters. In particular, the HMM that optimized statis-

tical information criteria did not optimize interpretability quality. In addition, a fully

Bayesian approach, which does not require hyperparameter tuning, offered a good bal-

ance between interpretability and performance on the theoretical statistical tests. We

argue that the Bayesian approach could be suitable for situations in which it is not pos-

sible to engage people in determining interpretability or doing so would be unethical

or impractical.

This chapter makes three contributions. First, it provides an end-to-end paradigm

for the design and evaluation of the interpretability of models for unsupervised learn-

ing in time series domains. Second, it defines new interpretability tests for unsuper-

vised time-series settings and applies them to real-world data. Third, in identifying

the Bayesian solution, it provides an attractive alternative to model selection when hu-

man subject experimentation is not possible. Finally, we note that the results of this

investigation have been deployed in a classroom study to assist teachers in explaining

systems thinking to students who participated in the CW simulation study.

5.1.1 Contributions

In the work that follows, I was the main contributor to this project. I designed the ex-

periments and implemented the algorithms for the experiments. Moreover, I designed

the user studies and collected these data from an online webpage that I designed, de-

ployed and managed. Thank you to Barbara Gross, Andee Ruben and Kobi Gal for
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their overall insights, expertise in the experimental design and of course in the polish-

ing of the writing.

5.2 The Connected Worlds Domain

Connected Worlds (CW), a multi-person ecology simulation (installed at NYSCI),

aims to teach students about complex systems and systems thinking. Its immersive en-

vironment comprises four biomes (Desert, Grasslands, Jungle & Wetlands) connected

by a central water flow fed by a waterfall. Students plant trees which flourish or die,

animals arrive or depart, and rain clouds form and rain feeds the waterfall.

Students control the direction of water flows in the simulation by moving foam logs

to direct water among the biomes. Water enters the simulation through rainfall events,

which are not under student control. Figure 5.1 gives a snapshot of the system state,

we refer to this snapshot as the session-view. This session-view is a system-generated

representation of the water flows and it directly reflects the logged water flows and

levels in the simulation. The output of a CW session is a time series recording the

levels of water in the different biomes for 8 minutes at a 1Hz frequency. The ability

to model the effects of student actions on the environment was limited by two factors:

The time series was the only source of information about students’ interactions, and it

was not possible to access the CW simulation except at NYSCI.

The CW simulation is complex on several dimensions as a large number of students

simultaneously execute actions that change the state of the simulated environment.

Each participant has a different view of what transpired, depending on the actions s/he

took and the environmental changes that resulted. Students’ activities are recorded

as a movie (see Figure 5.1) that can be shown to students and teachers. This movie

can inform discussions about the causal effects of the students’ actions on simulation

outcomes, but it obscures temporal dependencies in their interactions. This limitation

motivated the use of ML algorithms to better support students’ understanding of the

effects of their actions on the simulation’s progression.

5.3 Interpretability Tests for CW

Let D be a time series that records the levels of water in the different biomes. Let M

be a model that takes as input a time series D and outputs a segmentation of D into
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Figure 5.1: CW session-view. Biomes are labelled on the perimeter and logs appear as

thick red lines. Water (blue stream in the middle of the image) enters via the waterfall

and in this image it mainly flows toward the Grasslands and the Desert.

periods. Each period aims to provide a coherent description of the water flow for a

length of time.

Importantly, a single period is insufficient for modelling the effects of students’

interactions with CW, because students’ sustained actions have complex effects on the

system dynamics over time. For example, when students choose to direct water to

the Desert and Plains and plant trees in the Desert, the system dynamics are entirely

different from the case when water is directed towards the Jungle and the Desert, and

the Plains are left to dry. We must therefore allow for multiple periods. Each period

describes a length of time where water flowed to a sufficiently stable target. From the

above example, one period can describe water that mainly flows to the Plains and to

the Desert; students then move logs to re-route water flow to the Jungle, thus starting

a new period.

We use an interpretability score IS to measure the interpretability of a model M ap-

plied to D. The interpretability score is computed via an average across test instances,

T (M,D, i), which each take as input a model M, a time series D and a selected point in

time i from the time series. Each test instance returns True if an evaluator successfully
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Figure 5.2: The time series is represented as a horizontal line from minute 0 to 8; red

vertical lines denote sampled time points in the time series; each model is shown as

a grey rectangle; models segment time series into periods delimited by white vertical

lines. The forward or backward neighbour of the candidate period is selected as an

intruder.
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Figure 5.3: Screenshot of the Forward Simulation test interface. Here 4 of the images

show water flowing towards the Desert. An intruder image, the highlighted one, comes

from a different period and shows water flowing to both the Desert and the Grasslands.

completes a required objective.

We adapted the Forward Simulation and Binary Forced Choice tests (Doshi-Velez

and Kim, 2017) to the CW domain using the notion of candidate and intrusion periods.

We say that period p is active for model M at time i if M infers the period p to describe

a contiguous length of time in the time series, and p includes the time i. Figure 5.2

shows how the tests select candidate and intrusion periods. First, a time point (red

vertical line) is used to select a candidate period where the candidate period is the

active period from model M at i (the active period for a model intersects with the red

line). Then, the intrusion period is selected as a direct neighbour to a candidate. Each

test is operationalized via a visualization which presents any period as a set of images

extracted from the session view.

Figure 5.3 shows an example of the Forward Simulation test on a real data instance.

As shown by this figure, the test sampled 4 session-view images from the candidate

period of model M at time i, and a single session-view image sampled from the intru-

sion period. The images were presented in random order. In Figure 5.3, the image that

is outlined in green is the intrusion image that corresponds to the intrusion period. A

test evaluator was required to identify which image was the intrusion image.

Figure 5.4 presents an example of the Binary Forced Choice test. The test displays

an unknown session-view image from a candidate period (centre of the screen) and

additional images from two competing periods that contain this image (“Period 1” or

“Period 2”). Each of the two competing periods is visualized as four images sampled

from the candidate or the intruder period. The unknown image is sampled in time close

to the boundary of when the candidate period transitions into the intruder period. In

Figure 5.4, Period 1, highlighted in green, is the period that correctly explains the un-

known image (i.e., the images in “Period 1” and the “unknown image” are all sampled

from the candidate period). A test evaluator is required to choose between the two
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Figure 5.4: Screenshot of the Binary Forced Choice user interface. An unknown centre

image needs to be associated with either “Period 1” or “Period 2”. In this case, streams

of water flowing to both the Grasslands and to the Jungle capture the dynamics in

Period 2. Period 1 has a small amount of water reaching the Desert which is consistent

with the unknown image.

possible periods.

Hypothetically, the intruder period can be chosen arbitrarily, as in Chang et al.

(2009). However, intrusion periods that are further away in time from the candidate

period would be easier to detect due to the non-stationary evolution of the system. We

made a design decision to choose the period that is immediately adjacent to the candi-

date period, either forward or backwards in time. This makes it harder to distinguish

between candidate and intrusion period but provides a rigorous test for the specific

choice of the boundary between the two periods.

Given data set D and model M, the interpretability score IS of a model is equal

to the average success of the test instances for model M over multiple points {i} in a

time series D. The set of time points {i} were uniformly sampled from the time series

with the additional constraint that each minute of interaction had at least one sample.

For every model we test, we hold constant the selected times {i} in the time series (as

shown in Figure 5.2). In this way, we control for different areas in the time series being

more or less difficult to segment into coherent periods.
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5.4 Modeling Students’ Activities in CW

In this section, we describe the design of general models for segmenting students’

activities into periods of time and thereafter present the specific classes of models that

are used in our interpretability tests.

5.4.1 Segmenting Time Series Data into Periods

Hoernle et al. (2018) used an HMM to model the system responses to students’ activi-

ties in CW in which the latent states of the HMM corresponded to periods. Transitions

between different states equate to the system changing between different periods, while

self transitions mean the system persists within the same period. The authors did not

address the question of how to choose the number of states. To this end, we augment

the HMM with a hierarchical Dirichlet process which places this non-parametric prior

over the state space, following the approach detailed by Teh et al. (2005) and Fox et al.

