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Abstract 
 

Sex is arguably the most important differentiating characteristic in most mammalian 

species, separating populations into different groups, with varying behaviors, morphologies, 

and physiologies based on their complement of sex chromosomes, amongst other factors. In 

humans, despite males and females sharing nearly identical genomes, there are differences 

between the sexes in complex traits and in the risk of a wide array of diseases. Sex provides 

the genome with a distinct hormonal milieu, differential gene expression, and environmental 

pressures arising from gender societal roles. This thus poses the possibility of observing 

gene by sex (GxS) interactions between the sexes that may contribute to some of the 

phenotypic differences observed. In recent years, there has been growing evidence of GxS, 

with common genetic variation presenting different effects on males and females. These 

studies have however been limited in regards to the number of traits studied and/or 

statistical power. Understanding sex differences in genetic architecture is of great 

importance as this could lead to improved understanding of potential differences in 

underlying biological pathways and disease etiology between the sexes and in turn help 

inform personalised treatments and precision medicine. 

 

In this thesis we provide insights into both the scope and mechanism of GxS across the 

genome of circa 450,000 individuals of European ancestry and 530 complex traits in the UK 

Biobank. We found small yet widespread differences in genetic architecture across traits 

through the calculation of sex-specific heritability, genetic correlations, and sex-stratified 

genome-wide association studies (GWAS). We further investigated whether sex-agnostic 

(non-stratified) efforts could potentially be missing information of interest, including sex-

specific trait-relevant loci and increased phenotype prediction accuracies. Finally, we 

studied the potential functional role of sex differences in genetic architecture through sex 

biased expression quantitative trait loci (eQTL) and gene-level analyses.  

 

Overall, this study marks a broad examination of the genetics of sex differences. Our findings 

parallel previous reports, suggesting the presence of sexual genetic heterogeneity across 

complex traits of generally modest magnitude. Furthermore, our results suggest the need to 

consider sex-stratified analyses in future studies in order to shed light into possible sex-

specific molecular mechanisms.
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Lay summary 
 

Males and females are different in ways that expand well beyond human reproductive 

function and appearance. For example, studies have found that, based on our sex, we will 

respond to medication differently and even be more predisposed to certain diseases like 

psychiatric disorders, asthma, or stroke. However, despite decades of research, we still do 

not know what underlies these differences. Historically, studies looking to assess the origins 

of sexual dimorphism across human traits have mostly focused on the role of several genes 

on the sex chromosomes and on hormones. On the other hand, studies have shown that our 

autosomal genetics, that is, that which is not accounted for by the sex chromosomes, and 

which is shared by males and females, could also be a key contributor in the “programming” 

of the differences observed. 

 

However, the study of the genetic contribution to human characteristics, including trait 

differences between males and females, has not been easy. Indeed, only in recent decades 

have scientists been able to delve into the genetics of traits that are “programmed” beyond 

the action of single genes, the study of which saw great success in the 20th century. This has 

been made possible thanks to the extensive characterisation of human DNA, the Human 

Genome Project completion at the turn of the 21st century, the creation of large population 

studies, and the development of statistical and computational frameworks that allow us to 

connect our genes to our traits.   

 

Thanks to these advances, in this thesis we have been able to delve into how our genes, and 

particularly those which are shared between males and females, could potentially be 

contributing to differences between the sexes, in what constitutes the biggest study into the 

effects of sex on the genetic programming of human characteristics to date. We have found 

evidence of sexually different genetic effects for a large portion of the traits under study, 

indicating that genes that had previously not been thought to play a role in sex differences 

are also likely contributors. As such, this study helps further shape our understanding of 

differences between the sexes, and of the genetic programming of human traits, potentially 

helping guide medicine into appropriate treatments for both males and females.
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Chapter 1 
Introduction 

 

The introduction to this thesis can be conceptually divided into two blocks. Firstly, I will delve 

into human genetics, exploring the history and current state of the field, as well as discuss 

the main frameworks used in quantitative genetics today, that are further used in this thesis. 

Secondly, I will discuss the factors underlying sexual differences in humans, making the case 

for the autosomal genome as a potentially overlooked player. This will set-up the theoretical 

groundwork for the exploration of gene by sex interactions (GxS), discussed in later chapters.  

 

1.1. Human genetics in the 21st century 
 

With the arrival of the 21st century came a revolution in genetic science. However, fast-

forward to the present day and much is yet to be understood. Currently, geneticists have at 

their disposal large volumes of genetic data but limiting amounts of high-quality, in-depth 

phenotypic and environmental information able to be linked to the former, and the 

technology to carry out such measurements at scale. To correct this, cohorts like the UK 

Biobank1 or the Genotype-Tissue Expression project (GTEx)2 are taking important steps in the 

characterisation of human phenotypes and genotypes, achieving high levels of both data 

depth and data breadth. This, in turn, provides researchers with sufficient statistical power 

for the determination of genetic associations across a wide range of traits and diseases, with 

the potential for important repercussions in precision medicine and health care3–5. 

 

In this section I will summarise the state of human genetics in the 21st century, highlighting 

important technological advances made since the Human Genome Project (HGP)6–8 and the 

consequent advent of large population cohorts. Prior to this discussion, basic molecular 

genetics concepts, which are heavily discussed throughout this thesis, are introduced, as 

well as a brief history of the foundations of genetic science.  

 

1.1.1. Pre-21st century: The origins of human genetics 

 

1.1.1.1. Molecular genetics – main concepts 

 

Genetics is a branch of biology concerned with the study of genes, genetic variation, and 

hereditya in organisms. The molecular structure of genetic material is a threadlike double 

helical molecule called deoxyribonucleic acid, abbreviated DNA. The monomericb units, or 

building blocks, of DNA are molecules known as nucleotides: adenine (A), cytosine (C), 

 
a Heredity: “the sum of all biological processes by which characteristics are transmitted from parents to 
their offspring”323. 
b Monomer: a molecule that can be bonded to other identical molecules to form a polymer. 
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guanine (G), and thymine (T). Much like other languages, the order in which these bases are 

presented within DNA determines the information that the genomec encodes. The human 

genome is a sequence of approximately 3 x 109 nucleotides which possesses the “instruction 

manual” to life and is thus the “carrier of heredity”. The genome is physically distributed 

across chromosomes, which are condensed units of DNA and proteins named histones (this 

DNA-protein complex is also termed chromatin). Humans are diploid, meaning they possess 

two copies of each chromosome. Typically, humans possess 23 pairs of chromosomes, of 

which 1 is a pair of sex chromosomes (i.e. they play a role in sexual determination, and males 

and females possess different sets, two X chromosomes in females and one X and one Y 

chromosome in males), and the remaining 22 are known as autosomal, and are homologousd. 

Each pair consists of a chromosome inherited from the father, and another from the mother.  

 

The genome can be roughly functionally divided into two parts, that which codes for proteins 

(coding regions) and that which does not (non-coding regions). The former is made up of units 

of DNA known as genese, whilst the function of non-coding regions is not very well known. 

The central dogma of molecular biology, which describes the flow of genetic information 

within a biological system, states that information is passed down from DNA to ribonucleic 

acid (RNA) in a process known as transcription, and then to proteins in a process known as 

translation (Figure 1). Genes contain introns and exons, of which only exons are translated 

into proteins, the former being removed from RNA prior to translation in a phenomenon 

known as splicing. Despite nuances to its original postulation in the 1950s by Francis Crick9, 

this principle has been fundamental in our understanding of the genome and its function, 

different subfields of biology arising to further define and understand each step within the 

chain. Current technologies have allowed for the study of system-wide elements within the 

central dogma and beyond, giving rise to the -omicsf disciplines.   

 

 
Figure 1. Schematic representation of expanded central dogma of molecular biology, with associated 
omics disciplines. 

 

 
c Genome: the complete set of genetic material within an organism or cell. 
d Homologous chromosomes have the same structural features and pattern of genes. 
e Gene: a distinct sequence of nucleotides the order of which determines the order of monomers in a 
polypeptide or nucleic acid molecule which a cell may synthesise. 
f Omics disciplines: group of various disciplines in biology whose aim is the collective 
characterisation/quantification of whole biological levels, and include genomics, transcriptomics, 
proteomics, metabolomics, and more.   
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Underlying differences between species and between individuals within species are 

variations within the genetic code, known as genetic variation. Genetic variation has many 

flavours, the most common by far being single-nucleotide variants (SNVs), thus the emphasis 

on the latter in modern genetic studies. SNVs can refer to three single-nucleotide changes in 

the genetic code: (i) a change in nucleotide (referred to commonly as single nucleotide 

polymorphisms, SNPs), (ii) the insertion of a nucleotide, and (iii) the deletion of a nucleotide. 

Different versions or variations of genes, resulting from genetic variation across their 

structure, are known as alleles, though this term can also refer to SNPs and other forms of 

genetic variation. Normally, humans possess two alleles of each SNP (or gene), one within 

each chromosome. If the alleles in both chromosomes are the same, then the individual is 

homozygose, and if they differ then they are heterozygose. An individual’s set of alleles is 

known as the genotype, which in turn can determine observable characteristics, known as the 

phenotype.  

 

1.1.1.2. A brief history of human genetics: inheritance and linkage 

 

Despite molecular knowledge of DNA, as well as its role in heredity, not being known until half-

way through the 20th century, the main principles of inheritance were defined in the 19th 

century by friar Gregor Mendel, known today as the father of modern genetics. Through his 

experiments with peas between 1856 and 1863, Mendel revealed how traits are passed down 

from parents to offspring, and, in 1865, defined three principles of inheritance that served as 

the foundations of modern genetics. These principles, defined using current terminology, 

are: (i) the law of dominance (recessive alleles will be masked by dominant alleles and the 

trait corresponding to the dominant allele will be observed), (ii) the law of segregation (an 

organism has two alleles and one is passed down to its offspring), and (iii) the law of 

independent assortment (traits are inherited independently of each other)10. These principles 

have held up for over a century, with some modifications. We now know that populations can 

present more than two alleles for a given gene, incomplete dominance and codominance can 

occur in which both alleles present influence the phenotype, some genes can influence 

multiple phenotypes in a phenomenon known as pleiotropy, the alleles of some genes can 

interact with the alleles of others in a phenomenon known as epistasis, phenotypes can be 

influenced by a multitude of genes and thus have polygenic inheritance, and the environment 

and not just the genotype can have an effect on the phenotype. 

 

The heritable factors described by Mendel were postulated to lay within chromosomes by 

Theodor Boveri and Walter Sutton at the turn of the 19th century11. Thomas Hunt Morgan’s 

work on Drosophila melanogaster (fruit fly) elaborated and expanded this theory12,13. Morgan 

and his students postulated the existence of “markers” within chromosomes as the cause of 

differences in observed characteristics across fruit flies, this notion born out of the 

observation that some phenotypes seemed to be sex-linked, thus the hypothesis of markers 

lying within the X-chromosome. They also observed that certain traits co-occurred more 

often than what would be expected by chance, theorising that the underlying markers for 

these traits lie close together within chromosomes, and as such they were likely passed over 

together to the next generation (they were linked). 
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As such, the work by Morgan and his students led not only to the confirmation of 

chromosomes as units of heredity, but also to the discovery of genetic linkage and 

chromosomal crossoverg during meiosish (in theory), this serving as the basis for genetic 

linkage analyses, the framework of choice in the 20th century to discover links between the 

genotype and the phenotype. These methods consisted of identifying a genetic marker with 

a known location linked to the unknown causal gene and then testing nearby genes in search 

of a causal association (discussed further in section 1.2.3.1). This framework was mostly 

used in the study of Mendeliani, rare, and monogenic disorders, that is, diseases arising due 

to the action of a single gene, like Huntington’s disease, cystic fibrosis, or early-onset 

Alzheimer’s disease. Since these disorders are rare and tend to cluster in families, their 

analysis via the use of family pedigrees and mapping strategiesj was successful. On the other 

hand, non-Mendelian complex traits and diseases, that is, phenotypes arising from the action 

of a multitude of genes and factors like epistasis or environmental interactions, are much 

harder to analyze and link to the genotype via these frameworks, genetic associations having 

only been elucidated with the development of genome-wide association studies (GWAS, 

discussed later in sections 1.1.2 and 1.2.3). 

 

Other landmark discoveries of the 20th century include the discovery of DNA as the key unit 

of heredity14, along with its structure15 (Figure 2). This kick-started a molecular biology 

revolution, which culminated with the sequencingk of the human genome in 2001.  

 

1.1.2. Human genome revolution 

 

The publication of the 1st draft of the human genome in 20016,7, followed by the completion of 

the HGP in 2003, marked the beginning of a new era in the life sciences.  As stated previously, 

whilst the 20th century found great success in understanding Mendelian diseases through 

genetic linkage analyses using family pedigrees and positional cloning strategies, progress 

in understanding non-Mendelian phenotypes was slow and laborious. Furthermore, only 1% 

of genes were known at this time, which made candidate gene approaches (i.e. analyses 

honing in on hypothesised genes of interest) all the more difficult when trying to map risk-

increasing genes through linkage studies. Thinking at the time was that 30,000-40,000 genes 

existed within the human genome, and estimates placed DNA polymorphism frequency at 1 

every 100 nucleotides16. 

 

We now know the protein-coding gene number estimate lies at around 20,000, and more than 

200 million genetic variants have been identified, with the number expected to increase as 

more genomes are sequenced17. Mutation rate (i.e. the rate at which the genetic code is 

 
g Chromosomal crossover: exchange of genetic material during gamete production between 
homologous chromosomes that results in recombinant chromosomes.  
h Meiosis: cell division of germ cells in sexually reproducing species, the purpose of which is to produce 
gametes, which possess a single copy of each chromosome (are haploid).   
i The term “Mendelian disease” refers to those that possess an inheritance that follows the original 
laws of inheritance proposed by Gregor Mendel.  
j Genetic mapping: methods used to identify the position of a gene within the genome in relation to 
their distance to other genes. Distances are estimated based on genetic linkage information.  
k Sequencing: the process of determining the nucleic acid sequence.  
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altered) has been estimated at 1.1 to 3 x 10-8 per base per generation18. Furthermore, thanks 

to the advent of high-throughput/next-generation sequencing (NGS) to perform whole-

genome and exomel sequencing (WGS and WES respectively), plus the development of 

analytical methods like GWAS (described in more detail in section 1.2.3), thousands of SNP-

trait associations have been found, bringing us closer to understanding the underlying 

genetics of human diseases and characteristics. Finally, our way of working has radically 

changed, with a shift from traditional model-based hypothesis-testing science towards 

hypothesis-generating discovery science that is driven by data5, with the knowledge of 

computational languages and working with large amounts of data now being commonplace, 

even amongst experimentalists16,19. 

 
Figure 2. Timeline of important discoveries in the field of human genetics, from Charles Darwin’s 
publication of On the Origin of Species, to the first draft of the human genome at the turn of the century. 

 

1.1.3. Sequencing advances: discovering human genetic variation 

 

Whilst the HGP revolutionised our understanding of genetics and the structure of the 

genome, it also highlighted the need to delve into genetic variation to truly uncover how 

 
l Exome: term used to refer to all exons in the genome collectively, that is, all segments of DNA that 
remain in mature RNA after splicing.  
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genes lead to life in all its forms. Traditional Sanger shotgun sequencingm,n was used in the 

HGP, which employs bacterial and yeast cultures to cloneo large DNA fragments (200kbp or 

longer) that are then sequenced in small fragments (around 300bp). This technology is slow, 

expensive, and laborious by modern standards, and biologists found that, to study the 

genome and genetic variation across large amounts of individuals and species, higher-

throughput, faster, and cheaper methods were needed. This drove what is known as the race 

to the $1000 genome, with the emergence of second (highly-parallel) and third generation 

(real-time, single molecule) DNA sequencing20. These methods are not based on cloning but 

on sequencing-by-synthesis (fragments are sequenced as a copy of the target DNA is being 

synthesised). 

 

Microarray technology also flourished, which allows for the successful characterisation of 

variation across large numbers of known SNPs with the use of genotyping chips. Thanks to 

its low running costs, it has become the tool of choice for large population cohorts and direct-

to-consumer genetic testing. This technology further benefited from the efforts of the 

HapMap project21, which defined human haplotypes across different populations. A 

haplotype is a group of genetic variants or genes that is inherited together due to spatial 

proximity and recombination patterns in the chromosome due to linkage, first described by 

Morgan and his students (section 1.1.1.2). This phenomenon, when considering a population, 

is known as linkage disequilibrium (LD)q. Chromosomal recombination at meiosis and linkage 

leads to nearby SNPs traveling together across generations, leading to LD. This also means 

that, by knowing the allele of a SNP, one can estimate/impute with a given probability the 

alleles of SNPs within the same block. Thanks to the development of imputation algorithms, 

we are able to predict genotypes for millions of SNPs based on the genetic information 

obtained from genotyping chips containing hundreds of thousands (referred to as tagging 

SNPs or tagSNPs)22. Furthermore, thanks to WGS efforts on large numbers of samples, 

imputation algorithms are becoming increasingly accurate, making genotyping chips an 

affordable alternative to obtaining large amounts of genetic information despite its empirical 

limitations compared to sequencing frameworks16.  

 

 
m Sanger sequencing is a classic DNA sequencing method developed by Frederick Sanger and 
colleagues in the 1970s based on the selective incorporation of chain-terminating dideoxynucleotides 
during in vitro (i.e. outside a living organism) DNA replication.  
n Shotgun sequencing is a sequencing technique by which DNA is broken into a collection of small 
fragments, which are then sequenced individually. 
o DNA cloning is a molecular biology technique by which copies of DNA sequences are made. Classic 
DNA cloning involves the insertion of DNA into bacteria, which, by replicating, create copies of said 
fragment. 
p Base pair (bp) is the term given to a pair of two nucleotides bonded to one another within the DNA 
double helix, and it’s the fundamental unit by which the length of DNA sequences is measured (a DNA 
fragment of 200bp is 200 nucleotides long, thus it presents 200 base pairs given the presence of two 
strands). Similarly, a kilo base (kb) represents 103 nucleotides, and a mega base (Mb) represents 106 
nucleotides.   
q Linkage vs linkage disequilibrium: two genetic loci are linked if they are inherited together more often 
than what would be expected by chance (i.e. if during meiosis recombination occurs with a probability 
of less than 50%). Two alleles are in LD at linked loci if, in a given population, they are found together on 
the same haplotype more often than what would be expected by chance. LD is the result of evolutionary 
forces such as mutation, drift, and selection, and is broken down by recombination. Linkage extends 
over much larger regions of the genome than LD, and, in general, two alleles in LD will be linked, but the 
reverse is not necessarily true37.  



Introduction 7 

Parallel to the HGP came a revolution in computation, without which the sharing, analysis, 

and storage of the copious amounts of genomic data generated would not have been 

possible. Furthermore, the advent of NGS revolutionised biology and skyrocketed the growth 

of computational biology19. The dramatic drop in the cost of sequencing has led to an 

exponential growth in the amount of sequence data and the number of individuals 

sequenced, with the characterisation of genetic variation across populations thanks to 

efforts like the 1000 Genomes Project23 and the creation of reference genomes and 

haplotypes, which have found that not all identified SNPs are equal in frequency, some rare 

(minor allele frequency, MAF < 1%), some presenting low frequencies (1% ≤ MAF < 5%), and 

some common (MAF ≥ 5%), with frequencies varying across populations16.  

 

1.1.4. Population cohorts: linking the genotype to the phenotype 

 

Having characterised genetic variation across populations, geneticists next looked to 

understand which features are associated with phenotypic variation as well as shed light on 

their functional consequences. Thanks to the low costs of genotyping chips and the improved 

accuracy of imputation methods, population cohorts have thrived in characterising 

genotypes at scale and are striving to describe phenotypes and environmental exposures to 

link the former to. To date, population cohorts have been very successful in identifying 

thousands of genotype-phenotype associations for diseases like cardiovascular disease 

(CVD), irritable bowel syndrome (IBD), diabetes, and more, but the interpretation of these has 

been more challenging, and, in the future, population cohorts will continue to play an 

important role in not only the continued discovery but also the functional dissection of these 

relationships22. In order to optimise said interpretation, cohorts need to strive to be 

prospective/longitudinal (i.e. collect data before, during, and after disease onset), include 

large numbers of participants, and, finally, focus on phenotyping individuals deeply, 

including gathering information on intrinsic, exogenous, environmental, and molecular 

factors, preferably sampled from different tissues22.  

 

Whilst the “perfect” cohort (based on the above criteria) still does not exist due to the 

associated costs in both its creation and maintenance, many strong cohorts have arisen in 

recent years, UK Biobank being the largest. UK Biobank is a population cohort consisting of 

over 500,000 participants aged 40-69 years when recruited in 2006-20101, which have been 

extensively phenotyped and genotyped. The health of participants is being followed long-

term, and extensive information obtained from questionnaires, physical measures, sample 

assays, and more, allows for the comprehensive quantification of the combined effects of 

lifestyle, environment, genes, and other exposures on health outcomes3. Other cohorts with 

similar objectives include LifeLines in the Netherlands24 (lifelines.nl), Finngen in Finland 

(finngen.fi), Biobank Japan25 (biobankjp.org), and iPSYCH in Denmark (iPSYCH.au.dk). In 

addition, in order to facilitate further functional analyses and provide more biological depth 

to findings, studies like the GTEx project have been created, looking to create a resource 

which enables the study of the relationships between genetic variation and gene expression 

across a large variety of human tissues26. Furthermore, in an effort to dig deeper into the 

functional consequences of genetic variation, some cohorts like LifeLines have followed a 
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“nested” approach by which a smaller subset of the population cohort is further analyzed for 

extensive multi-omics and single-cell phenotypes. As the breadth and depth of biobank data 

increases and effective data integration methods are developed, more functional 

understanding of the genotype-phenotype connection will be gathered16,22. 

 

1.1.5. Going forward 

  

The past 20 years have seen an immense effort to understand genetic variation and decipher 

the genotype-phenotype connection. However, much is yet to be understood, GWAS efforts 

having been described as a “black box” by which associations are found with no knowledge 

of the underlying cause27. At the moment there is no straightforward way to perform 

functional studies, making them laborious, costly, and rarely high-throughput22. As these 

methods continue to be developed, geneticists will need to shift to systems genetics 

approaches, with which to computationally track consequences of genetic variation across 

biological levels, making use of multi-omics data sets across different human tissues to 

follow the flow of biological information from DNA, to transcripts, proteins, metabolites and 

phenotypes, as well as their interaction amongst themselves and with environmental 

factors16. Population cohorts will be essential in this regard. As WGS becomes cheaper, we 

will also see further efforts striving to decipher the effects of rare variants across human 

phenotypes.  

 

Beyond these challenges, another big problem in the field has been a lack of diversity and 

representation in population cohorts, which have had a heavy focus on individuals of 

European descent from high-income countries. This implies limiting translational research 

to a small portion of the human population, and, furthermore, dampens efforts to truly 

understand genetic variation by not encompassing the full extent of humanity’s vast genetic 

diversity. Furthermore, as genetic testing becomes more commonplace and population 

cohorts continue to grow, ethical and privacy concerns will need to be addressed, including 

those regarding data sharing and free open access to research findings. Finally, genetics will 

continue to work in parallel to computational advances in order to effectively store, share and 

analyze continually larger data sets28.  

 

Overall, as we move into the post-GWAS era, the power of discovery will lie in the integration 

of nongenetic data with genetic and molecular data, across a wide range of human 

populations, making use of novel computational and statistical tools to further understand 

the genotype-phenotype connection. These efforts will then unlock the translational power 

of human genetics, allowing for the development of precision health and medicine22,28.   

 

1.2. Quantitative genetics 
 

Quantitative genetics is a statistical branch of genetics based upon Mendelian principles 

extended to polygenic/complex traits, i.e. characters which are not affected by the action of 

only a few major genes, but by the action of multiple genetic and environmental factors29,30. 

Born at the beginning of the 20th century with Ronald Aylmer Fisher’s landmark paper “The 
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correlation between relatives on the supposition of Mendelian inheritance” in 191831, which 

served to unite Mendelian and biometricianr geneticists by expanding Mendel’s work on 

discrete phenotypes to continuous traits like height, this discipline has served as the 

theoretical basis for most animal and plant breeding programs, and has also played an 

important role in our understanding of human genetics29. 

 

Arguably one of the longest-standing questions in genetics is how genetic variation 

contributes to phenotypic variation, a task that has been at the core of quantitative genetics 

efforts since its conception32. This description of the genotype-phenotype connection is 

termed genetic architecture. Genetic architecture is a wide-reaching term which 

encompasses the number of genetic variants affecting a trait, their frequencies in the 

population, the magnitude of their effects, and their interactions with each other and their 

environment33. Thus, genetic architecture captures the complete understanding of all 

genetic contributions to a given trait. The deciphering of phenotypic genetic architecture is 

of great importance, especially when analysing complex diseases, given the potential 

translation of findings to the clinic. 

 

One of the central foundations of quantitative genetics is the statistical modeling of the 

biologically plausible nature-nurture model, by which both the unobserved genotype (G) and 

the unobserved environment (E) contribute to a given phenotype of interest34. As an 

extension of this, the observable phenotypic variance (σP
2

 ) can be partitioned or expressed as 

a sum of unobserved underlying variances: genetic variance (σG
2 ) and environmental variance 

(σE
2, Eq. 1)29. Genetic variance can be further decomposed into variance in additive genetic 

effects (σA
2), and into variances in interaction of effects between alleles within locis 

(dominance, σD
2 ) and amongst loci (epistasis, σI

2, Eq. 2)29. These models can be further 

extended to accommodate other factors that can contribute to phenotypic variance, 

including gene by environment interactions (when the effect of the genotype depends on the 

environment), and maternal effects (which arise when the phenotype of an organism is 

determined not only its own genotype and environment, but also by those of its mother)34. 

 

Another important basis of quantitative genetics is the infinitesimal model, first proposed by 

Fisher in 1918, which postulates the existence of large numbers of unlinked genes with 

additive small effects giving rise to the heritable variation observed for normally distributed 

traits31, this theory presenting parallels to the recently proposed omnigenic model32 

(discussed in more detail in section 1.3.3). 
 

 
σP

2
 = σG

2
 + σE

2 

σP
2

 = σA
2

 + σD
2  + σI

2+ σE
2 

Eq. 1 

Eq. 2 

 

 
r Biometry is the discipline concerned with the inheritance of quantitative traits. Notable figures in this 
discipline include Francis Galton and Karl Pearson. Biometricians clashed with Mendelian geneticists, 
who studied primarily categorical traits like eye colour in Drosophila, arguing that Mendel’s laws were 
not applicable to continuous phenotypes like height in what has been referred to as the “Biometric-
Mendelian debate”.  
s A locus (plural loci) is a fixed position on a chromosome where a particular gene or genetic marker is 
located. 
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Quantitative genetics methods, both classic and modern, confer ways of dissecting these 

intricate relationships and shed light on the genetic architecture of complex traits. In this 

section I will strive to define the concepts and methods most relevant to the contents of this 

thesis. In section 1.2.1 I will cover linear models, which provide the backbone for many 

quantitative genetics frameworks, along with methods commonly used in the field to 

estimate model parameters. In section 1.2.2 I will go over methods to estimate variance 

components of phenotypic variance, building on concepts described in section 1.2.1. In 

sections 1.2.3-1.2.6 I will then describe specific applications of the estimates obtained via 

the methods described in the latter sections, which possess relevance to this thesis, and their 

uses in modern quantitative genetics to elucidate the genetic architecture of human complex 

traits. These include GWAS, heritability, genetic correlations, and molQTL studies. Finally, 

section 1.2.7 will be dedicated to cover the basic statistical concepts and methods used to 

assess the estimates obtained via the methods described in the prior sections.   

 

1.2.1. Linear models: an overview 

 
 

 
Figure 3. Basic elements of linear regression. 

 

Linear models (LMs), also known as linear regression, are the backbone of parameter 

estimation in quantitative genetics. These models assume a linear relationship between two 

or more variables. The simple form of a linear model which looks to describe the linear 

relationship between variables y and x, is: 

 

 y = μ + βx  Eq. 3 

 

Where y is known as the response or dependent variable, and x is known as the predictor or 

independent variable, which y is a function of. Μ is the y-intercept, β is the slope of the line 

describing the relationship between x and y, also known as the regression coefficient. 

 

In practice, the variables x and y are observed (for example, age and height), measured in a 

set of i samples across the considered population, whilst the model parameters we seek to 

estimate to quantify the relationship between the aforementioned are μ and β. Knowing μ, β, 

and x we can predict y as ŷ = μ + βx, where ŷ is the value of y predicted by the model. In turn, 

each sample/observation will have a corresponding residual error, ε, such that εi = yi - ŷI 

(Figure 3). The residuals are assumed to be a normally distributed random variable with ε ~  

N(0, σE
2), and represent the non-deterministic relationship between x and y. 
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The simple linear model can be further expanded to accommodate multiple (n) explanatory 

variables, this instance being known as a multiple linear regression:  

 

 y = μ + β1x1 + β2x2 + … + βnxn Eq. 4 

 

Where x1 … xn are the predictor variables used to predict the value of the response variable 

and β1 … βn are the partial regression coefficients. As such, βn represents the effect of a unit 

change of xn on y while holding the remaining explanatory variables constant. To simplify 

notation, it is customary to describe LMs with matrices and vectors. As such, to differentiate 

them these will from here on be represented in bold. Matrices will further be rendered in 

upper-case. Using this notation, a multiple linear regression model can be described as: 

 

 y = Xβ + ε  Eq. 5 

 

Where y is a i ✕ 1 vector, i being the number of samples/observations considered, X is a i ✕ (n 

+ 1) observation matrix across variables, β is a (n + 1) ✕ 1 vector of parameters, where n is the 

number of explanatory variables in the model, and ε is the i ✕ 1 vector of residual errors where 

ε ~ N(0, IσE
2), and where I is the i ✕ i identity matrixt. The variance matrix of ε is also commonly 

termed as R, thus R = IσE
2. Note that in this notation the intercept μ is included in X, where xi,1 

(the value of the first explanatory variable across observations) is 1, hence n + 1 instead of n.  
 

1.2.1.1. Ordinary Least Squares, BLUE 

 

To quantify the relationship between y and x we need to estimate the model parameters (β) 

making use of our observed variables (X, y), the objective being to find a set of the 

aforementioned that provides the “best fit” for the joint distribution of X and y. There are 

different ways of obtaining estimates of model parameters that provide the best fit solution, 

ordinary least-squares (OLS) being the most popular. OLS looks to minimise the value of the 

squared deviations of the observed y from the values predicted by the regression line (∑ εi
2) 

and maximise the amount of variance in y that can be explained by the linear model. 

Importantly, this method assumes that all residual errors are homoscedastic (σ2(εi) = σE
2) and 

uncorrelated (σ(εi, εj) = 0 for i ≠ j). As such, the value of β that minimises the residual sum of 

squares and thus provides the best fit for the linear relationship between y and x1 … xn, is 

estimated as: 
 

 β = (XTX)-1XTy Eq. 6 

 

Where -1 represents the matrix inverse, and T represents the matrix transpose. This value is 

also known as the Best Linear Unbiased Estimator (BLUE)29. 

 

 
t In linear algebra, an identity matrix of size n is the n ✕ n square matrix with ones on the main diagonal 
and zeros elsewhere.  
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1.2.1.2. Linear models and quantitative genetics 

 

In quantitative genetics, y typically takes the form of the vector of observed phenotypes 

across samples for the phenotype that we wish to study (y i being the phenotype of ith sample), 

whilst β is the vector of n effects that the n considered variables have on the phenotype. 

Finally, the matrix X, also known as the incidence matrix or design matrix, possesses 

information regarding the observed variables across samples, being xi,n the observed variable 

n for sample i (for example, the age of the ith sample). 

 

These models thus allow us to estimate the association between each explanatory variable to 

the phenotype by estimating an effect, which can then be statistically tested to establish 

whether it is significantly different from 0 (βi ≠ 0, statistical testing discussed in section 

1.2.7). In turn, this allows geneticists to establish whether particular genetic variants are 

significantly associated with the phenotype (GWAS, discussed further in section 1.2.3). These 

models can also help us dissect the variance components (σA
2 , σE

2) that make up phenotypic 

variation (discussed at the start of section 1.2) via frameworks like analysis of variance 

(ANOVA, section 1.2.2.1), which is a derivation of the linear regression model in which all 

explanatory variables are categorical. This in turn further helps us dissect the nature-nurture 

contribution to phenotypes.  
 

1.2.1.3. Linear Mixed Models, BLUP 

 

LMs and derived methods are very valuable in quantitative genetics in order to quantify how 

different factors affect the phenotype, but can fall short when unbalanced experimental 

designs (section 1.2.2.1) or population structure (section 1.2.3.3) come into play, which is 

often the case in genetic studies, leading to problems when estimating both variance 

components and genetic effects across the genome. For example, if families/clusters of 

individuals are included in our experiment, this relatedness will lead to dependencies 

amongst error terms for the samples considered, thus the assumption of uncorrelated 

residuals being broken. This can then lead to inflated false positive rates (section 1.2.7), i.e. 

we might find an association between an explanatory variable and the phenotype when there 

is none. In this context, an extension of the LM, the linear mixed model (LMM), has proven to 

be invaluable as the basis for a family of statistical approaches that allows for the efficient 

estimation of quantitative genetic parameters under a variety of settings, including the 

presence of population structure, unequal family sizes, and more29. In this section I’ll 

describe the general structure of the LMM, whilst the properties that make it useful for both 

variance component and genetic effect estimation will be discussed further in sections 1.2.2 

and 1.2.3. 

 

The LMs described until now have only involved explanatory variables for which we assume 

all levels interesting to the model are known (for example, sex), and are thus constant – this 

leads to the estimation of βi, which is known as a fixed effect. In contrast, a model can further 

include explanatory variables that are not constant i.e. they are drawn from a probability 

distribution – these are known as random variables, their effect on y being termed a random 
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effect. An example of a random effect is the effect of family on a given phenotype – if we 

were only interested in a fixed number of families then this factor could be considered a fixed 

effect, but, if we were interested in the effect of families across a population (including those 

that are unobserved) then it would be considered a random effect. When talking about 

random effects we do not need to observe all levels of a factor, instead thinking of it as a 

random sample from the population of levels under study. Another example of a random 

variable is our residual term, ε, which, as stated previously, is normally distributed with ε ~ 

N(0, IσE
2).  As such, a linear mixed model is defined as a linear model which includes both fixed 

and random effects.  

 

As such, in this context, an LMM can take the form of: 
 

 y = Xβ + Zu + ε Eq. 7 

Where 

 
var(u) = G = Iσu

2   

var(y) = V = ZGZT + R 

Eq. 8 

Eq. 9 

 

Where u is a q ✕ 1 vector of random genetic effects, q being the total number of genetic 

markers considered, with u ~ N(0, Iσu
2), I being the q ✕ q identity matrix. The variance of u is 

also commonly referred to as the q ✕ q matrix G. Z is a i ✕ q incidence matrix presenting the 

genotypes of the i individuals considered across the q markers. The variance of y is a function 

of the variances of the random variables included in the model. Thus, the phenotype 

variance-covariance i ✕ i matrix for the vector of observed phenotypes, V, is defined as the 

sum of G and R. The remaining variables are the same as described for Eq. 5. 

 

Zu can also be defined as the additive genetic value vector, g, of shape i ✕ 1. g is also 

commonly known as the polygenic effect, and is normally distributed with g ~ N(0, AσA
2), where 

A is the i ✕ i additive genetic relatedness matrix (GRM), which represents the level of kinship 

(section 1.2.3.4) amongst individuals in the population and captures potential clusters within 

the data, and σA
2  is the additive genetic variance of the phenotype considered, discussed 

earlier in this section. Linking back to the earlier formulation, σA
2 = qσu

2. Due to the 

interpretable nature of g and its distribution, we will thus reformulate Eq. 7 as: 
 

 y = Xβ + g + ε  Eq. 10 

 

Where the variance of y can now be defined as V = AσA
2  + IσE

2. y, X and Z possess observed 

information, and we wish to estimate the parameters of the model, both fixed (β) and random 

(g) that provide the best fit for our data. We’ve described BLUE, the tool of choice in 

quantitative genetics to estimate fixed effects. As its counterpart to predict random effects, 

the Best Unbiased Linear Predictor (BLUP) is used. Generally, the BLUP of a random variable 

u is described as: 

 

 u = GZTV-1(y - Xβ) Eq. 11 

 

We can extend this formula to predict the random effects in Eq. 10 as follows: 
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g = σA

2ATV-1(y - βX)  

ε = σE
2V-1(y - βX) 

Eq. 12 

Eq. 13 

 

Thus, for our random effects to be predicted, variance components (σA
2 , σE

2) need to be known, 

which are in themselves useful parameters as described earlier in this section to describe the 

genetic and non-genetic contributions to a given phenotype. As such, mixed-model analyses 

involve two complementary estimations: (i) estimation of the vectors of fixed and random 

effects using BLUE and BLUP, as described in this section, and (ii) estimation of variance 

components, which is discussed in the following section.  
 

1.2.2. Variance component estimation 

 

Having touched upon the different components that phenotypic variance can be broken into 

at the beginning of this section, as well as their importance in the calculation of random 

effects in LMMs to ascertain relationships between the genotype and phenotype (section 

1.2.1) and in the estimation of parameters like heritability or genetic correlations (discussed 

later in sections 1.2.4 and 1.2.5), the question as to how to estimate them still remains. In 

this section I’ll briefly describe both the classic and the modern methods for estimating 

variance components.  

 

1.2.2.1. ANOVA 

 

The resemblance between relatives has classically been exploited to obtain estimates of 

genetic and environmental contributions to phenotypic variation. These methods are based 

on the principle that the phenotypic resemblance between relatives provides information on 

the degree of genetic differentiation amongst individuals. Traditionally, ANOVA has been 

used on balancedu family data to obtain estimates of variance components. As mentioned 

prior, what underlies an ANOVA is an instance of a linear model in which the dependent 

variable, here the phenotype of interest, is a function of categorical variables, here the effect 

of families. The reasoning behind this analysis consists of assessing how much of the 

variation in a phenotype is due to differences within families and between families to assess 

how similar the phenotypes of genetically related individuals are as opposed to when 

compared to those of non-related individuals. Thus, if small variation in phenotype is found 

within families in comparison to between families, we could assume a strong genetic 

contribution to the phenotype. 

 

Mathematically, ANOVA consists of calculating sums of squares (SS, Table 1), including those 

pertaining to the total phenotypic variation (SST), variation between families (SSB) i.e. the 

effect of family on the phenotype, and finally the residual sum of squares, which represents 

variation within families (SSW). For example, if we had a total dataset consisting of N 
 

u In statistics, a balanced design is that which presents the same number of observations across all 
possible level combinations, whilst an unbalanced design does not. In this context, a balanced design 
would entail the same number of individuals within each family (such as one parent and two offspring).  
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individuals, and if our families consisted on a parent and their offspring, where s is the total 

number of parents and N/s is the number of offspring per parent, then the corresponding 

ANOVA table is as shown in Table 1. Mean squares (MS) are obtained by dividing each SS by 

its degrees of freedom. To assess whether the family effect is significant (parallel to 

assessing whether β ≠ 0), an F-test can be performed, where the F-statistic is defined as 

MSB/MSW (more on statistical tests in section 1.2.7).  

 
Table 1. Summary of ANOVA involving s families, each with one parent and n offspring. A total of N 
individuals (n·s) considered. yij is the phenotype value for the jth offspring of the ith parent, and yi̅ is the 
average phenotype across offspring of the ith parent. 

 

Factor Degrees of freedom (df) Sum of squares (SS) Mean squares (MS) 

Between families s - 1 SS B= n ∑ (yi̅-y̅)2
s

i=1

 MSB =  
SSB

s-1
 

Within 

families 
N - s SS W= ∑ ∑ (yij-yi̅)

2
n

j=1

s

i=1

 MSW =  
SSW

N-s
 

Total N - 1 SS T= ∑ ∑ (yij-y̅)2
n

j=1

s

i=1

 MST =  
SST

N-1
 

 

Variance components can be estimated by comparing these MS to their expected values, 

which equal the variance components (σA
2 , σE

2, etc.) multiplied by certain coefficients based on 

the relationship considered in the family data and based on quantitative genetics theory (i.e. 

are the individuals considered full siblings, half siblings, or twins) - for example the expected 

value for the between family mean squares (MSB) in a study considering half-siblings is 

0.25·σA
2 , thus we could estimate σA

2  as 4MSB. We expect half-siblings to be less similar than full 

siblings, followed by twins, and as such expected values reflect that. In the past, studies used 

these methods making use of carefully designed studies consisting of individuals of varied 

familial relationships to shed light on a variety of different variance components. For 

example, whilst half-sibling studies allow for the estimation of σA
2 , full-sibling analyses also 

allow for the estimation of σD
2  and/or shared environmental effects29. 

 

1.2.2.2. ML/REML 

 

Whilst obtaining the expected MS values is simple with balanced family data, problems arise 

with highly unbalanced designs. Furthermore, ANOVA cannot jointly include a variety of 

relatives within a model. Population-wide studies are the current focus of most human 

genetics efforts, which step away from traditional balanced family studies and include both 

related and unrelated individuals. Thus, as an alternative to traditional analyses of variance, 

LMMs, along with maximum likelihood (ML) and restricted maximum likelihood (REML) 

methods, have become the preferred choice to calculate variance components, as they do 

not place any demands on the balance and structure of data. In this section I’ll briefly 

describe the basis of ML and REML, along with the difference between the two, without 

delving into the complex underlying mathematics, which falls beyond the scope of this thesis. 
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In summary, ML works by estimating the parameters of the distribution that maximise the 

likelihood of the observed data. Given a LMM, likelihood can be defined as the probability of 

obtaining the observed data (y) given the input variables (X) and the set of parameters in our 

model (β, V), and which is written as Pr(y|X,β,V). The objective of ML, as the name indicates, 

is to maximise the value of this probability via the estimation of the unknown model 

parameters β and V. In practice, it is often convenient to work with the logarithm of the 

likelihood (log-likelihood), thus the prominence of this term in the literature. ML can thus be 

used for estimating both variance components and effect coefficients within a linear model 

– in fact, the ML estimate for β is equivalent to its OLS counterpart (Eq. 6).  