(2008).

The “Sticky-HMM” approach introduced by Fox et al. (2008) includes a hyperpa-

rameter, κ , that biases the model to persist in a state, given that it has already adopted

that state. Applied to CW, the greater the value for κ , the more the model will try to

persist in any given state. The increase in the length of periods corresponds to a de-

crease in the number of latent states. The opposite is true for lower values of κ where

there is a lower bias to persist within a given state and consequently, there are more

periods that are inferred. For a detailed description of the model, including the Gibbs

sampling inference scheme that is used to infer the model parameters, refer to Fox

et al. (2008) and Fox (2009).

5.4.2 Model Classes

We introduce three classes of model that segment time into periods that can be used to

explain the water flows:

1. MKX : sticky HMM with fixed κ . We use the basic structure of the sticky HMM

described by Fox et al. (2008) with set values for κ to produce 10 unique models,

spanning a wide range of possible settings2.

2κ ∈ {1,5,10,50,100,150,200,300,500,700}.
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2. FB: fully Bayesian sticky HMM with Gamma prior on κ . This approach places

a weakly informative, conjugate Gamma prior on the hyperparameter that ex-

presses high uncertainty over the κ values3.

3. Rand: Random baseline. The random baseline generates periods of random

length drawn from a Poisson distribution with the mean set to be the mean of all

other periods induced by the parametric models. The random periods are defined

to include the selected time points ({i} from Section 5.3).

We refer to FB as the fully Bayesian model to indicate the fact that none of the pa-

rameters of interest are specified and consequently posterior inference is over all of the

parameters in the model (including κ). This is in contrast to the MKX models where

we explicitly set the value for the sticky parameter κ .

For models in class 1 and 2, we use the Gibbs sampler, described by Fox et al.

(2008), to perform inference over the parameters in the model, this includes inference

over the state sequence and thus the period segmentation of the model. The observation

distribution was chosen to be a mixture of two multivariate Gaussians with conjugate

Normal-inverse-Wishart priors. This mixture model addresses the noise in the CW

water flow, such as “splashes”, which prior work has identified as a challenge in this

domain (Hoernle et al., 2018).

5.5 Model Selection for Interpretability

The goal of model selection is to optimize a metric such that a specific parameter

setting can be chosen as the best model for use during inference. We compare how

the models from section 5.4 perform on both statistical tests and on the human inter-

pretability tests outlined in section 5.3.

5.5.1 Selection using Statistical Information

When human interpretability testing is infeasible, one could choose to optimize some

proxy to interpretability (Doshi-Velez and Kim, 2017; Lage et al., 2018). For example,

Chang et al. (2009) compared the proxy of held-out log-likelihood to the human inter-

pretability score that was a result of two tests that were run on Amazon Mechanical

Turk (Mturk).
3The (shape,rate) parameters were chosen to be (1, 1

4 ); empirical results were invariant to a range of
these values.
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Figure 5.5: DIC and WAIC as a function of the model (lower is better). The MK5 model

is optimal, the FB approach is in 5th place.

Ideally, the model parameters would be optimized on held-out data using predictive

log-likelihood as the objective (Chang et al., 2009). However, the difficulty of collect-

ing controlled sessions of student interaction in CW meant we had few data instances

available (see limitation discussion in the next section). To address this challenge we

use statistical information criteria as a theoretical approximation to the predictive ac-

curacy of a model (Gelman et al., 2013).

Figure 5.5 shows the two information criteria (the Deviance Information Criteria,

DIC, and the Watanabe-Akaike Information Criteria, WAIC (Gelman et al., 2013))

plotted as a function of the model (the random model has no notion of information

criteria and so was not compared here). The data set comprised of both of the log

files of students’ interactions (8 minutes each). The optimal model for both DIC and

WAIC is the MK5 model but we note that MK1, MK5 and MK10 all perform close to

this optimal setting. Notice that the fully Bayesian model (FB) is not optimal but it is

in the top 5 models for both criteria.
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5.5.2 Selection using Interpretability Test

This section describes the choice of model according to interpretability quality, as

measured by the interpretability tests. The set of models used in this study includes the

12 CW models described in Section 5.4. IRB was obtained for the study.

We recruited participants from two cohorts: undergraduate engineering students in

a large public university and Mturk workers (with a total of 240 people who partici-

pated in the experimentation). For a given time series D in CW, we randomly sampled

a set of 12-time points, which remained constant across all model conditions. Each

time point was used to generate a candidate and two intrusion periods (both forward

and backward in time, see Figure 5.2), making for 2×12×12 = 288 tests per time se-

ries. We divided participants into two cohorts, one for Forward Simulation, and one for

Binary Forced Choice tests. Both cohorts varied the models used to generate their re-

spective tests. Each participant performed 20 tests, with no more than 2 tests generated

from any given model, to ensure a representative range of models. After making their

choice, participants received brief visual feedback on whether or not their selection

was in agreement with the model’s choice.

All participants received a detailed tutorial about CW and the study, as well as a

pre-study comprehension quiz4. Mturk workers were paid a base rate of $0.25 for

participating and a bonus structure of $0.1 for each correct response.

We first describe results in terms of accuracy (the percent of correctly labelled test

instances). The top-performing model was MK200 with an accuracy of 83% on the

Forward Simulation test and MK100 with an accuracy of 82% on the Binary Forced

Choice test. The random baseline model performed consistently poorly with an aver-

age accuracy of 53% on both tests. The fully Bayesian model achieved an accuracy of

72% and 70% respectively on the two tests.

To control for ordering effects, chosen time periods, data instance used, and ef-

fects of individual participants, we applied an L2 regularized logistic regression for

predicting the user-specific success on the experiment trial, shown in Figure 5.6. The

y-axis presents the improvement in log-odds that a model has on the expected response

accuracy (higher is better). As shown by this figure, the Forward Simulation shows a

high variance with no clear maximum. In contrast, the Binary Forced Choice test has

a clear maximum in the region of MK100 and MK150.

From Figures 5.5 and 5.6 we can infer the following four conclusions. First, all

4Tutorial pdf slides are available at https://www.dropbox.com/s/pu2nxk2k0g81ql6/forijcai.
pdf
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Figure 5.6: Effect of each model on the log-odds of a test evaluator selecting the correct

response (controlling for the test evaluator, the experiment trial, log file and ordering

effects).

of the models (MK1, . . . ,MK700,FB) outperform the random baseline: participants are

more likely to select the correct response from any of these models. This result sug-

gests that periods of stable dynamics exist in the data and that it is possible to construct

models, which describe these dynamics, that are interpretable to people.

Second, the Binary Forced Choice test is a preferable measure for interpretability

to the Forward Simulation test. Figure 5.6 shows that the Binary Forced Choice test

exhibits a clear peak (around MK100 and MK150) where interpretability of the model

is maximized. These models also maximized the raw accuracy of the Binary Forced

Choice test.

On the other hand, the Forward Simulation test has a greater variance across mod-

els and across data instances. Two possible causes for this higher variance are: (1)

there is more room for error in the Forward Simulation test (5 choices vs. 2 choices in

Binary Forced Choice); (2) sampling a single image to represent a period (as in For-

ward Simulation) presents less information to the user than sampling 4 images (as in

Binary Forced Choice).

Third, the best κ settings vary for different tests and information criteria. Model

interpretability grows steadily as the value of κ increases, with MK100 and MK150

being the optimal models, and then proceeds to decrease steadily. These models are not

consistent with the model MK5 that optimized the information criteria. Note that higher

κ values are “sticky” - they bias the model towards longer periods, which condense too
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many activities to make sense to people. On the other end of the spectrum, lower κ

values allow for more (shorter) periods that may capture noise in the system. The κ

value for models MK100 and MK150 represent a “sweet spot” in-between these two

extremes.

Finally, the fully Bayesian model (FB) performs consistently well on both infor-

mation criteria and interpretability tests. It is interesting to note that while this model

does not find the optimal setting (from neither the statistical information criteria nor

from the human interpretability task) it does perform well across all tests, tasks and in-

stances, and is fully automated (no human evaluation is required to choose an optimal

parameter setting).

We conclude this section by mentioning the limitation that the user study was based

on a small number (n = 2) of instances. This was due to the difficulty in obtaining

controlled sessions of student behaviour in CW. Despite this issue, the differences

between the models in Figure 5.6 are statistically significant, having been evaluated

across 12 different time points for each instance and with hundreds of evaluators.

5.6 Conclusion

With the growing prevalence of immersive simulations, the need arises for AI systems

that help people gain insight into the ways participants’ activities affect the simulation

outcomes. We have studied an environmental simulation intended to teach students

about the causal effects of their actions. Our results show that algorithms can segment

time-series log data into periods that are meaningful for people. Selecting hyperparam-

eters in these models is a challenge, especially when trying to optimize the represen-

tations they produce for their interpretability. We have described ways to select these

hyperparameters using two tests that are grounded in the literature. We showed that the

fully Bayesian method is a promising technique for implementing a model when peo-

ple cannot directly assess and evaluate the models. Our results are important for any

unsupervised machine learning task for which interpretability is an important criterion

because in such cases the model selection problem will be encountered. The work

forms part of a broader project where the goal is to generate relevant summaries of the

CW dynamics such that teachers can effectively engage their students in discussions

about their own experiences with the simulation.

In future work, we plan to explore alternative ways to measure interpretability

quality in time series domains, including the design of a counterfactual simulation
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test (Doshi-Velez and Kim, 2017), and the application of our approach to additional

domains.
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6.1 Introduction

I have presented a framework that uses a Data Science life-cycle to investigate how

and why people contribute to task systems. Building on the work of Segal (2018), I

define a task system to consist of an online platform where participants complete ac-

tions that contribute to the shared knowledge repository that constitutes the system. I

have shown how to encode hypotheses from Behavioural Sciences into the definition

of a model and how to perform posterior inference over the assignment of data to these

different hypotheses. By including more than one hypothesis in a single model, we

allow for heterogeneity in a data set; this is critically important when modelling peo-

ple’s behaviour in task systems where individuals have different goals. The framework

will help researchers to gain deeper insights into which behavioural hypotheses apply

to which people.

Figure 1.1 presented a pictorial view of the main tasks in the framework. Step

1 requires a model specification. Chapter 3 includes an example of how to encode

a behavioural hypothesis, the “Goal-Gradient Hypothesis” (Hull, 1932; Kivetz et al.,

2006), into the output layer of a flexible statistical model. The predictions that are

made by a hypothesis must be of a measurable quantity and thus they can be directly

encoded into a model’s output layer. It is also important that we allow for complex

behaviours that are independent of the predictions of the behavioural hypotheses. For

example, in the Stack Overflow analysis, we noticed a cyclical pattern to people’s

work whereby some people work more on weekends and some work more on week

days (Yanovsky et al., 2019). The proposed approach thus uses the flexibility of deep

generative models when encoding the behavioural hypotheses into a statistical model

to capture these complexities.

Chapter 4 explores how a very general set of constraints and restrictions, such as

those defined by a logical program, can be used to train and constrain deep genera-

tive models. In this way, logical programs could be written to encode the predictions

associated with certain hypotheses and these would then be used in the inference pro-

cess. More generally, in this chapter, I showed that by constraining networks with prior

knowledge, we can efficiently train complex generative models on fewer data and can

often arrive at better solutions than had we not used these constraints.

In Chapter 5, I finally explored how to design tests to evaluate the interpretability

of complex models. The real-world data from task systems, stemming from people’s

interactions with the systems, is often complex and aggregated data might represent
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an amalgamation of the goals and wants of a diverse set of people. Thus we do not

merely seek the model that makes the best predictions but we aim to understand the

behaviours of these people who interact with the task system. In this chapter, I showed

how to design interpretability tests that aim to evaluate how interpretable a certain

model is. I further explored a trade-off that exists between the interpretability of a

model and its statistical fit to data. It might be the case that a sub-optimal predictive

model is chosen as it provides more insight into the complex behaviours of people in

task systems.

This brief chapter proceeds by detailing the contributions that are made in the the-

sis. It then touches on the limitations of the proposed approach and finally lists some

exciting avenues for future work.

6.2 Summary of Contributions

The contributions that are made in this thesis are as follows:

• Modification of a standard Data Science lifecycle (Box’s Loop in Figure 1.1) to

the task of understanding people’s behaviour in task systems.

• Integration of domain constraints into the training of a neural network such that

behavioural hypotheses can be explored and compared. This involved integrating

both continuous and categorical latent variables into one model.

• Application of the proposed framework and inference scheme to an example

real-world domain: That of data from Stack Overflow where we showed that

the “Goal-Gradient Hypothesis” does indeed hold but for only a limited set of

people.

• Design and integration of tests to evaluate the interpretability of a proposed

model. The interpretability of a model is critical when performing inference

with the goal of understanding people’s behaviour in task systems.

• Application of interpretability tests to an interesting and complex real-world ex-

ploratory learning environment.
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6.3 Limitations

The framework that is proposed in this thesis has a few limitations that I detail here.

First and foremost, we are proposing to model the interaction of human behaviour

from observational data. The fact that observational data are used results in causal

conclusions being difficult to draw. This is a limitation of the framework as we would

ideally like to know the causal relations that lead to the observed behaviour of the

participants in task systems. In Section 6.4, I propose that this can be dealt with in

future extensions of this work. Moreover, any model is a simplification of reality. By

using insights from behavioural sciences, we can build more informed models and

may therefore arrive at more interesting conclusions but we will not fully capture the

complex data that arise from people’s activities with task systems.

A second limitation is a requirement that the behavioural hypotheses make pre-

dictions over the observable action space of the participants. For example, the goal-

gradient hypothesis from Chapter 3 predicts that a users’ rate of activity will increase

as a goal is approached. Activity in the context of Stack Overflow was defined as the

number of actions per day (where an action can be to: ask a question, answer a ques-

tion, vote on a post etc). This is not always possible or the data might not be available

for the hypothesis that is under investigation. For example, if a certain hypothesis pre-

dicts a change of a person’s emotional state, or if it predicts a change to an action that

is not seen on the task system, then we are unable to model these cases. Moreover,

privacy restrictions make access difficult to these data for researchers and thus it is a

challenge in the future to gain access to the sensitive interaction data of users without

violating privacy rights.

6.4 Future Work

The work explored in this thesis contains many avenues for possible future work. I

detail two of these possibilities that I find most exciting.

First, I have shown that users can be efficiently segmented by their behaviour. I did

not show that this segmentation persists through time and that people’s activity patterns

repeat through time. For example, if a user adheres to the goal-gradient hypothesis for

one badge or threshold, it is unknown whether that makes the same user more likely

to do this again. Excitingly, Kivetz et al. (2006) showed this to be true for customer’s

purchasing behaviour at coffee shops, however, it is unknown whether these effects
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will hold in an online domain. Intervention tests could be run to see whether a group

of participants who have adhered to a hypothesis once, do it again when offered a

similar reward. Research in this direction will help to answer the causal questions of

how environment design changes people’s behaviour.

Second, I have shown that we can use the data from task systems passively to infer

what people do and how they interact. However, the very nature of the partitioning of

a user base into different groups suggests that we should be able to tailor an environ-

ment to the needs of specific types of users. Indeed, Segal (2018) did exactly this by

designing a reinforcement learning agent that sends different motivational messages to

users based on the inferred needs of the user. I propose to extend the framework in

this thesis such that tailored rewards can be designed for different types of users. The

posterior assignment of a user’s activity to a behavioural archetype will then allow the

tailoring of certain rewards for these users. In this setting, the categorical latent space

that we use for inference over hypotheses is reminiscent of the inference over a discrete

action space that a reinforcement learning agent performs. As such, we can extend the

insights from this thesis to provide interpretable and tailored incentivising agents that

can help and motivate users when they perform work on a task system.
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Allen, C., Balažević, I., and Hospedales, T. (2020). A probabilistic framework

for discriminative and neuro-symbolic semi-supervised learning. arXiv preprint

arXiv:2006.05896.