 

The drawback of ML is that it yields biased estimates of variance components. This is because 

variance components are estimated as a function of the fixed effects in the model, β, which 

are estimated from the data, thus leading to a reduction in degrees of freedom – this leads to 

a downwards bias of the variance component of interest. REML on the other hand provides a 

β-free estimate of variance components by maximising only the proportion of the likelihood 

that does not depend on the fixed effects, thus it being known as a restricted version of ML29. 

To do this, prior to obtaining the set of parameters that yield the maximum likelihood, a linear 

transformation is applied on y ~ N(Xβ, V). Given a (i - n) ✕ i matrix K, where i is the number of 

individuals and n the number of fixed effects, such that KX = 0, we can transform y as: 

 

 Ky = K(Xβ + g + ε) = KXβ + Kg + Kε = Kg + Kε  Eq. 14 

Where 

 Var(Ky) = KVar(y)KT = KVKT Eq. 15 

 

Due to the unbiased nature of its estimates, REML is the preferred tool of choice to obtain 

variance component estimations from random variables in LMMs, including g and ε. 

 

In practice, for the majority of cases, likelihood equations cannot be solved explicitly, and as 

such iterative techniques are used to obtain variance estimates. To this end, the expectation-

maximisation (EM) framework is a popular approach. Briefly, this method works by first 

obtaining preliminary estimates of the model parameters (for example, using OLS), and then, 

based on the slope of the log-likelihood function, moving the estimates in a direction that 

increases the log-likelihood of the data. This is done iteratively until a satisfactory degree of 

convergence is made on the final estimates of the model. As is the case with all methods of 

this nature, referred to sometimes as “hill-climbing methods”, the finding of the global 

maximum of the likelihood function is not guaranteed, as local, smaller “peaks” can also be 

found, thus the importance of investigating different starting values29.  

 

1.2.3. Genome-wide association studies 

 

A GWAS is a framework designed to map genetic variation to traits and diseases, born out of 

our newfound knowledge of the genome and its structure, as well as the rise of large 

population cohorts. GWAS allow us to interrogate millions of genetic variants across the 

genome in a search for associations to the phenotype. Furthermore, GWAS allow us to 
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estimate how each individual genetic variant is associated with an increase or decrease in 

the risk of disease or how it can influence a particular complex trait like height. This 

estimation is what is known as the genetic effect, which measures how much of the 

phenotypic variance each genetic variant can explain. When dealing with case-control 

phenotypes, this estimate can also take the form of an odds-ratiov, a measure of risk that 

compares the odds of disease occurrence with a risk allele as opposed to the odds without it. 

GWAS have transformed the landscape of genetic research by shifting association studies 

from hypothesis-driven candidate gene efforts, which required a priori knowledge of the 

underlying disease genetics, to the simultaneous interrogation of millions of genetic variants 

and the rise of hypothesis-generating data science.  

 

1.2.3.1. Background and early GWAS 

 

The idea of linking genetic variants to changes in phenotype was not born with GWAS. As 

described earlier in section 1.1.1.2, the work of Morgan and his students served to lay the 

groundwork for gene linkage analyses. The first genetic maps linking genotype to phenotype 

were created by Morgan’s student Alfred Sturtevant35, which showed the position of the fruit 

fly’s known markers relative to each other in terms of recombination frequencyw. It wasn’t 

until 1980, however, that similar undertakings were made in the search for genetic factors 

responsible for human phenotypes, this being first proposed by David Botstein and 

collaborators36. Linkage analyses generally involved the use of family pedigrees and genetic 

marker genotyping techniques, such as restriction fragment length polymorphisms (RFLPs)x, 

to find chromosomal regions that co-segregated amongst affected family members (Figure 

4)37. As mentioned previously, this framework was successful for rare, Mendelian diseases. 

Linkage studies of complex diseases and quantitative traits involved methods to detect 

regions where loci that are identical by descent (IBD), meaning that they’re inherited from a 

common ancestor, are more frequent than what would be expected if no linkage was present, 

using whole genome marker screens and pairs of relatives37. Whilst these methods identified 

loci associated with some complex traits, like type 1 diabetes38 and high-density lipoprotein 

(HDL) levels39, they were generally unsuccessful due to being underpowered to detect 

variants of modest effect, reflecting the common disease/common variant hypothesis, which 

postulates that common traits are driven by genetic variation that is common in the 

population, of low penetrancey and small effect on the phenotype40.  

 

Association studies existed in parallel to linkage analyses. Whilst linkage analyses look for 

the co-segregation of alleles within family members, association studies search for the 

difference in allele frequency between groups of affected and unaffected individuals in the 

 
v Odds and probability: the probability of an event is the fraction of times an event occurs by the total 
number of trials considered. The odds are the probability that the event will occur divided by the 
probability that it will not. 
w Recombination frequency: the frequency with which a chromosomal crossover will take place 
between two genes during meiosis, which serves as a measure of genetic linkage.  
x RFLPs: restriction fragment length polymorphisms are differences amongst individuals in the lengths 
of DNA fragments cut by enzymes (restriction enzymes), resulting from a molecular biology technique 
used to characterise the genotype and pinpoint locations of genes.  
y Penetrance: proportion of individuals carrying a particular variant of a gene that also express an 
associated trait. 



 18 

population, exploiting LD patterns across the genome to aid in the search for trait relevant 

variants (Figure 4). Association studies present larger power to detect variants of small effect 

than linkage analysis, but require larger amounts of markers to detect said associations41. 

This is due to the fact that association operates over shorter distances in the genome, given 

that LD spans smaller regions than linkage as a consequence of recombination across 

generations, and across the population41. Indeed, population-based association studies can 

be considered an extension of family-based linkage analyses, in which the population acts as 

a large family that has undergone large amounts of recombination, giving rise to the 

observed, small, LD blocks. 

 

 
Figure 4. Linkage analysis vs association analysis diagram, as well as situations where one or the other 
is more appropriate based on genetic effect size and allele frequency.  

 

This property made association studies an important complement to linkage analyses, 

helping fine-map candidate causal genes from broad regions identified in the latter37,41,42. 

This same property, however, made association studies only feasible on a candidate gene 

basis, given that at the time the technology to characterise genetic polymorphisms as well as 

their distribution and density across the genome was unavailable beyond marker screens 

using RFLPs or similar technologies42. Furthermore, haplotypes (and thus LD patterns) across 

populations had not been characterised. Indeed, in 1996, before the HGP and the HapMap 

project (section 1.1), Neil Risch and Kathleen Merikangas already postulated that, once the 

necessary genotyping technology became available, association studies at the whole-

genome scale would surpass linkage analyses in the characterisation of genetic architecture 

of complex traits40. 
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Early association studies used frameworks such as contingency table tests (like the Cochran-

Armitage trend test, Fisher’s exact test, or a chi-squared, χ2, test, section 1.2.7). In turn, for 

each genetic variant, these assessed whether certain alleles were present in cases more than 

what would be expected by chance when compared to controls. These methods also allowed 

for the estimation of odds-ratios for the tested genetic variants. Given the following 

observations: 
 

Table 2. Example set of observations for a given case-control association test. 

 

 Allele 1 Allele 2 

Cases a b 

Controls c d 

 

The odds ratio (OR) can be estimated as: 

 

 OR = 
Odds allele 1 occurs in a case

Odds allele 2 occurs in a case
 =  

a/c

b/d
 = 

a d

b c
 Eq. 16 

 

We can assess if these observations are more than we could expect by chance using a 

statistical test like χ2, as: 
 

 χ2 = ∑
(Expected-Observed)2

Expected
 Eq. 17 

 

Thus, given that we find a significant diversion of χ2 from what would be expected if there was 

no association between our variant and the disease considered (OR ~ 1), if we find an OR > 1 

we can state that allele 1 is associated with an increased risk of disease, whilst an OR < 1 would 

indicate allele 2 is associated with an increased risk of disease.  

  

As Risch and Merikangas had predicted almost a decade before the first GWAS was published, 

association studies did not reach their full potential until the arrival of whole-genome 

sequencing, genotyping chips, the development of GWAS statistical frameworks, and the 

determination of haplotypes across populations at the turn of the century, which allowed for 

hypothesis-free testing of association across the whole genome. The first GWAS was 

reported in 200543, and the Wellcome Trust Case Control Consortium (WTCCC)44 in 2007 

unleashed a wealth of further studies45. Whilst early GWAS efforts focused on complex traits 

using a case-control framework as described previously43, this method was suboptimal in the 

study of non-binary traits, and, furthermore, was unable to appropriately account for 

covariates, confounding factors and population structure (discussed in section 1.2.3.3). As 

such, regression-based models have become the preferred framework for GWAS46.  

 

1.2.3.2. Linear models 

 

At the heart of current GWAS efforts lie linear models that allow for the quantification of the 

association of different sources (such as genotype, sex, age, or environment) to the 



 20 

phenotype. Fixed effect variables that are not the genotype are usually termed covariates, 

and their addition to the model can help account for further phenotypic variation as well as 

adjust for technical factors like batch effects, thus increasing the accuracy of the model. The 

basic form of this model, parallel to that described by Eq. 5, is as follows: 

 

 y = μ + Wα + Xβ + ε  Eq. 18 

 

Where y is the i ✕ 1 phenotype vector for the i individuals considered, μ is the i ✕ 1 intercept 

vector, α is the j ✕ 1 vector of fixed effects for the j covariates considered, W is the i ✕ j 

covariate matrix, β is the q ✕ 1 vector of genetic effects for the q genetic variants considered, 

X is the i ✕ q genotype matrix, and ε is the i ✕ 1 error vector. 
 

Genetic variants are assumed to be biallelic, meaning that they can assume two possible 

values, that of the major allele (A, most frequent), and that of the minor allele (a, least 

frequent). The allele whose effect on the phenotype is measured is termed the effect allele, 

and this is usually the minor allele. As such, genotypes can take the form AA, Aa or aa. 

Genotypes are coded as 0, 1 or 2 based on the copies of the effect allele and of the model 

assumed, which can be one of three: (i) the dominant model, where one copy of the effect 

allele is sufficient to have a phenotypic effect, and which is coded as AA = 0, Aa = 1, aa = 1, (ii) 

the recessive model, where two copies of the effect allele are needed to have a phenotypic 

effect and which is coded as AA = 1, Aa = 0, aa = 0,  and (iii) the additive model, where the 

phenotypic effect is proportional to the number of copies of the effect allele, and which is 

coded as AA = 2, Aa = 1, aa = 0. GWAS most often assume the additive model, as studies have 

shown that the majority of genotypic variance is of additive nature47, and that it also has 

reasonable power to detect dominant effects46. As such, the additive model is considered in 

this thesis.  

 

Whilst linear model formulations, such as Eq. 18,  often include a genotype matrix consisting 

of all genetic variants across the genome as explanatory variables (X), GWAS are mostly run 

in a one SNP at a time framework, i.e. genotype-phenotype associations are assessed for 

each genetic variant without including other variants in the model. This is due to several 

reasons, amongst which is a lack of degrees of freedom to estimate genetic effects given the 

large number of genetic variants as opposed to the much smaller number of samples 

available (millions of SNPs are genotyped and assessed in a GWAS, whilst samples tend to be 

in the thousands or hundreds of thousands). This is also due to the fact that, due to LD, the 

effects of nearby SNPs are correlated, which could in turn lead to multicollinearityz issues 

when fitting our models and in turn lead to misestimation of genetic effects. As such, for each 

genetic variant considered, Eq. 18 can also be written as: 

 

 y = μ + Wα + vβ + ε  Eq.  19 

 

Where v is a i ✕ 1 vector of genotype values for a given SNP across the i samples considered, 

and β is the genetic effect of said SNP on a given phenotype.  

 
z Multicollinearity occurs where two or more explanatory/independent variables in a regression model 
are correlated. Multicollinearity thus violates the dependency assumptions of the model.  
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1.2.3.3. Population structure 

 

Population structure, i.e. the presence of samples from individuals with different ancestral 

and demographic histories, can lead to spurious associations or false positives (section 

1.2.7). This structure can arise as a product of population stratification (i.e. the presence of 

subgroups with differences in ancestry) and due to relatedness, both known (arising when 

familial relationships are present within a sample) and cryptic (which can arise when 

individuals in the study sample have residual, non-trivial degrees of relatedness, Figure 5). 

In turn, this can violate the independence assumptions of standard statistical methods48. For 

example, if a given subgroup in our study was more predisposed to a particular disease than 

others (i.e. presented a larger phenotypic prevalence) and also presented an allele at a 

different frequency, we might find a spurious association between said allele and the 

considered disease. Furthermore, subgroups often share distinct dietary habits and other 

lifestyle characteristics that can lead to phenotypes being correlated with ancestry and/or 

ethnicity. In statistics, this phenomenon is known as confounding, the term confounder (z) 

referring to a variable that influences both the independent (y) and the explanatory variable 

(x) in a model, in this case the genotype vector and the phenotype (Figure 6).  

 

 
Figure 5. Different degrees of relatedness within a population. 

 

To prevent confounding due to population stratification, careful experimental designs need 

to be considered, for example by ensuring that samples are well matched for broad ethnic 

background. Furthermore, technical and statistical measures can be applied to account for 

residual stratification. Genomic control, proposed by Devlin and Roeder in 1999, was one of 

the earlier methods proposed to account for population structure49. The reasoning behind 

this method is that we expect the vast majority of variants not to be associated with a trait, 

and as such we expect the median observed p-value of association (defined in section 1.2.7) 

to be close to 0.5. Typically, population structure induces a more significant observed median 

p-value, and the detection of inflated association statistics can thus serve as indicator of the 

presence of confounders in our data. Practically, this method involves transforming our 

association statistic p-values to the χ2 scale, where Ak is the χ2 statistic estimated from the p-
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value of association of the genetic variant k to the phenotype considered. If there is no 

population structure, the distribution of Ak will approximately follow a χ2 distribution with 1 

degree of freedom. If there is population structure, the statistic will deviate from a χ2 

distribution due to an inflated variance. These estimates can be used to obtain the genomic 

control parameter (also known as GC lambda, λGC) as λGC = median(A1,…,Ak,…,Aq)/0.454, where 

0.454 is the median of a χ2 with 1 degree of freedom. With λGC we can then correct our test 

statistics across variants for inflation. This parameter can also serve as a measure of the 

extent of the effect of confounding on the association statistics, where a λGC = 1.0 shows that 

there is no inflation, values greater than 1 suggesting that there is a level of inflation. 

However, recent studies have shown that, even when no population structure is present, the 

polygenic inheritance of traits leads to λGC being larger than 150. Furthermore, due to the 

genomic control method using λGC as a uniform corrector across the genome, this can lead to 

a suboptimal correction for population structure, with variants that strongly segregate 

amongst subgroups being under-corrected, and those that do not being over-corrected51. 

 

 
Figure 6. Confounding factors. On the left a classic confounding example is shown, by which an 
association between alcohol consumption and lung cancer is found, which is mediated by the 
confounder, smoking, in turn correlated with alcohol consumption. On the right, an example of 
confounding due to population structure is shown, by which the effect of differences in allele frequency 
and prevalence between two populations can lead to incorrect inference about the association between 
an allele and a disease.  

 

Currently, principal component analysis (PCA) is the most widely used approach for 

identifying and adjusting for ancestry differences amongst samples in population studies. 

Briefly, PCA is a dimensionality reduction method by which patterns within the data are 

found. It does so by creating new, uncorrelated variables that maximise the variance 

explained within the data, these variables being termed principal components (PCs). Studies 

have shown that, by using PCA on genome-wide data, one can effectively capture ancestral 

patterns, with PCs presenting strong correlations with geographical axes52. As such, the 
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inclusion of the top PCs (those that explain the largest percentage of phenotypic variance) as 

covariates in models can help correct for population structure.  

 

Whilst the aforementioned models can help account for population stratification, they do not 

successfully correct for the effect of relatedness in the data, thus the frequent removal of 

related individuals from GWAS, which leads to the reduction of power in the search for 

genotype-phenotype associations. Furthermore, as stated previously, cryptic relatedness 

can still endure within the data, with the possibility of it leading to spurious associations. In 

this context, linear mixed models (further described in section 1.2.1.3), which successfully 

account for relatedness within the data, have risen as the preferred framework for genome-

wide association studies. 

 

1.2.3.4. Linear mixed models 

 

As seen prior, linear mixed models are an extension of the original linear model that includes 

not only fixed effects (such as covariates like sex or age, or the effect of a given SNP, of which 

all observed levels are known) but also random effects. In this context, the random effect 

takes the form of a random vector of polygenic effects that is a function of the underlying 

genetic relationships between samples, and which has gained prominence in recent years to 

effectively correct for population structure53. These models have also allowed for the 

successful analysis of not only unrelated individuals, but also related individuals, in turn 

increasing sample sizes in GWAS and thus statistical power for association discovery (section 

1.2.7). The standard structure of an LMM in this context is as follows: 

  

 y = μ + Wα + Xβ + g + ε  Eq. 20 

 

For which variables have been defined in Eq. 18 and in section 1.2.1.3 and Eq. 10, and where 

g is a random i ✕ 1 vector of polygenic effects where g ~ N(0, AσA
2), A being the GRM (further 

discussed in the following section), which englobes pairwise measures of genetic relatedness 

between samples. The different elements of this model can then be estimated via a variety of 

statistical methods that underlie popular GWAS software, described in sections 1.2.1 and 

1.2.2. These include REML to obtain variance estimates for σA
2  and σE

2, BLUE to calculate fixed 

effects β and α, and BLUP to calculate random effects g and ε. 

 

For a given genetic variant, a β ≠ 0 (section 1.2.7) would represent an association to the 

phenotype of interest. Theoretically, if all causal variants were found, one could estimate the 

total additive genetic variance for a given phenotype, as shown in Eq. 21, where m is the total 

number of causal variants, and p is the reference allele frequency of each variant. In reality, 

however, genetic variance estimates from GWAS efforts have been found to be significantly 

lower when compared to the σA
2  estimates from family pedigree studies, a phenomenon that’s 

been termed the “missing heritability” problem (discussed further in section 1.3.2).  

 

 σA
2  = ∑ 2pn(1 - pn)β

 n

2
m

n=1

 Eq. 21 
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GRM 

 

The GRM, also known as the kinship matrix, captures the latent population substructure 

within our data through pairwise comparisons of all samples considered, resulting in 

measurements of relatedness or kinship. Genetic relationships between individuals are due 

to shared alleles at causal genes; however, as these are many times not known, we use proxies 

in the form of (i) pedigree data and (ii) genome-wide variant data, the former being the 

“traditional” way of estimating relatedness, and the latter being the widespread method used 

today, having been made possible with the advent of genotyping chips and GWAS. The 

concept of kinship is defined as the probability that, given two individuals i and j, one allele 

taken at random from each individual is IBD. Kinship coefficients between close family 

members are well defined, thus the ease of their estimation from pedigree data – for example, 

this coefficient ranges from around 0.19 to 0.31 for a pair of full siblings. However, population 

cohorts can present extremely large sample sizes as well as cryptic relatedness, thus the 

current use of marker data in the calculation of kinship coefficients. Several methods have 

been proposed to calculate kinship from marker data, the one used in this thesis described 

in section 2.2.2.1.  
 

1.2.3.5. Binary phenotypes: logistic models 

 

Many of the phenotypes of interest in human genetics are dichotomous/binary, such as 

disease phenotypes, where samples are categorised as either having or not having a 

particular disease. As stated in previous sections, earlier implementations of GWAS entailed 

a case-control framework involving the use of contingency tables, but these methods fell 

short in the presence of population structure.  

 

In this context, linear regression, and more specifically linear mixed models, have been the 

gold standard for GWAS in recent years. However, linear regression has traditionally been 

discouraged when considering binary variables, due to the potential breakage of normality 

assumptions that the latter is built on. Because of this, association studies of disease traits 

are typically conducted under the logistic regression model, which is a variation of the linear 

regression model, and with which it shares many similarities. Whilst linear regression is 

usually used to characterise a potential linear relationship between variables (for example a 

given phenotype and the genotype), logistic regression is used to calculate the odds of a 

binary event occurring (like a disease). Similarly to case-control contingency tables (section 

1.2.3.1), logistic regression works with odds and ORs. Given a phenotype y, which can take 

the form of 0 or 1 (control/case), and the genotypes, formulated as 0, 1 or 2 as per the additive 

model, we measure whether the genotype affects disease status by calculating an OR as: 

 

 OR = 
Pr (y = 1 | X = 1)
Pr(y = 0 | X = 1)

 : 
Pr(y = 1 | X = 0)
Pr(y = 0 | X = 0)

  Eq.  22 

 

Where Pr (y = 1 | X = 1) is the probability of presenting the disease given genotype 1, 

Pr (y = 1 | X = 0) is the probability of presenting the disease given genotype 0, and so on. 

Analogously to Eq. 16, the numerator (here on the left) represents the odds of presenting the 
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disease given genotype 1, whilst the denominator (here on the right) represents the same 

given genotype 0. As such, logistic regression explains the logarithm of the odds (log-odds) 

of the disease by the genotype as: 

 

 log (
Pr (y = 1 | X = x)
Pr(y = 0 | X = x)

) = μ + xβ Eq.  23 

 

Where μ represents the log-odds given the reference genotype (X = 0), and β is the log odds 

ratio (logOR) between genotypes 1 and 0, exp(β) thus being the OR, which, analogously to 

genetic effects estimated from linear regression, is a common measure for the strength of 

association of a genetic variant to the phenotype. Because we are considering an additive 

model, we can also estimate the logOR between genotypes 2 and 0 as 2β54. 

 

To account for population structure and confounders, logistic regression is coupled with the 

inclusion of PCs and other covariates (section 1.2.3.3). However, as was the case with linear 

regression (section 1.2.3.2), this framework fails to capture cryptic relatedness, thus limiting 

GWAS to unrelated individuals. Because of this, many studies have opted for the use of linear 

mixed models in the study of binary traits (including  amyotrophic lateral sclerosis (ALS)55, 

anorexia56, coronary artery disease57, and pulmonary fibrosis58), and have found great 

success in their use. Similarly, in this thesis LMMs are used in the study of binary traits.  

 

A noted limitation of the use of LMMs with binary traits has been the presence of increased 

false positive rates (section 1.2.7) when case-control imbalance is large. This can be 

managed by reducing imbalance with the removal of control samples, or by considering only 

genetic variants with a MAF above a certain threshold, based on a combination of the sample 

size considered and magnitude of imbalance present, as shown by simulations performed by 

Loh and collaborators59. 

 

As a response to these limitations, in recent years several efforts have developed logistic 

mixed model (LogMM) frameworks, which better control for the aforementioned inflated false 

positive rates whilst also accounting for relatedness60–62. These, however, present their own 

set of limitations. For example, since logistic regression includes no error term, we cannot 

estimate σE
2 as we would with LMMs. Furthermore, there is no straightforward interpretation 

of heritability based on variance components estimated from LogMMs, and these models are 

more computationally intensive than LMMs, thus taking longer to fit62. Finally, as with all 

logistic regression, caution must be taken in the use and interpretation of results due to 

unobserved heterogeneity, i.e. the variation in the dependent variable that is caused by 

variables that are not observed (omitted variables). In contrast to linear regression, 

parameter estimates obtained from logistic regression are dependent on the variables not 

included in a model, whether they are correlated to the included variables or not63,64. This has 

several important consequences, amongst which is the problematic nature of comparing log 

odds or odds ratios across models with different independent variables, as well as comparing 

them across samples, groups within samples, or over time, even when using identical models. 

Different solutions based on the user’s purpose exist, each with their own set of caveats. One 

of these solutions involves the transformation of odds ratios to the linear scale, prior to 
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comparison. We explore this solution, applied to estimates of LogMMs later in this thesis 

(sections 2.2.5.4 and 2.3.4.4).   
 

1.2.4. Heritability 

 

An important attribute of every observable phenotype is how much of its variation can be 

accredited to genetics as opposed to environmental factors. In quantitative genetics, this 

quantifiable parameter is known as heritability, which also determines the response to 

selection and the potential utility of individual genetic prediction65. Formally, heritability is 

defined as the proportion of the phenotypic variance that can be attributed to the variance 

of genotypic values. If we are considering the total genotypic variance (σG
2 ), then we are 

estimating the broad-sense heritability (H2, Eq. 24). However, if we are considering the 

additive genetic variance (σA
2), then we are estimating the narrow-sense heritability (h2, Eq. 

25)34,66. In recent years, SNP-based efforts to calculate h2 have arisen, which account for the 

additive genetic variance explained by measured SNPs, and which is termed hSNP
2 . When 

common SNPs are used, hSNP
2  is expected to be lower than h2 due to its inability to capture 

genetic variance attributable to rare variants, thus H2 > h2 > hSNP
2 65. Due to difficulties in the 

estimation of σG
2  and thus H2, heritability most often refers to h2 or hSNP

2 . 
 

 H2 = 
σG

2

σG
2 + σE

2  =  
σG

2

σP
2  Eq. 24 

 

 h2 = 
σA

2

σG
2 + σE

2  =  
σA

2

σP
2  Eq. 25 

 

Notably, heritability is a population-specific parameter, because both genetic and 

environmental variance can vary across populations, including across geographical 

locations, age groups, and sex. Similarly, environmental differences can lead to differences 

in heritability, so caution should be taken when inferring discrepancies in genetic 

architecture across groups34.    

 

1.2.4.1. Heritability on liability scale 

 

When it comes to “all or none” categorical traits (such as disease status, case or control), 

heritability is calculated as described previously. However, in this case, the maximum 

observed phenotypic variance is a function of the prevalenceaa K, being the phenotypic 

variance equal to K(1-K) and reaching a maximum at 0.5, thus obscuring the comparison of 

the importance of genetic and environmental variance on the trait considered. This is why 

heritability on the observed scale for categorical traits is transformed to the liability scale, 

where it is assumed that a trait has an underlying continuous liability for which the 

heritability can be calculated34 (Figure 7). This adjustment requires making assumptions 

about the prevalence of a trait in the population, which can be risky for rare traits or when 

 
aa Prevalence: proportion of the population that presents a given disease at a certain point in time.  
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sample sizes are small. The relationship between the heritability of the underlying 

continuous liability and the observed heritability is defined as:  

 

 hL
2 = hO

2 K(1-K)

z2  Eq. 26 

 

Where hO
2  is the heritability on the observed scale, hL

2 is the heritability on the liability scale, 

and z is the height of the standard normal curve at the threshold (t) that truncates the 

proportion K (shown in Figure 7). As with all approximations, if values are extreme (for 

example large hO
2 , low prevalence) then hL

2 could fall beyond the theoretical [0, 1] limits. 

Indeed, when disease prevalence drops below 25% inflated estimates are expected67. 

 

 
Figure 7. Left: Liability threshold model for a disease prevalence of K. When an individual’s liability falls 
over the threshold t, they are affected by the disease. Right: Liability distribution when cases are 
oversampled as in a case-control study. Both figures adapted from 68. 

 

If the prevalence of a given disease within the sample used to calculate heritability differed 

from that of the population (i.e. if cases and controls are not a random sample from the 

population, a phenomenon known as ascertainment), then heritability on the liability scale 

needs to be adjusted accordingly68 (Figure 7). As such, given the sample prevalence P, 

heritability on the liability scale is calculated as: 
 

 hL
2 = hO

2 K(1-K)

z2  
K(1-K)
P(1-P)

 Eq. 27 

 

Where when no ascertainment is present (P = K) and Eq. 27 = Eq. 26.  

 

1.2.4.2. Estimation 

 

In classic studies, heritability was estimated using pedigree data to estimate phenotypic 

similarity amongst relatives by means of (i) regressions of offspring on parental phenotypes 

(where the slope of the regression would be the narrow-sense heritability estimate), (ii) 

correlations of full or half siblings, and (iii) the difference in the correlation of monozygotic 

(MZ) and dizygotic (DZ) twin pairs. Traditional methods, however, can be biased by 
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assumptions on non-modeled sources of variation, such as the assumption of shared 

environment amongst relatives, which, if violated, could lead to an overestimation of 

heritability.  

 

In recent years, where phenotypic and genetic measures are taken from individuals with a 

mixture of relationships, estimates of additive genetic variance and environmental variance 

are most efficiently estimated from LMMs using REML frameworks34 (section 1.2.2.2). These 

methods use SNPs to estimate the genetic similarity between random individuals and 

compare that to their trait similarity, thus being conceptually similar to family-based studies. 

Because these methods capture genetic variance pertaining to a given set of SNPs, they 

calculate SNP-based heritability (hSNP
2 ). More recently, methods have also been developed to 

estimate heritability from GWAS summary statistics, which directly assess the phenotypic 

variance that is attributed to each individual SNP under consideration, as measured by their 

genetic effects69. Due to the proliferation of different models and frameworks to estimate 

heritability, each with their own set of assumptions, discrepancies can be found across the 

literature, thus the importance of understanding and considering these factors when 

interpreting results65.  
 

1.2.5. Genetic correlation 

 

The genetic correlation is another important genomic parameter in the characterisation of 

genetic architecture. Genetic correlations, denoted as rg, describe the genetic relationship 

between two traits or two groups for a specific trait, and can contribute to our understanding 

of common underlying biological pathways and/or the causality relationships between 

them70. In other words, it’s an estimate of the level of common genetic control, and it reflects 

the pleiotropic action of genes across phenotypes70. Mathematically, the genetic correlation 

between x and y is defined as: 
 

 
rg = 

σGx,Gy

√σGx

2 σGy

2
  

Eq. 28 

 

Where the numerator is the genetic covariance between x and y, and σG
2  is the genetic variance 

of x/y. Large genetic correlations could offer clues into pleiotropy, which can be classified as 

horizontal or vertical based on whether the two phenotypes are part of a causal cascade 

(genetic variant considered leads to x, which then leads to y, known as vertical pleiotropy) or 

not (genetic variant considered leads to both x and y, or indirectly through an intermediate 

phenotype, known as horizontal pleiotropy). Furthermore, genetic correlation offers an 

estimate of the average pleiotropic effect across all causal loci, but the underlying 

architecture at individual loci and genomic regions can vary70. 
 

Genetic correlations range from -1 to 1. Generally, if no shared genetics underlie two traits’ 

phenotypic variance, the genetic correlation will be 0. However, given that genetic 

correlations reflect the average pleiotropic effect across the genome, an rg = 0 might be found 

despite the existence of local genetic correlations, for example due to positive correlation 
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partially canceling a negative correlation71. On the other hand, if a complete overlap in genetic 

control is found, the genetic correlation will be 1. When rg is -1, the two traits will be linearly 

related but with a negative coefficient (i.e. the same allelic content could lead to a decrease 

in risk in one phenotype and an increase in another of the same magnitude).  

 

Classic methods of genetic correlation calculation present similarities to those used to obtain 

heritability estimates (section 1.2.4.2), including parent-offspring regressions and 

correlations between siblings72. However, estimation of rg in the past has been limited to large 

family cohorts, where instances of multiple measured phenotypes to compare were rare and 

difficult to analyze via traditional approaches. As is the case with heritability estimation, with 

the advent of large population cohorts and GWAS new methods have been developed that 

allow for the effective estimation of rg using individual-level genetic data to calculate 

variance and covariance components, or using GWAS summary statistics70.  

 

1.2.6. molQTL studies 

 

 
Figure 8. QTL analysis frameworks across molecular levels.  

 

As discussed previously, GWAS efforts have discovered thousands of SNP-trait associations, 

but the underlying mechanisms giving rise to these associations are largely undiscovered. It 

is believed that genetic variants lead to changes in phenotype via alterations of molecular 

(intermediate) phenotypes, such as transcripts, proteins, metabolites, or methylation, that 

then cascade through biological pathways ultimately contributing to trait presentation, 

mirroring the postulations of the Central Dogma of Molecular Biology (Figure 1). To study the 

relationship between genetic variation and low-level molecular phenotypes, quantitative trait 

loci (QTL) study frameworks have gained popularity (Figure 8). A quantitative trait locus is 

one that can lead to a quantitative change in phenotype. Thus, as is the case in GWAS, these 

studies look to find genetic associations that describe the quantitative relationship between 

allelic content and molecular phenotype, fitting similar models. Based on the molecular 

phenotype of interest different flavours of QTL studies can be found in the literature, 

including expression-QTL (eQTL) for transcripts, methylation-QTL (mQTL) for DNA 

methylation, protein-QTL (pQTL) for proteins, and more, together known as molecular-QTL 

(molQTL) studies73. As large-scale omics data sets become more widely available, these 

frameworks will continue gaining popularity and power to help untangle genotype-phenotype 

relationships. 
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1.2.7. Statistical testing 

 

Throughout this introduction we’ve discussed how to estimate parameters from statistical 

models (such as linear regression), and several mentions of tests (such as χ2 to assess the 

presence of genetic effects in case-control frameworks, or F-tests in ANOVA) and p-values 

have been made. We’ve not yet, however, touched upon how we can evaluate our estimates, 

or what these tests and p-values entail. In this section I will briefly introduce statistical 

testing, as well as other main statistical concepts that are repeated throughout this thesis 

and that are fundamental in quantitative genetics studies. 
 

1.2.7.1. Null and alternative hypotheses 

 

In statistical testing, we formulate a hypothesis that we want to test, for example, whether β 

≠ 0. OLS (section 1.2.1.1) and ML (section 1.2.2.2) methods allow us to obtain an estimate of 

β, but they do not tell us whether the effect is significantly different from what we would 

expect to obtain by chance. As such, statistical testing consists of formulating a null 

hypothesis (H0) and an alternative hypothesis (H1). In the latter example, our null hypothesis 

would be that β = 0, whilst our alternative hypothesis would be that β ≠ 0. Considering a linear 

model (Figure 9): 

 

 H0: β = 0 thus y = μ + ε, and y ~ N(0, σE
2)  Eq. 29 

 H1: β ≠ 0 thus y = μ + xβ + ε, and y ~ N(xβ, σE
2)  Eq. 30 

 

Taking our estimate and its associated error, we can calculate a test statistic for which the 

probability distribution, given the null hypothesis holds, is known. The most commonly used 

probability distribution in statistical testing is the normal distribution, and others include the 

t or the χ2 distribution, also discussed in this thesis. Once our test statistic has been 

calculated, we assess the probability of obtaining said statistic or a more extreme value 

within the known distribution. This probability is called the p-value, formally defined as the 

probability of obtaining the observed or more extreme results when the null hypothesis is 

true. As such, we reject the null hypothesis if the p-value is small enough that obtaining the 

results would be extremely unlikely under the null hypothesis. 

 

Thus, summarising, statistical testing comprises three main steps: (i) defining our test 

statistic, (ii) obtaining a p-value for our statistic, and (iii) rejecting or accepting the null 

hypothesis if the p-value falls under a certain threshold (typically p < 0.05), corresponding to 

the critical value of the distribution. This threshold is often referred to as the significance 

level, or α, and if we obtain a p-value that is equal to or lower than it we obtain a statistically 

significant result (Figure 10). 

 
 A variety of statistical tests are used throughout this thesis, both directly and indirectly 

(statistics returned by existing software), and both parametric and non-parametricbb. Their 

 
bb Non-parametric tests are those that do not rely on assumptions about the probability distribution 
from which the data were drawn, whilst parametric tests do.  
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uses include, but are not limited to, assessing the significance of our genetic effect estimates 

(GWAS in Chapter 2 and eQTL analysis in Chapter 3), assessing difference in parameters (sex-

specific parameter estimation comparison, Chapter 2), or assessing if certain events occur 

more often than what would be expected by chance (gene set enrichment, Chapter 3). As 

such, each test will be described in more detail in its corresponding section. 

 

 
Figure 9. Null and alternative hypothesis when assessing association between a phenotype (here blood 
pressure) and a genetic variant. Adapted from 74. 

 

 
Figure 10. Normal distribution representing null distribution (expected distribution of a given statistic 
given the null hypothesis holds), including significance regions and thresholds given a significance level 
of α. If a statistic falls beyond the significance threshold (critical value), it is deemed significant.  

 

1.2.7.2. p-values in GWAS 

 

In GWAS efforts, p-values are one of the primary results when assessing genotype-phenotype 

associations, as small p-values can suggest interesting genomic areas relevant to the 

phenotype under study. Furthermore, the distribution of p-values/test statistics across the 

genome can serve to not only assess the presence of significant associations but also act as 

a diagnostic tool to assess the presence of confounders and population structure (section 
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1.2.3.3). If no associations are present, then we assume the distribution of p-values is 

uniform. By plotting the distribution of observed p-values or test statistics to those expected 

(in what is termed a qq plot, or quantile-quantile plot), we can observe deviation from the null 

distribution. If confounders are present, a constant deviation from the distribution will be 

observed, whilst if a significant genetic association is present this departure will only be 

observed at the tail of the distribution (Figure 11). 

  
Figure 11. qq plots of GWAS test statistics in the presence of (a) no associations or confounders, (b) 
confounders, (c) population substructure, and (d) genetic associations to phenotype. Adapted from 48. 

 
Figure 12. Manhattan plot example. The x axis corresponds to the genomic position, and the y axis to the 
-log10 p-value of association for a given SNP.  

 

Another popular way to display GWAS p-values is through Manhattan plots, which are 

scatterplots where the -log10(p-values) of association across the genome (y-axis) are plotted 

against the genomic position (x-axis). Each point represented is a genetic variant that’s been 

tested for association. If associations are found, peaks are seen that represent loci in the 

genome, here referring to groups of SNPs in LD, that are associated with the considered 

phenotype (Figure 12). Because often we are only interested in the number of independent 

loci (i.e. loci not in LD) that are associated with a given phenotype, we perform  LD clumping, 

by which a single SNP, usually the one presenting the lowest association p-value, is assigned 

as lead SNP for an associated LD block of SNPs. LD blocks are defined by a parameter like the 

correlation coefficient squared, r2, that quantifies LD between pairs of SNPs, where r2 = 0 

indicates total linkage equilibrium and r2 = 1 indicates total linkage disequilibrium.  

 

1.2.7.3. Type I and II errors, statistical power 

 

When accepting or rejecting the null hypothesis, errors can occur (Table 3). If we reject H0 

when H0 is true, we are making a type I error, known as a false positive (FP, for example, 
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declaring a significant association between SNP and phenotype when there is none). On the 

other hand, if we reject H1 when H1 is true, we are making a type II error, also known as a false 

negative (FN, for example, given a SNP a with nonzero effect on the phenotype, we fail to 

declare it as significant). 

 
Table 3. Types of errors in hypothesis testing. 

 

  Test result 

  Reject H0 Accept H0 

Truth 
H1 True positive (TP) False negative (FN) 

H0 False positive (FP) True negative (TN) 

 

Other important concepts relating to hypothesis testing that are mentioned in this thesis 

include power (also known as the true positive rate, or sensitivity) which is defined as 

TP/(TP+FN), that is, the probability of correctly rejecting the null hypothesis (Figure 13), as 

well as false positive rate (FPR), or type I error rate, which defined as FP/(TN+FP). Under 

normal conditions (i.e. no inflation), FPR is equal to our p-value significance threshold (α), and 

is the rate at which zero effect variants are labelled as significant. The false negative rate, or 

type II error rate, is defined as FN/(FN+TP), and is also known as β, where 1 - β = power. The 

accuracy is the total number of correct calls we make out of the total calls made, i.e. 

(TP+TN)/(TP+TN+FP+FN). Other important concepts include the family-wise error rate (FWER) 

and false discovery rate (FDR), described in section 1.2.7.4.  

 

 
Figure 13. Statistical power, defined graphically. 

 

The main objective of GWAS is to capture as many true positives as possible, thus the need 

for statistical power. Power is affected by the overlap between the probability distributions 

of H0 and H1, where more overlap means less power, as well as by sample size and by the 

chosen significance threshold (if all other factors are kept constant a larger α means greater 

power). The parameters that affect power in a GWAS for a given significance threshold are (i) 

sample size, as this leads to more accurate effect estimates (smaller errors), (ii) genetic effect 

size, a larger effect decreasing overlap between H0 and H1, (iii) minor allele frequency, where 

a larger MAF also leads to more accurate genetic effect estimate, and, (iv) in case-control 

studies, the prevalence of a given disease, where larger values also leading to more accurate 
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estimates. In practice, for a given significance threshold, power is determined by the non-

centrality parameter (NCP), which is a measure of the degree to which a null hypothesis is 

false75.  

 

1.2.7.4. Accounting for multiple testing 

 

As stated previously, under normal circumstances the FPR is equal to our p-value significance 

threshold (typically 0.05). This means that, given an association test for a genetic variant and 

a phenotype, there’s a 5% probability of rejecting the null hypothesis (β = 0) when it is true, 

i.e. the genetic effect of said variant on the phenotype under study is not significant. 

However, when performing multiple tests, such as in a GWAS, the probability of finding at 

least one association that is significant by chance increases. In this context, studies should 

correct for multiple testing to ensure false positive numbers are kept low. Some common 

methods used in genomics, and throughout this thesis, to account for multiple testing are 

described below. 

 

Family-wise error rate (FWER) correction 

 

One strategy to perform multiple testing correction is to control for the probability of finding 

at least one false positive, this probability being known as the FWER. If n is the total number 

of comparisons made in a study, the probability of finding at least one significant test by 

chance, that is, a false positive (given our significance threshold α) is: 

 

 FWER = Pr(FP ≥ 1) = 1 –  Pr(FP = 0) = 1 - (1 – α)n Eq. 31 
 

Thus, considering a GWAS with 1,000,000 SNPs and α = 0.05, the probability of obtaining a 

significant association is 1 – 0.951,000,000 ≈ 1, and we could expect to obtain around 50,000 

false positives.  

 

One of the most popular ways of account for multiple testing by controlling FWER at level α is 

the Bonferroni correction method76. Bonferroni correction consists of adjusting the type I 

error rate of choice by the total number of tests performed in a study, such that the final 

significance threshold is set at α/n. For example, given a study where 20 tests are performed 

and α = 0.05, such that the Bonferroni corrected significance threshold is set at 0.05/20 = 

0.0025, FWER will be ≤ 0.05, as 1 - (1 – α)n = 1 – (1 – 0.0025)20 = 0.0488. This procedure assumes 

all tests are independent. As such, its advantages are its complete generality and ease of use. 

However, in cases where dependency is present, the Bonferroni correction is deemed 

conservative, leading to a high rate of false negatives. 

 

In GWAS literature, a commonly used significance threshold is that of 5 x 10-8, which is 

estimated as a result of applying Bonferroni correction to achieve a FWER of 0.05 for a GWAS 

considering around 1,000,000 independent variants (i.e. not in LD)77, as 0.05/106 = 5 x 10-8. As 

such, a genetic variant which presents a p-value for the null hypothesis β = 0 that is lower 

than 5 x 10-8 is deemed to present a genome-wide significant association to the phenotype 
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under study. Similarly, in this thesis we consider the slightly more stringent significance 

threshold of 1 x 10-8 when assessing GWAS results.  

 

False discovery rate (FDR) correction 

 

Instead of controlling FWER, we can also correct for multiple testing by controlling the FDR, 

that is, the expected percentage of false discoveries, and which, as defined by the terms 

described in Table 3, is equal to FP/(TP+FP). This concept was introduced by Yoav Benjamini 

and Yosef Hochberg in 1995, which further described a procedure to control FDR, known as 

the Benjamini-Hochberg method78, and which was further expanded on by John D. Storey and 

Robert Tibshirani79,80, as well as other works by Benjamini et al81,82. This procedure generally 

consists of sorting the observed p-values for all tests performed in ascending order, and 

assigning ranks, such that the smallest p-value will have rank 1, the second rank 2, and so on. 

Each p-value is then corrected, such that the FDR adjusted p-value, also commonly known as 

a q-value (a term first coined by Storey), is: 

 

 q = n
p
r
 Eq. 32 

 

Where p is the uncorrected p-value, r is its corresponding rank, and n is the total number of 

tests performed. As such, by considering as significant the tests which present a q-value ≤ α 

we ensure FDR ≤ α. The q-value thus represents the expected false discovery rate obtained 

by rejecting the null hypothesis for any test with an equal or smaller q-value.  

 

FDR procedures were created as a response to stringent FWER-controlling multiple testing 

frameworks, instead offering an alternative that allows for the flagging of noteworthy 

observations at a false discovery rate of the researcher’s choice. Indeed, FWER methods 

control type I error rates at the cost of greatly reduced power to detect true positives, 

something that became more evident with the rise of high-throughput experiments. Often, 

rather than say we want to be 95% confident that no significant tests are false positives, it is 

sufficient to identify a set of significant tests from which a known proportion are drawn 

according to the null hypothesis83. As such, FDR methods have gained great popularity since 

their conception in the life sciences and beyond, with new methods being developed that 

further increase statistical power by incorporating complementary information84.  

 

1.3. Genetic architecture of human complex traits 
 

As touched upon previously, complex traits comprise phenotypes to which a multitude of 

genetic and environmental factors contribute. Human complex traits range from continuous 

phenotypes like height, to complex diseases, like CVD, type 2 diabetes, autoimmune diseases, 

psychiatric diseases, and cancer16. The prevention and treatment of many of these is still 

largely ineffective, and, furthermore, they are often treated as if their underlying basis 

consisted only of a few risk factors, without considering the vast genetic and environmental 

background of patients at depth. Understanding the genetic architecture of complex traits, 

and most specifically disease, can bring us closer to understanding their underlying aetiology 

and aid in disease screening, diagnosis, prognosis, and therapy33.  
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1.3.1. 21st century insights 

 

New advances in genotyping technologies, genomic methods, and the advent of large 

population cohorts are helping shed light on complex trait genetic architecture. Thanks to 

GWAS efforts and large population cohorts, thousands of trait-associated common variants 

have been discovered, which in turn have been found to be enriched for non-coding 

regulatory sites (such as eQTLs)32,33,85, as opposed to variants driving Mendelian diseases 

which largely affect coding regions. This is further backed by findings from the GTEx cohort, 

which found that local genetic variation affects gene expression levels for the majority of 

genes86. Several efforts have found GWAS signals to be enriched in chromatin that is active 

in cell types relevant to the considered phenotype87,88. These findings have further 

contributed to the development of the omnigenic model, described later in this section. In 

addition, WES and WGS efforts have helped identify rare variants associated with complex 

traits, downsides being cost, limit to coding regions for the former, lack of quality sequencing 

in certain problematic areas of the genome such as repetitive DNA sequences in the latter, 

and association studies being underpowered when minimum allele frequencies are very 

low33.  

 

1.3.2. Missing heritability 

 

GWAS efforts have found that, for most traits, genetic variants which present a significant 

non-zero effect on the phenotype present small effect sizes, and, when considering all 

significant hits together, these do not account for the total heritability estimated from 

family-based methods32. This gap is known as the missing heritability problem89, which has 

been an important topic of discussion in human genetics. Hypotheses have postulated 

possible causes to be the existence of large amounts of undetected small effects across the 

genome (i.e. GWAS efforts are not sufficiently powerful to detect variants with weak effects), 

and the potential overestimation of narrow-sense heritability by traditional family-pedigree 

studies, due to genetic interactions, gene-environment interactions, or incorrect 

assumptions about shared environment in twin studies90. A study by Wainschtein and 

collaborators in 2019 recovered most pedigree heritability for height and BMI using WGS data, 

with enrichment of heritability in low-MAF variants found in regions of low LD, thus 

hypothesising that rare variants, particularly those that are not well imputed, account for the 

missing heritability across complex traits91, and that full pedigree heritability will be unlocked 

once WGS becomes more widespread across large population cohorts90. However, more work 

is still necessary to truly unravel the missing heritability problem across complex traits, and 

building a better understanding of the relationship between genetic and environmental 

factors on traits will further help to reach this end90. 

 

1.3.3. Omnigenic model 

 

Traditionally, genetic architecture has been described as monogenic, oligogenic, or 

polygenic, in reference to the number of underlying genetic variants that give rise to the 
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observed phenotypic variance in the trait of interest. In the past few years, stemming from 

the largely polygenic results of GWAS efforts as sample sizes have become larger, and finding 

parallels in Fisher’s infinitesimal model, the omnigenic model has been brought forward to 

describe the underlying genetic architecture of complex traits32,92 (Figure 14). 

 

 
Figure 14. Omnigenic model, adapted from 92. (a) Core genes are embedded in gene regulatory networks, 
and peripheral genes can affect their expression through the network, thus affecting the phenotype of 
interest indirectly. (b) Regulatory variants mostly affect expression of peripheral genes in cis, but can 
also affect core genes in trans. Their resulting genetic effect in GWAS is small. The direction of their 
genetic effect is varied. (c) Some peripheral genes, such as transcription factors, can drive regulation of 
multiple core genes with shared directional effects, and this in turn leads to strong GWAS signals.  

 

This model looks to address why the polygenic background of complex traits contributes to 

SNP-heritability in a mostly uniform manner throughout the genome, whilst GWAS hits do not 

account for much of said heritability. This model postulates that all genes expressed in a 

trait-relevant cell type contribute to the phenotype, due to all regulatory networks being 

sufficiently interconnected32. Furthermore, this model makes a distinction between core 

genes and peripheral genes, core genes directly regulating or leading to the phenotype of 

interest, and peripheral genes contributing to phenotypic variation through transcc-

regulatory effects on core genes (from mRNA or protein expression regulation, to post-

transcriptional or protein modification). Peripheral genes encompass all other genes that are 

not core genes within relevant cell types. In this framework, SNPs of large effect will generally 

be regulators of core genes as cis-eQTLs and will not largely contribute to SNP-heritability, 

whilst those of smaller effect, encompassing the large polygenic background and accounting 

for most of the SNP-heritability, will be cis-eQTLs of peripheral genes, with small trans-

effects on core genes. An exception to this is the case of transcription factors (termed master 

regulators), which, if affecting multiple core genes, could also present large effect sizes in 

GWAS efforts. Liu and collaborators further presented a mathematical groundwork for this 

 
cc Trans and cis: cis regulatory elements regulate the expression of nearby genes, whilst trans 
regulatory elements regulate the expression of distant genes.   
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model in 201992, which a recent effort in 2021 looked to support through the empirical 

analysis of 3 molecular phenotypes93. The latter found that, whilst core genes with the 

expected behaviour were found, more information on cellular regulatory networks is needed 

to assess the action of peripheral genes. In conclusion, whilst this model could help explain 

the complexity of the observed genetic architectures in recent years, further empirical 

evidence is needed, along with precise and detailed mapping of cellular networks across cell 

types to truly understand the flow of regulatory information underlying complex traits32. 

 

1.3.4. Prediction 

 

An important feat quantitative geneticists look to tackle is that of phenotype and disease 

prediction, prognosis and diagnosis. Whilst genetics can aid in the diagnosis of diseases and 

prediction of traits for which phenotypic variation is accounted for by known and highly  

penetrant genetic variants, this is currently not possible for most common diseases and 

traits, for which a large portion of the predicted heritability is still unaccounted for by GWAS 

hits. This will improve as sample sizes continue to increase, with the study of rare variants 

through WGS efforts33, and with the further understanding of environmental influences.   

 

1.3.5. Epistasis and environment 

 

It is widely believed that the etiology of most common diseases involves not only discrete 

genetic and environmental causes, but also interactions within and between the two94. The 

effect of genetic variation may be dependent upon environmental factors (gene x 

environment interactions, GxE), or by the number of alleles at another genetic variant 

(epistasis). Current genomic models only consider the effect of additive genetic variation on 

the phenotype, meaning potential non-additive genetic variation and GxE could be being 

overlooked. Studying GxE could shed light on disease etiology, inform better prognostic 

models, identify increased environment-specific risk for individuals with a particular 

genotype, and help identify additional disease-risk loci95. Furthermore, it’s been postulated 

that some of the missing heritability problem could be attributed to GxE and epistatic 

interactions. Interaction studies, particularly GxE studies, present their own set of unique 

challenges, including lower statistical power, error in exposure measurement or 

misclassification, difficulty in integrating different kinds of data, and the dynamics of GxE 

(i.e. exposures can change over time)96. This has led to a slow characterisation of GxE across 

phenotypes33,94–96. As sample sizes increase, high-throughput reproducible phenotyping 

methods are developed, large-scale comprehensive internal and external exposure 

assessments (termed exposome) become available, and statistical methods to successfully 

integrate largely diverse data types are created, it is hypothesised that what has until now 

been a challenging field will become more important in the characterisation of complex trait 

genetic architecture95.  

 

Overall, the past decade has seen an enormous effort in the mapping of genetic variants to 

complex traits and diseases, and findings have been that genetic architectures are highly 

variable and difficult to predict, with some traits’ genetic architecture lying closer to Fisher’s 
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original infinitesimal model, whilst others being influenced by a limited number of genes. 

Large population studies and WGS will be needed to successfully understand the role of rare 

variants in the genetic architecture of human complex traits via association tests in the 

short-term33. Furthermore, as multi-omic and exposome data sets become available and 

appropriate integration techniques are developed, characterising the genetic architecture of 

complex traits, and translating findings to biological processes and regulatory networks will 

bring us one step closer to successfully dissecting complex traits and diseases.  

 

1.4. Sex differences 
 

Human sex is typically defined by sex chromosomal content, observable reproductive 

anatomy, gonads, and hormones. Sex at birth is usually assigned in regards to the genitals of 

the neonate, and is treated as a binary trait (male/female). This complex interplay of factors, 

however, can lead to other presentations such as intersex individuals (individuals with 

varying presentations of male and female genitalia), or individuals with sex chromosomes 

outside the XX female/XY male binary. Human gender is correlated with sex, but is itself a 

multifactorial complex trait with a heritable polygenic component97. In this thesis, the word 

sex will refer to the simplified male/female binary, defined as such by a XY/XX chromosomal 

complement respectively. 

 

1.4.1. Examples of human sex differences 

 

Human sexual dimorphism is a term that has traditionally been used to describe 

morphological differences between males and females, but can however be extended to any 

biologically-related process varying between the sexes98. Human sexual differences are 

observed in risk, incidencedd, prevalence, and presentation, across a wide variety of diseases 

and other qualitative and quantitative traits that go far beyond primary and secondary 

reproductive characteristics, despite males and females sharing nearly identical genomes 

with the exception of a small number of genes on the Y chromosome99,100. Diseases presenting 

sexual dimorphism include CVD101, asthma102, mental illnesses like schizophrenia103, 

obsessive compulsive disorder (OCD)104 or depression105, autism spectrum disorders106, 

autoimmune diseases107, cancer108,109, neurological diseases like Alzheimer’s110, and others. 

Furthermore, pharmacokineticsee and pharmacodynamicsff differ between males and 

females for a number of drugs111, and females have a higher rate and severity of adverse drug 

reactions112.  

 

Despite decades of research, the role of sex in health and disease remains poorly understood. 

The aforementioned studies indicate a growing need for the continued study of sexual 

differences beyond the context of reproductive and sex chromosomal factors. Unlocking the 

mysteries underlying the effect of sex on a multitude of complex traits will aid in 

understanding disease risk, prognosis and treatment efficacy113.  

 
dd Incidence: rate of occurrence of new cases for a given disease in a certain period of time. 
ee Pharmacokinetics: movement of drug into, through, and out of the body. 
ff Pharmacodynamics: effects of drug on the body.  
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1.4.2. Underpinnings of human sex differences 

 

 
Figure 15. Underpinnings of sex differences, adapted and simplified from 113.  

 

Historically, a strong emphasis has been placed on the study of the sex chromosomes and 

gonadal hormones when studying the causes underlying sexual differences, other factors 

often overlooked. The general theory of sexual differentiation, as described by Arnold and 

collaborators114,115, involves the presence of sex differences in gene networks as a result of 

the action of sex-specific factors. The totality of these sex biased/sex-specific factors is 

termed the sexome. These authors also make a distinction between primary sex-determining 

factors, encoded by the sex chromosomes, and secondary factors that act downstream from 

the latter. In this section I describe the underpinnings of human sexual differences across 

the phenome, including both primary and secondary factors. Despite their separate 

descriptions, these factors are not mutually exclusive, and strong interplay is likely at work, 

thus leading to a complex concert of influences that culminate in the differences observed 

between the sexes (Figure 15).  

 

1.4.2.1. Sex chromosomes 

 

Human sexual dimorphism originates from the chromosomal content of the fertilised egg 

(zygote), normally possessing a karyotype of 46 chromosomes, including 22 autosomal pairs 

and females typically possessing one pair of X chromosomes (XX), and males one X and one Y 

chromosome (XY), exceptions occurring where the sexes can arise through other 

chromosomal configurations. The Y chromosome is made up of 95% non-recombinant 

sequences, the remaining 5%, termed the pseudo-autosomal sequences PAR1 and PAR2, 
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being homologous to the X chromosome, thus following an autosomal gene like 

inheritance98,116. 

As per the general sexual differentiation model described by Arnold and collaborators, the 

sex chromosomes, which are the only factor that differs between male and female zygotes at 

human conception, are the primary factor leading to sexual dimorphism, every other player 

acting downstream once humans have been sexually differentiated. The sexually 

differentiating factors within the sex chromosomes can be further broken down into different 

classes, including Y-chromosome genes, X genes that escape X inactivation (a copy of the X 

chromosome is silenced in females, section 1.4.2.3) thus resulting in higher expression in XX 

cells than in XY cells, X genes that are expressed at a higher or lower level in XX than XY cells 

due to parent of origin effects/imprinting (discussed in section 1.4.2.3), and finally non-

coding regions within the sex-chromosomes, the roles of which are still not well understood.  

 

Role in human development 

 

Throughout development, humans undergo sexual differentiation, which extends all the way 

through puberty116. By week 6 of development, all human foetuses share the same 

reproductive organ precursor regardless of chromosomal content, possessing a pair of 

gonads, each with an outer cortex and inner medulla, rudimentary external genitals, and two 

pairs of ducts termed the Wolffian and Müllerian ducts, the former being the male and the 

latter the female reproductive organ precursor structure. At this stage, a human can develop 

both female or male sexual characteristics, hence it being termed “bipotential”117.  

 

The human genome kick-starts sexual determination through the sex-determining region of 

the Y chromosome, termed the SRY gene. The SRY protein is thought to be a nuclear 

transcriptional activator, and when the zygote reaches week 7 of development, SRY directs 

the gonads to initiate sexual differentiation with the formation of the testis from the bipotent 

precursor. On the other hand, the absence of this gene and its cues in females leads to the 

formation of the ovaries 13 to 14 weeks into fetal development. Deletion of the SRY gene 

impedes differentiation of the gonads into testes118. Given the key role of the SRY gene, it is 

considered the most important factor leading to sex differences in downstream pathways 

and diseases, being that it sets up a lifelong difference in the secretion of gonadal hormones 

through gonadal differentiation114. The SRY gene is expressed only briefly, thus the 

hypothesis of it acting as a switch for further genes contributing to the male phenotype. 

Other genes important in sexual determination include the autosomal WT-1, SF-1, SOX-9, and 

the X-chromosome gene DAX-1. SOX-9 is directly influenced by SRY and has also been found 

to be essential in the formation of the testes98,116,117,119,120.  

 

Challenges in the study of sex chromosome variation 

 

Studies looking at how genetic variants across the sex chromosomes affect complex traits 

have been limited due to methodological challenges113. Indeed, the sex chromosomes have 

historically been excluded from most GWAS efforts given the difficulty and lack of statistical 

approaches developed accounting for haploid variants (Y chromosome and X chromosome in 
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males), and dosage compensation in the X chromosome (section 1.4.2.3), given that, with the 

current technology, it’s not yet possible to discern which variants are silenced, making 

interpretation difficult121. Furthermore, genotyping efforts of the X and Y chromosomes 

present larger percentages of missing data122 and lower genotyping accuracy than the 

autosomes due to difficulties in genome assembly and analysis123, as well as due to lower 

intensity of signals in males when using array-based methods122,124. The latter needs to be 

further corrected for to avoid false positives arising from signal intensity correlations with 

sex. In addition, sex biased demographic events can lead to differences in population 

structure between the sex chromosomes and the autosomes, and as such should be 

accounted for to correct for population stratification in genetic association studies of the X 

chromosome124,125. Finally, given that the Y chromosome is haploid and the majority of it does 

not undergo recombination, the search for associations between phenotypes and genetic 

variation has been limited to haplotypes, and the creation of reference panels and the 

development and implementation of imputation algorithms has been challenging126.  

 

Whilst several methods have been developed for the analysis of the X chromosome in recent 

years123,127, as well for variant imputation from array data thanks to the addition of the X 

chromosome to reference panels122, their uptake has not been widespread, and tools are still 

lacking in the analysis of the Y chromosome, with no variant-phenotype associations having 

been reported for the latter at the time of writing (excluding the study of haplotypes128–131). In 

addition, GWAS efforts that do include the X chromosome often apply autosomal analysis 

frameworks, which code X chromosome alleles for association tests as A = 0 and B = 1 (or AA 

= 0 and BB = 2) for males and AA = 0, AB = 1 and BB = 2 for females, and which can result in 

statistical inaccuracies for the reasons stated above122. The X chromosome accounts for 

around 5% of all genes in the human genome with known links to disease, and as such 

important information regarding the genetics of complex traits is likely being missed122, 

including a potential portion of the missing heritability (section 1.3.2). As sex chromosome 

specific association frameworks become more commonplace, more information will be 

garnered about the role of sex chromosome variation on complex trait differences between 

the sexes. 

 

Another challenge in the study of the effect of sex chromosomes on phenotypic variation, 

beyond initial sexual differentiation, has been untangling the confounding effect of gonadal 

sex hormones (section 1.4.2.2). The last 30 years have seen a growth in development of 

mouse models to ascertain which genes/regions in the X and Y chromosome cause direct, 

sexually differentiating effects on non-gonadal cells114,132, including the four core genotypes 

(FCP) mice, which include XX mice with ovaries or testes and XY mice with ovaries or testes. 

Prior to the development of these models, the dominant theory was that all sex differences 

in mammals outside of the gonad were caused by gonadal secretions114. However, these 

models have shown that the sex chromosomes can act outside the boundaries of hormones, 

with associations in mice having been found to autoimmune disease, viral infections, and 

hypertension, amongst others114,133.  
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X-linked diseases 

 

Deleterious mutations, that is, mutations that lead to an increase in susceptibility to a given 

condition, can have drastic consequences when present in both maternal and paternal alleles 

(homozygote). Often a single working allele will sufficiently express the protein affected, thus 

buffering the effect of the deleterious mutation, and avoiding disease in the heterozygose 

individual. As a result of this, males have an increased susceptibility to deleterious mutations 

in the sex chromosomes, given that a single copy of the latter is present. Disorders linked to 

mutations in the X chromosome include haemophilia A, Duchenne muscular dystrophy, Rett 

syndrome, fragile X syndrome, red-green colour blindness, and male-pattern baldness113. As 

such, a difference in prevalence is observed between the sexes, where females are more 

protected in the presence of sex-chromosome linked mutations.   

 

1.4.2.2. Sex hormones 

 

Hormones are broadly defined as signaling molecules that act distantly from the site of 

production and are used to communicate between organs and tissues. When talking about 

sex hormones, one refers to gonadal steroid hormones, which are derived from cholesterol. 

These gonadal hormones act on gene networks and are thought to be the most important 

secondary factor leading to sex differences114. 

 

With the formation of the gonads (testes and ovaries) and the determination of the foetus’ 

sex, sexual differentiation is initiated and controlled by gonadal steroid hormones, the most 

important being testosterone in males, and oestrogens and progesterone in females. These 

hormones are produced in the gonads by order of the anterior lobe of the pituitary gland, 

which secretes follicle stimulating hormone (FSH) and luteinising hormone (LH), and is 

considered the “master gland” of the endocrine system. The pituitary gland is directed by the 

hypothalamus, which secretes a substance called gonadotropin releasing hormone (GnRH). 

These three components will work together and influence sexual behaviors throughout the 

individual’s lifetime by means of hormonal feedback loops, in what is called the 

hypothalamic-pituitary-gonadal axis (HPG). 

 

Most commonly, gonadal steroid hormones act by binding to steroid hormone receptors 

(SHRs, or SRs), found within target cells, which double as transcription factors, and can thus 

regulate gene expression by binding to hormone response elements (HREs) in the genome134. 

However, SRs can also regulate gene expression via protein-protein interactions in the 

transcriptional complex. Studies have further shown that, in some cases, sex hormones may 

also act by binding to receptors in the plasma membrane, such as ion channels or G-protein 

coupled receptors (GPCRs), leading to quick hormone responses via cellular activity 

modulation135. Sex hormone targets include the vascular system, central nervous system, 

immune system, and more136.  
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Human sexual differentiation 

 

With the release of gonadal hormones, testosterone in males will lead to the formation of the 

epididymis, the vas deferens, and the ejaculatory duct from the Wolffian ducts, and the anti-

Müllerian hormone (AMH) will lead to the degeneration of the Müllerian ducts. Female 

hormones, on the other hand, will lead to the degeneration of the Wolffian ducts, as well as 

the development of the uterus, superior portion of the vagina, fallopian tubes, and uterine 

cervix from the Müllerian ducts. These processes are termed internal genital differentiation. 

External genital differentiation also occurs, males becoming externally distinct between 8 

and 12 weeks into fetal development. Paralleling the formation of ovaries in the absence of 

SRY, if testosterone is absent, female external genitalia will develop, and if AMH is absent, 

female internal genitalia will develop116,117,120,137.  

 

Sex hormones have also been shown to have an effect on the developing brain, most 

importantly the hypothalamus, with the determination of sensitisation of certain cells to 

oestrogen (highly sensitive in females and insensitive in males). This sensitisation is 

important in the regulation of the HPG hormone regulation circuit, and is termed 

organisation-activation programming, by which the brain is either female or male 

programmed by gonadal steroid hormones both prenatally and in a second surge during 

adulthood138–140. Hormone effects can be classified as activational, that is, those that are 

reversible, and organisational, those that are not. Animal models have shown that removal of 

the gonads leads to erasure of large amounts of sexual differences in numerous species. 

However, other sexual differences like brain differentiation, are thought to not be 

reversible114. 

 

Beyond the pre-natal period just described, further sexual differentiation occurs during 

puberty, when a child develops secondary sexual characteristics, their gonads mature, and 

they reach reproductive capacity. This period marks an increase in sex hormones, produced 

by the gonads primarily, but also by the adrenal glands, the major producers of androgens in 

females116. By the end of the sexual differentiation process, the sexes will differ in internal 

and external genitalia, as well as in secondary sexual characters.  

 

1.4.2.3. Epigenetics 

 

Epigenetics is defined as the study of changes in gene function that are mitotically and/or 

meiotically heritable and that do not entail a change in DNA sequence141. Different types of 

epigenetic processes have been described, and include methylation, acetylation, 

phosphorylation, ubiquitylation, and sumoylation. The best described are DNA methylation 

and histone/chromatin modifications. 

 

DNA methylation involves the addition of a methyl group (CH3) to cytosine, and, in the 

mammalian genome, occurs predominantly in so-called CpG islands, that is, regions where 

cytosine-guanine dinucleotides are repeated. Methylation of CpG islands has been 

associated with gene expression silencing. On the other hand, histone modifications, such as 



Introduction 45 

acetylation, can lead to changes in chromatin structure, in turn also influencing gene 

expression. Indeed, tightly bound chromatin (known as heterochromatin) leads to gene 

expression repression, whilst “open” chromatin (known as euchromatin) is accessible by 

cellular/transcriptional machinery and thus its contents can be expressed142. Two epigenetic 

events are largely associated with sex differences, the first being X chromosome inactivation 

(XCI) in females, and the second being imprinting, both of which are described below. 

 

X-chromosome inactivation 

 

As a means of genetic dosage compensation between XX females and XY males, human 

females silence one of their X chromosomes. XCI occurs early in development and remains in 

all descendant cells, resulting in female tissues having mixed cell populations with either the 

maternally or paternally inherited X chromosome marked for inactivation143. Mammalian X-

chromosome inactivation is kick-started by the X inactivation center (Xic), found near the 

centromere, and two non-coding RNA molecules, XIST and TSIX, found in Xic, play an 

important role, XIST recruiting silencing proteins to label the future inactive X chromosome 

and TSIX blocking inactivation in the active counterpart. The inactivated X chromosome is 

condensed into heterochromatin through the methylation of CpG islands on the X 

chromosome as well as through histone H3 methylation and histone H2A ubiquitination, 

becoming a structure termed the Barr body144. However, silencing is incomplete, and up to 

one third of X chromosome genes are expressed in both the active and inactive X 

chromosomes. Tukiainen and collaborators145 found that this escape is largely homogeneous 

across tissues with a few cases of heterogeneity, and that at least 23% of X-chromosomal 

genes are affected by incomplete XCI. Most importantly to this thesis, this escape from XCI 

results in sex biases in gene expression (section 1.4.2.4), thus potentially inducing 

phenotypic differences.  

 

Imprinting and genome-wide methylation 

 

Imprinting is an epigenetically regulated process that leads to genes being expressed in a 

parental-origin-specific manner, rather than from both chromosome homologues146. This 

thus means that some genes might be expressed only if the allele is inherited from the father 

or from the mother. DNA methylation is thought to underlie imprinting via differentially 

methylated regions (DMRs) between parental chromosomes147. Indeed, imprinting could be 

considered a form of sexual dimorphism.  

 

Beyond X chromosome inactivation and imprinting, recent genome-wide methylation studies 

have found hundreds to thousands of loci presenting sexually different methylation levels, 

scientists postulating this as a possible contributor to sex biases in gene expression and 

sexual dimorphism in complex phenotypes148–152. Indeed, a study by Kurkuba et al found that 

differences in chromatin accessibility (often mediated by epigenetic marks) between the 

sexes lead to sex biases in gene expression153. These differences in accessibility could also 

be being modulated by sex hormones through hormone transcription factor binding, as 

shown in mice in a study by Ling et al154. However, sex-specific transcriptional and 

epigenomic profiles are present in the embryo prior to gonad differentiation and thus prior 
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to the presence of sex hormones, implying that the epigenome can regulate sex differences 

through lingering epigenetic programming beyond the presence of the latter155.  

 

1.4.2.4. Gene expression 

 

Differential gene expression between the sexes has been widely reported for a variety of 

tissues, as well as sex-specific alternative transcripts and isoforms (that is, transcripts that 

originate from the same gene but that are structurally different). These tissues include 

blood156, brain157, liver158, heart159 and others. 

 

Many studies have looked for differences in gene expression between the sexes making use 

of the GTEx cohort’s past releases160–163. The most recent flagship GTEx study on sex 

differences in gene expression found small yet widespread differences, 37% of genes 

presenting significant differences in expression between the sexes in at least one tissue. 

These differences in expression were largely tissue specific, with 20% of all sex biased genes 

present in only one tissue. These genes presented a nonrandom and tissue specific 

distribution, with 134 autosomal and 5 X-linked sex biased gene clusters found. Other 

interesting findings included enrichment in promoter regions of transcription factor binding 

sites corresponding to a total of 92 transcription factors, and enrichment of sex biased genes 

across a wide range of biological functions, including pathways involved in hormone and drug 

response, epigenetic marks, development and fat metabolism164. Indeed, this study 

postulates that factors leading to sex biases in gene expression likely include sex-

differentiated distribution of epigenetic marks, sex-specific action of transcription factors, 

and incomplete XCI.    

 

Importantly, beyond sexual dimorphism in gene expression between and within tissues, 

studies have shown that sex biases are also found across developmental stages165, in the 

presence of disease (such as depression)166, and as a response to environmental influences 

(such as vaccinations167 and toxicants168). Furthermore, sex differences in splicing have been 

reported in a variety of tissues, including the muscle169 and brain157. Studies looking into sex 

differences in gene expression regulation have been limited, and are further discussed in 

Chapter 3.  

 

All in all, differences in the transcriptome, including sex biased gene expression , differences 

in gene expression regulation, and sex biased splicing across tissues, could be leading to 

some of the differences observed between males and females.  

 

1.4.2.5. Environment 

 

Human sex can be considered an environment for the genome in terms of biological and 

molecular context. Furthermore, it offers the organism with a specific societal role, 

accompanied by different pressures on the sexes that could potentially lead to observed 

sexual differences. For example, an increase in incidence of certain diseases in males or 
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females could potentially arise from exposure to a professional field in which either of the 

sexes predominates over the other170, or due to general sex-specific behaviors. 

 

1.4.2.6. Autosomal genome 

 

Beyond the scope of the sex chromosomes very few studies have addressed sex differences 

in the genetics of human phenotypes considering whole-genome models. A review by 

Khramtsova, Davis, and Stranger113 describes two genetic models hypothesised to explain sex 

differences across complex traits beyond X and Y: a sex-dependent liability threshold model 

and a GxE model. 

 

In the 1960s, Cedric Carter proposed the sex-dependent liability threshold model, which 

postulated that for certain diseases one of the sexes could be more protected from a given 

condition and would thus require an increased number of risk alleles to develop the disease 

(greater genetic liability)171. This increase in genetic liability would thus lead to higher 

heritability in the sex with the lower prevalence, as genetic variance would account for more 

of the phenotypic variance. This phenomenon is often referred to as the female or male 

protective effect. Studies looking into differences in heritability between the sexes, as well 

as in other genomic parameters, are further discussed in Chapter 2. Studies have found that 

large differences in prevalence may exist with indistinguishable differences in 

heritability113,172, which seemingly contradicts the Carter liability model. In this context, 

studies have hypothesised that differences in environmental factors between the sexes 

(such as the presence of female or male specific protective/risk factors like oestrogens or the 

presence of the Y chromosome) may contribute differently to the phenotypic variance 

observed in males and females (a multi-factorial liability model)173,174, and could include GxE. 

This difference in environmental variance could thus explain equal heritability estimates 

between the sexes where a female or male protective effect is present.  

 

The GxE model, like the multi-factorial liability model, considers sex as an environment for 

the genome, having direct effects on endogenous factors (like sex hormones) as well as 

influencing exogenous factors (such as environmental factors arising from societal gender 

roles). These GxS could then lead to differences in observed phenotypes and can be detected 

through statistical tests of interaction. Studies into GxS are further discussed in Chapter 2. 

 

In regards to structural differences in the autosomal genome between males and females, 

Boraska and collaborators found that common variants present no significant difference in 

MAF between the sexes, highlighting a largely common genomic landscape99. On the other 

hand, studies have found that females carry a significantly larger number of large, rare copy 

number variantsgg (CNVs)175. 

 

As a conclusion, despite the critical importance of sex as a biological variable and decades of 

research into sex differences, much is still to be understood. While some of the observed 

 
gg Copy number variants (CNVs): regions of the genome that may be duplicated or deleted and for 
which the number of copies vary between individuals. 
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differences might be attributable to sex hormones, genes present in the Y chromosome or 

sex-associated behaviors, further studies are needed to truly uncover what underlies sex 

differences, especially in regards to the genome extending beyond the sex chromosomes, as 

these differences could potentially arise through alterations in autosomal gene regulation163. 

Understanding these processes will be of vital importance to inform clinical decisions and 

reduce sex inequalities in healthcare.  

 

1.4.3. Why sex differences? 

 

Beyond the mysteries underlying the factors leading to sex differences, another question 

emerges from the evolutionary perspective: why do males and females present differences 

across such a varied set of phenotypes? 

 

 
 
Figure 16. Pregnancy compensation hypothesis, adapted from 176. Expected immune and disease risk 
differences between high (ancestral society) and low (industrialised society) parity are shown, where low 
pathogen load affects immune function in both males and females, making everyone more susceptible 
to autoimmune disease, and where low parity only affects the immune system in females, further 
increasing immune risk.  

 
In a recent paper, Natri et al proposed the pregnancy compensation hypothesis176, which 

postulates that sex-specific immune modulation evolved to facilitate survival during 

pregnancy and placentation, thus leading to sex differences in diseases, with females 

presenting a larger prevalence of autoimmune diseases and lower risk of nonreproductive 

cancer. This hypothesis states that this immune modulation is regulated by hormones, in turn 

genetically controlled by the sex chromosomes. Furthermore, the presence of industrial 

environments, where common contraceptive use results in reduced pregnancies as opposed 

to ancestral environments where pregnancy occupied the majority of adult reproductive 

years, as well as a sedentary lifestyle, which affects reproductive hormone levels, 

exacerbates the observed sex differences (Figure 16).  Indeed, the absence of repeat 

pregnancies in industrial populations may lead to female immune dysregulation, thus 

triggering autoimmune diseases, whilst an increased immune surveillance may be protective 

against some cancers.  
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1.5. Does sex influence our genetic architecture? 
 

Sex is perhaps the most important differentiating characteristic in most mammalian species, 

separating populations into two main distinct groups, males and females, with varying 

behaviors, morphologies, and physiologies based on the presence or absence of the Y 

chromosome177. Despite widespread sex differences having been reported across a myriad of 

complex traits, the processes behind how the biology of sex affects complex traits, gene 

expression, disease, and treatment response are yet relatively unknown, including whether 

diseases with different prevalence across the sexes are the result of a universal biological 

pathway underlying sex differences or due to disease-specific pathophysiological or 

environment-related mechanisms178. Furthermore, if sex-specific factors are strongly 

contributing to disease trait differences, indicating difference in etiology, different 

treatment plans between the sexes would be warranted179, as well as optimised experimental 

designs where classically sample sex is largely overlooked, male samples even being favored 

over female samples due to the assumption that hormonal cycles could potentially act as a 

confounding factor114,180.  

 

In humans, sex provides the genome with a distinct hormonal milieu, differential gene 

expression and environmental pressures arising from gender societal roles181. This thus 

poses the possibility of observing GxS that may contribute to some of the phenotypic 

differences observed172. Furthermore, GxS have been reported in model systems, like mice, 

rats and fruitflies100. Indeed, the Drosophila genus presents ubiquitous sex-specific genetic 

effects182, and knocking-out of certain genes in mice has led to sex-specific phenotypic 

consequences183. In turn, these interactions connote differences in genetic architecture 

between the sexes184. Gene by sex has been gaining more interest in recent years (discussed 

further in the next chapter), however, these studies have been limited in regards to the 

number of traits considered and/or sample sizes, and much is yet to be understood. 

Furthermore, potential underlying mechanisms for GxS are unknown.  

 

In this context, large population cohorts, computational advances, quantitative genetics 

frameworks, and multi-omics data sets have the potential to help uncover both the existence 

of GxS across the genome as well as the mechanisms that underlie it for a wide variety of 

phenotypes.   

 

1.6. Aim of this study 
 

The aim of this study is to evaluate the presence of GxS across the genome, as well as shed 

light on its potential underlying mechanisms, at an unprecedented scale in both depth and 

breadth. 

 

To do this, we made use of the UK Biobank and GTEx cohorts. We discovered GxS across the 

genome of around half a million individuals and 530 phenotypes by performing extensive 

analyses based on sex-specific genomic models, including performing a sex-stratified GWAS, 

looking into differences in heritability, estimating genetic correlations between the sexes, 
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and more. Furthermore, we looked into the practical consequences of GxS, including the 

prediction accuracy of phenotypes (Chapter 2). Finally, we linked our GxS findings to the 

transcriptome via an eQTL study and performed gene-level enrichment analyses in a search 

for potential underlying biological pathways (Chapter 3).  
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Chapter 2 
Sex differences in 

genetic architecture 
 

2.1. Introduction 
 

In recent years, there has been growing evidence of common genetic variation having 

different effects on males and females100,181. This, along with sex biases observed in the 

human transcriptome156,157,159–163,185, has led to an increase in the study of GxS. These studies 

have looked into (1) differences in heritability172,174,178, (2) genetic correlations differing from 

1172,178,179,186–188, and (3) sex-stratified genome-wide association studies to directly assess 

differences in the effects of genetic variants between the sexes. These studies have however 

been limited with regards to the number of traits studied and/or statistical power. 

Furthermore, insights into how differences in genetic architecture translate to differences in 

complex traits have been lacking (discussed further in Chapter 3). Understanding sexual 

differences is of great importance as grouping males and females together could potentially 

be masking sex-specific effects, which could otherwise lead to better personalised 

treatments and improve our understanding of potentially differing underlying pathways 

between the sexes179,180. 

 

2.1.1. Heritability differences 

 

Heritability (section 1.2.4) is defined as the fraction of the variation of a trait that can be 

explained by the genotype. Therefore, differences in heritability between groups could 

indicate differences in the genetic architecture of a given complex trait. Several efforts have 

been made looking into differing narrow-sense or SNP heritability estimates in males and 

females. A review by Gilks, Abbot, and Morrow compiled 18 independent studies evaluating 

differences in heritability between the sexes174, 16 of the total 31 traits showing significant 

differences. Traglia and collaborators178 found differences in heritability between the sexes 

in hypertension, hip circumference adjusted for body mass index (BMI), waist circumference 

adjusted for BMI, and waist-hip circumference ratio (WHR). Rawlik and collaborators172 also 

found differences in heritability between the sexes across anthropometric traits in the UK 

Biobank. Ge and collaborators performed the first comprehensive phenome-wide heritability 

study across 551 traits using the UK Biobank interim data release, of which 14 showed 

significant differences in estimates between the sexes173. 

 

Since the start of this project in 2017, other groups have expanded beyond the study of 

traditional organismal complex traits, looking into differences in molecular phenotypes. 

Flynn et al found differences in heritability between the sexes across 17 of the 33 UK Biobank 

biomarker traits considered, cholesterol, creatinine, sodium in urine, LDL, testosterone, and 
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urate presenting the largest fold differences189. Testosterone differences in heritability have 

been further reported by Ruth et al190 and Sinnott-Armstrong et al93.  

 

Although differences in the heritability of traits between the sexes can offer insights into 

genetic differences, one must also consider that these could arise due to differences in 

environmental variances, thus the need for additional studies.  

 

2.1.2. Genetic correlations differing from one 

 

Genetic correlations (section 1.2.5) are also a useful way to ascertain differing genetic 

architectures between traits or populations. A genetic correlation that significantly differs 

from one would likely entail a difference in the genetic programming of a phenotype. Rawlik 

and collaborators172 set out to find evidence of differences in genetic architecture between 

males and females beyond looking for differences in heritability through the calculation of 

genetic correlations, using a large data set of 114,000 unrelated white British participants in 

the UK Biobank, across 19 traits. This study found significant differences in genetic 

correlations (rg ≠ 1) in traits ranging from anthropometric to cardiovascular or pulmonary, 

estimates ranging from 0.56 (lifetime reproductive success) to 0.96 (height). Furthermore, 

this effort found that a model accounting for GxS was able to perform genomic predictions 

with more accuracy than one that did not for 16 out of the 19 considered traits. These results 

were further corroborated by the efforts of Traglia and collaborators178, who also found 

genetic correlations significantly differing from 1 in all anthropometric traits they tested, as 

well as by the results of Yang and collaborators186, who calculated genetic correlations using 

data from the Genetic Investigation of ANthropometric Traits (GIANT) consortium. 

 

Stringer, Polderman, and Posthuma179 used genetic correlations between same sex and 

opposite sex dizygotic twins, as well as between male and female monozygotic and dizygotic 

twins, to determine the sex-specific genetic contribution to a large number of traits. The 

authors found that 55 traits had significantly different genetic correlations between same-

sex and opposite-sex twins, while 37 showed differences in heritability. Other studies looking 

at genetic correlations between the sexes amongst twins, including those by Vink et al187 and 

Polderman et al188, found further evidence of heterogeneity between the sexes for a range of 

traits including weight maintenance functions, functions of the brain, and mental and 

behavioral disorders.  

 

2.1.3. Sex-stratified GWAS 

 

To determine which genomic regions underlie these differences in genetic architecture 

researchers have approached the study of sexual differences through sex-stratified GWAS 

(section 1.2.3). This has led to the identification of several genetic variants with different 

genetic effects for each sex across a variety of traits, including lipid traits191, 

testosterone93,189,190, anthropometric traits like WHR, height, weight or BMI192–194, coronary 

artery disease195, thyroid function196, or gout197–199, amongst others.  
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Overall, findings have varied as each study has focused on different traits using data 

originating from various cohorts, leading to some pointing at higher numbers than others in 

regards to traits and variants with evidence of GxS. However, these studies found common 

ground in that although significant differences are found in heritability between the sexes 

and that genetic correlations can differ from one, the magnitude of these differences is 

usually modest. Furthermore, a sexually different trait does not entail a difference in genetic 

architecture, nor is the phenotypic difference proportional to the genetic difference181 (i.e. a 

larger difference in phenotype value between the sexes does not entail a large difference in 

genetic architecture, as measured in terms of heritability, genetic correlations or 

number/size of genetic effect differences).  