Amir, O. and Gal, Y. K. (2013). Plan recognition and visualization in exploratory

learning environments. ACM Transactions on Interactive Intelligent Systems (TiiS),

3(3):16.

Amodei, D., Olah, C., Steinhardt, J., Christiano, P., Schulman, J., and Mané, D. (2016).
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A.1 Introduction

This chapter presents some important preliminaries that I build upon throughout the

thesis. I introduce the theory of variational inference and I provide an overview of how

this is extended to the black-box and amortised inference that is used throughout my

work.

A theme throughout my thesis is the use of structured inference algorithms in latent

variable models. Specifically, we endow certain latent parameters with meaning in the

model (e.g., a cluster assignment variable that assigns a data point to one of the com-

peting hypotheses, or the variables that control a user’s response to the goal-gradient

hypothesis). The corresponding posterior inference algorithms in these models are

therefore of importance and choosing the most applicable and scalable inference al-

gorithms is an important decision for a researcher in this field. Furthermore, in the

context of Figure 1.1, the inference algorithms let us analyse data under the modelling

assumptions where the behavioural hypotheses are encoded. Inference in these models,

therefore, uncovers the hidden structure that best explains our observations.

In Appendix A.2, I present some challenges that exist for any algorithm that aims

to perform inference in a latent variable model. These are broad computational in-

tractability problems and any posterior inference algorithm (including the variational

inference that we employ) makes assumptions and simplifications to overcome these

hurdles. I then present a simplified perspective of variational inference in Appendix A.3

and Appendix A.4. This allows us to understand the amortised inference approach in

Appendix A.5.

A.2 Challenges for Inference Algorithms in Latent Vari-

able Models

Latent variable models are primarily concerned with Bayes Theorem, presented in

Equation (A.1). To compute the quantity of interest p(θ | x) (also know as the posterior

distribution), we require the following elements:

1. p(x | θ) is also called the likelihood and it can often be represented as a graphical

model. Here, the observed data x are controlled by the latent variable(s) θ , hence

the naming convention for these models as latent variable models.

2. p(θ) is referred to as the prior as it contains a scientist’s beliefs about the pa-
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rameters θ before any data have been observed.

3. p(x) is also called the data likelihood, the evidence, the marginal likelihood or

even the “normalising constant”. Beware of using “normalising constant” in the

context of latent variable models as this quantity, while constant with respect

to θ , is the source of intractability when it comes to inference. I find the term

“normalising constant” misrepresents the complexity that is hidden in this simple

expression.

p(θ | x) = p(x | θ)p(θ)
p(x)

(A.1)

I refer the reader to Sections 10.1 and 10.2 of Bishop (2006) for further details

about Equation (A.1).

Solving for p(θ | x) requires designing a “generative model” which is the numera-

tor in Equation (A.1). It then involves computing or approximating the entire expres-

sion to solve for p(θ | x). By construction, it is a safe assumption that the numerator is

tractable. However, from the law of total probability,1 the denominator can be seen to

include an integration term:

p(x) =
∫

p(x | θ)p(θ)∂θ (A.2)

While the integrand is now merely the numerator in Equation (A.1), we perform

this integration over the often high dimensional latent variable space of θ . In certain

limited cases, the integration problem in Equation (A.2) can be solved analytically.

This is only possible when the likelihood term is in an exponential family and there

exists a conjugate prior such that the posterior is in the same family as the likeli-

hood. While, models of this type can lead to some possibilities (including Gaussian-

Gaussian, Poisson-Gamma, Bernoulli-Beta and Multinomial-Dirichlet models) it does

not allow direct inference in a large class of other useful models (including Bayesian

mixture models, hidden Markov models, linear dynamic systems, matrix factorisation,

Dirichlet process mixtures, mixed-membership models). It is thus a very limiting re-

striction to place on the modelling step to restrict ourselves to conjugate models.

We, therefore, seek a general inference framework that can handle many types of

likelihood specifications with a range of different choices for the prior. Options in-

clude Monte Carlo approximation, which is a computationally expensive means of

1See Blitzstein and Hwang (2019) for a detailed review of the necessary probability theory.



Appendix A. Background and Preliminaries 95

performing the integration in Equation (A.2). Specifically, Markov Chain Monte Carlo

(MCMC) methods such as Hamiltonian Monte Carlo (HMC) (Girolami and Calder-

head, 2011; Betancourt, 2017) and the later No U-Turn Sampler (NUTS) (Hoffman

and Gelman, 2014) have been shown to efficiently draw uncorrelated posterior sam-

ples and these methods have excellent convergence guarantees. However, while we

know for certain that the samples drawn from an MCMC algorithm will converge, in

the limit, to the posterior, we do not have strict guarantees on the number of samples

(and thus the time) that will be required to achieve this goal. Often a solution can be

arbitrarily bad and it is very hard to diagnose when this is the case, and how bad the

solution is. Certain MCMC algorithms (such as HMC and NUTS) do provide good

diagnostic tools which help to identify when the samples have not converged to the

true posterior.

Other methods for approximate posterior inference include Laplace’s method and

variational inference. The rest of this chapter is devoted to explaining variational in-

ference.

A.3 Variational Inference

Variational inference primarily turns the integration problem of solving Equation (A.2),

into an optimisation problem. This was an incredibly exciting development as it

opened the field of posterior inference to the possibility of using techniques from the

vast optimisation literature (Robbins and Monro, 1951; Dempster et al., 1977; Moon,

1996; Ortega and Rheinboldt, 2000; Broderick et al., 2013)

To achieve this, field pioneers (including Anderson and Peterson (1987), Jordan

et al. (1999), Hinton and Van Camp (1993), Neal and Hinton (1998), MacKay (1997),

Blei et al. (2003) and Hoffman et al. (2013)) defined a new problem that introduces

a family of distributions, parameterised by a set of new variables that allow for opti-

misation. The new family often introduces independencies that are not present in the

original model, thus the solution becomes an approximation to the original problem.

Variational inference thus introduces q(θ ;η) that aims to approximate the poste-

rior distribution p(θ | x). We aim to make q(θ ;η) “look” as similar as possible to

p(θ | x) by minimizing some measure of distance between these two distributions. See

Figure A.1 where I present a pictorial representation of this. We propose a family of

distributions, over the same latent variables θ and parameterised by some free param-

eters: q(θ ;η). The true posterior might be intractable and thus would live outside of
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Figure A.1: Pictorial representation of variational inference. The posterior is an in-

tractable object, living outside of a tractable family of distributions that are parame-

terised by η . We optimise the parameters such that the solution q(θ ;η∗) is as “close”

as possible to the true posterior.

the family that is proposed. Our goal is to optimise the parameters η (starting from an

initialisation point, ηinit) to find the best parameters η∗ where the variational approxi-

mation q(θ ;η∗) is closest to the true posterior .

The concept of “distance” between two distributions is another point of much re-

search and even more debate. For example, consider Figure A.2 where q1(x) and q2(x)

have the same variance but very different means. In contrast to this, q3(x) and q4(x)

have the same means but their variances differ. Is it the case that q1(x) and q2(x)

are more similar to each other or is q3(x) more similar to q4(x)? This is an unsolved

problem and it requires defining a measure that can be used to compare the similarity

between distributions. The choice of measure that is used for comparison necessarily

changes the answer to this question.