 

The general lack of significant GxS detected, as well as the small differences found in 

heritability and genetic correlation estimates, suggests the need for larger sample sizes and 

a larger number of phenotypes to understand the scope of the phenomenon. Furthermore, 

many of these studies fail to explicitly compare estimates of genetic effects between the 

sexes, many times labeling loci as sex-differing simply when an effect is found in one sex but 

not the other200. Finally, despite mounting evidence for sex-specific genetic effects across 

the genome, scientific efforts continue analysing the sexes jointly in models, possibly due to 

the statistical power reduction that accompanies subgrouping the population. This could 

however be masking possible sex-specific effects201, possible situations arising in which a 

variant is interestingly associated with a trait in one of the sexes but not when considering 

the whole population. 

 

2.1.4. Objectives 

 

In this context, we investigated sex differences in genetic architecture through the study of 

differences in the heritability of complex traits, the calculation of genetic correlations, and 

through the identification of genetic variants presenting differences in genetic effects 

across the genome. This was done for a large number of phenotypes and samples to 

overcome the shortcomings of previous studies. We further aimed to characterise these 

findings, and studied the consequences of GxS through masking and prediction analyses. 

 

2.2. Materials and methods 
 

2.2.1. UK Biobank 

 

In order to increase the depth and breadth of GxS analyses, we used the largest population 

cohort available to date, UK Biobank, to perform the bulk of our analyses. As mentioned in the 

introduction of this thesis, UK Biobank is a large population-based prospective study with 

participants aged 40 to 69 years at recruitment, with extensive matching phenotypic and 

genomic data1 (section 1.1.4).  
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In this study, of the circa 490,000 individuals whose data were released in July 2017, we 

considered data pertaining to a total of 452,264 white European individuals after quality 

control (QC), performed both by us and by UK Biobank. As described in section 1.2.3.3, 

population structure can lead to spurious results in association studies, thus our limiting this 

study to the largest subpopulation within UK Biobank. Of these participants, 245,494 were 

females and 206,770 were males, here referring to individuals whose self-proclaimed sex 

coincided with an XX or XY chromosomal complement for females and males respectively, 

thus excluding individuals whose self-reported sex did not coincide with said genotypes. 

 

We also excluded individuals that were identified by UK Biobank as outliers based on (i) 

genotyping missingness rate across all genetic variants, which is the proportion of genetic 

variants that were not effectively genotyped/“called”, or (ii) heterogeneity/heterozygosity, 

which is the proportion of autosomal heterozygous calls. Large missingness rates or extreme 

heterozygosity (very large or very low) are indicators of poor sample quality. Extreme 

heterozygosity can arise, however, due to non-sample-quality related factors. For example, 

large heterozygosity is expected in individuals of mixed ancestry, as allele frequencies vary 

between populations, and low heterozygosity is expected in individuals whose parents are 

closely related. UK Biobank marked as outliers individuals whose heterozygosity could not be 

explained by these factors.  

 

As described in section 1.2.3.3, principal component analysis is a technique that is popularly 

used to describe population structure. Having limited our samples to those of self-

proclaimed white European Ancestry, we further analyzed the degree of genetic similarity 

amongst our population by assessing the genomic principal components provided by UK 

Biobank, which allowed us to find outliers based on their genetic content. UK Biobank’s PCs 

were computed considering 407,219 unrelated samples and 147,604 markers202. Outliers 

could arise due to poor sample quality or erroneous ancestry classification. Individuals 

whose first or second genomic principal component differed by over 5 standard deviations 

(SD) from the mean of self-reported white Europeans were removed. Finally, we removed 

individuals with a missingness rate > 5% for the genetic variants that passed quality control 

(described in section 2.2.1.2), and those that had a missing phenotype for 40 or more traits, 

arriving at the aforementioned number of individuals. 

 

2.2.1.1. Phenotypes 

 

In total we analyzed 530 non-sex specific traits. These included 446 binary traits, which had 

at least 400 cases in each of the sexes, relating to self-reported disease status, International 

Classification of Diseases 10th revision (ICD10) codes from hospitalisation events, and ICD10 

codes from cancer registries, as well as 84 non-binary traits comprising non-scale 

transformed continuous and ordered integral measures.  

 

Our starting point were the 778 traits considered in Canela-Xandri et al’s GeneATLAS effort203. 

These were in turn extracted from the UK Biobank July 2017 release. From these original 778 

traits, we further removed binary traits that had fewer than 400 traits in either sex (this thus 

excluded traits that were sex-specific from our study) to ensure appropriate statistical power 
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and avoid problematic case-control ratios (discussed further in section 2.2.1.2). We further 

removed several blood measurement related traits as well as others that did not pass our 

manual QC stage, including monocyte count (UK Biobank phenotype ID, UKB-ID, 30130-0.0), 

high light scatter reticulocyte percentage (UKB-ID 30290-0.0), lymphocyte count (UKB-ID 

30120-0.0), nucleated red blood cell count (UKB-ID 30170-0.0), reticulocyte count (UKB-ID 

30250-0.0), reticulocyte percentage (UKB-ID 30240-0.0), and white blood cell count (UKB-ID 

30000-0.0), amongst others. The latter presented noisy results, likely false positives arising 

from inaccurate phenotyping and rounding errors. The remaining 530 traits were considered 

in this study. As was done by Canela-Xandri et al, the individuals with a phenotype 10 

standard deviations from their sex mean were set as missing for traits with a value type 

defined as “integer” or “continuous” by UK Biobank, with some exceptions, including the 

number of self-reported cancers (UKB-ID 134-0.0), number of self-reported non-cancer 

illnesses (UKB-ID 135-0.0), nucleated red blood cell percentage (UKB-ID 30230-0.0), and 

frequency of solarium/sunlamp use (UKB-ID 2277-0.0), which were left as reported given their 

non-normal distributions. For non-disease phenotypes, missing values were imputed to the 

age- and sex-specific mean in the study cohort given software requirements, and noting that 

this might lead to a loss of information and the introduction of bias in cases of “extreme” 

undetected phenotypes. Categorical traits were coded as is described in the Supplementary 

Table 10 of Canela-Xandri et al’s effort. Finally, all cases and controls provided by UK Biobank 

were included in our analysis, i.e. controls were not matched to cases by factors like age. As 

such, this analysis does not account for differences in age-of-onset between the sexes, and 

is further noted as a potential limitation. 

 

2.2.1.2. Genotypes 

 

Genotyping chips and imputation 

 

UK Biobank’s participants were genotyped using either of two arrays, the Affymetrix UK 

BiLEVE Axiom or the Affymetrix UK Biobank Axiom array, and later augmented by imputation 

of over 90 million genetic variants from the Haplotype Reference Consortium, the 1000 

Genomes project, and the UK 10K project202. Imputation was performed using IMPUTE4 

(https://jmarchini.org/software/).  

 

UK Biobank’s marker based QC 

 

We excluded variants which did not pass UK Biobank quality control procedures in any of the 

genotyping batches, and which included testing for batch effects, plate effects, departures 

from Hardy-Weinberg equilibrium (HWE), sex effects, and others. Variants in each batch 

which did not pass these tests, that is, those that presented a p < 1 x 10-12 in at least one test, 

were set to missing. Tests were performed considering genotyping calls for a set of 463,844 

ancestrally homogeneous individuals. In this section I provide an overview of methods used, 

with further details of QC procedure described in the publications accompanying UK 

Biobank’s 2017 release202,204. 
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Batch and plate effects 

 

In samples drawn from the same population we would not expect differences in genotype 

frequencies, either between batches or between plates within a batch at the same marker, 

and the presence of differences might indicate inaccurate genotyping. These effects are 

known as plate or batch effects, and were searched for by the UK Biobank by estimating 

whether genotype frequencies significantly differed between the batch considered and all 

other batches combined, using a Fisher’s exact test202 (non-parametric alternative to chi-

squared test, previously described in section 1.2.3.1, Eq. 17). A similar procedure was 

followed in the search for plate effects. 

 

Hardy-Weinberg equilibrium (HWE) 

 

Hardy Weinberg equilibrium is a theorem in population genetics that states that allele and 

genotype frequencies in a population will remain constant from generation to generation in 

the absence of disturbing factors. Disruption of HWE can occur in the presence of nonrandom 

mating, mutations, natural selection, and others205. In this context, a deviation from HWE 

might also indicate genotyping issues. As such, HWE tests, which are used to assess deviation 

from HWE, were performed within batch (considering homogenous sets of samples as HWE 

can be affected by population structure) as a further QC step. 

 

Sex effects 

 

Genotype frequency differences between the sexes are not expected, and, if present in 

autosomal markers, may be due to incorrect genotype calling as a result of cross-

hybridisation of homologous sequences in the sex chromosomes for a given batch, given 

differences in chromosome copy number. As such, for each batch, and for all autosomal and 

PAR X variants, a Fisher’s exact test was performed to assess significant differences in 

genotype frequencies between the sexes.  

 

Array effects 

 

As mentioned above, two different genotyping chips were used by UK Biobank. Given 

technical differences between the two, genotype calling might differ for the same marker 

across both chips, giving rise to array effects. As such, Fisher’s exact tests were performed 

to assess significant differences in genotype frequencies between arrays. As opposed to the 

previous four tests, array effects were assessed across all batches simultaneously.  

 

Additional QC: MAF, HWE, sex GWAS 

 

Beyond UK Biobank’s own QC, we performed a further filtering of variants following the 

procedure described by Canela-Xandri et al203. As such, we retained only bi-allelic variants 

that were assayed with both genotyping arrays, as well as those that presented p > 1 x 10-50 

for departure from HWE. Furthermore, given the lesser statistical power to accurately 
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estimate genetic effects and the difficulties in genotype calling associated with rare variants, 

only SNVs with MAF > 1 x 10-4 were retained. Both MAF and HWE were computed on a subset 

of 344,057 unrelated (kinship coefficient < 0.0442, section 2.2.2.1) individuals of White-

British descent, with missingness rate < 2%. 

 

All genetic variants that passed the filters already described were used in the fitting of LMMs, 

described further on in this section, with a total of 31,421,998 variants (623,944 genotyped 

and 30,798,054 imputed). However, a further stricter round of QC was deemed appropriate to 

further limit the genetic variants considered when interpreting GxS at the variant level, i.e. 

the variants considered when assessing differences in genetic effects across SNPs between 

males and females, section 2.2.4, and variants considered when calculating genetic 

correlations from summary statistics, section 2.2.3. This was done to (i) account for the 

smaller sample sizes considered as opposed to Canela-Xandri et al’s effort, which was non-

sex-stratified as opposed to ours, thus effectively cutting our sample sizes by approximately 

half, and (ii) to be more stringent, as we are comparing between groups (males vs females). 

Thus, variants were further filtered if they possessed p < 1 x 10-6 for departure from HWE and 

MAF < 1 x 10-3, MAF and HWE again computed on the aforementioned subset of unrelated 

individuals. Furthermore, only imputed variants with no genotyped counterpart and with an 

imputation score > 0.9 were retained. 

 

Binary traits 

 

A higher MAF threshold (MAF < 0.1) was set for binary traits as a conservative threshold to 

reduce false positives arising from case/control imbalance given the minimum number of 

cases considered in this effort, and our total sample size (400 cases per sex, circa 245,000 

females and 205,000 males). This is based on simulations from Loh et al’s work59 

(Supplementary Table 8), where, when the case/control ratio is 0.001 (400/245,000 females 

= 0.00163, 400/205,000 males = 0.00195), a MAF filter of 10% shows no significant inflation 

of type I error rates for the sample sizes considered here (discussed further in section 

1.2.3.5). 

 

Sex GWAS 

 

Variants with a significant effect (p < 1 x 10-8, genome-wide significance threshold, section 

1.2.7.4) when performing a GWAS on sex for the aforementioned unrelated White British 

sample subset were also excluded, as these could arise due to participation biashh, given that 

autosomal allele frequency differences at conception between the sexes are not expected 

(Figure 17). Indeed, Pirastu et al206 performed a GWAS on sex considering over 3 million 

individuals, finding significant associations across the genome that were not explained by 

technical artifacts or survival bias. The authors found that passive studies, that is, those that 

required little participation, such as iPSYCH or FinnGen, presented no significant sex 

heritability, as opposed to active studies, such as UK Biobank. This could be explained by a 

trait affecting whether males or females participate in a non-random manner. For example, 

 
hh Participation bias, also known as sampling bias, occurs when participation in a study is not random. 
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Pirastu et al found an underrepresentation of alleles associated with higher BMI in females 

as opposed to males, suggesting that females genetically pre-disposed to obesity are less 

likely to participate in studies than their male equivalents, or that lean males are more likely 

to participate in said study. The mechanisms leading to differences in participation are 

unknown, and can likely be attributed to clinical, social, or cultural factors206.  

 
Figure 17. Schematic representation of sex differential participation bias, adapted from Pirastu et al206. 

 

As a result of our QC, a total of 9,072,751 (602,984 genotyped and 8,469,767 imputed) 

autosomal genetic variants and 17,364 X-chromosome genetic variants remained for our 

analysis of non-binary traits, and 4,229,346 autosomal (244,743 genotyped and 3,984,603 

imputed) and 7,227 genotyped X-chromosome genetic variants for our analysis of binary 

traits. 

 

2.2.2. Sex-stratified parameter estimation 

 

Having performed QC on the UK Biobank data, we proceeded to fit LMMs to obtain parameter 

estimates (genetic effects, variance components) for each of the sexes. The model 

considered is as follows for each phenotype (further explained in sections 1.2.1.3 and 

1.2.3.4), fitted for males and females separately:  

 

 ysex = μsex + Wsexαsex + Xsexβsex + gsex + εsex  Eq. 33 

 

Where variable descriptions are the same as those described for Eq. 18 and Eq. 20 considering 

just female and male samples for each corresponding sex-specific model. The covariates (W) 

considered in this analysis were array batch, UK Biobank Assessment Center, age, age2, and 

the leading 20 genomic PCs as computed by UK Biobank. The polygenic effect (g) is sex-

specific, its variance being a function of a sex-specific GRM (A) and sex-specific additive 

genetic variance: gsex ~ N(0, AsexσA, sex
2 ). Similarly, the residual term (ε) is also sex-specific: εsex 

~ N(0, IσE, sex
2 ). An additive model was considered, and male X-chromosome variants were 

coded as 0 or 2 based on the presence or absence of the reference allele.  

 
Fitting an instance of a model such as this, let alone millions to assess associations between 

variants and phenotype, is very computationally demanding and not feasible with standard 
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computational and statistical approaches. To address this and make maximum use of our 

resources, we used the ARCHER supercomputer together with DISSECT207, a software tool that 

exploits the distributed-memory parallel computational architectures of compute clusters to 

perform a wide range of genomic and epidemiologic analyses. Furthermore, we fit our models 

in a two-step framework that optimises computational resources, as described by Aulchenko 

and collaborators208. The underlying basis for this framework involves the fitting of a single 

LMM instance as opposed to millions, thus greatly speeding up analyses. In this framework, 

the first step consists of fitting a LMM, by which the phenotype is adjusted for the effects of 

all covariates and population structure, thus obtaining residuals that are adjusted for 

polygenic covariation and fixed effects. The second step consists of fitting millions of LMs to 

assess the association between genome-wide genetic markers and the aforementioned 

residuals, as a proxy for the original phenotypes. This thus combines the power of LMMs to 

adjust for population structure while speeding up analyses by performing association tests 

(GWAS) using simpler LMs. The resulting mathematical expression of these two steps is the 

following: 

 

Step 1 

 ysex =  μsex+ Wsexαsex + gsex + εsex   Eq. 34 

 

Step 2 

 εsex = Xsexβsex+ εsex, SNP   Eq. 35 

 

Where εsex, SNP is the i ✕ 1 error vector for the Step 2 model in which we are regressing the 

original residuals against the effect of the genotype. In practice, Step 2 is fit one SNP at a 

time, for reasons stated in section 1.2.3.2. As such the model takes the following form: 
 

 εsex =  vsexβsex + εsex, SNP   Eq. 36 

 

Where vsex is a i ✕ 1 vector of genotype values for a given SNP across the i samples considered 

for a given sex, and βsex is the genetic effect of said SNP for a given sex. GC lambdas 

(λGC, section 1.2.3.3) were obtained for all traits, per sex, to ensure no inflation was present. 

Results were in line with what was expected for polygenic traits50, values nearing 1. The 

average λGC across traits for the female models was 1.097 (SD 0.166) and for the male models 

1.086 (SD 0.144).  

 

2.2.2.1. GRM 

 

The GRM (A) was computed, for each sex, using common (MAF > 5%) genotyped variants that 

passed quality control (a total of 334,904). As mentioned previously, our tool of choice was 

DISSECT, which computes the genetic relationship/kinship (each element in the GRM matrix) 

between individuals i and j as: 

 

 Aij =  
1
N

∑
(sik-2pk)(sjk-2pk)

2pk(1-pk)

N

k=1

 Eq. 37 
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Where sik is the number of copies of the reference allele for the SNP k of the individual i, sik is 

the number of copies of the reference allele for the SNP k of the individual j, pk is the 

frequency of the reference allele for the SNP k, and N is the number of SNPs considered in 

the making of the GRM.  

 

Including a SNP of interest in the GRM (Step 1, Eq. 34) can lead to a loss of power to detect its 

association to the phenotype (Step 2, Eq. 35), as this would entail a double-fitting of the 

candidate marker in the model, both as a fixed effect tested for association and as a random 

effect as part of the GRM209. To overcome this, we used the leave one chromosome out (LOCO) 

approach, by which the GRM in Step 1 excludes the chromosome containing the SNP to be 

tested in Step 2. This thus entails computing the GRM and fitting Step 1 a total of 23 times for 

each phenotype and each sex, leaving each of the chromosomes out once in the case of 

autosomal chromosomes (22 autosomes) and including all autosomal chromosomes in the 

case of the X-chromosome, then using the corresponding residuals to assess associations 

for markers within the considered chromosome.  

 

2.2.2.2. Variance component estimates and GWAS 

 

As described in Chapter 1, LMM frameworks involve two complementary steps, consisting of 

on the one hand obtaining fixed and random effect estimates from our model (BLUE, BLUP, 

section 1.2.1) and on the other obtaining variance component estimates (REML, section 

1.2.2), which in turn are needed to obtain random effect estimates. As such, once the GRM 

was computed, we obtained our genetic and environmental variance component estimates 

for each sex (σA, sex
2  and σE, sex

2 , respectively) using DISSECT, which uses an EM-REML framework 

(further described in section 1.2.2.2).  

 

Knowing σA, sex
2  and σE, sex

2  we were then able to proceed with our 2 step GWAS framework, by 

which we estimated, for each SNP across the genome, the genetic effect on each of the 

considered phenotypes per sex (βsex, section 1.2.1 and 1.2.3.4). To assess whether genetic 

effects were significantly different from 0, the following t test was used for each SNP: 
 

 

 t = 
βsex

SEsex
 Eq. 38 

 

Where SEsex is the standard error of βsex. This test is also referred to the Wald test, and is 

commonly used to assess significance of regression coefficients.  

 

2.2.2.3. Genomic parameters 

 

Once our models were fitted and our sex-stratified parameters estimated, we proceeded with 

the calculation of quantifiers of genetic architecture across traits. Heritability estimates 

were obtained using DISSECT, as: 
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 hsex 
2  = 

σA, sex
2

(σA, sex
2  + σE, sex

2 )
 Eq. 39 

 

where σA, sex
2  and σE, sex

2  are the estimates of the additive genetic and residual variance for each 

sex. Heritability for binary traits was transformed from the observed scale to the liability 

scale, as described previously (Eq. 26). Note that this heritability is the SNP-based 

heritability, due to the estimation of additive genetic variance from genotype information 

originating in genotyping chips. 

 

DISSECT assesses h2 significance by means of a likelihood ratio test, which compares the 

likelihood of a model under the null and alternative hypothesis (in this context our model, Eq. 

34, with and without the genetic variance component), and p-values were FDR corrected 

using the Benjamini-Hochberg procedure (section 1.2.7.4) to account for multiple testing. 

Note that all instances of FDR correction in this thesis were done using this procedure. 

 

To investigate if the sexes differ in regards to their ability to undergo adaptation, evolvability 

was calculated for males and females separately. Evolvability, defined as the expected 

evolutionary response to selection per unit of selection210, or the ability of populations to 

respond to natural or sexual selection211, is measured as the genetic variance (which 

determines the ability to evolve) scaled by the trait mean: 

 

 esex = 
σA, sex

2

msex
2

 Eq. 40 

 

where σA, sex
2  is the additive genetic variance of the trait for a given sex and msex is the trait 

mean, also for a given sex.  
 

To establish differences between heritability, genetic variance, and evolvability between the 

sexes, we used a t test: 

 

 
t = 

Xmales   -  Xfemales

√SEmales
2  + SEfemales

2
 

 
Eq. 41 

 

where X represents either heritability, genetic variance or evolvability, assumed to be 

independent between the sexes, and where SE is the standard error of the aforementioned, 

for males and females respectively. p-values were then FDR corrected. 

 

2.2.3. Genetic correlations 

 

Genetic correlations between the sexes were calculated using the bivariate linkage 

disequilibrium score (LDSC) regression analysis software69, which works directly on GWAS 

summary data and can thus be applied to very large sample sizes. Briefly, LDSC regression is 
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based on the fact that variants in LD with causal variants present inflated summary statistics 

(such as OR or β, here formulated in the normal scale as the statistic Z2,ii), and that, the more 

variation a tagSNP (section 1.1.3) captures, the larger this inflation will be on average (i.e. the 

more likely you are to tag a causal variant). As such, we can model the relationship between 

expected GWAS summary statistics and the measure of genetic variation captured by a SNP, 

termed by the authors as LD score (Lj, defined as the sum of r2 of variant j with all other 

variants within a 1 centimorgan (cM) window, section 1.2.7.2), as follows: 

 

 E(Zj
2) = Nh2 Lj

M
 + Na + 1 Eq. 42 

 

Where N is the sample size, h2 is the SNP heritability, M is the number of genetic variants, and 

a measures the contribution of confounding biases, such as cryptic relatedness and 

population stratification. As such, the slope of LDSC regression can serve to estimate h2. 

Extending this framework to accommodate multiple traits (or groups), this relationship can 

be further exploited to obtain genetic correlations. As such, taking the Z statistics from two 

studies (Z1 and Z2), the expected value of variant j is: 

 

 E(Z1,jZ2,j) = 
√N1N2ρg

M
Lj + 

ρNs

√N1N2

 Eq. 43 

    

Where, beyond the variables defined for Eq. 42, ρg is the genetic covariance defined as ∑β1β2 

for the SNPs considered, N1 and N2 are the sample sizes of the two studies considered, Ns is 

the number of overlapping samples between the two studies, and ρ is the phenotypic 

correlation. If study 1 and study 2 are the same, Eq. 43 can be simplified to Eq. 42. The genetic 

correlation can then be estimated as: 
 

 
rg=

ρg

√h1
2h2

2
 

Eq. 44 

 

Where h1
2 and h2

2 are the SNP heritabilities for the two studies considered. As such, rg can be 

inferred from the slope of the bivariate LDSC regression.  

 

Given that our data pertains to European ancestry, we used the LD scores provided by the 

LDSC software and limited our genetic correlation calculation to the genetic effect estimates 

of SNPs for which such scores were available (1,189,831 total genetic variants, of which 

1,169,868 passed LDSC’s QC filters and were used in the computation). These scores were 

computed using the 1,000 Genomes European ancestry data. We further restricted our binary 

traits to those that had at least 5,000 cases in each of the sexes, as was recommended in the 

documentation, given that lower numbers can lead to noisy results. Note that for traits with 

 
ii Z, or Z score is equal to a “raw” score subtracted by the sample mean, and divided by the sample 
standard deviation. The Z score can be mapped to the standard normal distribution, and it measures 
how many standard deviations a score is from the sample mean.  
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very low heritability this computation was unsuccessful. In total, genetic correlations were 

obtained for 83/84 non-binary and 77/446 binary traits.  

 

To establish which correlations differed from one, we used the t test 

 

 
t = 

rg  - 1

√SErg
2  

 
Eq. 45 

 

where rg is the genetic correlation, and SErg
2

 is the standard error of the genetic correlation. 

FDR correction was applied to account for multiple testing. 
 

2.2.4. Sex differences in genetic effects 

 

To compare genetic effects across the genome between the sexes, for all traits, we 

considered the following t test, which has been used in previous sex-stratified GWAS 

comparison studies193,194: 

 

 
t = 

βmales   -  βfemales

√SEmales
2  +  SEfemales

2
 – 2r · SEmales ·  SEfemales

 
Eq. 46 

 

where β is the estimated effect of the genetic variant considered for a given trait for males 

and females, SE is the standard error of the effect, and r is the Spearman rank correlation 

between the sexes across all genetic variants for a given trait. Both the SE and β were adjusted 

by the standard deviation of the trait, for each sex, to correct for scale effectsjj that could lead 

to false positives in the study. Some studies have opted to ignore the third term in the 

denominator, which estimates the covariance of the error terms, assuming r to be equal to 

0185. However, for the traits considered this correlation ranged from -0.00335 (cervical 

spondylosis) to 0.34173 (standing height), thus our decision to include it.  

 

As this test was done for all variants and all phenotypes, this resulted in a total of 

4,808,558,030 statistical tests (9,072,751 x 530). Binary traits were then filtered further as 

stated in section 2.2.1.2 to account for inflated type I error rates. To account for multiple 

testing, we considered a genome-wide significance cut-off of p < 1 x 10-8 (section 1.2.7.4). 

Variants that were found to be significantly differently associated with a given phenotype at 

the aforementioned threshold were termed sexually different SNPs, or sdSNPs. We note that 

this threshold does not account for multiple testing across traits, our justification being the 

exploratory nature of this analysis.  

 

 
jj The term scale effect refers to the relationship between trait mean and variability, with larger means 
leading to larger variance. In GWAS efforts, this could also entail larger genetic effect estimates. Given 
that males and females present phenotypes with different means and thus variabilities (such as 
height), phenotypic normalisation or scaling of genetic effects is usually performed to ensure equal 
scales and help prevent false positives.  



 64 

In order to cluster our results into independent lead variants, we used the --clump option in 

PLINK v1.9212 (LD clumping defined in section 1.2.7.2). For each individual trait, variants found 

to be genome-wide significant with regards to difference between the sexes were clustered 

into lead variants, assigning them variants in LD within 10Mb, with an r2 > 0.2 with the lead 

variant. To obtain the total number of independent loci across all traits, the same clustering 

method was used but for all variants found to be leads across traits, choosing the variant with 

the lowest p-value if variants were found in more than one trait.  

 

2.2.5. Analysis checks 

 

Wanting to provide further evidence to back up our results, we performed analysis checks. 

These can be divided into technical (different linear models, randomisation, logistic mixed 

models, simulations) and biological (comparison to the GIANT cohort). 

 

2.2.5.1. Different models 

 

In order to validate our sdSNPs we proceeded to fit two new linear models. The models looked 

to replicate our original model in all but a few aspects, keeping all covariates the same. To 

perform this analysis, we used the aforementioned a subset 344,057 unrelated White British 

participants from UK Biobank. Of these individuals, 158,956 were males and 184,928 females. 

By considering just unrelated individuals we can fit linear models with sufficient confidence 

that population structure will not lead to false positive associations, and thus avoid fitting 

more computationally intensive LMMs.  

 

The first model (Model 1) included a GxS term, thus allowing for the fitting of males and 

females simultaneously. The reasoning for this model was to test whether an interaction term 

captured similar levels of sexual differences when compared to the direct comparison of 

genetic effects stemming from sex-stratified models. A possible advantage of an interaction 

model could be an increase in statistical power given the estimation of fewer parameters. 

Parallel to our scaling of genetic effects when performing genetic effect comparisons 

(section 2.2.4), we adjusted phenotypes by standard deviation per trait and sex prior to 

fitting our model. For each trait, the model fit thus took the following form: 

 

 y = μ + αW + sβS+ vβG + s⨀vβGxS + ε Eq. 47 

 

Where s is a i ✕ 1 vector representing the sex of each sample considered, βS is the effect of 

sex on the phenotype, and βGxS is the effect of the interaction between sex and a given SNP. 

⨀ indicates the element-wise multiplication (Hadamard product) of s and v (described in Eq. 

36).  
 

The second model (Model 2) consisted of the inverse rank normalisation213 (also known as rank 

based inverse normal transformation, INT) of non-binary phenotypes within sex prior to 

performing a sex-stratified GWAS. In our original analysis, scale effects were controlled for 

by adjusting by the sex-specific trait standard deviation. However, other studies have used 
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alternative scaling/normalising frameworks, including INT194. This method consists of 

mapping phenotype values to the probability scale, by replacing observed values with 

fractional ranks, which are then transformed into Z-scores. By performing INT on observed 

phenotypes, for each sex, samples follow the standard normal distribution and are on the 

same scale, thus correcting for scale effects. Our reasoning for this model was to ensure that 

our original method accounted for scale effects in a similar fashion to other 

normalisation/scaling techniques. Binary traits were normalised by standard deviation within 

trait and sex, as described previously. The models fit thus took the following form for each 

sex, which is equivalent to that described in Eq. 33 but removing the polygenic effect: 

 

 ysex = μsex + Wsexαsex + Xsexβsex + εsex  Eq. 48 

 

We considered methodological replication occurred for Model 1 when the GxS term was 

significantly different from 0 (Eq. 38) considering different significance cut-offs, as 

discussed in the Results section. For Model 2 we performed the same statistical test as we 

originally had when testing for differences in genetic effects (Eq. 46), considering replication 

at different significance cut-offs as well. These models were fit using PLINK v1.9212.  

 

2.2.5.2. GIANT comparison 

 

As a means of biological replication, we compared our results to those from the GIANT cohort. 

GIANT sex-stratified anthropometric European GWAS summary statistics from 2015214 were 

downloaded for waist circumference, hip circumference, and WHR from the GIANT portal 

(https://portals.broadinstitute.org/collaboration/giant/). Summary statistics for height and 

weight were also downloaded from their 2013 dataset, also derived from a European 

population193. These were then used to perform the genetic effect comparison test described 

in section 2.2.4, Eq. 46. We also compared our WHR results to the more recently published 

GIANT-UK Biobank meta-analysis for human body fat distribution215, for which the summary 

statistics were downloaded from https://github.com/lindgrengroup/fatdistnGWAS. Again, 

taking their summary statistics we performed the same statistical test used with our data (Eq. 

46) to check for differences in genetic effects between the sexes. 

 

2.2.5.3. Randomisation 

 

As a further means of obtaining evidence to support our results we re-ran our original LMMs 

and repeated our genetic effect estimate comparisons on randomised sex samples, 

expecting, given the assumption that no unknown factor correlated with sex was still present, 

that differences in association would not appear beyond what would be expected by chance. 

This randomisation consisted of assigning males and females to two groups randomly, and 

then checking for genetic effect differences between the two, as done previously. The 

proportion of males and females in UK Biobank was preserved within the groups. We limited 

this analysis to chromosomes 1 and 6, across all of our 530 traits, due to these chromosomes 

showing large numbers of GWAS hits in 203.  
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In our original analysis, our association tests were performed in two stages as described 

previously, first regressing phenotypes against all covariates and the polygenic effect (Step 

1, Eq. 34), and then regressing the residuals against genetic variants to assess association 

(Step 2, Eq. 35). Whereas in our original model Step 1 was run separately for males and 

females, thus obtaining sex-specific residuals, here Step 1 was run with both males and 

females, thus obtaining a sex-agnostic residual estimate. This was then used to obtain 

genetic effects across chromosomes 1 and 6 for our randomly assigned groups, hereafter 

termed Group 1 and Group 2. As in our original analysis we used sex-specific residuals, the 

results of Group 1 and Group 2 are not directly comparable. To overcome this we also re-ran 

the analysis for males and females using the sex-agnostic residuals for chromosomes 1 and 

6, which we then used to compare with our randomisation results.  

 

To check for differences in genetic effects between Groups 1 and 2, the same methodology 

described previously was used (Eq. 46), where instead of standardising genetic effect and 

standard error estimates by the standard deviation of the phenotype within sex, this was 

analogously performed using the standard deviation of the phenotype within the random 

groups, in order to keep the methodology as similar as possible. 

 

2.2.5.4. Logistic Mixed Models 

 

As described in section 1.2.3.5, recent efforts have developed LogMM frameworks to 

overcome the limitations of LMMs in the analysis of binary traits when large case-control 

imbalance is present. As such, REGENIE61 was used to run LogMMs with Firth correction, the 

latter being an approach that’s become popular in the analysis of binary variables in the 

presence of sparse data (i.e. reduced number of samples)216. Models were fitted for binary 

traits that presented at least one sdSNP in our analysis in order to provide further evidence 

of an absence of false positives arising from case-control imbalance in our reported results. 

Similarly to DISSECT, REGENIE works in two steps, which consist on firstly fitting a whole 

genome regression model which includes a GRM to account for population structure, and 

secondly assessing association across all variants using a LOCO scheme.  

 

Briefly, LogMMs were fitted for males and females separately, considering the same 

individuals as in our original analysis (245,494 females and 206,770 males, section 2.2.1), and 

genetic associations were tested for the same genetic variants, this time with no MAF 10% 

filter (for a total of 9,072,751 autosomal genetic variants). Covariates also remained the same, 

and included sex, array batch, UK Biobank Assessment Center, age, age2, and the leading 20 

genomic PCs as computed by UK Biobank. REGENIE step 1 (fitting of a whole genome 

regression model) was run using the same SNPs used to create a GRM in our original LMMs. 

 

As stated previously, genetic effects estimated from logistic regression should not be 

compared between samples without a prior transformation (section 1.2.3.5). As such, genetic 

effect estimates from REGENIE for each sex were transformed to the same scale prior to 

comparing sex-specific estimates using a linear first order approximation (FOA), as described 

in 217: 
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 βFOA = βREGENIEK(1 - K) Eq. 49 

 

Where βFOA is the transformed βREGENIE on the linear scale, and K is the prevalence of the 

considered phenotype. FOA provides a good linear approximation of estimates on the log-

odds scale when genetic effects are small217. Whilst larger order approximations could 

provide better estimates, these are mathematically complex and as such were not 

considered. Once transformed, the same methodology described in section 2.2.4 was 

followed to compare male and female specific genetic effect estimates. These were then LD-

clumped within trait to obtain the total number of independent sdSNPs per trait, as well as 

LD-clumped across traits to obtain the total number of sdSNPs across the 42 traits 

considered, as was done previously (section 2.2.4). 
 

2.2.5.5. Simulations to assess effect of case-control imbalance  

 

As discussed, case-control ratios can prove problematic when estimating genetic effects 

using LMMs. As such, in order to ensure that our heritability estimates on the liability scale 

were not affected, we performed simulations. We did this using the males from the unrelated 

white British UK Biobank cohort (a total of 158,956 individuals) as our population. We 

obtained heritability estimates for a case/control height trait, where individuals were 

declared “tall” or “not tall” depending on whether their height fell under or over a determined 

percentile. The height percentiles considered were the 70th, 80th, 90th, 95th, 97.5th, 99th, and 

99.9th. These represented a total of 46,932, 26,219, 12,628, 7,187, 3,880, 1,351, and 130 cases 

(“tall” people) in the considered population respectively. As a result, the population 

prevalence for each percentile was 0.30, 0.17, 0.08, 0.04, 0.02, 0.009, and 0.001 respectively.   

 

Heritability estimates were obtained using the Genome-wide Complex Trait Analysis (GCTA) 

software218, which, as DISSECT, fits LMMs to obtain variance component estimates. Models 

were fitted using a subset of 75K individuals. For each height percentile, LMMs were fitted, 

using the same covariates as in our original sex-stratified models (section 2.2.2). A total of 

334,904 genotyped genetic variants were considered (those used to create the GRMs in our 

original LMMs, section 2.2.2.1). Individuals for simulations were selected by over-sampling 

cases: this was done by sorting individuals in descending order by height, and including 10% 

of the tallest individuals in the sample (0.1·75,000 = 7,500). The remaining individuals in the 

sample (67,500) were selected at random from the remaining population pool. This resulted 

in a sample prevalence larger than that of the population, which was considered when 

transforming heritability estimates from the observed to the liability scale (Eq. 27). Finally, a 

non-binary model was also fit for the same individuals to use as control. 

 

2.2.6. Prediction analysis 

 

Currently, most prediction analyses are performed using genetic effects estimated in sex-

agnostic models. If differences in genetic effects are present, we might observe an 

improvement in prediction by estimating genetic effects in sex-stratified models. Thus, we 
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studied whether genetic prediction could potentially be improved by using male and female 

specific genetic effect estimates. 

 

Our phenotype predictions were performed in the form of polygenic scores (PGS), which 

summarise the effect of the genotype on the phenotype. Making use of the subset of 

unrelated White British individuals from UK Biobank, we calculated polygenic scores for the 

traits for which we found at least 10 sdSNPs. PGS were calculated as: 

 

 PGSi = ∑ vi,nβn
m
n=1  Eq. 50 

 

Where PGSi is the polygenic score estimate for individual i, βn is the genetic effect estimate 

for variant n, vi,n is the effect allele count (0, 1 or 2) of variant n in individual i, and m is the 

total number of genetic variants considered in the PGS calculation (here the lead sdSNPs for 

the trait considered).  

 

The genetic effects used in our PGS calculations were obtained by fitting a linear model using 

UK Biobank’s unrelated White British participants, randomly selecting 150,000 females to 

obtain female specific genetic effects, 150,000 males to obtain male specific genetic effects, 

and 75,000 males and 75,000 females to obtain sex-agnostic genetic effects. Covariates 

remained the same as in our original LMMs (section 2.2.2). This was done to match the sample 

sizes used in the estimation of genetic effects. We then proceeded to calculate PGSs for a 

total of 34,928 women and 8,956 men from UK Biobank, also from the unrelated White British 

data set, which had not been considered in the calculation of the genetic effects. We did this 

in three ways: using the genetic effects corresponding to the sex of the individual (same PGS), 

using the genetic effects corresponding to the opposite sex of the individual (opposite PGS), 

and using the genetic effects estimated for the whole population (agnostic PGS). Thus, in 

total, each of the circa 44K individuals in our testing data set had 3 PGSs calculated.  

 

In order to assess predictive power, the phenotypes of our 44,000 individuals (corrected by 

all the covariates in our original model to account for population structure and other effects) 

were then either regressed on the same, opposite, and agnostic PGSs respectively in the case 

of non-binary traits, thus obtaining correlation and regression coefficients, or in the case of 

binary traits the area under the curve (AUC) was calculated for the receiver operating 

characteristic (ROC) curvekk,ll, for the three PGS groups. Statistical significance of AUCs was 

assessed using the Mann Whitney U test. Briefly, given the relationship between the AUC and 

the Mann Whitney U statistic, U = AUC·n1·n2, where n1 is the number of cases within the 44,000 

 
kk The receiver operating characteristic (ROC) curve is a graphical plot that illustrates the ability of a 
binary classifier to correctly assign samples to a given category at different discrimination thresholds. 
The x-axis of a ROC curve is the true positive rate at different thresholds, and the y-axis is the false 
positive rate. 
ll In this context, the area under the curve (AUC) measures the area under ROC curve, and thus is a 
measure of the aggregate diagnostic ability of a binary classifier across classification thresholds. More 
specifically, the AUC is a measure of the probability that our classifier will rank a randomly chosen 
positive instance higher than a randomly chosen negative instance. Thus, AUCs range from 0 to 1. A 
model whose predictions are wrong 100% of the time will have an AUC of 0, whilst one that always 
predicts correctly will have an AUC of 1.  
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samples for a given trait, and n2 is the number of controls, we can obtain the corresponding 

p-value for said statistic219.  

  

To assess differences between PGS-phenotype correlations, these were transformed using 

Fisher’s Z transformation220, which transforms the sampling distribution of the Pearson 

correlation (r) into the normal distribution, as: 

 

 r’  = 0.5(ln(1 + r) - ln(1 - r)) Eq. 51 

 

The resulting normalised correlations were then assessed for significant difference, as: 

 

 Z  = 
r'1  - r'2

S
=

r'1  - r'2

√
1

n1 - 3
 + 

1
n2 - 3

 
Eq. 52 

 

Where n1 and n2 are the number of samples used to estimate r1 and r2 (note that here n1 = n2 

given that the same samples were used to obtain the 3 PGSs). AUCs were compared using the 

roc.test function from the pROC R package221.  

 

An important caveat of this methodology is that there is an overlap between the discovery 

(the population used to declare variants as sexually different) and the replication (for which 

genetic effects were re-calculated and/or PGSs were obtained) populations. As a way of 

checking whether the overlap could potentially be influencing our results, we repeated our 

PGS analysis for WHR by estimating genetic effects fitting LMMs for the circa 408,000 

individuals of white British ethnicity in UK Biobank (as opposed to all white European 

individuals in our original analysis) using the same framework as described in section 2.2.2. 

The results of these models were then assessed to establish genetic effect differences across 

the genome between the sexes, again following the methodology described previously 

(section 2.2.4). Then we calculated the different PGSs for the remaining circa 42,000 

individuals of white ethnicity in UK Biobank, again regressing on the phenotype to assess 

prediction accuracy. This, however, only serves as a validation for a single trait, meaning that 

caution should be taken when interpreting the predictive power of the PGSs calculated.  

 

2.2.6.1. Heritability explained by sdSNPs 

 

In order to put our prediction analysis into context, we obtained the proportion of sex-specific 

heritability explained by the sex-specific genetic effect estimates of the sdSNPs found for 

each trait. To do this, for each trait with m sdSNPs, the heritability of sdSNPs was calculated 

as: 

 

 hsex, sdSNP
2 = 

∑ 2pn,sex(1-pn,sex)β
 n, sex

2m
n=1

σA, sex
2  + σE, sex

2  Eq. 53 
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where βn,sex is the sex-specific genetic effect for each of the m sdSNPs for a given trait, pn,sex 

is the frequency of the reference allele for each sex, and where σA, sex
2  and σE, sex

2  are the sex-

specific genetic and residual variance estimates for each trait respectively. The proportion 

of the sex-specific heritability explained by sdSNPs was then calculated for each sex as 

h sex, sdSNP
2

 / h sex
2 . 

 

2.2.7. Masking analysis 

 

Currently, most GWAS efforts fit non-sex-stratified models. However, a situation could arise 

in which (i) a locus possesses a differentially signed genetic effect in each sex or (ii) a genetic 

variant shows a larger effect in one of the sexes and a small or no effect in the other. In any 

of these situations, the power of detecting the variant will be reduced in a non-stratified 

analysis, and the variant effect size misestimated in both sexes. We term this phenomenon 

as “masking” of a genetic effect. 

 

To assess masking effects in the UK Biobank, we evaluated the total number of genetic 

variants that were found to be significantly associated with a trait in a sex-stratified GWAS 

(i.e. associated with a trait in males and/or females), but were not significantly associated in 

a sex-agnostic model. We performed this analysis on the 530 traits in our study, considering 

a genetic variant as potentially masked if it was significant in females and/or males but not 

for the mixed population at a p < 1 x 10-8 threshold. We also performed this analysis by LD 

clumping the results from our sex-stratified models prior to assessing significance in a sex-

agnostic model across traits in order to account for the effects of random fluctuation (i.e. 

presence of false positives whose significance is potentially stemming from being in LD with 

causal variants), using the same parameters as described previously (section 2.2.4).  

 

2.3. Results and discussion 
 

Because of the different QC treatment of binary and non-binary traits, as well as the 

difference in phenotype characteristics, results are presented separately for both 

throughout this thesis, not as a means to compare the results between the two but so as to 

contain them both to their own separate categories. 

 

2.3.1. Heritability, genetic variance, and evolvability 

 

Having fitted our sex-stratified models, as described in the previous section, we obtained 

estimates of both genetic effects across the genome and variance components, for males 

and females separately. We thus began our data analysis looking at genomic parameter 

differences between males and females, as a means to assess the existence of differences in 

genetic architecture. 

 

As stated previously (section 1.2.4), heritability (here referring to SNP heritability) is defined 

as the fraction of the variation of a trait that can be explained by the additive effects of 
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genetic variation. A difference in heritability between the sexes could then entail a difference 

in the variance of a trait that is accounted for by the genotype, and thus a difference in the 

genetic control of said trait. Out of the 530 traits studied here, 41/84 (48.88%) non-binary 

traits and 30/446 (6.73%) binary traits showed significant differences in heritability between 

the sexes (FDR corrected p, termed q, < 0.05, Figure 18). For the binary traits we considered 

heritability on the liability scale, which led to some estimates over 1, which, as described in 

section 1.2.4.1, can occur when prevalence is low or heritabilities on the observed scale are 

large, as is the case with the ankylosing spondylitis trait (labeled in Figure 18). We observed 

that 25/41 (60.98%) of the non-binary and 14/30 (46.67%) of the binary traits had larger 

heritability in males than in females, meaning that no one sex had a generally larger 

heritability across traits. Non-binary traits with the largest significant difference in 

heritability (in terms of lowest p-value) between the sexes included body mass traits, while 

binary traits included ankylosing spondylitis, disorders of mineral metabolism, and soft 

tissue disorders. 

 

The distribution of heritability estimates across the male and female subpopulations is 

shown for traits which presented a significant difference between the sexes in Figure 19.  

 

 
Figure 18. Scatterplot of male heritability estimates against female heritability estimates for binary traits 
(on the left) and non-binary traits (on the right). Heritability for binary traits is shown on the liability 
scale. Each point represents a trait, which is marked in red when heritability between the sexes is 
significantly different for a threshold of q < 0.05. x = y line shown in blue. Outliers/traits that fall further 
away from the x = y line are named.  

 

Although differences in the heritability of traits between the sexes can offer insight into 

genetic differences, one must also consider that these could arise due to differences in 

environmental variances, thus the need for additional studies. To resolve this, we compared 

the differences between the sexes in both genetic and environmental variance and found that 

in the majority of cases (32/41 non-binary traits, 78.05%, and 28/30 binary traits, 93.33%) 

absolute fold differences in genetic variance surpassed absolute fold differences in 

environmental variance between the sexes (Figure 20), thus indicating that differences in 

heritability are likely due to differences in genetic architecture for the majority of traits.  
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Furthermore, we investigated whether differences in genetic variance were significant 

between the sexes (q < 0.05), and found that 65/84 (77.38%) non-binary and 136/446 (30.49%) 

binary traits presented such behaviour. Traits which showed the largest differences in 

genetic variance included impedance-related traits, and diseases of the thyroid and heart 

(Figure 21). On the other hand, a total of 6/84 (7.14%) non-binary traits and 4/446 (0.90%) 

binary traits presented a significant difference in heritability but no significant difference in 

genetic variance between the sexes, indicating differences in environmental variance. These 

included numerous blood phenotypes (such as lymphocyte percentage and mean 

reticulocyte volume), ease of skin tanning, venous thrombosis disease, anaphylaxis/allergy, 

and diseases of the digestive system.   

 

Finally, we observed significant differences in evolvability, a measure of the ability to 

undergo adaptation, between the sexes for 56/84 (66.67%) non-binary and 35/446 (7.85%) 

binary traits (q < 0.05, Figure 22). These included binary traits like ankylosing spondylitis and 

malabsorption/coeliac disease, as well as non-binary traits like current tobacco smoking.  

 

Overall, the differences in genomic parameters observed offer evidence for differences in the 

underlying genetic architecture of the traits considered, paralleling previous reports at 

smaller scales for traits including height, WHR, and weight172,174,178. 

 

 

 
Figure 19. Histograms of heritability values for binary (bottom row) non-binary (top row) traits across 
male samples (left) and female samples (right). Binary heritability estimates on liability scale. Only traits 
with significant difference in heritability (q < 0.05) considered.  
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Figure 20. Barplot of variance fold difference between males and females for binary (top) and non-binary 
(bottom) traits with a significantly different heritability between the sexes (q < 0.05). Pink bars represent 
fold change between the sexes in genetic variance, and blue bars represent fold change between the 
sexes in residual variance. 
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Figure 21. Scatterplots comparing male genetic variance to female genetic variance for binary (left) and 
non-binary (right) traits. Each point represents a trait, and pink points indicate traits for which the 
genetic variance between the sexes is significantly different (q < 0.05). x = y line in blue. Basal metabolic 
rate was an outlier and removed from the plot.  

 

 
 
Figure 22. Scatterplots comparing male evolvability to female evolvability for binary (left) and non-binary 
(right) traits. Each point represents a trait, and pink points indicate traits for which the evolvability 
between the sexes is significantly different (q < 0.05). x = y line in blue. 

 

2.3.2. Genomic parameters from GWAS summary statistics 

 

Having searched for evidence of differences in genetic architecture by looking into genomic 

parameters derived from our LMM variance component estimation, we proceeded with the 

analysis of the results of our sex-stratified GWAS. We began with the computation of genetic 

correlations between the sexes using LDSC regression as described in section 2.2.3, which 

bases its calculations on GWAS summary statistics. 

 

2.3.2.1. Heritability 

 

Prior to calculating genetic correlations, LDSC estimates heritability for each of the groups to 

be compared. We contrasted these values with those obtained using DISSECT207 and which 

are presented in the previous section. We found that heritability estimates calculated by 

DISSECT (which employs REML to obtain variance components used in the calculation of 

heritability) were systematically higher across most traits, both non-binary and binary 
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(Figure 23). Furthermore, fewer traits presented significantly different heritability between 

males and females at a q < 0.05 significance threshold (2 non-binary traits and 3 binary 

traits), possibly due to the larger reported errors (Figure 24). 

 

 
 

 
 

Figure 23. Comparison of heritability estimates for binary traits over 5000 cases (on the liability scale, 
top row) and non-binary traits (bottom row) from LDSC and from DISSECT. Each point is a trait, males on 
the left and females on the right. Blue line is x = y.  

 

Differences in parameter estimates between REML and LDSC methods have been described 

in the literature, which cite REML as a better estimator in regards to accuracy (i.e. magnitude 

of standard error of the estimate)222. Indeed, LDSC authors cite standard errors in genetic 

correlation estimates at least 1.5-fold higher than those of REML regardless of the number of 

samples used69. Furthermore, Yang and collaborators obtained sex-stratified heritability 

estimates using LDSC across 5 anthropometric traits from the GIANT cohort data-set, and, as 

we did, found REML heritability estimates that were larger than their LDSC counterparts186. 

These authors cite as a possible explanation for this discrepancy that, due to the LD scores 

used by LDSC regression being estimated from the 1,000 Genomes Project population, a 

discrepancy in LD structure between the aforementioned and that of the current study could 

lead to larger error, and thus bring down the reported heritability.  

 

For these reasons, when referring to heritability estimates in the text we will refer to those 

estimated by DISSECT.  
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Figure 24. Scatterplot of male and female heritability comparison using LDSC estimates. Each point 
represents a trait (binary on the left, non-binary on the right). Heritability is represented on the liability 
scale for binary traits, and only traits with over 5,000 cases are considered. Pink points are traits with a 
significantly different heritability between the sexes (q < 0.05), and the blue line is x = y.  

 

2.3.2.2. Genetic correlations 
 

As discussed in previous sections, genetic correlations between two sub-groups of the 

population are usually interpreted as a measure of shared underlying genetics, and are a 

means to estimate the size of potential genotype by group interactions. Genetic correlations 

between the sexes can thus offer insights into the common genetic control of complex traits 

and diseases of males and females.   

 

In the past, several studies have found evidence of rg ≠ 1 between the sexes using data from 

various cohorts, pointing to different genetic architectures between the sexes (section 

2.1.2). However, these have generally been limited to a small number of traits or small sample 

sizes. We obtained genetic correlations between the sexes for a total of 83 non-binary and 77 

binary traits with over 5,000 cases using LDSC. Our estimates ranged from 0.716 to 0.996 for 

non-binary traits and from 0.226  to 1.099 for binary traits (note that with heritability close 

to zero application of LDSC can result in rg exceeding the theoretically valid range [-1, 1] due 

to the square root of h2 for each trait being in the denominator of the rg estimation, Eq. 44). 

 

A total of 58/83 (69.88%) non-binary traits and 11/77 (14.29%) binary traits had a rg 

significantly different from 1 (q < 0.05, Figure 25). These included binary traits like hernia (rg 

= 0.59, q = 4.04 x 10-10), eczema (rg = 0.61, q = 0.04) and gastric reflux (rg = 0.67, q = 0.02), and 

non-binary traits like WHR (rg = 0.72, q = 8.43 x 10-37) and alcohol intake frequency (rg = 0.85, 

q = 7.49 x 10-9). 

 

The minimum correlation found amongst traits with rg ≠ 1 was 0.716 corresponding to WHR 

and 0.404 for disorders of the urinary system for non-binary and binary traits respectively. 

On the other hand, the maximum correlation was 0.873 corresponding to diabetes mellitus 

and 0.967 corresponding to platelet count, for binary and non-binary traits respectively.  
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Figure 25. (a) Barplot of genetic correlations (rg) between the sexes for traits that were found to have a rg 
significantly different from one (q < 0.05). Black bars indicate the standard errors of the rg estimates. (b) 
Histogram of genetic correlations (rg) between the sexes that were found to be significantly different 
from one (q < 0.05) across traits. 

 

Our rg estimates were in line with previous studies for several non-binary traits (Table 4, 

Figure 26), noting that one of the compared studies also used UK Biobank data (Rawlik et 

al172). Furthermore, our results parallel reports of most traits having very similar genetic 
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architectures between the sexes, with most genetic correlations being very close to one, even 

those with correlations that were found to be significantly different (Figure 25). Overall, 

strong evidence, backed by the literature, was found for differences in genetic architecture 

between the sexes when calculating genetic correlations for non-binary traits, albeit of small 

magnitude, the results being more limited for binary traits due to the limited number of cases.  

 
Table 4. Genetic correlation results compared with those published in the literature for several non-
binary traits. (*) WHR adjusted for BMI.  

 
Our results Published data 

 
Trait rg rg SE p(rg = 1) rg rg SE p(rg = 1) Source 

Waist /hip 

circumference 
0.7164 0.0217 4.94 x 10-39 

0.76 0.03 9 x 10-14 172 

0.770* 0.108 0.033 186 

0.74 0.02 9.2 x 10-7 178 

Body fat 

percentage 
0.8904 0.0101 1.96 x 10-27 0.94 0.02 0,009 172 

BMI 0.9284 0.0095 7.41 x 10-13 

0.95 0.02 0.008 172 

0.879 0.035 5.9 x 10-4 186 

0.89 0.02 5.6 x 10-10 178 

Waist 

circumference 
0.8934 0.0115 1.87 x 10-20 

0.9 0.03 0.0003 172 

0.78 0.071 1.9x10-3 186 

0.91 0.03 1.6x10-3 178 

Hip circumference 0.9024 0.0113 5.76 x 10-18 

0.88 0.02 2 x 10-6 172 

1 0.083 0.999 186 

0.9 0.03 6.2 x 10-4 178 

Standing height 0.958 0.0062 1.25 x 10-11 

0.96 0.01 3 x 10-5 172 

0.957 0.023 0.063 186 

0.95 0.02 2 x 10-2 178 

 

 
Figure 26. Genetic correlation estimates across studies for 6 anthropometric traits. Our results are 
displayed in pink, while those of other studies are blue, the name of the first author highlighted in the 
figure legend. Black lines represent +/- 1.96SE of estimates. Data used shown in Table 4.  
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2.3.2.3. Comparison with other genomic parameters 

 

Both heritability differences between the sexes and genetic correlation estimates between 

males and females differing from 1 are indicators of discrepancies in genetic architecture. It 

would thus be reasonable to assume that as fold differences in heritability increase between 

the sexes, genetic correlations would in turn lower for a given trait. To assess this 

relationship, genetic correlations were regressed against heritability differences between 

the sexes (Figure 27). A significant negative correlation was found for non-binary traits, both 

when considering all traits in our study and when considering just those that presented a rg 

≠ 1 (r = -0.461, p = 1.144 x 10-5, and r = -0.443, p = 1.994 x 10-4 respectively). Whilst correlations 

between rg and heritability differences were not statistically significant (p > 0.05) for the 

binary traits considered, we did also observe a negative correlation between the two, thus 

suggesting a similar relationship.  

 

(a) 

 
 

(b) 

 

 
Figure 27. Genetic correlation regressed on absolute log2 heritability ratio between males and females 
for (a) all traits (for the binary traits just those with over 5,000 cases) and (b) just traits with a genetic 
correlation that was found to be significantly different from 1 (q < 0.05). Heritability shown on liability 
scale for binary traits. r is the Pearson correlation coefficient between x and y, and the p-value 
corresponds to a two-sided p-value for a statistical test whose null hypothesis is that the slope is zero. 
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It’s intuitive to assume that when a complex trait presents large differences between males 

and females, for example in disease prevalence or in the magnitude of non-binary traits, that 

these could in turn be associated with differences in genetic architecture. As such, we tested 

whether lower genetic correlations and larger heritability fold differences were correlated 

with larger mean fold differences in phenotype values between the sexes (Figure 28). We 

found no significant correlation (p > 0.05) between absolute log fold change in mean 

phenotype values between the sexes and genetic correlation or heritability differences, 

suggesting that differences in genetic architecture could arise regardless of observed 

phenotypic changes as measured by UK Biobank. This parallels previous findings which used 

REML derived estimates of rg across several non-binary traits in UK Biobank223 to assess its 

relationship to mean fold change, as well as those from a recent review from Khramtsova, 

Davis, and Stranger that found no correlation between differences in phenotypic prevalence 

and heritability estimates between the sexes113.  

 

(a) 

 
(b) 

 
 
Figure 28. Absolute log2 ratio of trait mean values between males and females regressed against (a) 
genetic correlations for traits with a genetic correlation between the sexes that was found to be 
significantly different from 1 (q < 0.05) and (b) absolute log2 ratio of heritability estimates between males 
and females, for traits that were found to present a significantly different heritability between the sexes 
(q < 0.05). r is the Pearson correlation coefficient between x and y, and the p-value corresponds to a two-
sided p-value for a statistical test whose null hypothesis is that the slope is zero. 

 

2.3.3. Genetic effect comparison 

 

Having assessed the existence of GxS across traits through genomic parameters that 

quantify genetic architecture across the whole genome, we next assessed how each 
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individual genetic variant could be contributing to differences in complex phenotypes 

between males and females through the analysis of our sex-stratified GWAS summary 

statistics.  

 

2.3.3.1. Per trait 

 

We began our analysis by directly assessing whether the estimated effect of each genetic 

variant across the genome was significantly different between the sexes. Our autosomal 

genome and trait-wide genetic effect sex comparison yielded a total of 61/84 (72.62%) non-

binary and 42/446 (9.42%) binary traits with at least one autosomal genetic variant 

presenting a significantly different effect at a p < 1 x 10-8 threshold, hereon referred to as 

sdSNPs. When assessing the genetic effects of X-chromosome variants, we found 28/84 

(33.33%) non-binary traits with at least one sdSNP. The distribution of lead sdSNPs across 

traits is shown in Figure 29. The Manhattan plots corresponding to the four traits with most 

sdSNPs are shown in Figure 30. 

 

When considering the autosomal genome, we found that the trait with the largest amount of 

sdSNPs was WHR, a complex trait that has appeared frequently in analyses of sexual 

differences in genetic architecture192–194,215, with a total of 2,421 sdSNPs, which map to 100 

independent loci, or lead sdSNPs, after LD clumping. When considering X-chromosome 

genetic variants, the trait with the most sdSNPs was hematocrit percentage, with 12 sdSNPs 

that mapped to 5 independent loci. The traits with most sdSNPs across autosomal and X-

chromosome variants are described in Table 5 and Table 6 respectively.  

 

2.3.3.2. Per locus 

 

A total of 4,179 (4,179/9,072,751 = 0.046%) and 4,196 (4,196/4,229,346 = 0.099%) autosomal 

genetic variants showed evidence of sexual differences in at least one non-binary or binary 

trait respectively (p < 1 x 10-8), which mapped to 264 and 88 independent loci respectively 

across traits. A total of 37 (37/7,227 = 0.213%) X-chromosome variants showed evidence of 

sexual differences in at least one non-binary trait (p < 1 x 10-8), which mapped to 8 unique loci. 

 

The sdSNP associated with the largest number of traits (a total of 17) was rs115775278, an 

imputed intergenic variant found on chromosome 16. The closest genes to this variant 

include LOC105371341 (an uncharacterised non-protein coding RNA gene, with transcription 

start site, TSS, ~40kb downstream), LOC390739 (MYC-binding protein pseudogene, TSS 

~50kb upstream), PMFBP1 (Polyamine Modulated Factor 1 Binding Protein 1, TSS ~60kb 

downstream), and LINC01572 (a long intergenic non-protein coding RNA gene, TSS ~470kb 

upstream). PMFBP1 has been linked to spermatogenesis function224. 

 

The distribution of hits across the autosomal and X chromosome genome is shown in Figure 

31, where not one region seems to present more sdSNPs than the rest. 
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Figure 29. Histogram of number of autosomal lead sdSNPs for binary (left) and non-binary traits (middle) 
for traits with at least one autosomal sdSNP, and histogram of X-chromosome sdSNPs for non-binary 
traits (right) for traits with at least one X-chromosome sdSNP. 

 

 

 

 

 
 
Figure 30. Manhattan plots for traits with most lead sdSNPs. The x axis corresponds to the genomic 
position, and the y axis to the –log10 p-value of the statistical test for which the null hypothesis is that no 
difference between the sexes exists. Each point corresponds to a genetic variant. Points above the 
statistical significance line at –log10 p = 1 x 10-8 are declared sdSNPs.  
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Table 5. Traits with the largest number of autosomal sdSNPs, both pre and post LD clumping.  
 

Trait p < 1 x 10-8 (sdSNPs) Lead sdSNPs 

Waist /Hip circumference 2421 100 

ankylosing spondylitis 626 18 

Standing height 86 18 

gout 708 16 

Nucleated red blood cell percentage 26 16 

Trunk fat percentage 432 15 

Hip circumference 124 12 

Whole body water mass 39 12 

Trunk predicted mass 163 12 

Trunk fat-free mass 141 12 

hypothyroidism/myxoedema 168 11 

   

Table 6. Traits with the largest number of X chromosome sdSNPs, both pre and post LD clumping.  

Trait p < 1 x 10-8 (sdSNPs) Lead sdSNPs 

Haematocrit percentage 12 5 

Haemoglobin concentration 11 4 

Body fat percentage 7 3 

Hip circumference 22 2 

Arm fat percentage (right) 10 2 

Leg fat percentage (right) 8 2 

Red blood cell (erythrocyte) count 7 2 

Arm fat percentage (left) 13 2 

Leg fat mass (left) 2 1 

Arm fat mass (left) 2 1 

Arm fat mass (right) 2 1 

 

 

  

 
 

 
 
Figure 31. Manhattan plot of number of phenotypes for which SNPs were found to be sdSNPs in non-
binary (top) and binary (bottom) traits. Each point represents a genetic variant, and its height the number 
of traits it affects in a sexually different manner (p < 1 x 10-8). 
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2.3.3.3. Behaviour of sdSNPs within each sex-stratified model 

 

Having assessed genetic variants across the genome that present significantly different 

effects in males and females we next looked to characterise these sdSNPs in a search for 

potential patterns. Firstly, we assessed whether trends of larger effects in one sex versus the 

other were present across the sdSNPs and traits considered. Secondly, we investigated 

whether sdSNPs frequently present opposite signed genetic effects between the sexes, i.e. 

assessed whether sdSNPs negatively contribute to a given trait in one sex and positively 

contribute to the same trait in the opposite sex. To do this, we compared the genetic effect 

estimates obtained in each of our sex-stratified models, that is, we compared the 

characteristics of male genetic effect estimates to the female genetic effect estimates 

across the genetic sites which presented evidence of GxS.  

 

First of all, we assessed whether sdSNPs were significantly associated, considering sex-

stratified models, to the trait for which their effects were deemed to be different between the 

sexes, at a genome-wide significance threshold of p < 1 x 10-8. We found that the average 

percentage of sdSNPs across non-binary traits that were significantly associated with a given 

phenotype in a sex-specific model was 24.12% (SD 27.39%) in females and 29.69% (SD 30.84%) 

in males. When considering binary traits, the percentage of sdSNPs that were significantly 

associated was on average 55.46% (SD 47.32%) in females and 66.09% (SD 44.17%) in males. 

These percentages could suggest that (i) we do not have enough statistical power to discover 

the association of these variants to the considered phenotypes or (ii) that the sdSNPs found 

are not greatly associated with the phenotype of interest, even if they do present a significant 

difference between the sexes. Furthermore, our large SD estimates suggest great 

heterogeneity amongst traits, which is further heightened by the fact that sdSNP numbers 

are quite small, i.e. if 4 sdSNPs were found and 2 were not significantly associated with the 

given phenotype in a given sex, this would already reduce the percentage reported to 50%.  

 

We next shifted our focus to analysing the sign of the genetic effects of our sdSNPs in our 

sex-specific models, interested to see if the discrepancies found between males and females 

were due to (i) SNPs being more or less relevant to a given phenotype (i.e. the magnitude of 

the genetic effect being greater or lesser based on sex), or (ii) due to a different influence or 

association to the phenotype altogether, that is if, as stated previously, a given sdSNP could 

be influencing a given complex trait “upwards” (larger measure, increased risk) in one sex 

and “downwards” (lower measure, decreased risk) in another. The latter (ii) could suggest a 

more “extreme” case of sexual difference, with the potential existence of differing biological 

networks underlying some of these phenotypes, or the interplay of interesting sex-specific 

factors with our genetics. However, this need not exclude the former scenario (i), that is, a 

change in the magnitude of association could also arise due to sex-specific pathways or the 

action of sex-specific factors.  Given male and female genetic effects for a given sdSNP, we 

considered as clues into (i) or (ii) whether they shared a sign or whether they presented 

different signs, respectively. 

 

We found that the majority of sdSNPs present opposite genetic effect signs across non-

binary traits. The average percentage of sdSNPs with opposite genetic effect signs was 
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75.44% (SD 29.11%), the number decreasing to 35.57% (SD 45.10%) for binary traits (Figure 

32). Of the sdSNPs that were found to have a same effect sign between the sexes, on average 

68.76% (SD 37.06%) of them presented a greater effect in females than in males in non-binary 

traits, and 47.76% (39.67%) in binary traits. As before, these results suggest heterogeneity 

amongst traits, meaning that there’s no “one-size-fits-all” explanation in regards to sexual 

differences across complex traits. Furthermore, as stated previously, small sdSNP numbers 

greatly influence the reported percentages. Finally, whilst these observations could offer 

clues into underlying biological mechanisms, much more work needs to be done to truly 

understand what underlies these sdSNPs. A more immediate application, however, is to 

assess how this behaviour could impact our models, for example in regards to genetic effect 

estimation in non-stratified analyses. This is further discussed in section 2.3.6.  

 

(a)  

 
(b) 

 
(c) 

 

 

Figure 32. Histograms of sdSNP sign comparisons between the sex-specific genetic effect estimates. (a) 
shows the distribution of the frequency of sdSNPs presenting opposite signs between the sexes, while 
(b) shows the distribution of the frequency of these presenting the same sign between the sexes. (c) 
shows the frequency distribution for the sdSNPs that were found to have the same sign between the 
sexes whilst also presenting a greater magnitude (larger genetic effect) in females. In all plots, results 
for binary (left) and non-binary (right) traits are shown separately. 
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2.3.3.4. Comparison with other genomic parameters 

 

In section 2.3.2.3 I reasoned that low genetic correlations associated with large differences 

in heritability estimates could be expected given that both indicate the presence of GxS 

across the genome. We could thus extend this reasoning to include the number of sdSNPs 

found, where we would expect a larger number of sdSNPs to be associated with larger 

differences in heritability and lower genetic correlations between the sexes. Thus, we 

compared the number of sdSNPs found in our genome-wide genetic effect sex comparison, 

for each trait that presented at least one sdSNP, to other genomic parameters. One must 

consider, however, that these comparisons are somewhat limited due to the fact that our 

definition of sdSNP is dependent on a harsh threshold (genome-wide significance), such that 

information is lost when considering the total number of lead sdSNPs as a quantifier of 

genetic architecture divergence. As such, these comparisons are more limited than 

comparisons between other parameters like heritability or genetic correlations, where the 

estimates themselves are not a function of a threshold.  

 

When considering non-binary traits, we found a significant correlation between larger 

heritability differences between the sexes and larger numbers of lead sdSNPs (r = 0.371, p = 

3 x 10-3), as well as with lower genetic correlations (r = -0.782, p = 4.467 x 10-11). Furthermore, 

we found no significant correlation to phenotype fold differences between the sexes (p > 

0.05). These findings (displayed in Figure 33) parallel the significant correlation found 

between h2 and rg and the non-significant correlation between mean fold differences 

between males and females and rg and h2 in section 2.3.2.3, which in turn support the 

intuitive interpretation of a larger presence of GxS being consistent across heritability, 

genetic correlation, and genome-wide genetic effect estimates. The absence of correlation 

to phenotype mean differences also supports the non-exclusivity of GxS to traits with larger 

observable differences.  

 

On the other hand, no significant correlations were found between the number of lead sdSNPs 

and heritability or genetic correlation differences between the sexes when considering our 

binary traits. This could be due to numerous reasons, amongst which are (i) larger errors due 

to lower statistical power in genomic parameter estimation, and (ii) generally lower sdSNP 

numbers compared to non-binary traits, which could also be the result of lower statistical 

power and a harsher MAF cut-off, making comparison between parameters more difficult. We 

did, however, find a significant correlation between binary phenotype mean (disease 

prevalence) fold differences between the sexes and lead sdSNP number (r = 0.491, p = 0.001), 

which could indicate a spurious association due to the reasons stated above, or that the 

larger the difference in prevalence (and thus larger difference in the number of cases), the 

larger the difference in power to find associations between the sexes, in turn leading to the 

possible discovery of sdSNPs. Finally, this finding could also potentially suggest an inherent 

difference in GxS in binary traits as opposed to non-binary traits, such that a difference in 

magnitude in a trait like height between the sexes might not necessarily mean a larger 

number of sdSNPs when compared to a smaller difference in magnitude in another non-

binary trait like hip circumference, but that a difference in prevalence between the sexes 

across diseases does.  
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Figure 33. Scatterplot comparing (top) heritability log fold difference between males and females 
(middle) phenotype mean log fold difference between males and females and (bottom) genetic 
correlations (rg) between the sexes (binary traits > 5000 cases) between the sexes to number of lead 
sdSNPs found for each trait at a p < 1 x 10-8 threshold, for binary (left) and non-binary traits (right). Each 
point represents a trait. r is the correlation coefficient between x and y, and the p-value corresponds to 
a two-sided p-value for a statistical test whose null hypothesis is that the slope is zero. 

 

2.3.3.5. Waist-hip circumference ratio 

 

As mentioned previously, WHR is a complex trait that has frequently been of interest in GxS 

studies, and for which the largest number of sexually different loci have been reported, 

Winkler and collaborators citing 44 in 2015194, and a recently published meta-analysis 

including both the GIANT consortium and UK Biobank’s data reporting 105215. Likewise, our 

study reports a total of 100 lead sdSNPs at a p < 1 x 10-8 threshold, the largest number across 

all phenotypes considered, as well as the lowest genetic correlation across non-binary traits 

(rg = 0.716). As such, in this section I will discuss the results pertaining to this phenotype in 

further depth.  

 

Our results corroborate that sdSNPs are found near genes including COBLL1, VEGFA, LYPLAL1, 

RSPO3, CMIP, ADAMTS9, FAM13A, and CMIP amongst others, and present extremely high 

correlation to the latest aforementioned meta-analysis, the differing numbers (100 vs 105 
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reported sdSNPs) likely due to the smaller sample size and stricter significance threshold 

used on our part (discussed further in section 2.3.4.1, where a more extensive comparison to 

GIANT data is discussed). Figure 30 shows the distribution of sdSNPs for waist-hip 

circumference ratio across the genome.    

 

 
Figure 34. For WHR, on the left: comparison of genetic effect estimates (adjusted for phenotype SD 
within sex) in females and males. Each point represents a genetic variant. In blue are those found to be 
significant in a sex-agnostic model (450K White-Europeans, GeneATLAS203), and in pink those that were 
found to be sdSNPs at a p  < 1 x 10-8 significance threshold. On the right: comparison of male and female 
p-values of association for each variant across the autosomal genome to the phenotype. In pink are 
variants that were found to be sdSNPs at a p < 1 x 10-8 significance threshold. 

 

When looking closer at our 100 lead sdSNPs, we found that 66 showed opposite effect 

directions in males versus females. Considering the remaining 34 sharing effect direction, 

20/34 had a greater effect in females. These differences are captured in Figure 34, where 

female genetic effects are plotted against male genetic effects, and where sdSNPs are 

coloured in pink. It is easy to see a clear divergence from the x = y line, with most genetic 

effects in males being close to 0 as opposed to those calculated for females, who possess 

larger absolute effects. Furthermore, in Figure 34 we display in blue SNPs that were found to 

be significantly associated with WHR in a sex-agnostic study (GeneATLAS203) which preceded 

our sex-stratified analysis and that uses a nearly identical methodology to the one described 

here. This thus makes it an ideal dataset to assess sex-stratified versus sex-agnostic models. 

We find that SNPs associated with WHR fall within the x = y line, as opposed to sdSNPs. Of the 

100 lead sdSNPs found, 80 are significant in a sex-stratified model for females at a p < 1 x 10-

8 threshold, while only 6 independent loci are significant in males. A p-value comparison for 

all genetic variants across the genome is shown in Figure 34, where sdSNPs are shown in pink 

(note that all variants across the genome are shown, not just independent loci). In this plot, a 

large number of variants showing small p-values in females are shown to have larger 

counterparts in males. The fact that a prominent difference is seen between the sexes with 

consistently larger genetic effect estimates in females as opposed to males could lead us to 

speculate that a female-specific factor is at play here. This is further explored in Chapter 3.  
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2.3.4. Analysis checks 

 

To garner further evidence into differences in genetic architecture we looked to replicate our 

results both technically (using different models, performing a randomisation analysis, fitting 

logistic mixed models, and performing simulations to assess the effect of case-control ratio 

on heritability estimates) and biologically (comparing our results to the GIANT consortium’s). 

 

2.3.4.1. GIANT comparison 

 

We found that our results generally correlated with those from GIANT for the available traits 

(WHR, hip circumference, waist circumference, standing height, and weight), noting the 

smaller sample size in this consortium, and that complete overlap of our declared sdSNPs 

was not present (i.e. we declared 100 sdSNPs for waist-hip circumference ratio, and data was 

only available for 39 of these in GIANT, Table 7). We took GIANT’s sex-stratified genetic effect 

estimates for the sdSNPs considered and tested them for sexual differences, as we had done 

with our own and as is described in section 2.2.5.2. 

 

Table 7. Summary of comparison with GIANT for available traits: waist-hip ratio circumference (WHR), 
hip circumference (HC), waist circumference (WC), height and weight. The “sdSNP” column indicates the 
total number of sdSNPs found in our analysis, whilst the “sdSNPs in GIANT” column indicates how many 
of these were included in GIANT’s summary statistics and thus were available for comparison. The “p < 
0.05 in GIANT column” indicates the number of these overlapping sdSNPs that were found to present a 
sexual difference statistical test with an associated p-value (uncorrected) less than 0.05. The remaining 
columns indicate both Pearson correlation coefficients and the associated p-values for a variety of 
parameter comparisons, including the correlation between sexual dimorphism test p-values and the p-
value of said correlation (r(p) and r(p) p), the correlation between female and male genetic effect 
estimates and their corresponding p-values (r(bF)/r(bF) p  and r(bM)/r(bM) p respectively). 

 

Trait sdSNPs 
sdSNPs 

in 
GIANT 

p < 
0.05 in 
GIANT 

r(p) r(p) p r(bF) r(bF) p r(bM) r(bM) p 

WHR 100 39 76.92 0.84 < 0.01 0.95 < 0.01 0.73 < 0.01 

HC 12 6 33.33 -0.45 0.37 0.93 0.01 0.36 0.48 

WC 4 4 75 0.65 0.35 0.83 0.17 0.93 0.07 

Height 18 7 0 0.46 0.3 0.73 0.06 0.83 0.02 

Weight 5 3 0 0.75 0.46 0.28 0.82 -0.72 0.49 

 
WHR presented the largest correlation between GIANT’s genetic effect sex comparison p-

value and our own, likely due to its large sexual dimorphism being detected with smaller 

sample sizes (Pearson r = 0.84, p = 1.43 x 10-11and Spearmanmm r = 0.62, p = 2.70 x 10-5, Figure 

35). The remaining traits available in GIANT generally showed similar trends, but the number 

of sdSNPs considered was too small to obtain a reliable comparison. Significant correlations 

were also found when comparing GIANT’s genetic effect estimates for males and females to 

 
mm Spearman correlations were calculated in addition to more standard Pearson correlations given the 
limited number of SNPs compared. Spearman correlations, or Spearman rank correlations, are a non-
parametric measure of the statistical dependence between the rankings of two variables. Spearman 
correlations measure the monotonic relationship between two variables, i.e. it assesses whether an 
increase in one variable is associated with an increase in the other, or if an increase in one variable leads 
to a decrease in the other. Also, as opposed to Pearson correlations, Spearman correlations work with 
rank ordered variables as opposed to raw variables.  
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our own in WHR, height, and hip circumference (Table 7). Figure 35 and Figure 36 show the 

comparison results for WHR and height, the two traits which presented the largest sdSNP 

overlap with the GIANT data set. 

 

 
Figure 35. Scatterplot comparing sexual dimorphism test -log10 p-values, as tested on GIANT’s genetic 
effect estimates (x-axis) and on our own genetic effect estimates (y-axis). Results for waist-hip 
circumference ratio on the left, and for height on the right. 

 

 
 

 
Figure 36. Comparison of GIANT genetic effect estimates (betas) against UK Biobank genetic effect 
estimates, for females (left) and males (right). (Top) shows results for waist-hip ratio, and (bottom) for 
standing height. 

 

As of early 2019, Pulit and collaborators have published a meta-analysis for the distribution 

of human body fat215. This study includes both the GIANT consortium data as well as the UK 

Biobank data, with a total of 694,649 individuals of White European ascent. Their study also 
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includes a sex-stratified analysis of WHR, the results of which we compared to our own. Pulit 

et al declared 105 lead sdSNPs for WHR. Whilst our studies used different methodologies 

(such as the pre-processing of phenotypes, and our significance cut-offs for declaring 

sdSNPs), we find extremely good replication for both our declared sdSNPs as well as theirs 

(Figure 37). Figure 37a compares their genetic effect estimates for each of the sexes to our 

own for our declared 100 lead sdSNPs, while Figure 37b compares the same but for their 

declared 105 lead sdSNPs.  

 

(a) 

 
 

(b) 

 
 

Figure 37. Comparison of genetic effect estimates between our study and Pulit et al's, for (a) our 100 
declared sdSNPs and (b) their 105 declared sdSNPs for waist-hip circumference ratio. Female estimates 
show on the left and male estimates on the right.  

 

To ease the comparison between our study and Pulit et al’s we used their summary statistics 

to obtain sdSNPs making use of our analysis pipeline (section 2.2.4), thus establishing a new 

set of sdSNPs from their study, which returned a total of 2,846 hits at p < 1 x 10-8 significance 

cut-off, without LD clumping. The genetic effects of the aforementioned were compared to 

our own (Figure 38a).  Finally, we compared the p-values for the dimorphism test of the latter 

to our own, again finding a high correlation despite many of these SNPs not being declared 

sdSNPs in our own study (Figure 38b). The fact that at the same threshold but with increased 

sample size more sdSNPs are found (2,846 vs 2,418, pre-LD clumping) might suggest that 

once more samples become available, more sdSNPs will be discovered. 
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(a) 

 
(b) 

 
Figure 38. (a) Comparison of genetic effect estimates between our study and Pulit et al's, for their sdSNPs 
in WHR, as calculated by us replicating our methodology using their summary statistics. Female 
estimates shown on the left and male estimates on the right. (b) Comparison of our dimorphism test p-
value to Pulit et al’s dimorphism test p-value, calculated by us using their summary statistics. For both 
(a) and (b) SNPs considered are those that pass the p < 1 x 10-8 significance cut-off for the dimorphism 
test using Pulit et al’s meta-analysis data. 

 

2.3.4.2. Replication with different models 

 

Evaluation of GxS using linear models can be done in different ways. In our study, we opted 

for the use of sex-stratified LMMs to obtain estimates of sex-specific genetic effects across 

the genome, which we later compared using a t test, as described in section 2.2.4. Another, 

more direct way of assessing GxS is to include an interaction term within a linear model (Eq. 

47, section 2.2.5.1). To ensure that this method and the one employed in this study did not 

differ greatly in the evaluation of GxS, as well as to provide a further sanity check to ensure 

our results were not the product of unforeseen technical artifacts, we fit LMs including a GxS 

term, asserting the presence of GxS if βGxS ≠ 0. This model was termed Model 1. 

 

In our original analysis, scale differences between males and females were accounted for by 

normalising sex-specific genetic effects and their corresponding standard errors by the sex-

specific standard deviation of each phenotype. Other methods have been used in the 

literature to account for this, including inverse rank normalisation (section 2.2.5.1) of 
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phenotypes within sex prior to association testing, as was done by Winkler et al and other 

GIANT efforts194. Thus, as another sanity check we fit LMs using inverse rank normalised 

phenotypes, which returned sex-stratified genetic effect estimates, and then assessed 

dimorphism in association as was done originally (section 2.2.4). This framework was termed 

Model 2.  

 

The results of our technical replication using both models are shown in Table 8 (Model 1) and 

Table 9 (Model 2), where the percentage of our original lead sdSNPs that were also found to 

be dimorphic in the new models, at different significance cut-offs, is shown for traits that 

presented the largest number of lead sdSNPs in our original analysis. We found good 

replication for both models, all traits showing at least 80% replication considering a q < 0.05 

threshold, except nucleated red blood cell percentage in Model 2 (Table 9). This trait presents 

a very low heritability estimate in both sexes, only being significantly heritable in males. 

Furthermore, when calculating the proportion of heritability that our sdSNPs account for 

(section 2.2.6.1), we found that this estimate surpasses 1, indicating that these SNPs are 

likely false positives and that their genetic effects are not accurate. Because of this, this trait 

was discarded from future discussion. For the remaining traits, given the same threshold as 

was originally used for assessing sexual dimorphism (p < 1 x 10-8), we observe a large decrease 

in sdSNP numbers – this is, however, not surprising, given the large reduction in sample size 

employed for the fitting of Model 1 and Model 2 as opposed to our original models (unrelated 

White British vs all White Europeans in UK Biobank).  

 

Table 8. Percentage of lead sdSNPs that are replicated in Model 1 at different significance threshold cut-
offs, for traits with most lead sdSNPs. For reference, number of lead sdSNPs also shown. 

 

Trait 
Lead 

sdSNPs 
% p < 
0.05 

% p < 
0.01 

% p < 
0.001 

% p < 
10-5 

% p < 
10-8 

% q < 
0.05 

% q < 
0.01 

Waist-hip ratio 100 100 100 100 86 38 100 100 

ankylosing spondylitis 18 100 100 100 100 83.33 100 100 

Standing height 18 100 83.33 77.78 5.56 0 100 83.33 

gout 16 100 100 100 100 75 100 100 

Nucleated red blood cell % 16 100 100 100 100 62.5 100 100 

Trunk fat percentage 15 100 100 93.33 46.67 6.67 100 100 

Hip circumference 12 100 100 100 66.67 0 100 100 

Whole body water mass 12 100 100 83.33 33.33 0 100 100 

Trunk predicted mass 12 100 100 91.67 58.33 0 100 100 

Trunk fat-free mass 12 100 100 91.67 58.33 0 100 100 

hypothyroidism/myxoedema 11 100 100 100 100 63.64 100 100 

Arm predicted mass (left) 10 100 100 80 20 0 100 100 

Impedance of arm (left) 10 100 100 80 60 10 100 100 

Impedance of whole body 10 100 100 90 70 20 100 100 

Impedance of arm (right) 10 100 100 70 60 10 100 100 

Arm fat-free mass (left) 10 100 100 70 20 0 100 100 

Basal metabolic rate 10 100 100 80 30 0 100 100 

Disorders of min. metabolism 9 100 100 100 100 77.78 100 100 

Mean platelet volume 9 100 100 100 44.44 22.22 100 100 
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Table 9. Percentage of lead sdSNPs that are replicated in Model 2 at different significance threshold cut-
offs, for traits with most lead sdSNPs. For reference, number of lead sdSNPs also shown. Results for 
nucleated red blood cell percentage flagged as potential false positives.  
 