Many measures exist to compare distributions (e.g., Wasserstein metric (Gretton

et al., 2012) and Jensen–Shannon divergence). However, one of the more popular

measures is the Kullback-Leibler (KL) divergence. Note that it is called a “diver-

gence” and not a “distance”: an important technical difference as the KL divergence is

not symmetric. Thus, it matters if we take the KL divergence from q1 to q2 (denoted

KL(q1||q2)) or the reverse KL divergence from q2 to q1 (denoted KL(q2||q1)). In stan-

dard variational inference, we adopt the reverse KL divergence between the posterior

and the approximating distribution; we thus minimise Equation (A.3). For reasons be-
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Figure A.2: Example showing two cases with different Gaussian distributions. It is not

immediately clear if q1 is more different from q2 than q3 is to q4. We need a well defined

notion of “different” to solve this issue.

yond the scope of the present discussion, this results in a “mode-seeking” property of

variational inference.2 This property is well explained and further explored by Turner

and Sahani (2011).

q∗ = argmin
η

KL(q(θ ;η)||p(θ | x))

= argmin
η

∫
q(θ ;η) log

q(θ ;η)

p(θ | x)
∂θ

(A.3)

By substituting the solution of Bayes’ formula for the posterior we can simplify

Equation (A.3).

q∗ = argmin
η

∫
q(θ ;η) log

q(θ ;η)p(x)
p(x | θ)p(θ)

∂θ

= argmin
η

(∫
q(θ ;η) log p(x)∂θ +

∫
q(θ ;η) log

q(θ ;η)

p(x | θ)p(θ)
∂θ

)
= argmin

η

(
log p(x)−

∫
q(θ ;η) log

p(x | θ)p(θ)
q(θ ;η)

∂θ

) (A.4)

The solution in Equation (A.4) contains one term, log p(x), that does not depend on

the distribution q (parameterised by η) and thus it is not involved in the optimisation.

2Suppose that we wish to approximate a multimodal distribution with a single Gaussian. The mode
seeking behaviour of the reverse KL will result in the single Gaussian finding one of the modes and
placing as much mass as possible where that target mode exists. It will entirely “miss” the other modes
in the original distribution. In contrast to this, the forward KL divergence would display behaviour that
seeks to include all of the modes of the original distribution, at the expense of placing mass where it
might not exist in the original distribution. See Bishop (2006) for graphical representations and a further
discussion.
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The second term, −
∫

q(θ ;η) log p(x|θ)p(θ)
q(θ ;η) ∂θ , is called the Evidence Lower BOund

(ELBO) and it is the objective for optimisation in variational inference. We will use

this same “variational objective” many times throughout the thesis and thus this result

is of great importance for us:

ELBO(η) :=
∫

q(θ ;η) log
p(x | θ)p(θ)

q(θ ;η)
∂θ (A.5)

Since in Equation (A.4), we aim to minimise the -ELBO, in general, in varia-

tional inference, we aim to maximize Equation (A.5). This naming convention for the

“Evidence Lower Bound” can be further understood by studying the form of the KL

divergence:

KL(q(θ ;η)||p(θ | x)) = log p(x)−ELBO(η) (A.6)

Concretely, the KL-divergence is non-negative by definition, and logp(x) is called

the “log-evidence”. Therefore, it holds that ELBO(η), forms a lower bound on the

log-evidence: log p(x). This is shown in Equation (A.7).

log p(x) = KL(q(θ ;η)||p(θ | x))+ELBO(η)

log p(x)≥ ELBO(η)
(A.7)

Therefore variational inference can be understood in both of the following contexts:

1. Minimise the KL-divergence between the approximating function q(θ ;η) and

the posterior p(θ | x) (as is pictorially represented in Figure A.1).

2. Maximize the ELBO: the lower bound to the log-evidence logp(x) (as it shown

in Equation (A.7)). It is this second reason that maximising the ELBO can some-

times be referred to as a maximum likelihood technique.

In practice the solution to a variational inference problem can be found efficiently and

is often very good, however, a major criticism of this approach is that very few tools

exist to evaluate the quality of an optimised result. If a poor approximation family

is chosen, the result will be poor; moreover, the problem is often highly non-convex

and thus local optima can result in poor solutions, and most worryingly, it is often

very hard to evaluate just how poor these solutions are. On a technical level, these are

all problems with the variational inference approach that, to date, are open research

questions.
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A.4 Black Box Variational Inference

Given the variational objective (the ELBO) in Equation (A.5), we can additionally

study its components:

ELBO(η) =
∫

q(θ ;η) log
p(x | θ)p(θ)

q(θ ;η)
∂θ

=
∫

q(θ ;η) log p(x,θ)−q(θ ;η) logq(θ ;η)∂θ

(A.8)

Equation (A.8) is exactly the definition of the expected value of log p(x,θ)−
logq(θ ;η) under the distribution q(θ ;η). As such, we aim to optimize:

ELBO(η) = Eq(θ ;η) [log p(x,θ)− logq(θ ;η)] (A.9)

Equation (A.9) gives the target for optimisation but we have still not covered how

to perform this optimisation. To perform gradient-based optimisation, we require the

gradient of the ELBO.

∇ηELBO(η) = ∇ηEq(θ ;η) [log p(x,θ)− logq(θ ;η)] (A.10)

The analytical computation of the expectation term remains a problem (tradition-

ally solved via lengthy derivations for problem-specific solutions e.g., see Blei et al.

(2003) for an example of a popular mixed-membership model), but by evaluating the

gradient first, we can overcome many of these difficulties. The derivation of the com-

putation is given below, where we let f (θ ,η) = log p(x,θ)− logq(θ ;η). I have use

the differentiation product rule in Equation (A.12), and I have used the log-derivative

identity3 in line Equation (A.13).

∇ηELBO(η) =
∫

∇η [ f (θ ,η)q(θ ;η)]∂θ (A.11)

=
∫

q(θ ;η)∇η f (θ ,η)+∇ηq(θ ;η) f (θ ,η)∂θ (A.12)

=
∫

q(θ ;η)∇η f (θ ,η)+q(θ ;η)∇η logq(θ ;η) f (θ ,η)∂θ (A.13)

= Eq(θ ;η) [∇η f (θ ,η)+∇η logq(θ ;η) f (θ ,η)] (A.14)

3This is a simple application of the differentiation chain rule: ∇x log f (x) = ∇x f (x)
f (x) .

However, when the function f , is a likelihood function, ∇x log f (x) becomes a very
useful expression and is therefore called the “score function”. This significance of
the score function is further discussed in: https://blog.shakirm.com/2015/11/
machine-learning-trick-of-the-day-5-log-derivative-trick/
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Equation (A.14) is a very general means for obtaining the derivative of the ELBO

which permits gradient-based optimisation. Moreover, we are able to estimate the

expectation in Equation (A.14) via Monte Carlo samples but to do this we are required

to draw samples from q(θ ;η).

There is a choice of two classes of algorithm that allow us to approximate the ex-

pectation in Equation (A.14). First, we could use the identity that the expectation of the

score function is 0 (Eq(θ ;η) [∇η logq(θ ;η)] = 0). This leads to an unbiased estimator

that can be approximated via Monte Carlo samples and is used heavily in reinforcement

learning under the name: “likelihood ratio” (Glynn, 1990) or REINFORCE (Williams,

1992; Ranganath et al., 2014; Mnih and Gregor, 2014). While this approach is outside

of the present scope, there is much promising research in this direction (Tucker et al.,

2017); however, a note is that the resulting estimator has a high variance and thus many

of the practical approaches to solving this problem attempt to reduce the variance of

the estimator.

The alternative approach, and the one that we use throughout this thesis, is called

the “pathwise estimator”. This approach requires that the distribution q(θ ;η) can be

re-written as a deterministic and differentiable transformation of a parameter-free noise

source (denoted s(ε)). For example, suppose q(θ ;η) is a Gaussian with parameters

η = (µ,σ). θ ∼ q(θ ;η) can then be constructed by a sample from a standard Gaussian

(ε ∼ N(0,1)) and transformed via a differentiable and deterministic mapping: θ =

µ + εσ .

Finally, assuming log p(x,θ) and logq(θ ;η) are differentiable with respect to the

latent variable θ , we are able to “reparameterise” the expectation in Equation (A.14).

We then arrive at the pathwise estimator (where this reparameterisation is also known

as the “reparameterisation trick” (Kingma and Welling, 2014; Rezende et al., 2014;

Kingma et al., 2014, 2016)). We use the function θ = g(ε,η) to refer to the determin-

istic transformation of the parameter-free noise source ε ∼ s(ε) using parameters η to

produce a sample from the distribution q(θ ;η).

∇ηELBO(η) = Eq(θ ;η) [∇η f (θ ,η)+∇η logq(θ ;η) f (θ ,η)] (A.15)

= Es(ε) [∇η f (g(ε,η),η)+∇η logs(ε) f (g(ε,η),η)] (A.16)

= Es(ε) [∇η f (g(ε,η),η)] (A.17)

= Es(ε)
[
∇θ

(
log p(x,θ)− logq(θ ;η)

)
∇ηg(ε,η)

]
(A.18)

Equation (A.17) follows as the noise distribution s(ε) does not depend on the pa-
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Figure A.3: General graphical model for a large class of generative models commonly

seen in the literature. We show the clear split of local and global latent variables.

rameters η and thus the gradient with respect to η is 0. Equation (A.18) follows from

another application of the chain rule. We thus arrive at a specification for computing

the gradient of the ELBO and we only require that:

1. The distribution q(θ ;η) can be re-written as a sample from a noise source ε ∼
s(ε) and transformed via a deterministic mapping: θ = g(ε,η).

2. The generative model log p(x,θ) is differentiable with respect to the latent vari-

able θ . This allows us to compute ∇θ log p(x,θ).

3. The approximating distribution logq(θ ;η) is differentiable with respect to the

latent variable θ . This allows us to compute ∇θ logq(θ ;η).

A.5 Amortised Variational Inference

We have now arrived at a general specification for optimizing the ELBO for a flexible

range of models p and approximating distributions q. The final piece of the puzzle is

to improve learning by introducing amortisation across data.

Figure A.3 presents a pictorial representation of a typical generative model (cov-

ering a large range of models that are often encountered in practice including the list

of models presented in Appendix A.2). The figure shows that each data point xi has a
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Figure A.4: Graphical model for the mean field approximation of the generative model

in Figure A.3

corresponding local latent variable θi. The global latent variables β are shared among

all local latent variables and all data points. Traditionally, variational inference loops

through an entire dataset updating each data point’s local latent variable, thereafter the

global latent variable is updated conditioned on the values for the local latent variable

(this results in an algorithm that is highly related to expectation maximisation (Neal

and Hinton, 1998)). Hoffman et al. (2013) was the first to propose a stochastic varia-

tional inference alternative where the local latent variables are updated in mini-batches

and the global variables are updated after each mini-batch. In practice, their algorithm

scaled to data sets orders of magnitude larger than the original algorithm. Amortised

inference, in turn, learns a new function that takes as input a data point xi and outputs

the parameters associated with the variational approximation for the local latent vari-

ables for that data point. Thus, the problem is now to learn the mapping from data

point xi to the variational approximation for θi.

Figure A.4 presents the mean-field variational approximation for the general family

of generative models in Figure A.3. Each latent variable has its own variational param-

eter with the local latent variables θi each having their own φi variational parameter.

Similarly, the global variables β have their variational parameters λ . Thus, in this case

the variational parameters η = (λ ,φ1, . . . ,φn).

We can finally return to the definition of the ELBO from Equation (A.9). Adopting

the structure from Figure A.3, the ELBO can be expanded by the implied independen-

cies from the variational approximation in Figure A.4.
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ELBO(λ ,φ1,...,n) = Eq [log p(x,θ ,β )]−Eq

[
logq(β ;λ )+

n

∑
i=1

q(θi;φi)

]
(A.19)

Equation (A.19) presents the target for optimisation that is used by Hoffman et al.

(2013). Here, we optimise, individually, each parameter φi based on the data point xi

and the global parameters λ . Not only is this inefficient in that for every new data point

we must individually optimise its local parameters, but it also becomes problematic for

large data sets (where streaming data may be required) and storing and indexing each of

the local parameters φi is required. Amortised inference rather introduces an inference

network that maps a data point xi to its local latent parameters φi. This change is shown

in Equation (A.20) in blue.

ELBO(λ ,φ1,...,n) = Eq [log p(x,θ ,β )]

−Eq

[
logq(β ;λ )+

n

∑
i=1

q(θi;φi = hΦ(xi))

]
(A.20)

Here, we now have an inference network hΦ that accepts a data point xi and outputs

the variational parameters φi that are associated with that data point. The network that

implements q can now be optimised jointly with the generative model that implements

p. This setup in Equation (A.20) has been commonly used in the literature and is

referred to as a “Variational Autoencoder” (Kingma and Welling, 2014).
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B.1 Omitted Proofs

Here we present the proof of Theorem 3.6.1. Let X be a nonnegative, bounded, and

integer-valued random variable. Let {Xm}m∈N be independent random variables which

are distributed identically to X . We will be concerned with the partial sums Sn =

∑
n
m=1 Xm. Let YN denote the random variable which is the copy Xm that brings Sn

across the threshold N; that is, for which Sm−1 < N and Sm ≥ N.

Theorem B.1.1. If X is nonnegative, integer-valued, and bounded then

lim
N→∞

E[YN ] = E[X ]+
Var[X ]

E[X ]

More generally, we also consider the case when the X are drawn from distributions

X1, . . . ,Xτ , . . . ,XT repeatedly in turn. Then the partial sums are Sn = ∑
n
m=1 Xm mod T ,

where all copies of Xτ are independent. Let ξτ denote the event that YN is drawn from

distribution Xτ , and let Z = ∑
D
τ=1 Xτ . For this setting we have the following theorem:

Theorem B.1.2. If each of the distributions Xτ is finite, nonzero, nonnegative, and

integer valued then

lim
N→∞

E[YN ] =
∑τ E[(Xτ)2]

E[Z]
.

Theorem B.1.1 follows directly from Theorem B.1.2 by taking the Xτ to be identi-

cally distributed. It therefore suffices to prove Theorem B.1.2.

We begin by showing that the likelihood of the sequence {Sn} visiting any given

number N is asymptotically uniform. Let pm :=E [|{n ∈ N : Sn = m}|], g := gcd(range(X))

and observe that if X > 0 then pm = Pr[m∈ {Sn}]. Also, if m 6∈ gN then clearly pm = 0.

For the pm for which m ∈ gN, we have the following lemma:

Lemma B.1.3. If X is nonzero, nonnegative, and bounded then

lim
n→∞

pgn =
g
µ

Proof. First, it suffices to assume that g= 1. This is because the integer-valued random

variable X ′ := X/g has mean µ/g and gcd(range(X ′)) = 1, and proving the claim for

X ′ implies the claim for X . It also suffices to assume that X > 0. This is because the

sequence {Sn}n∈N remains at a specific value m only so long as the independent draws

are Xn = 0, after which it leaves m forever. The expected number of steps that {Sn}
lingers at m for is exactly 1

1−α
, where α = Pr[X = 0]. Since µ > 0 by assumption, we

may prove the claim for X ′′ := X |X > 0. Then µ = µ ′′

1−α
and

pm = E [|{n ∈ N : Sn = m}|] = 1
1−α

p′′m
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Thus proving the claim for X ′′, proves the claim for X . Therefore, we may assume

without loss of generality that X > 0 and that gcd(range(X)) = 1.

Let M := max{range(X)} be the maximum value that X obtains. Then the pm obey

the recurrence

pm =
M

∑
j=1

pm− j Pr[X = j] (B.1)

with the initial conditions p0 = 1 and pm = 0 for all m < 0. Because X is bounded by

M, we may break N up into “epochs” {1, . . . ,M},{M+1, . . . ,2M}, . . ., and then define

qk
r := pkM+r with q0 := (0, . . . ,0,1)T . For any m = kM + r we can then iteratively

expand the pm− j terms in Equation B.1 for which m− j ≥ kM until the expression for

each pm depends only on the previous epoch, which gives an alternative recurrence of

the form

pkM+r =
M

∑
s=1

α
r
s p(k−1)M+s (B.2)

where r,s ∈ [M] (and the initial conditions are the values of ps for s ∈ [M]). Note

that these αr
s do not depend on k. The recurrences in Equations B.1 and B.2 give pm

as a convex combination of previous values, and so we may rewrite Equation B.2 as

qk = Akq0, where A := {αr
s}r,s∈[M] is a right stochastic square matrix. Furthermore it

follows from the assumption g = 1 that A is primitive. Therefore the Perron-Frobenius

Theorem implies that Ak converges exponentially quickly to a matrix of the form~1~uT ,

where ~1 and ~uT are the unique right and left eigenvectors of A corresponding to the

eigenvalue λ = 1. This in turn implies that qk = Akq0 converges to some uniform

vector (γ, . . . ,γ), and therefore that limm→∞ pm = γ .