Trait 
Lead 

sdSNPs 
% p < 
0.05 

% p < 
0.01 

% p < 
0.001 

% p < 
10-5 

% p < 
10-8 

% q < 
0.05 

% q < 
0.01 

Waist-hip ratio 100 100 100 100 96 59 100 100 

ankylosing spondylitis 18 100 100 100 100 83.33 100 100 

Standing height 18 100 100 83.33 50 5.56 100 100 

gout 16 100 100 100 100 81.25 100 100 

Nucleated red blood cell % 16 12.5 0 0 0 0 0 0 

Trunk fat percentage 15 100 100 100 73.33 13.33 100 100 

Hip circumference 12 100 100 100 83.33 16.67 100 100 

Whole body water mass 12 100 100 91.67 66.67 16.67 100 100 

Trunk predicted mass 12 100 100 100 83.33 41.67 100 100 

Trunk fat-free mass 12 100 100 100 91.67 41.67 100 100 

hypothyroidism/myxoedema 11 100 100 100 100 63.64 100 100 

Arm predicted mass (left) 10 100 100 100 60 20 100 100 

Impedance of arm (left) 10 100 100 100 70 30 100 100 

Impedance of whole body 10 100 100 100 90 40 100 100 

Impedance of arm (right) 10 100 100 90 60 50 100 100 

Arm fat-free mass (left) 10 100 100 90 60 10 100 100 

Basal metabolic rate 10 100 100 90 50 10 100 100 

Disorders of min. metabolism 9 100 100 100 100 77.78 100 100 

Mean platelet volume 9 100 100 100 66.67 22.22 100 100 

 

2.3.4.3. Replication with randomisation analysis 

 

As a further sanity check, we performed a randomised analysis. As such, males and females 

were assigned to two random groups (Group 1 and Group 2) in an effort to provide further 

evidence that our results were not the product of an unknown artifact. By randomising sex 

we would expect to find no GxS beyond what would be expected by chance when comparing 

genetic effects between our randomised groups. We performed our randomised analysis for 

variants across chromosomes 1 and 6, for which many genetic associations have been found.  

 

As described in the Methods (section 2.2.5.3), the GWAS for the randomised groups was done 

using the residuals that had been estimated for a sex-agnostic fitting of the phenotypes 

against the covariates, as opposed to the sex-specific fitting that we had performed in our 

original study. Thus, to make sure that this wasn’t altering our results, besides calculating 

genetic effects for our new random groups, we also proceeded to re-calculate genetic effects 

for males and females using the sex-agnostic residuals. In this section we will refer to our 

original results as “Original”, while the new sex comparison will be termed “Females vs 

Males” and the results for our randomised groups will be termed “Group 1 vs Group 2”.   

 

The Females vs Males comparison replicated our Original analysis very well (with an average 

percentage of 80.9% with SD 35.6% of our original sdSNPs, non-LD clumped, also being found 
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in the new analysis at a p < 1 x 10-8 threshold), while the Group 1 vs Group 2 on average showed 

no sexual differences across SNPs for both chromosomes and across traits (Table 10). qq 

plots were also obtained to compare the distribution of p-values for the Females vs Males and 

the Group 1 vs Group 2 analyses, and a clear deviation from the null hypothesis is seen across 

all traits considered for the former but not the latter (shown in Figure 39 is 

malabsorption/coeliac disease, the trait with the largest amount of sdSNPs pre-LD clumping 

in chromosomes 1 and 6).  
 

Table 10. Randomisation replication result. “OG” column shows number of genetic variants that were 
found to be sdSNPs at a p < 1 x 10-8 threshold in our original analysis of chromosomes 1 and 6. “FvM” and 
“G2vG2” columns shows the same as “OG” but using our genetic effect estimates obtained from sex-
agnostic residuals for males and females, and Group 1 and Group 2 respectively. “OG + FvM” indicates 
number of genetic variants that were found to be sdSNPs in both our original analysis and when re-
running males vs females with the sex-agnostic residuals. “OG + G1vG2” indicates number of genetic 
variants that were found to be dimorphic in both our original analysis and when comparing Group 1 and 
Group 2. Finally, “Prop FvM” and “Prop G1vG2” indicate (OG + FvM column) / OG and (OG + G1vG2 
column)/OG respectively.  

Trait OG FvM G1vG2 OG + 
FvM 

OG + 
G1vG2 

Prop 
FvM 

Prop 
G1vG2 

malabsorption/coeliac disease 925 1222 0 925 0 1 0 

Waist-hip ratio 756 783 1 755 0 1 0 

ankylosing spondylitis 620 641 0 620 0 1 0 

hyperthyroidism/thyrotoxicosis 616 1049 0 616 0 1 0 

Disorders of mineral metab. 552 565 0 552 0 1 0 

hypothyroidism/myxoedema 146 793 0 145 0 0.99 0 

Haematocrit percentage 145 159 0 145 0 1 0 

Haemoglobin concentration 119 145 0 119 0 1 0 

Impedance of arm (left) 103 99 0 95 0 0.92 0 

K90 Intestinal malabsorption 101 330 0 101 0 1 0 

Impedance of arm (right) 90 112 0 84 0 0.93 0 

Impedance of whole body 65 56 5 51 0 0.78 0 

Other diseases of the digestive sys. 58 139 0 58 0 1 0 

 

 

 
Figure 39. Comparison of expected to observed -log10 p-values of genetic effect comparison statistics 
for the malabsorption/coeliac disease trait, and for the Female vs Male comparison on the left and the 
Group 1 vs Group 2 comparison on the right.  
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We observed that a larger number of sdSNPs were found at the same significance threshold 

in the Females vs Males analysis than in our Original analysis for several traits (Figure 40 

shows -log10(p-value) comparison for malabsorption/coeliac disease). To make sure that 

these signals corresponded to the same loci and were just the result of inflated p-values of 

nearby SNPs in LD, we obtained Manhattan plots comparing the Female vs Male analysis to 

our Original analysis, determining that indeed this was the case. The Manhattan plot 

comparing these results for hypothyroidism, which presented one of the largest differences 

in sdSNP numbers, with 146 sdSNPs in our original analysis and 793 in the Females vs Males 

analysis, is shown in Figure 41. A potential reason behind the inflated p-values found in the 

Females vs Males analysis versus our Original analysis could be the effect of sampling bias, 

as described by Pirastu et al225, where the authors state that including sex as a covariate in 

GWAS studies could bias effect estimates of individual variants if reporting bias is present in 

a given cohort. 

 
 
Figure 40. Comparison of our original -log10 p-values for our sexual comparison statistical test versus 
the -log10 p-values obtained when comparing Males and Females and Group 1 and Group 2 in the 
randomisation effort.   

 
 
Figure 41. Mirrored Manhattan plot (termed Miami plot) comparing sex comparison log10 p-values for our 
original analysis (in blue) and the Female vs Male analysis (in pink), for hypothyroidism. Chromosome 1 
is shown on the left, and Chromosome 6 on the right.  
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2.3.4.4. Logistic mixed models (LogMMs) 

 

As described in section 1.2.3.5, logistic models have classically been the preferred choice 

when analysing binary traits. This, along with the limitations of LMMs when analysing binary 

traits with a large case-control imbalance, the addressal of which was the conservative 

threshold of MAF 10% in our binary trait analysis, led us to assess how LogMMs would fare in 

comparison in the search for GxS across the genome, also considering the limitations of 

these frameworks.  

 

As such, in order to offer further evidence that (i) our analyses using LMMs unlikely returned 

false positives/that LogMMs return similar results, and (ii) that our methodology involving a 

MAF 10% filter does not lead us to miss many potential sdSNPs, we proceeded to repeat our 

sex-stratified GWAS for binary traits which were found to present at least 1 sdSNP (a total of 

42 traits) using REGENIE61 (section 2.2.5.4), which fits a LogMM with Firth correction to 

account for case-control imbalance.  

 

We found very good concordance when comparing sex-comparison p-values across all 

sdSNPs (sex comparison p-value < 1 x 10-8) reported from both the REGENIE LogMMs and our 

original LMMs for 40 of the 42 traits (r = 0.97, p = 1.41 x 10-74, Figure 42). The remaining two 

traits, ankylosing spondylitis and disorders of mineral metabolism, still presented sdSNPs at 

the same loci as was originally reported (human leukocyte antigen, HLA, region, Figure 43), 

the correlation likely being lower due to the linear FOA providing less accurate estimates 

when MAFs are low and genetic effects are large217. When comparing sex-comparison p-

values corresponding to sdSNPs from all 42 traits, a second trend outside the x = y line is 

seen, described by sdSNPs found in the aforementioned 2 traits (r = 0.78, p = 4.08 x 10-47, 

Figure 42). 

 

 
Figure 42. Scatter plots of our sex comparison test p-values for sdSNPs found either in the LogMM (using 
REGENIE) or the LMM (using DISSECT) effort. The x axis represents the sex-comparison p-value from our 
original LMMs, and the y-axis the sex-comparison p-value from the REGENIE LogMMs. Each point 
represents an sdSNP, declared so by either our LogMM replication or our original LMMs (the latter filtered 
by MAF 10%). Colour represents the type of trait the sdSNP was found in. Plot on left: Shows sdSNPs from 
all traits. Plot on the right: 40 of the 42 traits are represented (all but ankylosing spondylitis and disorders 
of mineral metabolism).  
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Figure 43. Mirrored Manhattan plots for ankylosing spondylitis and disorders of mineral metabolism. The 
x axis corresponds to the genomic position in the autosomal genome, and the y axis to the log10 p-value 
of the statistical test for which the null hypothesis is that no difference exists between the sexes. The 
top plot (-log10 p-values) represents results for REGENIE’s LogMM, and the bottom plot (log10 p-values) 
represents results for DISSECT’s LMM.   

 

 
 
Figure 44. Scatterplot comparing number of sdSNPs found fitting LMMs with DISSECT and applying a 
MAF 10% filter (x axis) and the number of sdSNPs found when fitting LogMMs with REGENIE (y axis). Black 
line corresponds to x = y, while blue line is the regression of the LMM sdSNP output to the LogMM sdSNP 
output. Each point corresponds to a binary trait, with a total of 42 considered.   
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The number of sdSNPs reported by the REGENIE LogMMs and our original LMMs also 

presented a very large correlation (r = 0.9, p = 9.20 x 10-16) across all 42 traits, even though 

sdSNPs declared from LMMs were filtered by MAF 10%,  

Figure 44). Furthermore, the total number of sdSNPs across traits found with our LogMM 

analysis amounted to a total of 98, compared to the 88 reported in our original results.  

 

As a conclusion, we believe that our results provide evidence of the two points that we set out 

to address: (i) that our LMM and LogMM results are very similar, and thus false positives 

stemming from the use of a linear model on imbalanced case-control data are unlikely, and 

that (ii) by using LogMMs without filtering by MAF 10% the number of sdSNPs found across 

traits did not increase substantially, and as such our original reported results still represent 

an accurate picture of the sexual differences found in the data considered.  

 

2.3.4.5. Case-control ratio and heritability on liability scale 

 

Heritability on the liability scale is a function of trait prevalence, and the effect of a large 

case-control imbalance on its estimation is unknown. Thus, as a sanity check, in order to 

assess the effect of the case-control ratio on heritability estimates on the liability scale we 

ran simulations (section 2.2.5.5). Briefly, using the males from the unrelated white British UK 

Biobank subset, we obtained heritability estimates for a case/control height trait, where 

individuals were declared “tall” or “not tall” based on whether their height fell under or over 

a determined percentile. Simulations were run considering a sample size of 75,000 and 7 

different height percentiles: 70th, 80th, 90th, 95th, 97.5th, 99th, and 99.9th. Results of the 

simulations are found in Table 11 and Figure 45. Our results show heritability estimate 

confidence interval (CI) overlap for all percentiles save the 0.7 and the 0.8 percentiles. 

Therefore, our results do not show a trend between higher case-control imbalance and less 

accurate heritability estimates on the liability scale. We can, however, observe how CI 

estimates grow considerably larger with a decrease in the number of cases, as is to be 

expected. Thus, while it can be said that the lower the sample size/case number the less 

accurate the estimate, we do not believe h2 on the liability scale is particularly affected by 

case-control imbalance. 

 

Table 11. Simulations for effect of case-control imbalance on heritability estimates on the liability scale. 
Includes, for each height percentile, the number of cases and controls fitted in each simulation, the 
heritability estimate on the observed scale (h2 obs) and on the liability scale (h2 liab) and its standard 
error, also on the observed and on the liability scale (h2 obs SE and h2 liab SE). Sample and population 
prevalence used in the heritability/SE on the liability scale calculations indicated. Non-binary estimate 
(NB) is on the observed scale only. 

Percentile Cases Controls h2 obs h2 liab h2 obs SE  h2 liab SE Prev 
sample 

Prev 
pop 

0.7 25108 49892 0.409 0.668 0.006 0.010 0.335 0.296 

0.8 15919 59081 0.360 0.663 0.006 0.012 0.212 0.165 

0.9 9852 65148 0.289 0.621 0.006 0.014 0.131 0.080 

0.95 7187 67813 0.247 0.587 0.006 0.015 0.096 0.045 

0.975 3880 71120 0.163 0.575 0.006 0.022 0.052 0.024 

0.99 1351 73649 0.086 0.646 0.006 0.044 0.018 0.009 

0.999 130 74870 0.011 0.566 0.005 0.249 0.002 0.001 

NB - - 0.612 - 0.006 - - - 
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Figure 45. Barplot showcasing results of simulations to assess effect of case-control imbalance on 
heritability on the liability scale. Height of bars represents the estimates of heritability on the liability 
scale for a binarised height trait (tall/not tall) when considering a range of different height percentiles to 
assess a persons’ height category (x axis). “NB” corresponds to the non-binary simulation that was 
performed as control, and height of bar corresponds to heritability on the observed scale. Black vertical 
bars indicate 95% confidence intervals for each heritability estimate (h2 +/- 1.96SE. Number stated above 
each bar indicates the number of cases (“tall” individuals) that were included in the model. Horizontal 
colour block represents 95% confidence interval for non-binary heritability estimate. 
 

2.3.5. PGS analysis 

 

Current efforts to predict phenotypes rely on genetic effects estimated in sex-agnostic 

models. However, if sufficient differences in genetic architecture exist between males and 

females, sex-specific genetic effects, calculated through sex-stratified GWAS efforts, could 

lead to the potential improvement of these predictions, in turn providing estimates further 

tailored to each individual based on their sex. As such, we studied whether genetic prediction 

could potentially be improved using sex-stratified models. 

 

To this end, we estimated genetic effects in a training population of 300,000 UK Biobank 

white British individuals in two different ways: (i) including both sexes in the model (obtaining 

sex-agnostic effects) and (ii) using each sex in a separate model (obtaining sex-specific 

effects, section 2.2.6). We then used a testing population consisting of 43,884 white British 

individuals to compare the performance of these two models in three different ways using 

PGSs: (i) obtaining predictions from the sex-agnostic effects (agnostic PGS), (ii) obtaining 

predictions using the female effects applied to females and the male effects applied to males 

(same PGS), and (iii) obtaining predictions using the female effects to predict in males and 

vice versa (opposite PGS). Prediction accuracy was measured as the correlation between or 

the area under the curve for our prediction and the true phenotype value for non-binary and 

binary traits respectively. Only lead sdSNPs were used in our PGS calculations. Due to the 

general low number of sdSNPs across traits, we focused our comparison on phenotypes with 

at least 10 lead sdSNPs. These included 7 non-binary traits (WHR, standing height, trunk fat 

percentage, hip circumference, whole body water mass, trunk predicted mass, and trunk fat-

free mass) and 3 binary traits (ankylosing spondylitis, gout, and hypothyroidism). 
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Although of the 7 non-binary traits tested only WHR showed a moderately significant 

difference in prediction accuracy (correlation comparison p = 0.059) between the same PGS 

and agnostic PGS in males (Table 12), all 7 traits consistently presented a larger prediction 

accuracy when comparing the sex-stratified model to the agnostic model, suggesting that 

the stratified model captures the effect sizes better than the agnostic model (Figure 46). On 

the other hand, we consistently observed smaller prediction accuracies when the stratified 

model was used to perform predictions on the opposite sex (opposite PGS). We did not 

observe any consistent prediction improvements for the 3 binary traits considered (Table 13).  

 
Table 12. Table containing correlation coefficients between phenotype and PGS values (for the same, 
agnostic, and opposite PGS, in males and females separately) using the unrelated white British subset. 
Traits included are non-binary with over 10 lead sdSNPs. Last two columns (labeled “S v A”) correspond 
to the p-values of the comparison between correlations found between the same and the agnostic PGS 
to the phenotype, in females and in males. 

 Females (r) Males (r) S v A 

Trait Opposite Same Agnostic Opposite Same Agnostic 
SA Dif 
PV F 

SA Dif 
PV M 

Waist-hip ratio 0.014 0.139 0.137 0.003 0.038 0.010 0.749 0.059 p = 0.008 p < 0.001 p < 0.001 p = 0.774 p < 0.001 p = 0.342 

Standing 
height 

0.030 0.053 0.049 0.013 0.042 0.031 
0.549 0.482 p < 0.001 p < 0.001 p < 0.001 p = 0.220 p < 0.001 p = 0.003 

Trunk fat 
percentage 

-0.007 0.040 0.031 0.008 0.024 0.018 
0.197 0.695 p = 0.191 p < 0.001 p < 0.001 p = 0.467 p = 0.027 p = 0.096 

Hip 
circumference 

0.003 0.048 0.038 -0.007 0.012 0.000 
0.200 0.391 

0.640 p < 0.001 p < 0.001 p = 0.529 p = 0.238 p = 0.976 

Whole body 
water mass 

0.003 0.031 0.022 0.004 0.035 0.030 0.218 0.751 p = 0.620 p < 0.001 p < 0.001 p = 0.729 p = 0.001 p = 0.004 

Trunk 
predicted 

mass 

0.022 0.039 0.031 0.051 0.068 0.067 0.259 0.893 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001 

Trunk fat-free 
mass 

0.022 0.039 0.031 0.050 0.068 0.066 
0.256 0.893 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001 

 

 
Table 13. Table containing AUCs for phenotype vs PGS values ROC curves (for the same, agnostic, and 
opposite PGS, in males and females separately) using the unrelated white British subset. Traits included 
are binary with over 10 lead sdSNPs. Last two columns correspond to the p-values of the comparison 
between AUCs found between the same and the agnostic PGSs to the phenotype, in females and in males. 

 Females (AUC) Males (AUC) S v A 

Trait Opposite Same Agnostic Opposite Same Agnostic SA Dif 
PV F 

SA Dif 
PV M 

hypothyroid./ 
myxoedema 

0.597 0.596 0.597 0.603 0.604 0.602 0.020 0.387 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001 

ankylosing 
spondylitis 

0.687 0.686 0.685 0.741 0.746 0.743 
0.884 0.514 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001 

gout 
0.579 0.597 0.583 0.603 0.630 0.632 

0.548 0.482 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001 
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Figure 46. Correlation coefficients of PGS to phenotype value, for the same, agnostic, and opposite PGS 
estimates, across 7 non-binary traits with over 10 lead sdSNPs, for males on the left and females on the 
right.  

 

A limitation of our approach is the overlap between our discovery data set (used to establish 

sdSNPs) and our training and testing data sets in our prediction analysis. As such, we 

repeated our analysis with independent data sets for WHR (section 2.2.6), where models were 

fit considering the data from around 408,000 individuals to establish sdSNPs, and that of 

another 42,000 was used to assess predictive accuracy. We found that the same and agnostic 

PGS had similar predictive ability in females (r = 0.132 with p = 1.85 x 10-98 and r = 0.133 with 

p = 4.02 x 10-99 respectively), the same PGS surpassing the agnostic for males (r = 0.038 with 

p = 7.91 x 10-8 and r = 0.024 with p = 9.97 x 10-4 respectively), however the differences in 

predictive power were not significantly different in either case (correlation comparison p > 

0.05).  

 

A possible explanation for the modest increase in predictive power found when using our sex-

stratified models, taking observed differences in heritability between the sexes into account, 

is the potential existence of large numbers of SNPs of small dimorphic effect across the 

genome. These small effects could remain undetected in a GWAS due to lack of statistical 

power for their detection, and as such are not being included in our predictions. This 

reasoning parallels the missing heritability problem89 (discussed in section 1.3.2), where the 

predicted heritability of traits cannot be explained by the detected GWAS associations, and 

which is hypothesised to be due to the existence of large amounts of variants of small effect 

that are yet to be found. Consistent with this theory, we found that our sdSNPs generally 

accounted for a very low percentage of the sex-specific heritability for the considered traits 

(Table 14), which ranged from 0.18% to 0.65%. WHR was the exception, for which our sdSNPs 

accounted for 12.10% and 1.70% of the female and male specific heritability, respectively, 

which could be due to the substantially larger number of sdSNPs identified. This could also 

be, however, due to sdSNPs having a generally small effect on the phenotypes considered.  
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Table 14. Proportion of heritability explained by sdSNPs. For each of the non-binary traits considered in 
the PGS analysis, the total number of lead sdSNPs is indicated, as well as heritability estimates for males, 
females, and for the non-sex stratified trait (h2 both). Also shown is the heritability explained by the lead 
sdSNPs for both males and females, along with the fraction of the total heritability that this represents 
(h2 females sdSNPs/h2 females = h2 females sdSNPs prop, and the same for males). 

Trait 
Lead 

sdSNPs h2 M h2 F h2 all 
h2 F 

sdSNPs 
h2 M 

sdSNPs 

h2 F 
sdSNPs 

prop 

h2 M 
sdSNPs 

prop 

Waist hip ratio 100 0.190 0.234 0.180 0.028 0.003 0.121 0.017 

Whole body water mass 12 0.364 0.327 0.314 0.001 0.001 0.002 0.002 

Trunk fat percentage 15 0.247 0.255 0.226 0.001 0.001 0.006 0.004 

Trunk fat-free mass 12 0.381 0.320 0.317 0.001 0.002 0.003 0.006 

Trunk predicted mass 12 0.379 0.318 0.316 0.001 0.002 0.003 0.007 

Hip circumference 12 0.251 0.252 0.229 0.001 0.001 0.005 0.003 

Standing height 18 0.518 0.517 0.496 0.002 0.001 0.003 0.002 

 

2.3.6. Masking of genetic effects 

 

As mentioned in the previous section, most GWAS efforts look to assess associations between 

variants and phenotypes by means of sex-agnostic studies. In the previous section, we 

covered a potential consequence of sex-agnostic frameworks with an analysis of their effect 

on predictive accuracy as opposed to sex-stratified analyses. Another potential consequence 

of sex-agnostic frameworks is the mischaracterisation of sex-specific genetic architecture. 

For example, a situation could arise in which (i) a locus possesses a differentially signed 

genetic effect in each sex or (ii) a genetic variant shows a larger effect in one of the sexes 

and a small or no effect in the other. In any of these situations, the power of detecting the 

variant will be reduced in a non-stratified analysis, and the variant effect size misestimated 

in both sexes. We term this phenomenon “masking” of a genetic effect (Figure 47). 

 

 
 

Figure 47. Schematic representation of masking concept.  

 

To assess masking effects, we evaluated the total number of genetic variants that were found 

to be significantly associated with a trait in a sex-stratified GWAS (i.e. associated with a trait 

in males and/or females), but that were not significantly associated in a sex-agnostic model. 

We performed this analysis on the 530 traits in our study, considering a genetic variant as 

potentially masked if it was significant in females and/or males but not for the mixed 

population at a p < 1 x 10-8 threshold. We did this in two different ways: (i) assessing which 

variants were potentially masked across the whole genome prior to LD clumping, and (ii) LD 
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clumping sex-specific significant variants, then assessing which of these were potentially 

masked. This was done to ensure our results were not the result of random fluctuation, that 

is, that false positives in LD with causal variants were not being detected.  

 

When assessing potential masking on non-LD clumped sex-specific hits (p-value of 

association < 1 x 10-8) we found that 127/446 (28.48%) binary traits and 82/84 (97.62%) non-

binary traits had at least one potentially masked genetic variant across the autosomal 

genome. The traits that presented the largest number of masked SNPs across the genome are 

displayed in Table 15, and their distribution in Figure 48, WHR being the trait with the most 

masked genetic variants post-LD clumping. 

 
Figure 48. Distribution of number of masked genetic variants found after LD clumping in binary (left) and 
non-binary (right) traits.  

 

Table 15. Traits with most masked SNPs. Includes for each trait considered in analysis, the number of 
variants found to present a significant association to the trait at a p < 1 x 10-8 threshold in a sex-stratified 
model for females (F), males (M), and in a non-stratified model (All). This is followed by the number of 
variants that were found to be potentially masked, and the number of independent potentially masked 
variants (Masked LD).  
 

Trait F M All Masked Masked LD 

Waist-hip ratio 18413 3032 28095 4356 319 

Arm predicted mass (right) 33674 28094 78142 2926 224 

Arm fat-free mass (right) 33781 27852 78018 2918 215 

Standing height 130240 94769 262549 1609 209 

Trunk predicted mass 36268 42564 103499 1985 186 

Trunk fat-free mass 36587 42825 104226 2005 183 

Arm predicted mass (left) 29942 28208 79448 1920 172 

Whole body fat-free mass 37973 36181 100170 1690 167 

Whole body water mass 37904 36181 99784 1690 160 

Arm fat-free mass (left) 30034 28632 79758 1865 159 

Basal metabolic rate 31548 31370 90334 1583 152 

Leg fat-free mass (left) 31019 22858 78570 1265 143 

Leg predicted mass (left) 30972 22862 78684 1263 142 

Leg fat-free mass (right) 31136 24127 81158 1253 131 

Leg predicted mass (right) 31131 24155 81179 1260 128 

Sitting height 66964 58758 148492 848 120 

Impedance of arm (right) 22642 16948 63907 1708 118 

Impedance of arm (left) 22365 19094 62518 1419 115 

Red blood cell (erythrocyte) count 37617 27067 73004 1003 114 
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As stated previously, we also performed this analysis by LD clumping the results from our 

sex-stratified models prior to assessing significance in a sex-agnostic model across traits. 

Using this methodology, a total of 176 traits, 98/446 (21.97%) binary and 78/84 (92.86%) non-

binary, were found to present at least one potentially masked genetic variant, the distribution 

of which is shown in Figure 49, and results shown in Table 16. Whilst we found a high 

correlation with our original results (r = 0.96, p = 4.59 x 10-299, Figure 50), numbers of 

potentially masked variants found decreased by around half for each trait (regression slope 

= 0.49).  This could suggest that our original results contained false positives. Thus, to be 

conservative, these are the results that will discussed from now on.  

 

 
Figure 49. Histogram of number of masked genetic variants found post LD clumping in binary (left) and 
non-binary (right) traits, considering framework where masking is assessed after LD-clumping sex-
specific hits. 

 

Table 16. Traits with most masked SNPs, when considering masked variants after LD-clumping sex-
specific hits. Includes for each trait considered in the analysis, the number of variants found to present 
a significant association to the trait at a p < 1 x 10-8 threshold in a sex-stratified model for females (F), 
males (M), and in a non-stratified model (All). The number of lead SNPs for each of the stratified models 
is also included (F LD, M LD), followed by the number of these that were found to be potentially masked 
(lead SNP in either the male or female models, but not significantly associated with the trait in a non-
stratified model, Masked LD).  
 

Trait F M F LD M LD All Masked LD 

Waist-hip ratio 18413 3032 483 89 28095 174 

Arm fat-free mass (right) 33781 27852 760 642 78018 106 

Arm predicted mass (right) 33674 28094 765 643 78142 102 

Trunk predicted mass 36268 42564 852 1044 103499 88 

Arm predicted mass (left) 29942 28208 663 664 79448 86 

Trunk fat-free mass 36587 42825 858 1047 104226 84 

Arm fat-free mass (left) 30034 28632 677 660 79758 82 

Standing height 130240 94769 3272 2502 262549 81 

Whole body fat-free mass 37973 36181 858 885 100170 77 

Whole body water mass 37904 36181 857 869 99784 73 

Leg predicted mass (left) 30972 22862 683 536 78684 62 

Basal metabolic rate 31548 31370 719 752 90334 59 

Leg fat-free mass (left) 31019 22858 681 532 78570 57 

Leg fat-free mass (right) 31136 24127 700 584 81158 56 

Impedance of whole body 29285 24154 589 492 82219 54 

Trunk fat percentage 14901 8211 318 201 43863 53 

Impedance of arm (right) 22642 16948 466 379 63907 52 

Leg predicted mass (right) 31131 24155 702 589 81179 52 

Red blood cell (erythrocyte) count 37617 27067 1005 721 73004 49 
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Figure 50. Comparison of number of potential masked SNPs found when LD clumping sex-specific model 
SNPs with p < 1 x 10-8 prior to assessing significance in sex-agnostic model (“LD Pre”, y-axis) and the 
number of potential masked SNPs found when LD clumping after having assessed the significance of 
sex-specific SNPs with p < 1 x 10-8 in a sex-agnostic model (“LD Post”, x-axis). Outlier is nucleated red 
blood cell percentage, trait which was removed from our discussion (not shown in tables in this section) 
given likely false positive results, as discussed earlier in the chapter (section 2.3.4.2). 

 

One of our hypotheses was that masked variants could arise as a result of opposite signs in 

genetic effects in sex-stratified models. We found that, on average, the percentage of the 

potentially masked variants that presented opposite signs in each sex was 20.03% (SD 

36.25%) in binary traits and 5.34% (SD 9%) in non-binary traits (Figure 51a, Table 17). This may 

indicate that for a small percentage of traits opposite signed genetic effects are leading to 

masking. However, this could also be the result of smaller sample sizes leading to false 

positives in one sex but not the other. Our second hypothesis regarding masked variants 

involved the presence of genetic variants showing a larger effect in one of the sexes and a 

small or no effect in the other. This, along with the aforementioned possibility of opposite 

signed variants leading to masking, could thus also lead to a genetic variant presenting a 

significantly different genetic effect in males and females. In turn, this difference could be 

reflected in the form of a detected sdSNP. As such, we analyzed the relationship between 

potentially masked SNPs and sdSNPs. We found that a total of 93 traits (33 binary and 60 non-

binary) presented at least one sdSNP and one potentially masked variant. We also found a 

significant correlation between the number of potentially masked variants and the number 

of sdSNPs (r = 0.624, p = 9.793 x 10-8) for non-binary traits, as shown in Figure 52. On average, 

the percentage of masked variants that presented sex differences in binary traits was 3.83% 

(SD 18.97%), and 1.39% (SD 2.22%) in non-binary traits (Figure 51b, Table 17). These low 

percentages could indicate that masked variants may have different effects on the two sexes, 

just not surpassing our significance threshold to be considered sdSNPs. On the other hand, 

42 of our 103 traits with at least one sdSNP had one of these sdSNPs potentially masked and 

on average, the percentage of sdSNPs that were potentially masked in binary traits was 

12.30% (SD 30.59%) and 18.44% (SD 21.99%) in non-binary traits (Figure 51c, Table 17). This 

could suggest that a large number of potentially interesting variants that present a difference 

in genetic effect between the sexes are being missed in sex-agnostic studies.  
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(a) 

 

(b) 

 

(c) 

 
 

Figure 51. For binary (left) and non-binary (right) traits: (a) Histogram of proportion of masked SNPs that 
presented opposite sign effects between the sexes, (b) histogram of proportion of masked SNPs that 
were also found to possess significantly different genetic effects between the sexes (p < 1 x 10-8 
threshold), and (c) histogram of the proportion of sexually dimorphic SNPs (p  < 1 x 10-8 threshold, LD-
clumped) that were found to be masked. All plots consider only traits with at least one potentially masked 
variant. 

 

 
Figure 52. Scatterplot of number of sdSNPs versus number of masked variants (p < 1 x 10-8, and LD 
clumped within sex), for binary (left) and non-binary (right) traits with at least one sdSNP and one 
potentially masked variant. 
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Table 17. Characteristics of our potentially masked variants, including the number of the latter that were 
found to also be sdSNPs, the proportion that present this characteristic, the number of potentially 
masked variants that present opposite signed effects in males and females and their proportion, and the 
number of potentially masked variants that were found to be significant in just one sex and their 
proportion. The final set of columns (highlighted in pink) describe the masked characteristics of sdSNPs, 
including the number of lead sdSNPs found for the trait considered, the number of lead sdSNPs that were 
found to be potentially masked, and the proportion of all lead sdSNPs that these represent.  
 

Trait Masked 
Masked 

+ 
sdSNP 

Masked 
+ 

sdSNP 
Prop 

Masked 
+ Opp. 

Sign 

Masked 
+ Opp. 

Sign 
Prop 

Lead 
sdSNPs 

Lead 
sdSNPs 

+ 
Masked 

Lead 
sdSNPs 

+ 
Masked 

Prop 
Waist-hip ratio 174 23 0.132 69 0.397 100 26 0.260 

Arm fat-free mass (right) 106 1 0.009 2 0.019 5 1 0.200 

Arm predicted mass (right) 102 1 0.010 1 0.010 4 1 0.250 

Trunk predicted mass 88 2 0.023 5 0.057 12 3 0.250 

Arm predicted mass (left) 86 3 0.035 3 0.035 10 3 0.300 

Trunk fat-free mass 84 2 0.024 4 0.048 12 3 0.250 

Arm fat-free mass (left) 82 1 0.012 3 0.037 10 2 0.200 

Standing height 81 2 0.025 3 0.037 18 1 0.056 

Whole body fat-free mass 77 1 0.013 4 0.052 8 1 0.125 

Whole body water mass 73 2 0.027 4 0.055 12 3 0.250 

Leg predicted mass (left) 62 1 0.016 4 0.065 4 1 0.250 

Basal metabolic rate 59 1 0.017 4 0.068 10 1 0.100 

Leg fat-free mass (left) 57 1 0.018 5 0.088 4 1 0.250 

Leg fat-free mass (right) 56 1 0.018 3 0.054 4 1 0.250 

Impedance of whole body 54 3 0.056 5 0.093 10 3 0.300 

Trunk fat percentage 53 2 0.038 6 0.113 15 3 0.200 

Impedance of arm (right) 52 1 0.019 3 0.058 10 2 0.200 

Leg predicted mass (right) 52 1 0.019 2 0.038 4 1 0.250 

Red blood cell count 49 2 0.041 5 0.102 5 3 0.600 

 

 

2.3.7. Comparison with GeneATLAS 

 

We next proceeded to see how frequent sex differences occur across SNPs that have been 

found to be associated with a given trait in a sex-agnostic effort , or, in other words, how many 

of the genetic variants that are found to be associated with a trait in a GWAS that includes 

both males and females present sexual differences. To do this, we queried the LD clumped 

genetic variants that were associated with each of our 530 traits at a p < 1 x 10-8 significance 

cut-off in a non-sex stratified effort using the UK Biobank data, as reported by the GeneATLAS 

study203.   

 

We found that the number of traits with at least one sdSNP and at least one variant that was 

found to be significantly associated with a given phenotype in a sex-agnostic model 

(hereafter termed genome-wide hit, or just hit) was 101, of which 61 were non-binary and 40 

binary. Considering the binary traits, we found a slight correlation between the number of 

independent genome-wide hits and the number of lead sdSNPs (r = 0.327, p = 0.039, Figure 

53). Interestingly, this correlation was not found for non-binary traits. Furthermore, we found 

that the percentage of hits across the population (at p < 1 x 10-8) that present differences 

between the sexes (also at p < 1 x 10-8) ranges from 0 to 33.33% in binary traits and from 0 to 
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7.89% in non-binary traits. The average percentage was 0.49% (SD 2.70%) in binary traits and 

0.18% (SD 0.96%) in non-binary traits (Figure 54, Table 18). This indicates that sex differences 

are not widespread across GWAS hits in sex-agnostic efforts. If we look at it the other way 

around and question what percentage of sdSNPs are also significantly associated with a 

given trait in a non-sex stratified GWAS, we find that this ranges from 0 to 100% for both 

binary and non-binary traits. On average, this percentage is 67.46% (SD 45.23%) for binary 

traits and 23.10% (SD 29.59%) for non-binary traits (Figure 54, Table 19). This indicates that 

a fair portion of our sexually different variants are also found to be significant in a sex-

agnostic effort, but variability is quite big amongst traits.  

 

 
Figure 53. Scatterplot of number of population-wide hits (LD clumped) and the number of lead SNPs 
across the 101 traits that presented at least one sdSNP and at least one hit, for binary (left) and non-
binary (right) traits.  

 
 

 
Figure 54. For binary (left) and non-binary (right traits: (Top) Histogram of proportion of population-wide 
hits (p < 1 x 10-8) that were found to be dimorphic for binary (left) and non-binary (right) traits. (Bottom) 
Histogram of the proportion of lead sdSNPs that were also found to be significantly associated with the 
trait of interest (both at genome-wide significance level, p < 1 x 10-8). 
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Table 18. Traits with the largest proportion of population-wide hits that were also found to be sdSNPs 
(both at p < 1 x 10-8). “Hits” column indicates number of SNPs that were found to be associated with the 
given trait in a non-sex stratified GWAS, “sdSNPs + Hits” column indicates the number of these 
aforementioned hits that present differences between the sexes in genetic effect, and the “Proportion” 
column indicates “sdSNPs + Hits”/ “Hits”.    

Trait Hits 
sdSNPs + 

Hits 
Proportion 

M70-M79 Other soft tissue disorders 6 2 0.33 
gout 104 19 0.18 
ankylosing spondylitis 192 35 0.18 
K40 Inguinal hernia 49 7 0.14 
M10 Gout 31 4 0.13 
E83 Disorders of mineral metabolism 107 9 0.08 
joint disorder 24 2 0.08 
heart arrhythmia 25 2 0.08 
Waist circumference / Hip circumference 811 64 0.08 
K40-K46 Hernia 46 3 0.07 
M05-M14 Inflammatory polyarthropathies 27 1 0.04 
liver/biliary/pancreas problem 27 1 0.04 
heart/cardiac problem 35 1 0.03 
angina 37 1 0.03 
M72 Fibroblastic disorders 112 3 0.03 
I25 Chronic ischaemic heart disease 81 2 0.02 
I30-I52 Other forms of heart disease 44 1 0.02 
gall bladder disease 49 1 0.02 
hypothyroidism/myxoedema 619 11 0.02 
hyperthyroidism/thyrotoxicosis 231 4 0.02 
K80-K87 Dis. of gallbladder, biliary tract and pancreas 62 1 0.02 

 

 

Table 19. Traits with largest proportion of sdSNPs that are also associated with a given trait in a non-sex 
stratified GWAS effort (p < 1 x 10-8). “Lead sdSNP + Hits” indicates the number of lead sdSNPs that are 
also significantly associated with a given trait in a non-stratified model. The “Proportion” column 
indicates “Lead sdSNP + Hits”/ “Lead sdSNPs”.  

Trait 
Lead 

sdSNPs 

Lead 
sdSNP + 

Hits Proportion 
I20-I25 Ischaemic heart diseases 2 2 1 
gall bladder disease 2 2 1 
E83 Disorders of mineral metabolism 9 9 1 
malabsorption/coeliac disease 3 3 1 
heart/cardiac problem 3 3 1 
hyperthyroidism/thyrotoxicosis 5 5 1 
I25 Chronic ischaemic heart disease 2 2 1 
M72 Fibroblastic disorders 3 3 1 
E03 Other hypothyroidism 1 1 1 
thyroid problem (not cancer) 7 7 1 
E00-E07 Disorders of thyroid gland 2 2 1 
rheumatoid arthritis 1 1 1 
K90 Intestinal malabsorption 2 2 1 
chronic/degenerative neurological problem 1 1 1 
gout 16 16 1 
Immature reticulocyte fraction 2 2 1 
Lymphocyte percentage 1 1 1 
Eosinophil percentage 3 3 1 
M10 Gout 3 3 1 
K80-K87 Dis. of gallbladder, biliary tract and pancreas 1 1 1 
M70-M79 Other soft tissue disorders 2 2 1 
hypothyroidism/myxoedema 11 11 1 
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2.4. Conclusions 
 

Sex differences are widespread across the human phenome, from the way we look to the way 

we present disease or respond to medication (section 1.4.1). The underlying basis for these 

differences is still not fully understood. Whilst efforts in the past have heavily focused on 

well-known sex-specific molecular players, like the sex chromosomes or hormones, and their 

role in the observed phenotypic heterogeneity, the genome, especially the autosomal 

genome, is often overlooked as a potential contributor due to it being shared by the sexes. By 

studying differences in genetic architecture between males and females, making use of gold-

standard quantitative genetics frameworks (Chapter 1), clues into underlying mechanisms 

and differences in cellular networks can be obtained. For example, a recent paper by Sinnott-

Armstrong et al93 shed light on testosterone regulation differences between males and 

females through the study of differences in their corresponding genetic architecture. Whilst 

molecular phenotypes present a more easily interpretable architecture than organismal 

phenotypes, as is highlighted by the aforementioned study, valuable clues into differences 

in sex-specific regulation could still be obtained. In Chapter 2, we have delved into the 

differences in genetic architecture between the sexes in the UK Biobank for a total of 530 

organismal phenotypes from around half a million individuals. This has enabled us to assess 

the genetics of sexual differences at a depth and breadth not previously achieved. 

 

We have found evidence of sex differences for a large number of the traits considered, 

though it be of generally modest magnitude, through a thorough investigation of sex-specific 

genomic parameters. A total of 71 traits were found to present significantly different 

heritability estimates between the sexes, while a total of 69 presented genetic correlations 

between the sexes that significantly differed from one, indicating the presence of genetic 

heterogeneity across these complex traits. Our estimates parallel previous studies at smaller 

scales (reviewed in section 2.1). Furthermore, we found a significant relationship between 

larger differences in heritability and lower genetic correlations between the sexes, as would 

be expected, given both these measures quantify divergence in underlying genetic control. 