Finally we argue that γ = 1/µ . We can show this by considering C(N,J) :=

E [|{Sn}∩ [N,J)|], the mean number of times that {Sn} intersects some interval [N,J).

Since the pm converge, for fixed J we may use linearity of expectation to choose N

large enough to guarantee that C(N,J) ∈ Jγ ± ε for any given ε > 0. On the other

hand, by considering the {Sn} as “restarting” when they reach the epoch preceding N,

we may use the central limit theorem to argue that C(N,J) ∈ J
µ
±O(J2/3). Taking the

limit as J becomes large yields γ = 1/µ . � �
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B.2 Additional Plots from Badge Study

B.2.1 Civic Duty Badge
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Figure B.1: Cluster assignments (as inferred by Su from Model 2) for the users who

achieved the Civic Duty badge.
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Figure B.2: Mean number of actions per day for users who are classified by their steer-

ing parameters (Su) for the users who achieved the Civic Duty badge.

-70-63-56-49-42-35-28-21-14 -7 0 7 14 21 28 35 42 49 56 63 70
Days before/after threshold

0

5

10

St
re
ng

th
 o
f S

te
er
in
g

βα
βλ

Figure B.3: Plot of the inferred magnitude of β : the expected deviation from a user’s

preferred distribution Pu under the assumptions of Model 2 for the users who achieved

the Civic Duty badge.
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B.2.2 Copy Editor Badge
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Figure B.4: Cluster assignments (as inferred by Su from Model 2) for the users who

achieved the Copy Editor badge.
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Figure B.5: Mean number of actions per day for users who are classified by their steer-

ing parameters (Su) for the users who achieved the Copy Editor badge.
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Figure B.6: Plot of the inferred magnitude of β : the expected deviation from a user’s

preferred distribution Pu under the assumptions of Model 2 for the users who achieved

the Copy Editor badge.
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B.2.3 Strunk & White Badge
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Figure B.7: Cluster assignments (as inferred by Su from Model 2) for the users who

achieved the Strunk & White badge.
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Figure B.8: Mean number of actions per day for users who are classified by their steer-

ing parameters (Su) for the users who achieved the Strunk & White badge.
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Figure B.9: Plot of the inferred magnitude of β : the expected deviation from a user’s

preferred distribution Pu under the assumptions of Model 2 for the users who achieved

the Strunk & White badge.
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B.3 Additional Plots from Reputation Threshold Study

B.3.1 Reputation Threshold = 2K
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Figure B.10: Cluster assignments (as inferred by Su from Model 2) for the users who

passed the 2K reputation threshold.
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Figure B.11: Mean number of actions per day for users who are classified by their

steering parameters (Su) for the users who passed the 2K reputation threshold.
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Figure B.12: Plot of the inferred magnitude of β : the expected deviation from a user’s

preferred distribution Pu under the assumptions of Model 2 for the users who passed

the 2K reputation threshold.
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B.3.2 Reputation Threshold = 20K
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Figure B.13: Cluster assignments (as inferred by Su from Model 2) for the users who

passed the 20K reputation threshold.
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Figure B.14: Mean number of actions per day for users who are classified by their

steering parameters (Su) for the users who passed the 20K reputation threshold.
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Figure B.15: Plot of the inferred magnitude of β : the expected deviation from a user’s

preferred distribution Pu under the assumptions of Model 2 for the users who passed

the 20K reputation threshold.
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B.3.3 Reputation Threshold = 25K
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Figure B.16: Cluster assignments (as inferred by Su from Model 2) for the users who

passed the 25K reputation threshold.
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Figure B.17: Mean number of actions per day for users who are classified by their

steering parameters (Su) for the users who passed the 25K reputation threshold.
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Figure B.18: Plot of the inferred magnitude of β : the expected deviation from a user’s

preferred distribution Pu under the assumptions of Model 2 for the users who passed

the 25K reputation threshold.

B.4 Algorithms for Models 0, 1 and 2
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Algorithm 2 Generative Pseudocode for Model 0

Zu ∼N (0,I) {Sample Z from standard normal prior (see Section 3.3)}
Su = 0 {Define Su to be 0 as no user steers}
Pu = fθ (Zu) {Compute Pu as a forward pass of the network fθ}
Use Eq. (3.2) to compute αu and λu from Pu and Su.

Sample Au from zero-inflated Poisson likelihood Eq. (3.1)

Algorithm 3 Generative Pseudocode for Model 1

Zu ∼N (0,I) {Sample Z from standard normal prior (see Section 3.3)}
Su = 1 {Define Su to be 1 as all users steer}
Pu = fθ (Zu) {Compute Pu as a forward pass of the network fθ}
Use Eq. (3.2) to compute αu and λu from Pu and Su.

Sample Au from zero-inflated Poisson likelihood Eq. (3.1)

Algorithm 4 Generative Pseudocode for Model 2

Zu ∼N (0,I) {Sample Z from standard normal prior (see Section 3.3)}
Su ∼ Bernoulli(1

2) {Sample S from Bernoulli Prior as a user can either steer or not

(see Section 3.3)}
Pu = fθ (Zu) {Compute Pu as a forward pass of the network fθ}
Use Eq. (3.2) to compute αu and λu from Pu and Su.

Sample Au from zero-inflated Poisson likelihood Eq. (3.1)
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C.1 Appendix – Additional Experimental Details

All code and data for repeating the experiments can be found at the repository at:

https://github.com/NickHoernle/semantic_loss. The image experiments (on

MNIST and CIFAR100) were run on Nvidia GeForce RTX 2080 Ti devices and the

synthetic data experiment was run on a 2015 MacBook Pro with processor specs: 2.2

GHz Quad-Core Intel Core i7. The MNIST data set is available under the Creative

Commons Attribution-Share Alike 3.0 license; and CIFAR100 is available under the

Creative Commons Attribution-Share Alike 4.0 license. The DL2 framework (available

under an MIT License), used in the baselines, is available from https://github.com/

eth-sri/dl2.

In all experiments, the data were split into a train, validation and test set where the

test set was held constant across the experimental conditions (e.g., in the CIFAR100

experiment, the same test set was used to compare MultiplexNet vs the vanilla models

vs the DL2 model). In cases where model selection was performed (early stopping on

CIFAR100 and selection of the best runs from the MNIST experiment, we used the

validation set to choose the best runs and/or models). In these cases the validation set

was extracted from the training data set prior to training (with 10% of the data used

for validation). The standard test sets, given by MNIST and CIFAR100 were used for

those experiments and an additional test set was generated for the synthetic experiment.

C.1.1 Synthetic Data

Deriving the Loss
We first present the full derivation of the loss function that was used for this exper-

iment. We used a variational autoencoder (VAE) with a standard isotropic Gaussian

prior. The standard VAE loss is presented in Eq. C.1. In the below formulation, xi is a

datapoint, L is a minibatch size, and zi is a sample from the approximate posterior q.

L (θ) =−
L

∑
i=1

log p(xi | zi)+ log p(zi)− logq(zi | xi) (C.1)

We use an isotropic Gaussian likelihood for log p(xi | zi) and an isotropic Gaussian

for the posterior. Standard derivations (see Kingma and Welling (2014) for more de-

tails) allow the loss to be expressed as in Eq.C.2. In this equation, fθ is the decoder

model and it predicts the mean of the likelihood term. A tunable parameter σ controls

the precision of the reconstructions – this parameter was held constant for all experi-
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mental conditions. The posterior distribution is a Gaussian with parameters σ2
q and µq

that are output from the encoding network qθ (xi).