In addition, and as was reported by previous studies113,172, we did not find evidence of large 

observable phenotypic differences being associated with lower genetic correlation or larger 

differences in heritability estimates, suggesting that differences in genetic architecture 

could arise regardless of the magnitude of differences between the sexes.  

 

In order to dissect the heterogeneity in genetic control observed and pin-point genetic sites 

that could be differentially associated with the phenotypes considered, sex-stratified GWASs 

were performed, yielding over 100 traits with at least one sdSNP. These traits included those 

of the anthropometric class as well as diseases like gout, ankylosing spondylitis, or 

hypothyroidism. Furthermore, we found that a large percentage of these presented opposite 

signed genetic effects between the sexes, which could suggest the existence of different 

underlying regulatory networks. However, our analyses present great heterogeneity amongst 

the traits considered, suggesting that there is no “one-size-fits-all” pattern across the 

sdSNPs found. When considering non-binary traits, we again found a significant correlation 

between larger sdSNP numbers, lower genetic correlation, and higher heritability differences 

between the sexes, which in turn supports the intuitive interpretation of a larger presence of 
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GxS being consistent across heritability, genetic correlation, and genome-wide genetic effect 

estimates. No significant relationship was found between number of sdSNPs and phenotypic 

fold difference between the sexes. The aforementioned relationships were not observed for 

binary traits, which could be due to the lower statistical power due to both lower case 

numbers, as well as the harsher MAF cut-off considered when assessing sdSNPs.  

 

To corroborate our results, we performed numerous analysis checks. We compared our GWAS 

summary statistics with those from GIANT for 5 traits, and found excellent correlation when 

comparing the latest WHR study with our own, though noting that this study also included UK 

Biobank data as part of its meta-analysis215. Other analysis checks included the fitting of 

alternate linear models to our own to ensure the absence of technical artifacts leading to the 

results obtained, as well as a randomisation scheme, both of which provided good technical 

replication. 

 

In recent years, LMMs have become the gold-standard in the dissection of genetic 

architecture of complex traits. However, these have presented some limitations in regards to 

their application to binary phenotypes (further discussed in section 1.2.3.5), including the 

presence of inflated type I error rates when large case-control imbalance is present. In 

response, LogMM frameworks have been developed. To ensure our results were not a 

consequence of inflated false positive rates, and were consistent with a logistic framework 

where no conservative MAF cut-offs were needed to account for said case-control imbalance, 

LogMMs were fitted for each of the 42 traits that presented at least one sdSNP in our original 

analysis. We found good concordance between our original results and those returned by said 

models, both in regards to sex-comparison p-values and in regards to the total number of 

sdSNPs reported across the traits considered. 

 

Our final analysis check also related to the effect of case-control imbalance on the 

assessment of genetic architecture, this time in regards to the calculation of heritability on 

the liability scale, which is dependent on the prevalence of the phenotype under study. We 

simulated a binary phenotype based on height and assessed the effect of case-control 

imbalance on heritability on the liability scale estimates, finding no evidence of small case-

control ratios leading to inaccurate estimates beyond what would be expected by small 

sample sizes in parameter estimation.  

 

Having found evidence of GxS across the genome, we investigated whether sex-specific 

genetic models could improve phenotypic prediction. While no statistically significant 

improvement in prediction was found for the traits considered, a consistent trend of 

increased predictive accuracy was seen when comparing the results of sex-specific models 

to those of a sex-agnostic model. Putting our results in context with the heritability 

differences found between the sexes, we observed a degree of heritability difference that 

could not be accounted for by sdSNPs. We thus postulate the potential existence of large 

numbers of loci presenting small amounts of dimorphism, for which we possess insufficient 

statistical power to detect in our analysis, that could account for both this missing heritability 

as well as the absence of increased predictive power. This finding mirrors the omnigenic 

model32,92 (section 1.3.3), which postulates the existence of large amounts of variants of 
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small effect across the genome that go undetected in GWAS due to lack of statistical power, 

but that, together, contribute in concert through all gene networks in relevant tissues to 

phenotypic variation. Indeed, the omnigenic model also finds parallels to the general sex 

differences model proposed by Arnold and collaborators114,226, which states that differences 

between males and females arise when sex-specific factors lead to biases in gene networks, 

such that the activity of specific parts of the latter present greater activity in one sex than 

the other. As such, extending the omnigenic model to mechanisms underlying sex 

differences, and given that per said model all genes and pathways are interconnected, 

perturbations in gene networks by sex-specific factors could lead to the presentation of 

sexual dimorphism of small effect across all genes expressed in tissues relevant to the 

phenotype under study. Furthermore, larger dimorphism would be expected when sex-

specific factors regulate expression of core genes, and smaller dimorphism expected when 

peripheral genes are regulated. This theory is further supported by studies looking into sex 

biases in gene expression which have found that fold-change between male and females is 

typically small, and that sex biased expression typically presents in tissues implicated in 

human phenotypes113. The effect of sdSNPs on gene expression is explored in Chapter 3 of 

this thesis. 

 

Following our prediction analysis, we investigated whether sex-agnostic models could 

potentially be missing loci of interest, and found indications of potential masking for 176 

traits, with further investigation being needed to replicate these results. Interestingly, we 

found a significant correlation between the number of masked variants and the number of 

sdSNPs found across traits, suggesting that loci presenting GxS could be being missed by 

sex-agnostic studies. This may be linked to the presence of opposite signed effects, which, 

as stated previously, were found to represent a large proportion of the sdSNPs found (on 

average around 75% and 35% of sdSNPs presented opposite signs between the sexes per trait 

in non-binary and binary traits respectively), and, as per our theoretical framework, could also 

be leading to masking in non-stratified efforts. Interestingly, the most recent GTEx flagship 

study looking into differences between the sexes across the transcriptome of a wide variety 

of tissues also found that sex-stratified cis eQTLs colocalised with sex combined GWAS 

summary statistics for several variant-gene-trait associations which in turn not were not 

detected by sex-combined cis eQTL analyses164. Thus, this could suggest that masking is also 

present in transcriptomic analyses, and potentially across studies honing in on other 

biological levels.   

 

Putting our results into the context of the whole genome, we found that, regardless of sdSNPs 

being widespread across phenotypes, these represent a minority of the total genetic variance 

across the genome (0.046% and 0.099% of the total genetic variants considered were found 

to present sexually different effects between the sexes, for non-binary and binary traits 

respectively). sdSNPs were found to be fairly uniformly distributed across the genome for the 

traits considered, i.e. no one genomic region presented sex differences between the sexes 

across a large proportion of phenotypes. Interestingly, we found sdSNPs that presented 

sexual dimorphism in genetic effect across more than one trait, suggesting a level of 

pleiotropy of sex biased genetic effects. The largest evidence of this found for a variant on 

chromosome 16 that was deemed an sdSNP for a total of 17 traits (though noting the presence 
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of phenotypic redundancy in UK Biobank). Indeed, previous studies have found evidence of 

overlap of GxS between diseases like autism or endometriosis and sdSNPs previously found 

across several anthropometric traits, further highlighting that pleiotropic effects can also act 

in a sex-dependent manner193,227. We also found that sdSNPs were not prominent amongst 

genome-wide sex-agnostic hits, by comparing our results to those of GeneATLAS203. However, 

we did find that a significant portion of our sdSNPs were deemed to be hits in the latter, 

though this varied from trait to trait. Linking back to our masking analysis, the remaining 

portion of sdSNPs not showing up as hits in a sex-agnostic effort could potentially be due to 

the reasons stated above.  

 

Overall, our results reinforce the need for future studies to account for genetic sexual 

heterogeneity to fully understand the genetic underpinnings of disease and ultimately shed 

light on potential sex-specific biological mechanisms. Furthermore, given the evidence of 

masking found, studies should strive to perform sex-specific analyses in addition to the 

dominant sex-agnostic analyses performed today to ensure no loci of interest are being 

missed. All in all, larger sample sizes, especially when considering disease phenotypes, will 

offer further insights into the scale and spread of sexual differences across the genome, as 

well as the potential of sex-stratified models to obtain better phenotypic predictions of 

disease and other complex traits. Indeed, going forward, recruitment of cohorts for GWAS 

should be performed in a sex-aware manner to ensure sufficient statistical power to assess 

sex differences113. 

 

Beyond greater sample sizes, sex-awareness in cohort design, and sex-stratified models, 

further important considerations need to be made by future studies delving into GxS across 

the genome to truly unravel the effect of sex on genetic architecture and on complex 

phenotypes. Firstly, most current GWAS efforts, including the one presented in this study, are 

limited to common genetic variation. As such, potentially important GxS in rare variants could 

be being missed. In this context, whole genome and exome sequencing frameworks within 

population cohorts will be essential to decipher the role of rare genetic variation in regards 

to observable phenotypic differences between males and females, across both organismal 

and molecular phenotypes. Indeed, as of December 2020, the data pertaining to the exome 

of 200,000 participants in UK Biobank has been released, with plans to fully sequence all circa 

500,000 participants in the future228, thus unleashing the potential to delve into GxS in rare 

variants that microarray technology and imputation frameworks fail to capture.  

 

Secondly, another important limitation of our study was the treatment of the X chromosome. 

In contrast to the analysis of the autosomal genome, our analysis considered only genotyped 

X chromosome variants. Indeed, the UK Biobank 2017 release did not include imputed genetic 

data for the sex chromosomes202. As such, our search for GxS across the X chromosome was 

considerably more limited than that of the autosomal genome. In addition, our analysis used 

an autosomal analytical framework in the search for associations to the phenotype, coding 

allelic content in males as 0/2, as opposed to sex chromosome specific software, which, given 

the nature of the sex chromosomes (namely the different number of copies of the X 

chromosome in males and in females, and inactivation of a copy of the chromosome in 

females, discussed further in section 1.4.2.1) could be leading to statistical inaccuracies. 
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Furthermore, population structure was corrected for using genotypic data from autosomal 

SNPs, whilst, as discussed in section 1.4.2.1, this structure could differ for the sex 

chromosomes due to sex-specific demographic events and thus might not be correcting for 

confounding factors optimally. Finally, heritability was estimated without considering 

variation within the X chromosome, which could be leading to an incomplete picture of the 

genetic contribution to the phenotype89. In this context, improvements can be made going 

forward to truly understand the role of variation within the sex chromosomes in the 

differences observed between males and females229. 

  

Thirdly, another important consideration when studying GxS is that of its malleable and time-

specific nature. Indeed, sex provides the genome with a molecular context that can vary 

throughout a person’s lifetime as a consequence of hormone fluctuation, as well as 

potentially that of other sex-specific factors. Studies have found that life stages marked by 

shifts in hormone levels, such as puberty, pregnancy, postpartum, and menopause, can lead 

to changes in disease risk113. An important example showcasing how GxS can change 

throughout a person’s lifetime is CVD, with pre-menopausal females presenting a lower 

incidence of stroke than males, and with disease incidence of post-menopausal females 

surpassing that of males101. Similarly, pre-pubescent females present a lower incidence of 

asthma than males, whilst post-puberty the incidence of females is double that of males102. 

Given the age of participants in UK Biobank, females are mostly, if not all, post-menopausal. 

As such, our results reflect GxS in the later stages of life. Future studies should take age and 

reproductive events into consideration when assessing GxS, delving further into the 

dynamics of GxS throughout the human lifespan, and potentially looking at gene by sex by 

age interactions as was done by Winkler et al for several anthropometric traits194. These 

factors should also be taken into consideration when comparing results across studies and 

cohorts.  

 

Fourthly, and as was highlighted in section 1.1.5, this study is hindered by its focus on a single 

population within the human species. As is the case with most large population cohorts, UK 

Biobank’s participants are largely of European descent and of generally privileged 

backgrounds. As such, our findings on GxS are limited to this population, and broad 

translation to others is likely premature until more diverse studies on sex differences across 

the genome come about. Indeed, under-representation of diverse populations impedes our 

understanding of genetic architecture and exacerbates health inequalities230.  Furthermore, 

broad-ancestry studies can help pin-point SNPs presenting GxS across populations in a 

search for interesting variants that may present causal effects on the differences observed. 

 

Finally, and linking to the previous statement, studies looking into sex differences in 

genotype-phenotype associations should strive to understand the root of the GxS found, in 

an effort to pin-point variants that could be leading to the phenotypic differences observed 

between males and females (i.e. are causal). Indeed, association does not equal causation, 

and current GWAS efforts generally report SNPs presenting the smallest p-value of 

association in an LD region as most likely candidates for causality. In this context, causal 

inference and fine-mapping frameworks can be used to decipher causal relationships231 

(discussed further in Chapter 3). These methods encompass both statistical and functional 
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annotation frameworks that aim to decipher likely causal variants as well as the genes they 

could be regulating. Furthermore, given that gene expression has been widely accepted as an 

endophenotype (i.e. an intermediary phenotype) by which genetic variation regulates 

phenotypic variance, analyses of the transcriptome are popular when gaining understanding 

of GWAS signals. This is reflected in the postulations of the omnigenic model, which suggests 

that all GWAS causal variants influence phenotypes through cis or trans acting mechanisms 

that ultimately converge on alterations of gene expression levels32,92,232 (discussed further in 

section 1.3). The mechanisms leading to transcriptomic differences can be varied, and 

include altered regulatory elements, altered methylation levels, transcription factor binding, 

and others232 (section 1.2.6). In addition, a myriad of bioinformatics frameworks, which make 

use of experimentally and computationally derived information regarding biological 

pathways, regulatory elements, protein binding sites, genome-wide epigenomics, and more, 

have been developed that can aid the search for mechanistic information relating to GWAS 

findings. In this context, Chapter 3 of this thesis is dedicated to the continued investigation 

of GxS across the genome at the functional level.  

 

2.5. Contributions 
 

Oriol Canela-Xandri fit the sex-stratified linear mixed models and obtained sex-specific 

heritability estimates prior to the start of this PhD, as well as fit the randomised models. Both 

my supervisors provided comments on versions of this chapter.  
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Chapter 3 
Functional analysis of 

sexually different SNPs 
 

3.1. Introduction 
 

Throughout this thesis we’ve discussed the role of sex as a key player in human 

characteristics, and how, despite this, the mechanisms underlying differences between the 

sexes in health and other complex traits are yet to be understood. In the previous chapter we 

delved into finding sex differences in genetic architecture across the genome through the 

identification of sdSNPs, yet how these could potentially be leading to or be associated with 

differences in phenotype is unknown.  

 

3.1.1. GWAS to function 

 

GWAS efforts have the power to confer insights into the underlying genetic architecture of 

complex traits. As sample sizes have become bigger with the advent of large population 

cohorts, leading to well-powered studies to detect genetic associations across phenotypes, 

the number of detected trait-associated genetic loci has sky-rocketed. However, studies 

have found that the majority of these loci are found in non-coding or intergenic genomic 

regions233, making biological interpretation of results difficult. 

 

In this context, bioinformatics frameworks can help shed light on SNPs of interest and on 

their potential functional roles in complex traits, as well as pin-point likely target genes by 

aggregating the information of associated loci through the integration of multiple sources of 

information. The identification of SNPs of interest, that is, identification of those that are 

causal to a given trait, is known as fine mapping or SNP prioritisation, whilst variant-to-gene 

frameworks looking to establish causal genes are known as gene analyses or gene 

prioritisation. These analyses look to tackle several challenges, including (i) the identification 

of causal variants in the presence of LD structure, which leads to all SNPs in LD with the causal 

variant presenting a degree of association to the trait of interest due to correlation, making 

identification of the aforementioned difficult, and (ii) understanding the functional role of 

these variants to try to infer affected genes, tissues, and cells234, amongst others. In order to 

identify SNPs and genes of interest, as well as understand the biology of the trait under study, 

information beyond GWAS results can be used, including that relating to (i) protein-altering 

consequences of the considered variants if they fall within a coding region, (ii) potential 

influences on gene expression or other molecular levels through molQTL studies (section 

1.2.6), (iii) potential influences or associations to epigenetic marks or transcription factor 

binding, and (iv) structural information, such as chromatin interactions235. 
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3.1.1.1. SNP insights 

 

GWAS SNP level data can in itself provide useful mechanistic insights underlying the trait of 

interest. As such, using variant annotation software like Variant Effect Predictor (VEP)236 or 

ANNOVAR237, commonalities amongst associated SNPs can be found, such as enrichment for 

a particular genomic feature, like location within gene promoter or enhancer regions238. 

Another way to assess whether SNPs are enriched in a particular feature is by estimating the 

heritability explained by SNPs that fall within said category. The reasoning for this is that, if 

enrichment for a certain category is present, SNPs within said category will explain more trait 

heritability than other variants239. As such, LDSC (section 2.2.3) can be used to obtain SNP 

heritability estimates from GWAS summary statistics, considering different functional 

categories.  

 

Enrichment analysis of GWAS hits can further provide insights into trait-relevant cell-types. 

Indeed, if associated variants are enriched nearby genes whose expression is highly cell 

specific, one could hypothesise the relevance of said cell given a trait of interest. This 

approach is employed by SNPsea240,241. GWAS hits can be further “overlapped” with 

epigenomic marks, such as DNAse I hypersensitive sites (indicators of open chromatin), 

histone modifications, or DNA methylation234, employing functional data from multiple 

resources and repositories such as the Roadmap Epigenomics Project242, or the Encyclopedia 

of DNA Elements (ENCODE)243. Methods such as EpiGWAS87 and GREGOR244 assess this 

enrichment to help fine map GWAS hits and provide functional insights, and, if cell-specific 

epigenetic and regulatory elements are enriched, this could further help pinpoint relevant 

tissues to the trait under study. Other SNP enrichment and fine mapping frameworks that 

integrate functional data and can make use of genotype data beyond just that of GWAS hits 

include fGWAS245, CHEERS246, HaploReg247, and GARFIELD248.  

 

Finally, GWAS hits can be overlapped with variants that have been found to modulate 

molecular levels, such as eQTLs or pQTLs, and this can further fine map variants and gather 

phenotypic insight by tracking changes and genetic variation influences through multiple 

biological levels. Studies integrating results of GWAS and QTL studies are known as 

colocalisation studies, which greatly benefit from the efforts of QTL-defining projects like 

GTEx249. Methods proposed for colocalisation analyses include COLOC250 and eCAVIAR251. 

Similarly, as described in the next section, in this chapter we explore the overlap between sex 

biased eQTLs and sdSNPs to shed light on the underlying mechanisms of sex differences.  

 

3.1.1.2. SNP to gene 

 

Identification of target genes can also provide insights into the underlying biology of a 

disease or complex trait, and inform potential drug targets. Whilst fine mapping efforts have 

helped identify variants of interest, gene prioritisation methods have been less successful. 

Indeed, the vast majority of GWAS hits do not have an established link to a gene252. Gene 

analysis frameworks vary in methodology. Some proposed methods, such as MAGMA253 

(discussed in section 3.2.1.1), identify genes of interest through the aggregation of nearby 
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SNP GWAS data, thus assuming that nearby variation likely leads to regulation of proximal 

genes. However, others further integrate functional data originating from the repositories 

and resources stated above, in a search for likely genes of interest. These frameworks include 

FUMA235 (discussed in section 3.2.1.2),  POSTGAP254, MendelVar255, and GPrior252. Furthermore, 

beyond the aforementioned methods, transcriptome-wide association studies (TWAS), which 

measure the association between gene expression and a given trait, could further help in the 

search for genes underlying complex traits. Currently, given the unfeasibility of obtaining 

gene expression data from hundreds of thousands of individuals, TWAS are performed by 

inferring transcript levels from the genotype, making use of both GWAS and eQTL data234. A 

method that implements this framework is PrediXcan256.  

 

3.1.1.3. Gene-level analyses 

 

Once gene analyses have been performed, functional inferences can be made through the 

study of the broader context of genes (gene-level analyses). Gene-level analyses, such as the 

search for enrichment of certain protein-binding motifs across our genes of interest, or 

across molecular pathways or tissue-specific differentially expressed genes, can thus confer 

researchers with valuable information regarding the biological context and mechanisms 

surrounding trait-loci associations. These pathways and genes of interest are encapsulated 

in so-called gene sets, which are curated collections of genes based on knowledge of gene 

function and biological processes257. As such, enrichment analyses look for associations 

between gene sets and a list of candidate genes, bringing insight into functional and 

biological mechanisms underlying the genetic component of a trait or phenomena of 

interest253. In this context, gene-level analyses have the potential to shed light into possible 

key pathways by which GxS could be arising. Gene-level analysis frameworks include GSEA258, 

MAGMA253, FUMA235, INRICH259, MAGENTA260, Enrichr261, WebGestalt262, and g:Profiler263. 

 

3.1.2. GxS in the transcriptome 

 

Gene expression analyses could bring biological insight into GxS, as these interactions could 

be arising through sdSNP-mediated regulation of the transcriptome, thus acting as sex 

biased eQTLs (sb-eQTLs, eQTLs further defined in section 1.2.6). This sex-specific regulation 

could in turn be leading to differences downstream across biological pathways and traits 

(Figure 55). Although studies have been carried out searching for differential expression 

between the sexes (sex-DE, or sex biased gene expression) across the transcriptome in a 

variety of tissues of interest (discussed in section 1.4.2.4), studies linking sex to differences 

in gene expression regulation are few, with very contradictory results. While Dimas and 

collaborators estimated a total of 15% sb-eQTLs in lymphoblastoid cell lines264 and Yao et al 

identified 14 sb-eQTLs in blood265, others found little evidence of sb-eQTLs in blood and brain 

tissue157,266. These mixed results could be due to the contribution of GxS to gene expression 

being tissue specific, a lack of sufficient statistical power, and/or the fact that this 

contribution occurs only on a small number of genes266.  
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Figure 55. Schematic representation of sex biases in gene expression and sex biased eQTLs.  

 

In this context, the latest flagship GTEx study on sex differences in gene expression, 

published in the latter half of 2020, provided us with the first system-wide analysis (i.e. 

across a wide variety of tissues) into sb-eQTLs. Oliva and collaborators found a total of 369 

sb-eQTLs across 44 tissues in 838 adult individuals (GTEx v8 release). The majority of these 

were identified in breast tissue (261 sb-eQTLs), followed by muscle, skin, and adipose tissues 

(36, 18, and 14 sb-eQTLs respectively).   

 

Given the strong enrichment of eQTLs amongst GWAS hits, studies have postulated gene 

expression as a potential intermediate phenotype underlying these associations (section 

1.3)267,268. As an extension of this, a recent study by Porcu et al looked to assess whether 

differences in association between the sexes (sdSNPs) could be driven by sexual differences 

in gene expression regulation (i.e. sb-eQTLs)269. Porcu and collaborators reported a single 

gene for which evidence was found of an sdSNP that could also be acting as an sb-eQTL 

(discussed further in section 3.3.4.2). This study was however limited to whole blood 

samples, an important caveat given that often the causative tissue for the phenotype under 

study is unknown, and that sex biases in gene expression are known to be highly tissue 

specific164. As such, a system-wide analysis is yet to be carried out in order to link sdSNPs and 

GxS to the transcriptome and to differences in gene expression regulation between the sexes.  

 

All in all, efforts to close the gap between genetic associations and phenotypic differences 

are needed in order to understand how GxS leads to variation in phenotypes between males 

and females.  

 

3.1.3. Objectives 

 

In this context, we strived to provide insights into the downstream and functional effects of 

our sexually dimorphic candidate sites, as defined in Chapter 2, by means of several in silico 

approaches. Furthermore, given the widely accepted theory of the transcriptome as an 
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intermediary phenotype giving rise to GWAS associations, a study into the connection 

between sdSNPs and differences in gene expression regulation was performed across a wide 

variety of tissues. 

 

3.2. Materials and methods 
 

3.2.1. Gene-level analyses 

 

Gene-level analyses can help shed light on the biological mechanisms underlying 

associations discerned through GWAS. As such, in an effort to provide biological insight into 

underlying mechanisms leading to sdSNP detection, our findings were transformed from 

SNP-level (Chapter 2) to gene-level (section 3.2.1.1). Once genes had been annotated with 

our sex-stratified GWAS results, these were assessed for enrichment across gene sets 

(section 3.2.1.2) and motifs (section 3.2.1.3), in a search for associations between 

phenotypes and pathways presenting differences in enrichment across genes with 

differences in effect between the sexes.  

 

3.2.1.1. MAGMA: SNP to gene 

 

As stated above, we began our search for functional insights into GxS by aggregating our 

genetic variant data to the level of genes, a more manageable and interpretable form that 

allows for a broader look into differences between the sexes in genetic architecture across 

loci. This was done for the subset of traits that presented at least one sdSNP (Chapter 2) for 

a total of 103 traits. The SNPs considered were those analyzed in our original sex-stratified 

GWAS analyses (section 2.2.1.2), for a total of 9,072,751 and 4,229,346 SNPs in non-binary 

and binary traits respectively. 

 

In an effort to discern genes relevant to each of the sexes which presented evidence of sexual 

differences, we began by partitioning our two-tailed p-values (p2T) from the genetic effect (β) 

comparison between the sexes (section 2.2.4) into two one-tailed p-values, for each of the 

SNPs considered. For genetic variants where βF was greater than βM, one tailed p-values were 

calculated as: 
 

 pF =
p2T

2
 and pM =1 - (

p2T

2
) Eq. 54 

 

On the other hand, when βM > βF, the p-values were calculated as: 

 

 pM =
p2T

2
 and pF =1 - (

p2T

2
) Eq. 55 

 

This process led to the creation of two additional distinct sets of p-values for each SNP-

phenotype pair, corresponding to sites where the genetic effect was significantly greater in 

males or females. 

 



 122 

Each of these sets of p-values (p2T, pM and pF) were subsequently used to identify gene-level 

associations using MAGMA253 across traits. First, every gene was annotated, that is, for each 

gene MAGMA defined which SNPs were in its region considering a range of 1kb upstream and 

downstream. Genes considered were those defined by the NCBI build 37 genome annotation, 

a total of 19,427. MAGMA then estimated, for each phenotype, p-values for each gene 

considering each set of SNP p-values separately (p2T, pM or pF), and two distinct SNP-wise 

models (SNP mean and top SNP). A random sample of 1,000 unrelated white British 

individuals from the UK Biobank, 500 males and 500 females, was used as a base population 

for LD and MAF correction by MAGMA. Briefly, the SNP mean model uses the sum of -log(SNP 

p-values) as the gene test statistic, whilst the top SNP model uses the lowest SNP p-value as 

gene test statistic. The top SNP model is most sensitive when only a small proportion of SNPs 

around or in a gene show association, whilst the mean SNP model is more attuned to the mean 

SNP association, though it skews towards associations in areas of higher LD. Given that each 

model has its own set of advantages for various genetic architectures, which can differ from 

gene to gene, MAGMA also returns an aggregate/combined p-value stemming from the results 

of the two SNP-wise models. This combined p-value provides a more even distribution of 

statistical power and sensitivity for a wider range of genetic architectures. As such, MAGMA 

returns three distinct p-values for each gene, one for the SNP mean model, one for the SNP 

top model, and a combined p-value. For subsequent analyses, we considered the combined 

p-value for each gene. 

 

Genes were declared sexually different/dimorphic, and termed sdGenes, if an FDR corrected 

combined p-value, i.e. q-value, was less than 0.01. Furthermore, sdGenes were deemed to be 

female or male dominant if a qF or qM < 0.01 was found, respectively. In addition, sdGenes 

irrespective of sex dominance were declared when a q2T < 0.01 was found. The set of genes 

that reached the aforementioned threshold was then used in the gene set enrichment 

analyses performed using the GENE2FUNC tool in FUMA235 (section 3.2.1.2), as well as in the 

motif enrichment analyses using HOMER (section 3.2.1.3). 

 

3.2.1.2. FUMA: gene set enrichment 

 

Given our gene-level results from MAGMA, the GENE2FUNC tool in FUMA was run for the top 

10 traits with the largest number of sdGenes when considering a two-tailed q-value (i.e. 

sdGenes irrespective of larger effect in one sex over the other), as well as for three largely 

female dominant phenotypes (i.e. those which presented genes with significant differences 

between the sexes that were largely female dominant) and two largely male dominant 

phenotypes (i.e. those which presented genes with significant differences between the sexes 

that were largely male dominant). These phenotypes are listed in the Results section. As a 

result, FUMA was run for 10 traits for both male and female dominant sdGenes, as well as for 

3 traits for female dominant sdGenes and 2 traits for male dominant sdGenes, for a total of 

15 traits. 

 

To use as a background, the same procedure as is described in the previous section was 

followed using sex-agnostic (non-sex-stratified) GWAS results for the 15 traits of interest. As 

such, sex-agnostic GWAS summary statistics for the traits of interest were inputted into 
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MAGMA to obtain gene-level phenotype associations. Genes presenting a combined q-value 

< 0.01 were then assessed for enrichment using FUMA, for each of the 15 traits considered.  

 

FUMA works by taking a list of candidate genes and checking for enrichment across: (i) pre-

calculated differentially expressed genes (DEGs) across different tissues (i.e. genes which 

are significantly more or less expressed in a given tissue compared to others, considering the 

GTEx V8 database26) and (ii) biological pathways/functional categories, considering MSigDB 

v7 (which includes hallmark gene sets, positional gene sets, curated gene sets, motif gene 

sets, computational gene sets, GO gene sets, oncogenic signatures, and immunologic 

signatures), as well as WikiPathways and the GWAS Catalog270. Enrichment across each gene 

set, for each of list of candidate genes, is assessed using a hypergeometric test, described 

below. The set of reference genes (i.e., the genes against which the set of candidate genes 

are tested) includes 19,283 protein-coding genes. 

 

The classic hypergeometric example is that of an urn containing m marked balls and n non-

marked balls (total N balls), of which k are picked at random, and for which we want to know 

the probability of obtaining x marked balls. Translated into gene sets, m would be the total 

number of genes that are annotated within a given set, N is the total number of genes that 

have been annotated in the considered repository or database, n is N – m, k is the total 

number of genes of interest that are annotated in at least one gene set within the considered 

repository, and x is the number of genes of interest annotated to be within a given set. Based 

on the hypergeometric distribution we can thus obtain a p-value that represents the 

probability of observing these values given the null hypothesis of random sampling, as: 

 

 Pr(X = x) = 
(

 m 
x ) (

 n 
k - x)

(
 N 
k

)
  Eq. 56 

 

If the probability of observing x is low we can assume there is an enrichment of genes of 

interest within the considered gene set, given that it’s unlikely that our genes of interest are 

annotated within a given set at the frequency observed by chance. Enrichment p-values were 

FDR adjusted to accounting for multiple testing, per data source of tested gene sets (e.g., 

canonical pathways, GO biological processes, hallmark genes). In turn, FUMA reports gene 

sets with a q-value ≤ 0.05 and in which the number of genes that overlap with the gene set is 

> 1.  

 

Table 20. Contingency table for the analysis of significant difference in enrichment in our FUMA gene 
set analysis.  

 Genes in set Genes not in set Total 

sdGenes genes (female 
or male dominant) 

A C A + C 

Background genes B D B + D 

Total A + B C + D A + B + C + D (= N) 
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Significantly differentially enriched gene sets between female and male dominant sdGenes, 

as well as between female/male dominant sdGgenes and our background, were assessed 

using contingency tables and Fisher’s exact test. Table 20 shows the contingency table used 

for the comparison of enrichment between sdGenes and background genes, the procedure 

for comparing enrichment between male and female dominant sdGenes being identical.  

 

The odds ratio of obtaining a gene within a set when considering sdGenes, as opposed to 

obtaining a gene within a set when considering the background is (A/C)/(B/D), and the 

probability of obtaining this set of values (A, B, C and D), is defined as: 

 

 p =   
(A+B)!(C+D)!(A+C)!(B+D)!

A!B!C!D!N!
 Eq. 57 

 

These were then FDR corrected across all sets assessed. As such, a q-value < 0.05 would 

represent a significantly different enrichment between the two lists of candidate genes 

considered, and an odds ratio > 1 would indicate enrichment of sdGenes over the background 

genes for a given set (i.e. a larger amount of sdGenes is found within the set than what would 

be expected by random given the total number of sdGenes and background genes 

considered).  

 

Heatmaps 

 

Heatmaps were created considering the scaled enrichment -log10 q-values for each gene set, 

for each phenotype and sex (male or female dominant sdGenes). Scaling was done per set of 

female or male dominant sdGenes per phenotype, subtracting the minimum and dividing by 

the maximum -log10 q value across gene sets, such that -log10 q values ranged from 0 to 1. 

This allowed for an easier comparison across phenotypes/sets of male or female dominant 

sdGenes, as some presented generally larger enrichment across all gene sets considered. 

Scaling was not necessary when considering enrichment across DEG sets. Sets used were 

limited to those both significantly differentially enriched in male or female dominant 

sdGenes versus our background (Fisher’s exact test q < 0.05), and/or significantly differently 

enriched between female and male dominant sdGenes (Fisher exact test q-value < 0.05), for 

at least one of the 15 traits considered. The clustermap function from the seaborn271 python 

package was used, which performs hierarchical clustering amongst both the gene sets and 

the traits/dominant sdGenes considered.  The end point of hierarchical clustering is a group 

of clusters that differ between themselves, and within which elements are broadly similar. 

Hierarchical clustering allows us to cluster gene sets and genes based on similarity in their 

enrichment profiles, thus allowing to explore potential patterns in our data.  

 

PCA 

 

PC analyses (defined in section 1.2.3.3) were also performed on our gene set enrichment q-

values in order to explore the presence of clusters within our data. Prior to performing our 

PCA, q-values were scaled by subtracting the mean and dividing by the standard deviation 
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across observations (gene sets), per trait/list of candidate genes, to ensure that differences 

in scale between features did not drive dimension reduction.  

 

3.2.1.3. HOMER: motif enrichment 

 

HOMER was run for traits with at least 25 female or male dominant sdGenes, for a total of 53 

traits, in an effort to assess enrichment across known motifs (a total of 412, obtained from 

several databases, including JASPAR272). Enrichment was assessed for the genes obtained 

across our three categories (sdGenes irrespective of dominant sex, female dominant 

sdGenes, and male dominant sdGenes) only if the category considered had at least 25 genes 

(i.e. each category was only considered if the number of significant genes was at least 25, so 

if, for example, for a given trait 3 female dominant sdGenes, 25 male dominant sdGenes, and 

30 sdGenes irrespective of sex dominance genes were found, only the results for male 

dominant sdGenes and for sdGenes irregardless of dominance would be considered). 

 

As with FUMA, HOMER scores motif enrichment assuming the cumulative hypergeometric 

distribution (described in section 3.2.1.2, Eq. 56). Known motifs were checked for enrichment 

within 400bp before our gene transcription start site (TSS) and 100bp after the TSS. 

 

3.2.2. GxS in the transcriptome 

 

In order to assess whether differences in genetic architecture, as established by our analysis 

of the UK Biobank data (Chapter 2), lead to differences in gene expression, we proceeded to 

complete an eQTL analysis (section 1.2.6) looking for GxS in the transcriptome.  

 

3.2.2.1. GTEx data 

 

Data from the GTEx v6p release was used, previously described in the introduction of this 

thesis (section 1.1.4). Briefly, the GTEx project was designed to provide the scientific 

community with a data resource to enable the systematic study of genetic variation and the 

regulation of gene expression in multiple reference human tissues249. Our study, which looks 

to discern potential biological mechanisms underlying a big variety of phenotypes, greatly 

benefits from a system-wide analysis, which GTEx allows, due to the causative tissue for the 

differences between the sexes in the phenotype under study being unknown. 

 

The GTEx v6p release consists of samples and genotypes from 449 human post-mortem 

donors (292 males and 158 females) of ages 20 to 70, of which about 84% are European, 15% 

African American, and 1% Asian or other ethnicities. We focused our analysis on 39 non-sex 

specific and non-diseased tissue types. Each tissue type holds a different number of samples 

(minimum of 70, median of 149, number of samples per tissue stated in section 3.3.4), with 

a male-bias present in all of them (the percentage of female samples ranging from 25% to 

44%).  
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Processed, filtered, and normalised RNA-seq data was downloaded from the GTEx portal for 

both the autosomal genome as well as for the X chromosome, the number of transcripts 

varying across tissues due to tissue-specific expression, with a median of 23,538 autosomal 

transcripts and 793 X-linked transcripts per tissue. Briefly, as described in the GTEx v6p 

release documentation, RNA-seq was performed following the Illumina TruSeq library 

construction protocol, and reads were aligned to Genome Reference Consortium Human Build 

37 (GRCh37, HG19). Gene-level expression quantification was performed using RNA-SeQC. 

Gene expression data is provided in the form of reads per kilobase of transcript, per million 

mapped reads (RPKM), a normalised unit of transcript expression.  

 

Genotype data was also obtained for all the donors from dbGaP, and which included a total of 

11,555,102 genetic variants, from genotyping efforts with Illumina OMNI 5M and 2.5M SNP 

Arrays and imputation from the 1,000 Genomes Project Phase I version 3 reference panel. All 

samples had genotyping rates over 98%, and all had genotypes in agreement with the donor’s 

gender. As per the GTEx v6p release documentation, a series of QC steps were applied to all 

donors’ genotypes, including the exclusion of SNPs with genotyping call rates less than 95%, 

exclusion of SNPs with differential missingness between OMNI 2.5M and OMNI 5M arrays, 

HWE p-value < 1 x 10-6 (considering European samples for the calculation), removal of variants 

associated with plate batch, and finally excluding variants with heterozygous haploid 

genotypes in non-pseudoautosomal regions of sex chromosomes in male samples. Imputed 

variants were further filtered by quality score, with removal of variants with an imputation 

score < 0.4.  

 

3.2.2.2. eQTL analysis 

 

To assess whether our sdSNPs had different effects on the regulation of expression of nearby 

genes depending on sex, we firstly assigned our lead sdSNPs genes within a 1Mb window 

using Granges273 and the Biomart resource274. The total number of sdSNP-gene pairs found 

was 6,591 when considering our autosomal lead sdSNPs for non-binary traits, 4,533 when 

considering our autosomal lead sdSNPs for binary traits, and 95 when considering our X-

chromosome lead sdSNPs for non-binary traits. 

 

For each of the 39 tissues, we tested for GxS in gene expression for each variant-gene pair 

using a linear regression model in PLINK v1.9212, noting that not all genes considered are 

expressed across all tissues, and as such the number of variant-gene/transcript pairs tested 

varied from tissue to tissue. As covariates, we used genotyping platform (Illumina OMNI 5M 

or 2.5M array), the first three genotyping PCs (provided by GTEx), and probabilistic estimation 

of expression residuals method (PEER)275 factors, the number of which included in the model 

depended on the sample size (sample sizes < 150 had 15 PEER factors, sample sizes between 

150 and 250 had 30 PEER factors, and sample sizes over 250 had 35 PEER factors), as was 

done by the GTEx consortium86, in order to not greatly reduce degrees of freedom. PEER 

factors help account for unknown confounding factors in gene expression analyses such as 

intracellular fluctuations, environmental conditions, and experimental procedures, and in 

turn help yield a stronger statistical discrimination signal and avoid false positives due to the 
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aforementioned. As such, our gene expression model for each gene within 1Mb of a sexually 

dimorphic variant, and each tissue was formulated as: 

 

 y = μ + covariates + β1·sex + β2·SNP + β3·SNP·sex + ε Eq. 58 

 

where y is the gene expression of the gene under study in a given tissue (transcript levels), μ 

is the mean expression level, the covariates are PC1-3, PEER factors and the genotyping 

platform, β1 and β2 are the regression coefficients for sex and genotype of the sexually 

dimorphic variant respectively, β3 is the regression coefficient for the interaction of the 

genotype with sex, and ε is the residual. If β3 was found to significantly different from 0 at a 

given threshold, the sdSNP considered would be declared a sex biased eQTL for the 

transcript/gene under study. FDR correction was applied to account for multiple testing, per 

tissue. 

 

3.2.2.3. eQTL enrichment 

 

To assess whether our sdSNPs were enriched for GxS in gene expression versus those not 

presenting sex differences, we proceeded to apply our eQTL analysis as described in the 

previous section to genetic variants that were found to be significantly associated with at 

least one of the 530 phenotypes considered (section 2.2.1.1) for the whole population (p < 1 

x 10-8) but that had no evidence of being sexually dimorphic (t-statistic comparing genetic 

effects between the sexes, section 2.2.4, with p > 0.5). As such, for each of the 530 

phenotypes under study, all variants that met these conditions (termed non-sdSNPs) were 

found and LD clumped, and finally all resulting lead SNPs were LD clumped across traits, as 

was done for sdSNPs and as is described in section 2.2.4. A total of 1,675 and 19,552 

autosomal lead non-sdSNPs were found for binary and non-binary traits respectively. These 

were then mapped to nearby genes, as described in the previous section, thus obtaining SNP-

gene pairs (60,208 and 586,326 for binary and non-binary traits respectively) with which to 

repeat our eQTL analysis in a search for GxS in gene expression. 

 

Contingency tables and Fisher’s exact test (as described in section 3.2.1.2) were used to 

assess whether the number of sex biased eQTLs (at various thresholds) was significantly 

larger for sdSNPs than for non-sdSNPs, as follows: 

 
Table 21. Contingency table for the analysis of significant difference in number of sex biased eQTLs in 
gene expression found across sdSNP-gene pairs as opposed to non-sdSNP-gene pairs.  

 sdSNPs Non-sdSNPs Total 

Genes with GxS A C A + C 

Genes with no GxS B D B + D 

Total A + B C + D A + B + C + D (= N) 

 

The odds ratio of obtaining GxS in gene expression given sdSNPs as opposed to obtaining GxS 

in gene expression given non-sdSNPs is (A/C)/(B/D), and the probability of obtaining this set 
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of values (A, B, C and D), is defined as stated in Eq. 57. As such, a p-value < 0.05 and an odds 

ratio > 1 would indicate a significant difference in the number of sex biased eQTLs found when 

considering sdSNPs versus non-sdSNPs, with a larger number of GxS terms found for sdSNPs.  