L (θ) =−
L

∑
i=1

N (xi; fθ (zi),σ
2)+0.5∗ (1+ log(σ2

q )−µ
2
q −σ

2
q ) (C.2)

Finally, we present how the MultiplexNet loss uses L (θ) in the transformation

of the output layer of the network. MultiplexNet takes as input the unconstrained

network output fθ (zi) and it outputs the transformed (constrained) terms hk (for K

terms in the DNF constraint formulation) and the probability of each term πk. Let

Lk(θ) denote the same loss L (θ) from Eq. C.2 but with the raw output of the net-

work fθ (zi) constrained by the constraint transformation hk (i.e., the likelihood term

becomes: N (xi;hk( fθ (zi)),σ
2)) The final loss then is presented in Eq. C.3.

MPlexNet(θ) =
K

∑
k=1

πk
(
Lhk(θ)+ logπhk

)
(C.3)

Samples from the Posterior
The following plots show samples from the posterior of the two models – these

are the attempts of the VAE to reconstruct the input data. It can clearly be seen that

while MultiplexNet strictly adheres to the constraints, the baseline VAE approach fails

to capture the constraint boundaries.

(a)

(b)

Figure C.1: (a) Samples from the vanilla VAE posterior for different sizes of training data

sets (b) Samples from the MultiplexNet VAE posterior for different sizes of training data

sets.

Samples from the Prior
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Samples from the prior show how well a generative model has learnt the data man-

ifold that it attempts to represent. We show these to demonstrate that in this case, the

vanilla VAE fails to capture many of the complexities in the data distribution. To sam-

ple from the prior for MultiplexNet, we randomly sample from the latent Categorical

variable from MultiplexNet. Hence, the two vertical modes (that contain no data in

reality) have samples here. This can easily be solved by introducing a trainable prior

parameter over the Categorical variable as well – an easy extension that we do not

implement in this work.

(a)

(b)

Figure C.2: (a) Samples from the vanilla VAE prior for different sizes of training data sets

(b) Samples from the MultiplexNet VAE prior for different sizes of training data sets.

Network Architecture
The default network used in these experiments was a feed-forward network with a

single hidden layer for both the decoder and the encoder models. The dimensionality

of the latent random variable was 15 and the hidden layer contained 50 units. ReLU

activations were used unless otherwise stated.

C.1.2 MNIST - Label-free Structured Learning

Deriving the Loss
We follow the specification from Kingma et al. (2014) where the likelihood of a sin-

gle image, x, conditioned on a cluster assignment label y, is shown in Eq. C.4. Again,

z is a latent parameter, again assumed to follow an isotropic Gaussian distribution.

log p(x,y)≥ Eq(z|x) [log pθ (x | y,z)+ log p(z)− logq(z | x)] (C.4)
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We refer to the right hand side of Eq. C.4 as −V (x,y). Eq. C.4 assumes knowledge

of the label y, but this is unknown for our domain. However, we can implement the

knowledge from Eq. 4.11 (in the main text) that specifies all 100 possibilities for the

image inference task. Below we assume the data is of the form imagei + image j =

(imagek1 , imagek2) where labeli ∈ [0, . . . ,9], label j ∈ [0, . . . ,9], labelk1 ∈ [0,1] and

labelk2 ∈ [0, . . . ,9]. Finally, we let πh refer to the MultiplexNet Categorical selec-

tion variable that chooses which of the 100 possible terms for (i, j,k1,k2) are present.

Following the MultiplexNet framework, the loss is then presented in Eq C.5:

L (θ)= ∑
i, j,k

πh [V (x1,y1 = i)+V (x2,y2 = j)+V (x3,y3 = k1)+V (x4,y4 = k2)+ logπh]

(C.5)

Samples from the Vanilla VAE prior from Kingma et al. (2014)
We repeat the experiment from Section 4.3.2 with a vanilla VAE model (“Model 2”

from Kingma et al. (2014)). Here we simply show that the model can capture the label

clustering of the data but that it cannot, unsurprisingly, infer the class labels correctly

from the data without considering the fact that the data set has been structured:

Figure C.3: Reconstructed/Decoded samples from the prior, z, of “Model 2” from

Kingma et al. (2014). The clustering of the data is clear but the model is unable to

infer the correct class labels without considering the structured data set and domain

knowledge.

Network Architecture
The default network used in these experiments was a feed-forward network with

two hidden layers for both the decoder and the encoder models. The first hidden layer

contained 250 units and the second 100 units. The dimensionality of the latent random

variable was 50. ReLU activations were used unless otherwise stated.

C.1.3 Hierarchical Domain Knowledge on CIFAR100

Deriving the Loss
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Following the encoding in Fischer et al. (2019), we consider constraints which

specify that groups of classes should together be very likely or very unlikely. For ex-

ample, suppose that the SC label is trees and the class label is maple. Our domain

knowledge should state that the trees group must be very likely even if there is un-

certainty in the specific label maple. Fischer et al. (2019) use the following logic to

encode this belief (for the 20 super classes that are present in CIFAR100):

(ppeople < ε ∨ ppeople > 1− ε)∧·· ·∧ (ptrees < ε ∨ ptrees > 1− ε) (C.6)

This encoding is exactly the same as that presented in Eq C.7. However, we re-

write this encoding in DNF such that it is compatible with MultiplexNet.

(ppeople > 1− ε ∧ ptrees < ε ∧ . . .)∨ (ppeople < ε ∧ ptrees > 1− ε ∧ . . .)∨ ... (C.7)

A simplification on the above, as the classes and thus the super classes lie on a

simplex, is the specification that (ppeople > 1− ε) necessarily implies that (ptrees <

ε ∧ . . .) holds too. Thus the logic can again be simplified to:

(ppeople > 1− ε)∨ (ptrees > 1− ε)∨ (p f ish > 1− ε)∨ ... (C.8)

Again, as the probability values here lie on a simplex, we can represent a single

constraint as in Eq C.9. Here, Z is the normalizing constant that ensures the final

output values are a valid probability distribution over the class labels (computed with

a softmax layer in practice). Z = ebaby + eboy + · · ·+ ecattle + etractor for all 100 class

labels in CIFAR100.

(ppeople > 1− ε) =⇒ ebaby

Z
+

eboy

Z
+

egirl

Z
+

eman

Z
+

ewoman

Z
> 1− ε (C.9)

Finally, we can simplify the right hand side of Eq C.9 to obtain the following

specification (for the people super class, but the other SCs all follow via symmetry):

ebaby + eboy + egirl + eman + ewoman >
1− ε

ε

[
ebeaver + ecouch + · · ·+ estreetcar

]
(C.10)

Note that the right hand side of Eq C.10 contains the classes for all the other super

classes but not including people. It thus contains 95 labels in this example.
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Studying each of the terms in j ∈ [baby,boy,girl,man,woman] separately, and not-

ing that ey is strictly positive, we obtain Eq C.11. We use y j to denote a class label in

the target super class (in this case people) and yi to refer to all other labels in all other

super classes (SC).

ey j >
1− ε

ε

 ∑
i/∈SCpeople

eyi

 (C.11)

As we are interested in constraining the unnormalized output of the network (y j)

in MultiplexNet, it is clear that we can take the logarithm of both sides of Eq C.11 to

obtain the final objective for one class label. Together with Eq C.8, we then obtain the

final logical constraint in the main text in Eq 4.12.

y j > log(
1− ε

ε
)+ log ∑

i/∈SCpeople

eyi (C.12)

This implementation can then be directly encoded into the MultiplexNet loss as

usual (where yk refer to the constrained output of the network for each of the 20 super

classes, πk is the MultiplexNet probability for selecting logic term k, and CE is the

standard cross entropy loss that is used in image classification.

L (θ) =
20

∑
i=1

πk [CE(yk)+ logπk] (C.13)

Network Architecture
We use a Wide ResNet 28-10 (Zagoruyko and Komodakis, 2016) in all of the ex-

perimental conditions for this CIFAR100 experiment. We build on top of the pytorch

implementation of the Wide ResNet that is available here: https://github.com/

xternalz/WideResNet-pytorch. This implementation is available under an MIT

License.
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