 

In a similar fashion, we also assessed whether our sdSNPs were found to be in the vicinity of 

sex biased genes (genes with significant differences in gene expression between the sexes) 

as opposed to our subset of non-dimorphic variants. To do this, we checked for enrichment 

of significant sex effects in our eQTL models (β1 ≠ 0 in Eq. 58) when considering sdSNPs-gene 

pairs as opposed to non-sdSNP-gene pairs, also using contingency tables and Fisher’s exact 

tests, as described previously.   

 

3.3. Results 
 

3.3.1. Gene annotation 

 

MAGMA253 was used to annotate genes using the genome-wide sex-comparison data 

estimated in Chapter 2. A total of 3,787,426 SNPs were within 1kb upstream or downstream 

of 18,253 genes out of the total 19,427 available in the NCBI build 37 genome annotation. 

These were then used to annotate their respective nearby genes, as described in section 

3.2.1.1. Briefly, using the SNP’s sex-comparison two-tailed p-value (p2T, section 2.2.4), genes 

were given a corresponding p-value as a function of all of the SNPs’ p-values it was annotated 

with, using MAGMA.  Furthermore, for each SNP, the two-tailed p-value was transformed into 

a one-tailed p-value, obtaining a “female” p-value (pF) and a “male” p-value (pM) based on the 

sex that had the largest genetic effect estimate. These were then used to also obtain a pF and 

a pM for each annotated gene. Therefore, each annotated gene had 3 different assigned p-

values, p2T, pF and pM. 

 

Genes were considered to be significantly sexually different (sdGenes) if any of the 

aforementioned FDR corrected p-values, q2T, qF or qM, was less than 0.01. If a gene’s qF was 

less than 0.01, the gene would be declared as an sdGene with larger effect in females (termed 

female dominant sdGenes), whilst if a gene’s qM was less than 0.01 this would indicate an 

sdGene with a larger effect in males (termed male dominant sdGenes). Finally, if q2T was found 

to be less than 0.01 then the gene would be an sdGene irrespective of the sex where the effect 

was larger.  

 

3.3.1.1. Traits with most sexually different genes 

 

A total of 93 phenotypes presented at least one sdGene when considering a q2T < 0.01, with 

76 and 78 phenotypes presenting at least one female and male dominant sdGene 

respectively, considering a qF or qM < 0.01. Note that the sum of female dominant sdGenes 

and male dominant sdGenes do not sum up to the reported number of total sdGenes found 

(as defined by q2T). This is because the p-values considered are not the same (from two-sided 

to one-sided), and FDR correction is applied independently for the three subsets of p-values 

considered (pF, pM and p2T). Traits with the most sdGenes (irrespective of larger effect in males 
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or females) are found in Table 22. Height was found to be associated in a sex differing manner 

to a total of 866 genes, followed by WHR with 541, as well as other anthropometric 

phenotypes. In an effort to gather sex-specific insights, male and female dominant sdGenes 

were also considered, as stated above. The traits which presented the largest amount of 

female dominant sdGenes were WHR, standing height, trunk fat percentage, impedance of 

arm (left), malabsorption/coeliac disease, and hyperthyroidism/thyrotoxicosis (Table 23). On 

the other hand, the traits which presented the largest number of male dominant sdGenes 

included standing height, trunk predicted mass, trunk fat-free mass, and trunk fat 

percentage (Table 24).  

 
Table 22. Top 10 traits with most sdGenes, as defined by q2T < 0.01. F represents number of female 
dominant sdGenes, M the number of male dominant sdGenes, and Two Tailed the number of sdGenes 
irrespective of sex dominance. 

Trait F M Two Tailed 
Standing height 246 312 866 
Waist circumference / Hip circumference 325 153 541 
Trunk predicted mass 77 251 459 
Trunk fat-free mass 79 239 437 
Trunk fat percentage 104 228 428 
Whole body fat-free mass 54 151 315 
Whole body water mass 54 131 315 
Basal metabolic rate 49 166 294 
Impedance of arm (left) 91 139 290 
Body fat percentage 38 148 284 

 

 

Table 23. Top 10 traits with most female dominant sdGenes (qF < 0.01). Column the same as Table 22. 

Trait F M Two Tailed 
Waist circumference / Hip circumference 325 153 541 
Standing height 246 312 866 
Trunk fat percentage 104 228 428 
Impedance of arm (left) 91 139 290 
malabsorption/coeliac disease 87 0 82 
hyperthyroidism/thyrotoxicosis 83 0 74 
Impedance of arm (right) 81 128 260 
K90-K93 Other diseases of the digestive system 80 0 63 
Trunk fat-free mass 79 239 437 
Impedance of whole body 78 116 244 

 

 

Table 24. Top 10 traits with most male dominant sdGenes (qM < 0.01). Column the same as Table 22. 

Trait F M Two Tailed 
Standing height 246 312 866 
Trunk predicted mass 77 251 459 
Trunk fat-free mass 79 239 437 
Trunk fat percentage 104 228 428 
Basal metabolic rate 49 166 294 
Waist circumference / Hip circumference 325 153 541 
Whole body fat-free mass 54 151 315 
Hip circumference 67 149 281 
Body fat percentage 38 148 284 
Arm fat-free mass (left) 59 142 273 
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We found that the number of sdGenes was generally more than the number of sdSNPs found 

for a given phenotype (Figure 56). This is likely due to the lesser multiple testing burden 

associated with the testing of genes as opposed to variants (18,253 genes, 9,072,751 

variants), as well as that, to account for multiple testing, FDR correction was used as opposed 

to the more stringent genome-wide significance threshold. Indeed, gene-level analyses were 

partly designed to ascertain genotype-phenotype associations when the effects of individual 

markers are too weak to detect, a common problem when studying polygenic traits. By 

aggregating the signals of multiple markers, these frameworks make it possible to detect 

effects consisting of multiple weaker associations that would otherwise be missed253. Thus, 

the large numbers of genes found could potentially indicate small widespread sex 

differences that were missed when assessing effect sizes across genome-wide variants in 

Chapter 2.  

 

(a) 

 
(b) 

 
(b) 

 
 

 

Figure 56. Scatterplots comparing number of sdSNPs to (a) number of sexually different genes (sdGenes) 
found across traits (q2T < 0.01), as well as to number of (b) female and (c) male dominant sdGenes. Each 
point represents a trait, shown on left if binary or on right if non-binary. Blue/pink lines represent 
regression, whilst grey lines represent x = y. Outlier in non-binary plots is waist-hip circumference ratio, 
with 100 lead sdSNPs. 
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Interestingly, some traits presented female dominant sdGenes but no male dominant 

sdGenes and vice versa. A total of 13 and 17 traits presented only female and male dominant 

genes respectively. Traits that had female dominant sdGenes but no male dominant sdGenes 

at qF and qM < 0.01 included several traits related with thyroid and digestive problems (Table 

25). On the other hand, traits that presented male dominant sdGenes but no female dominant 

sdGenes included several traits related to urinary system diseases such as gout, as well as 

fibroblastic and heart diseases (Table 26). Some of these traits are known to present 

differently between the sexes, such as hypothyroidism, which is more prevalent in females276, 

and gout, which is more prevalent in males277.  

 
Table 25. Traits with female dominant sdGenes but no male dominant sdGenes at a qF and qM < 0.01 
respectively, and number of sdGenes found for each at q < 0.05 and 0.01. 

Trait qF < 0.05 qF < 0.01 
Malabsorption/coeliac disease 119 87 
Hyperthyroidism/thyrotoxicosis 110 83 
K90-K93 Other diseases of the digestive system 111 80 
Hypothyroidism/myxoedema 95 55 
K90 Intestinal malabsorption 48 38 
Thyroid problem (not cancer) 70 35 
Chronic/degenerative neurological problem 24 12 
E03 Other hypothyroidism 17 9 
E00-E07 Disorders of thyroid gland 12 7 
M79 Other soft tissue disorders, not elsewhere classified 3 3 
K80-K87 Disorders of gallbladder, biliary tract and pancreas 1 1 
K80 Cholelithiasis 1 1 
Rheumatoid arthritis 8 1 

 

 
Table 26. Traits with male dominant sdGenes but no female dominant sdGenes at a qM and qF < 0.01 
respectively, and number of sdGenes found for for each at at q < 0.05 and 0.01. 

Trait qM < 0.05 qM < 0.01 
Gout 125 75 
E83 Disorders of mineral metabolism 31 26 
Ankylosing spondylitis 22 18 
Mean corpuscular haemoglobin 45 10 
Heart/cardiac problem 11 8 
K40 Inguinal hernia 5 4 
Joint disorder 7 4 
M10 Gout 3 3 
M72 Fibroblastic disorders 4 3 
M60-M63 Disorders of muscles 6 3 
K40-K46 Hernia 3 2 
I20-I25 Ischaemic heart diseases 12 2 
M05-M14 Inflammatory polyarthropathies 4 2 
I25 Chronic ischaemic heart disease 2 1 
M70-M79 Other soft tissue disorders 1 1 
angina 1 1 
N30-N39 Other diseases of urinary system 10 1 

 
We plotted the results of our gene annotation effort as Manhattan plots, where each point 

represents a gene, with the x axis representing the position of said gene on the genome and 
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the y axis the -log10 one-tail q value for the dominant sex considered. Here we show some of 

the traits with the largest number of sdGenes found, such as WHR (Figure 57), and height 

(Supplementary Figure 1). We also looked at some traits that only presented female dominant 

sdGenes such as malabsorption/coeliac disease (Supplementary Figure 2), hypothyroidism 

(Supplementary Figure 3), or hyperthyroidism (Supplementary Figure 4), and those that only 

presented male dominant sdGenes, such as gout (Figure 58) or ankylosing spondylitis 

(Supplementary Figure 5). These plots, much like the Manhattan plots obtained in Chapter 2 

when analysing sdSNPs, show a myriad of genetic architectures in relation to sexual 

differences across the genome, some with large polygenicity (height, WHR) whilst others only 

presenting sex differences in effect for a small number of loci (ankylosing spondylitis, 

hyperthyroidism).  

 

By visual inspection of our gene Manhattan plots, indications of LD having influenced our SNP 

to gene analysis are found, with nearby genes showing association to a given trait. This could 

influence our downstream analysis, potentially leading to enrichment of position-based gene 

sets, and as such was noted as a possible caveat. This might be especially problematic in the 

Major Histocompatibility Complex (MHC) region in chromosome 6, which further includes the 

HLA region. This region encodes proteins essential in the immune response and antigen 

presentation, and presents the largest polymorphism, gene density, and diversity of 

functional gene clusters in the human genome278. Furthermore, this region presents longer 

LD blocks and lower recombination rates than elsewhere in the genome279. The gene clusters 

within the MHC region show large variation in LD amongst populations, in turn leading to the 

use of specialised genotype imputation algorithms in population cohorts204,280, and further 

present challenges in association studies given polymorphism within populations and large 

LD regions that make fine mapping of variants driving GWAS hits difficult280. In addition, this 

region’s properties make variant calling and sequencing challenging279. Despite this, the 

MHC/HLA region presents the largest number of established disease associations270,279. All in 

all, these unique properties might have influenced our variant to gene analysis in traits where 

GxS were found to lie within the region, leading to inaccurate LD correction and variant data 

aggregation.  

 

WHR presented the largest number of female dominant sdGenes of all traits considered in 

this analysis (Figure 57a). This large predominance of female dominance has been previously 

described for body fat traits193,215,281,282. Furthermore, dimorphism test p-values were generally 

higher (less significant) for male dominant sdGenes when compared to female dominant 

sdGenes. As expected, given the associations found at the SNP level and their nearby genes 

(section 2.3.3.5), significant sdGenes included some previously described in the literature, 

including COBLL1 in chromosome 2, LYPLAL1 in chromosome 1, RSPO3 in chromosome 6, CMIP 

in chromosome 16, FAM13A  in chromosome 4, CCDC92 in chromosome 13 and CMIP in 

chromosome 16194. GRB14 in chromosome 2, which encodes a protein necessary for insulin 

signaling regulation, has been described to present female-specific effects across a number 

of body fat and metabolic traits193,282,283, and has been replicated across populations284. 

Furthermore, empirical studies have found a negative correlation between GRB14 expression 

and insulin sensitivity, in both rodents and humans285. 



Functional analysis of sexually different SNPs 133 

(a)

 
 

(b) 

 
Figure 57. Manhattan plot of waist-hip circumference ratio corresponding to gene annotation analysis 
using MAGMA, where x is the genomic position and y is -log10(q) across genes, using (a) qF (thus showing 
female dominant sdGenes) and (b) qM (thus showing male dominant sdGenes). Each pink point represents 
a gene with q < 0.01. Annotated are genes with -log10(q) > 5.  

 

Of the sdGenes reported here for gout (Figure 58), several have been previously linked to the 

latter in the literature, including the susceptibility loci SLC2A9 and ABCG2 in chromosome 

4198,286. Further loci previously linked to urate serum concentrations, in turn known to be 

correlated with gout risk, were identified as sdGenes, including SLC22A12 and NRXN2 in 

chromosome 11, and PDZK1 in chromosome 1185. Evidence of sexual dimorphism in genetic 

effects has been previously described for genes ABCG2, SLC2A9, and, more recently for 

PDZK1185,197,287. Furthermore, our sex dominance results are in concordance for ABCG2 and 

PDZK2, which have been found to present larger effects on gout risk in males198,287. On the 

other hand, SLC2A9 has been linked to higher urate levels in pre-menopausal females as 

opposed to males or post-menopausal females288. At the time of writing, all other sdGenes for 

gout reported in this study are novel. 
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Figure 58. Manhattan plot of gout corresponding to gene annotation analysis using MAGMA, where x is 
the genomic position and y is -log10(q) across genes, using qM (thus showing male dominant sdGenes). 
Each pink point represents a gene with q < 0.01. Annotated are genes with -log10(q) > 5. 

 

Beyond the aforementioned, the majority of the traits considered in this study have not been 

previously included in studies of sex-specific genetic architecture, or results have been 

inconclusive or mixed.  

 

3.3.1.2. Genes that present sex differences across the most traits 

 

The number of annotated genes that were found to be sdGenes for at least one trait 

irrespective of sex dominance was 3,556/18,253 (19.48%, q2T < 0.01). The number of female 

dominant and male dominant sdGenes that were found for at least one trait were 1,863/18,253 

(10.21%, qF < 0.01) and 1,402/18,253 (7.68%, qM < 0.01) respectively. These percentages are 

quite large, especially considering the low percentages of total SNPs across the genome that 

presented evidence of GxS when analyzed in Chapter 2, section 2.3.3.2. This could be due to 

our gene-level analysis presenting larger statistical power to detect GxS for the reasons 

stated previously (less stringent multiple testing correction).  

 

The genes that were sdGenes across most traits, irrespective of dominant sex, are displayed 

in Table 27. FRMD8 (chromosome 11) was the gene that was found to present differences in 

association between the sexes for most traits (31 in total, q2T < 0.01). This gene has been 

associated with urate levels and several blood phenotypes270. Furthermore, this gene seems 

to be completely female dominant across all traits for which it was found to be dimorphic 

(female dominant in 27 traits, while no traits found it male dominant at a qF and qM < 0.01 

threshold respectively). The next genes that were found to be sdGenes for most traits (29 

total) were LOC101927789 (chromosome 11) and LSAMP (chromosome 3). The former is a 

pseudogene, while the latter encodes a protein that forms part of the LAMP, OBCAM and 

neurotrimin (IgLON) family of proteins, which is ultimately processed to generate a neuronal 

surface glycoprotein, and which contributes to the guidance of developing axons and 

remodeling of mature circuits in the limbic system289. Furthermore, this gene was found to 
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be completely male dominant across traits at a qM < 0.01 threshold. Comparing these results 

to those from Chapter 2 we found that, surprisingly, no sdSNPs were found in either 

chromosome 11 or 3 that presented dimorphism across large numbers (> 5) of traits. This 

might be due, once again, to the difference in statistical power present in this analysis as 

opposed to our sex-stratified GWAS.  

 

Table 27. Genes that were found to be sdGenes for the largest amount of traits, considering a q2T < 0.01 
threshold. F represents number traits for which a gene was found to be female dominant (qF < 0.01), M 
represents number traits for which a gene was found to be male dominant (qF < 0.01), and Two Tailed 
represents the number of traits for which a gene was found to present differences in association between 
the sexes, irrespective of sex dominance (q2T < 0.01).  

Gene Chromosome F M Two Tailed 
FRMD8 11 27 0 31 
LOC101927789 11 28 1 29 
LSAMP 3 0 17 29 
ARHGAP15 2 13 0 28 
FAM92A1 8 26 0 28 
RBM12B 8 27 0 28 
LTBP3 11 25 0 27 
SCYL1 11 8 0 26 
HPR 16 22 0 26 

 

The female dominant sdGenes that were found most often across traits are shown in Table 

28, whilst the same is shown for male dominant sdGenes in Table 29. Notably, all top female 

dominant sdGenes were found to be almost exclusively dominant in females across traits 

where they presented dimorphism, and vice-versa for the male dominant sdGenes. This 

suggests that male or female dominance is conserved across the traits considered, i.e. a gene 

that presents dimorphism and has a larger effect in females will likely possess this larger 

effect in females across traits for which it was found to be dimorphic. This could, however, 

be due to the existence of phenotypic redundancy in UK Biobank, meaning that it’s more 

likely for a gene to present consistent effect across phenotypes if said phenotypes are 

similar.  

 

When considering the top female dominant sdGenes (Table 28), we find LOC101927789 

(described previously) presenting dimorphism across the largest number of traits (28). This 

is followed by FRMD8 (also described previously), RBM12B, and SEC16B, which are found to 

be female dominant across 27 traits. RBM12B (chromosome 8) is a protein coding gene for an 

RNA binding protein which has been associated with age at menarche290. SEC16B 

(chromosome 1) is a protein coding gene for an endoplasmic reticulum export factor, required 

for secretory traffic between the former and the Golgi apparatus291, and that has been 

associated with body mass and anthropometric phenotypes292,293. When considering the top 

male dominant sdGenes (Table 29), we find SLC354B being the gene which presents 

dimorphism across most traits (a total of 24), followed by SNX17 and IFT172 (with 23). SLC35B4 

(chromosome 7) codes for a glycotransferase that transports sugars from the cytosol to the 

Golgi apparatus, and which has been associated with a variety of phenotypes including mean 

platelet volume294. SNX17 (chromosome 2) encodes a member of the sorting nexin family of 

proteins, which are involved in intracellular trafficking, and IFT172 (chromosome 2) encodes 

a subunit of the intraflagellar transport subcomplex IFT-B.  
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Table 28. Genes that were found to be female dominant for the largest amount of traits when considering 
their qF and a < 0.01 threshold. Columns are the same as in Table 27. 

Gene Chromosome F M Two Tailed 
LOC101927789 11 28 1 29 
FRMD8 11 27 0 31 
RBM12B 8 27 0 28 
SEC16B 1 27 0 25 
FAM92A1 8 26 0 28 
LTBP3 11 25 0 27 
HPR 16 22 0 26 
CCDC6 10 20 0 25 
SSSCA1 11 20 0 22 

 
Table 29. Genes that were found to be male dominant for the largest amount of traits when considering 
their qM and a < 0.01 threshold. Columns are the same as in Table 27. 

Gene Chromosome F M Two Tailed 
SLC35B4 7 1 24 25 
SNX17 2 0 23 23 
IFT172 2 0 23 21 
AMBRA1 11 0 22 20 
EPB41L1 20 1 21 22 
PPM1G 2 0 21 21 
NRBP1 2 0 21 21 
F2 11 0 20 19 
ATG13 11 0 19 23 

 

3.3.2. Gene set enrichment analysis 

 

To gain insight into the biological meaning of these results, gene set enrichment analyses 

were carried out. As stated in section 3.2.1, the GENE2FUNC tool in FUMA was used to 

investigate any functional enrichments among the sdGenes obtained for each trait (female 

and male dominant) for the 10 traits with the largest number of sdGenes (q2T < 0.01). These 

were all of the anthropometric class and were: standing height, WHR, trunk predicted mass, 

trunk fat-free mass, trunk fat percentage, whole body fat-free mass, basal metabolic rate, 

impedance of arm (left), body fat percentage, and hip circumference. To gain insights into 

“sex-specific” traits (those that only presented male or female dominant sdGenes), gene set 

enrichment was also assessed for 3 traits that only presented female dominant sdGenes 

(hypothyroidism, hyperthyroidism, and malabsorption/coeliac disease) as well as for 2 traits 

that only presented male dominant sdGenes (gout and ankylosing spondylitis).  As a 

background to compare our results to, this procedure was repeated using sex-agnostic GWAS 

results, obtaining gene sets enriched in genes associated with each of our 15 phenotypes 

(see section 3.2.1.2).  

 

3.3.2.1. Gene set enrichment 
 

Gene sets enriched in male and female dominant sdGenes 

 

A total of 6,071 gene sets were found to be enriched in either male or female dominant 

sdGenes across the 15 traits considered (hypergeometric test q < 0.05), with a total of 4,840 
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when considering just the 10 traits with the largest number of sdGenes (Table 30). The trait 

which presented the largest number of enriched sets was WHR, with a total of 3,367 (2,885 

for female dominant sdGenes, and 760 for male dominant sdGenes).  

 

When considering the 10 traits for which enrichment was assessed for both male and female 

dominant sdGenes, we found that these were found to be enriched in an exclusive manner, 

i.e. sets would generally only be enriched in either male or female dominant sdGenes, but not 

both, with the average percentage of shared enriched sets across traits being 3.3% (SD = 

3.34%, Table 30).  

 

Table 30. Results of FUMA set-enrichment analysis across the 15 traits considered. In pink results for 5 
phenotypes that only presented male or female dominant sdGenes, and in blue those for top 10 traits 
which presented largest number of sdGenes irrespective of dominant sex. “F” column represents number 
of sets enriched in female dominant sdGenes at a Fisher’s exact test q < 0.05 threshold. “M” shows the 
same for male dominant sdGenes. “Sex-agnostic” column shows number of sets enriched in background 
genes. “F or M” shows number of sets that were enriched in either male or female dominant sdGenes, 
whilst “F and M” column shows sets that were enriched in both. “Prop F and M” is the proportion of F or 
M that were also F and M: “Prop F and M” = “F and M”/”F or M”.   

 F M Sex-
Agnostic 

F or M F and M Prop F 
and M 

       
Ankylosing Spondylitis - 200 1344 200 - - 
Gout - 415 973 415 - - 
Hyperthyroidism 876 - 2157 876 - - 
Hypothyroidism 716 - 8980 716 - - 
Malabsorption 929 - 2266 929 - - 
       
Trunk Fat % 190 537 19662 659 68 0.103 
WHR 2885 760 18291 3367 278 0.083 
Height 474 716 26521 1127 63 0.056 
Impedance Arm Left 46 131 8980 173 4 0.023 
Trunk Fat Free Mass 134 373 24103 498 9 0.018 
Basal Metabolic Rate 16 200 23428 213 3 0.014 
Body Fat % 11 343 20084 350 4 0.011 
Whole Body Water Mass 58 129 24025 185 2 0.011 
Trunk Predicted Mass 85 413 24096 493 5 0.010 
Whole Body Fat Free Mass 87 175 24100 262 0 0.000 

 

Gene sets differentially enriched between male and female dominant sdGenes 

 

Whilst both male and female dominant sdGenes represent genes in which evidence of GxS 

was found, we were interested in assessing whether male or female specific mechanisms 

underlie the observed differences in phenotype between the sexes. As such, we assessed, for 

the sets found to be enriched in either male or female dominant sdGenes across our top 10 

traits, which presented a significantly different number of male and female dominant 

sdGenes. A total of 383/4,840 gene sets were found to be significantly differentially enriched 

between male and female dominant sdGenes in at least one of the traits considered (Fisher’s 

exact test q < 0.05), with an average of 12.88% (SD 12.96%) of gene sets being differentially 

enriched across traits (Table 31). These sets could provide insights into male and female 

specific mechanisms, but, as discussed next, we further assessed whether these sets were 

different from what would be expected from a sex-agnostic GWAS hit enrichment analysis 

(here referred to as the background) prior to delving deeper into our results. 
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Table 31. Number of significantly differentially enriched gene sets between male and female dominant 
sdGenes. “F”, “M”, and “F or M” columns are the same as in Table 30, whilst “Sig Dif F vs M” is total 
number of gene sets that presented significantly different enrichment between male and female 
dominant sdGenes. Last column: proportion of the total, “Prop Sig Dif F vs M” = “Sig Dif F vs M”/”F or M”.  

 F M F or M 
Sig Dif 
F vs M 

Prop Sig 
Dif F vs M 

      
Trunk Fat % 190 537 659 81 0.123 
WHR 2885 760 3367 35 0.010 
Height 474 716 1127 97 0.086 
Impedance Arm Left 46 131 173 67 0.387 
Trunk Fat Free Mass 134 373 498 43 0.086 
Basal Metabolic Rate 16 200 213 0 0.000 
Body Fat % 11 343 350 2 0.006 
Whole Body Water Mass 58 129 185 28 0.151 
Trunk Predicted Mass 85 413 493 43 0.087 
Whole Body Fat Free Mass 87 175 262 92 0.351 

 

Gene sets differentially enriched in male and female dominant sdGenes and the 

background 
 

In an effort to further dissect which gene sets are potentially contributing or participating in 

the differences observed between the sexes across phenotypes, we also assessed which of 

the gene sets enriched in either male or female dominant sdGenes were significantly 

differentially enriched when compared to the background (Table 32). As described in section 

3.2.1.2, this background consisted on genes associated with a given trait in a sex-agnostic 

model. As such, we assessed which sets were differentially enriched between male/female 

dominant sdGenes and the aforementioned, that is, we searched for sets that presented a 

significantly larger number of sdGenes than sex-agnostically associated genes. 
 

Table 32. Number of enriched gene sets in male or female dominant sdGenes that are differentially 
enriched when compared to the background. In pink, results for 5 phenotypes that only presented 
male/female dominant sdGenes, and in blue for top 10 traits with largest number of sdGenes irrespective 
of dominant sex. “F”, “M”, “Sex-agnostic”, and “F or M” columns the same as in Table 30, whilst “Sig Dif 
Sex-Agnostic” is the number of enriched gene sets that were found to be differentially enriched between 
male or female dominant sdGenes and the background, with “Prop Sig Dif Sex-Agnostic” indicating the 
corresponding proportion: “Prop Sig Dif Sex-Agnostic” = “Sig Dig Sex-Agnostic”/”F or M”.  

 F M 
Sex-

Agnostic 
F or M 

Sig Dif 
Sex-

Agnostic 

Prop Sig 
Dif Sex-
Agnostic 

       
Ankylosing Spondylitis - 200 1344 200 0 0.000 
Gout - 415 973 415 0 0.000 
Hyperthyroidism 876 - 2157 876 6 0.007 
Hypothyroidism 716 - 8980 716 559 0.781 
Malabsorption 929 - 2266 929 4 0.004 
       
Trunk Fat % 190 537 19662 659 305 0.463 
WHR 2885 760 18291 3367 496 0.147 
Height 474 716 26521 1127 360 0.319 
Impedance Arm Left 46 131 8980 173 107 0.618 
Trunk Fat Free Mass 134 373 24103 498 295 0.592 
Basal Metabolic Rate 16 200 23428 213 152 0.714 
Body Fat % 11 343 20084 350 250 0.714 
Whole Body Water Mass 58 129 24025 185 166 0.897 
Trunk Predicted Mass 85 413 24096 493 271 0.550 
Whole Body Fat Free Mass 87 175 24100 262 210 0.802 
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We found that, when considering the traits for which enrichment was assessed for both male 

and female dominant sdGenes, the total number of gene sets that presented this behaviour 

was 1,731/4,840, whilst when considering all traits a total of 2,223/6,071 sets were found. For 

the top 10 traits, the average percentage of sets that were differentially enriched between 

male or female dominant sdGenes and the background was 58.17% (SD 22.53%). When 

assessing the 3 female-specific traits considered, we found that, on average, the percentage 

of gene sets that presented this behaviour was 26.40% (SD 44.75%) across traits, whilst no 

male-specific trait presented any significantly differently enriched gene set to the 

background, as is shown in Table 32. A potential reason for this is that, if most GWAS hits 

originating in a sex-agnostic model for a given trait also present sex differences, these would 

in turn not show a significant difference in enrichment when compared to the results of our 

male and female dominant sdGene enrichment analysis.  

 
Table 33. Number of traits (from a total of 15 considered) for which a given gene set was found to be 
significantly enriched in female or male dominant sdGenes (“F”, “M”), as well as in genes associated with 
a given phenotype (“Sex-Ag”). “F or M” indicates the number of traits for which the given gene set was 
found to be enriched in either male or dominant sdGenes, whilst “F and M” shows number of traits for 
which the gene set was found to be enriched in both male and female dominant sdGenes. The “Dif Sex-
Ag” column indicates the number of traits for which a given gene set was found to be enriched in male 
or female dominant sdGenes in a differential manner to the background genes (q < 0.05).  

Category GeneSet M F Sex 
Ag. 

F or 
M 

F & 
M 

Dif 
Sex 
Ag. 

GWAScatalog Height 11 9 14 14 6 11 
GWAScatalog WHR adjusted for BMI (age > 50) 10 2 9 10 2 10 
GWAScatalog WHR adjusted for BMI x sex x age  10 2 9 10 2 10 
GWAScatalog WHR adjusted for BMI  10 2 10 10 2 10 
Chem + Gen pertub NIKOLSKY BREAST CANCER 20Q11 AMPLICON 10 1 9 10 1 10 
Pos. gene sets chr20q11 10 1 8 10 1 10 
Curated gene sets NIKOLSKY BREAST CANCER 20Q11 AMPLICON 10 1 9 10 1 10 
GWAScatalog Body fat distrib. (trunk fat ratio) 9 5 10 10 4 9 
GWAScatalog WHR adjusted for BMI 9 2 9 9 2 9 
GWAScatalog Hip circum. adjusted for BMI 8 3 9 9 2 8 
GWAScatalog Body fat distrib. (arm fat ratio) 6 7 10 10 3 7 
GWAScatalog Body fat distrib. (leg fat ratio) 9 8 10 10 7 7 
GWAScatalog Type 1 diabetes 6 5 10 10 1 7 
GWAScatalog Total bilirubin levels 6 2 5 8 0 7 
GWAScatalog Blood protein levels 9 5 12 12 2 6 
GWAScatalog Body mass index (age <50) 3 3 5 6 0 6 
GWAScatalog Colorectal cancer/adv. adenoma 6 1 7 7 0 6 
Immun signatures CTRL VS TCELL MEMB. ACT MAST CELL UP 7 1 7 7 1 6 
Canon. Pathways KEGG STEROID HORMONE BIOSYNTHESIS 7 0 7 7 0 6 
GWAScatalog Hair greying 6 1 2 7 0 6 
GO_bp GO_FLAVONOID_GLUCURONIDATION 6 0 2 6 0 6 

 
Of the aforementioned 2,223 gene sets which presented a significant difference in 

enrichment between either male or female dominant sdGenes compared to the background 

in at least one of the 15 phenotypes considered, the sets which most frequently showed 

enrichment greatly pertained to GWAS catalog sets for traits like height, or WHR (Table 33). 

This could be due to the fact that the genes considered in our enrichment analysis originated 

from GWAS hits, and as such a large number of them are found within GWAS catalog sets. The 

large number of GWAS catalog sets pertaining to studies of anthropometric traits (height, 
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WHR, body fat distribution) could also be explained by the traits of study in this analysis, 

which mostly belong to the anthropometric class. Other enriched GWAS catalog sets included 

type 1 diabetes, bilirubin/blood protein levels, and colorectal cancer. Indeed, anthropometric 

phenotypes are known to be positively correlated with diabetes295, serum levels of bilirubin 

and other proteins296, and colorectal cancer risk297, which could thus explain an overlap in 

GWAS hits. Because our main objective was to study underlying biological mechanisms 

behind phenotypic sex differences, we focused our efforts on the study of non-GWAS catalog 

sets found to be differentially enriched between both male dominant sdGenes (Table 34) or 

female dominant sdGenes (Table 35) and the background. 

 
Table 34. Gene sets most often found to be differentially enriched between male dominant sdGenes and 
the background across the traits considered. “M” indicates the number of traits for which a given gene 
set was found to be enriched in male dominant sdGenes, “Sex-Agnos” indicates the same but for the 
background, and “Dif M v Sex-Agnos” indicates the number of traits for which a given set was found to 
be differentially enriched in male dominant sdGenes and the background (Fisher’s exact test q < 0.05).  
 

Category GeneSet M Sex-
Agnos 

Dif M 
v Sex- 
Agnos 

Chem + Gen perturb NIKOLSKY BREAST CANCER 20Q11 AMPLICON 10 9 10 
Positional gene sets chr20q11 10 8 10 
Curated gene sets NIKOLSKY BREAST CANCER 20Q11 AMPLICON 10 9 10 
Immuno signatures CTRL_VS_T_CELL_MEMBRANES_ACT_MAST_CELL_UP 7 7 6 
Canonical Pathways KEGG_STEROID_HORMONE_BIOSYNTHESIS 7 7 6 
GO_bp GO_FLAVONOID_GLUCURONIDATION 6 2 6 
GO_bp GO_XENOBIOTIC_GLUCURONIDATION 6 2 6 
GO_bp GO_FLAVONOID_METABOLIC_PROCESS 6 3 6 
GO_bp GO_URONIC_ACID_METABOLIC_PROCESS 6 2 6 
Curated gene sets KEGG_STEROID_HORMONE_BIOSYNTHESIS 6 6 6 
KEGG ASCORBATE_AND_ALDARATE_METABOLISM 6 1 6 
KEGG PENTOSE_AND_GLUCURONATE_INTERCONVERSIONS 6 2 6 
KEGG PORPHYRIN_AND_CHLOROPHYLL_METABOLISM 6 3 6 
KEGG DRUG_METABOLISM_OTHER_ENZYMES 6 4 6 
KEGG STARCH_AND_SUCROSE_METABOLISM 6 5 6 
KEGG STEROID_HORMONE_BIOSYNTHESIS 6 6 6 
Immuno signatures LPSvsLPS+IL10 STIM IL10 KO NFKBP50 MACROPH. UP 6 6 5 
Reactome REACTOME_BIOLOGICAL_OXIDATIONS 5 5 5 
Immuno signatures TH1_VS_TH17_ENRICHED_CD4_TCELL_UP 5 6 5 
GO_bp GO_FLAVONE_METABOLIC_PROCESS 5 3 5 
Immuno signatures WTvsRIP B7X DIABETIC MOUSE PANCRE. CD8 TCELL UP 5 5 5 

 
Two sets pertaining to a location in chromosome 20 were found to be enriched for male 

dominant sdGenes and differentially enriched to the background in a large number of traits 

(Table 34). These sets correspond to the location of genes that were identified in a copy 

number alteration study of 191 breast tumor samples (gene set termed Nikolsky breast cancer 

20q11 amplicon298). This enrichment could be an artifact due to LD having influenced our gene 

level analysis, leading to a potential bias in position-based sets, as mentioned prior. However, 

a recent GWAS on dietary intake, a trait with significant genetic correlations to traits 

considered here, also found enrichment for this gene set when using FUMA299. Another 

interesting set found to be differentially enriched between male dominant sdGenes and the 

background was the KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway for steroid 

hormone biosynthesis. Other enriched KEGG pathways included several metabolic sets, such 

as ascorbate and aldarate metabolism, and drug metabolism. Several GO gene sets relating 
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to glucuronidation and metabolism were also found to be widely enriched across the traits 

considered. When considering gene sets frequently differentially enriched between female 

dominant sdGenes and the background, we found that the binding site for the oestrogen-

related receptor alpha (ERRα, also known as ERR1) showed differential enrichment across a 

total of 4 traits (Table 35). ERR1 is a nuclear receptor, involved in cellular metabolism through 

the transcriptional regulation of metabolic genes in metabolically active tissues300. 

Furthermore, a large number of sets relating to small non-coding RNA (sncRNA) biogenesis 

and RNA-mediated silencing pathways were also found, which is discussed further in the 

following section and in section 3.3.2.3.  

 
Table 35. Gene sets most often found to be differentially enriched between female dominant sdGenes 
and the background. “F” indicates the number of traits for which a given gene set was found to be 
enriched in female dominant sdGenes, “Sex-Agnos” indicates the same but for the background, and “Dif 
F v Sex-Agnos” indicates the number of traits for which a given set was found to be differentially enriched 
in female dominant sdGenes and the background (Fisher’s exact test q < 0.05). 
 

Category GeneSet F Sex-
Agnos 

Dif F v 
Sex- 

Agnos 
TF_targets TGACCTY_ERR1_Q2 6 7 4 
GO_cc GO_RIBONUCLEOPROTEIN_GRANULE 5 5 4 
Cancer gene neighb. MORF_IL13 5 5 4 
Cancer gene neighb. MORF_PSMF1 5 5 4 
GO_bp GO_PRE_MIRNA_PROCESSING 4 4 4 
BioCarta BIOCARTA_DICER_PATHWAY 4 4 4 
Cancer gene neighb. MORF_RUNX1 4 4 4 
Reactome POST TRANSCRIPTIONAL SILENCING BY SMALL RNAS 4 4 4 
Reactome ENDOG  RNAS CERNAS REGULATE PTEN TRANSLATION 4 4 4 
Reactome REGULATION_OF_PTEN_MRNA_TRANSLATION 4 4 4 
Reactome SMALL_INTERFERING_RNA_SIRNA_BIOGENESIS 4 4 4 
Canonical_Pathways BIOCARTA_DICER_PATHWAY 4 4 4 
Canonical_Pathways POST TRANSCRIPT. SILENCING BY SMALL RNAS 4 4 4 
Canonical_Pathways ENDOG RNAS CERNAS REGULATE PTEN TRANSLATION 4 4 4 
Canonical_Pathways REGULATION_OF_PTEN_MRNA_TRANSLATION 4 4 4 
Canonical_Pathways SMALL_INTERFERING_RNA_SIRNA_BIOGENESIS 4 4 4 
microRNA_targets GTACTGT_MIR101 4 4 3 
microRNA_targets ACCAAAG_MIR9 4 5 3 
GO_bp REGULATION_OF_MEGAKARYOCYTE_DIFFERENTIATION 3 4 3 
GO_bp GO_MEGAKARYOCYTE_DIFFERENTIATION 3 4 3 
Positional_gene_sets chr6p21 5 6 3 

 

We generated a heatmap considering the 2,223 gene sets that presented a significantly 

different enrichment between male or female dominant sdGenes and the background for at 

least one trait (Figure 59) in a search for potential patterns/clusters within our data. A cluster 

was found for sets enriched in female dominant sdGenes in hypothyroidism, 

hyperthyroidism, and malabsorption/coeliac disease, relating to immune function, which is 

discussed further in section 3.3.2.3. Interestingly, with the exception of WHR, female and 

male dominant sdGenes for each trait clustered with other female or male dominant sdGene 

FUMA runs respectively, rather than with the opposite sex’s dominant sdGenes for the same 

trait. For example, male dominant sdGenes for trunk fat percentage clustered closer to male 

dominant sdGenes for body fat percentage or trunk predicted mass, than to the FUMA run for 

female dominant sdGenes for the same trait. This could indicate shared underlying 

mechanisms for the differences observed between the sexes for the traits considered.  



 142 

 
Figure 59. Heatmap with hierarchical clustering, considering the 2,223 gene sets that presented a 
significantly different enrichment between male and/or female dominant sdGenes and the background 
for at least one trait, and for the 15 traits for which gene set enrichment was assessed in female and/or 
male dominant sdGenes. “_F” and “_M” suffixes refer to female and male dominant sdGenes for each 
phenotype respectively. Scaled (per trait) -log10 q values were considered. x-axis corresponds to male 
or female dominant sdGenes for different traits, and y axis to gene sets. Colour within plot represents  
scaled -log10 q-value of enrichment, and “Sex” horizontal column indicates the sex in which the genes 
considered are dominant (pink for females, and blue for males).   

 

Continuing our search for patterns across gene sets and traits, we performed a PCA analysis, 

also considering the aforementioned 2,223 gene sets (Figure 60). No clear division between 

male and female dominant sdGene set enrichment was found, but PC1 (which accounted for 

64.80% of the variance in the data) managed to separate the results from our background 

gene enrichment to the sdGene enrichment quite well, thus indicating a difference in 

enrichment across the considered sets and traits between sdGenes and background genes.  
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Figure 60. PCA analysis of gene set enrichment -log10 q values, considering the 2,223 gene sets that 
presented a significantly different enrichment between male and/or female dominant sdGenes and the 
background for at least one trait. Each point represents one of the 15 traits for which gene set enrichment 
was assessed in female and/or male dominant sdGenes. In pink, FUMA runs pertaining to female 
dominant sdGenes are shown, male dominant sdGene runs shown in blue, and background runs in gray.  

 

Gene sets differentially enriched between male and female dominant sdGenes, in 

addition to the background 

 

Finally, we assessed which gene sets were both differentially enriched in male and female 

dominant sdGenes and also presented differential enrichment to the background (Table 36), 

for our top 10 traits. We found that 251 of the 383 sets that presented differences in 

enrichment between male and female dominant sdGenes also presented a difference in 

enrichment to the background (Fisher’s exact test q < 0.05) in at least one of the traits 

considered, the mean percentage of gene sets presenting this behaviour across traits being 

67.30% (SD 18.87%).  

 

Table 36. Number of significantly differentially enriched gene sets between male and female dominant 
sdGenes, that are also differentially enriched when compared to the background. “F”, “M”, and “Sex-
Agnos” columns are the same as in Table 30, “Sig Dif F v M” the same as in Table 31, and “Sig Dif Sex-
Agnos” the same as in Table 32. “Sig Dif F vs M + Sex Agnos.” Shows number of sets that were 
significantly differentially enriched in male and female dominant sdGenes, as well as differentially 
enriched between the latter (either female or male dominant sdGenes) and the background. “Prop Sig Dif 
F vs M + Sex Agnos.” represents the proportion of gene sets that presents this behaviour: “Prop Sig Dif F 
vs M + Sex Agnos” = “Sig Dif F vs M + Sex Agnos.”/”Sig Dif F vs M”.  

 F M 
Sex-

Agnos. 
Sig Dif 
F vs M 

Sig Dif 
Sex-

Agnos. 

Sig Dif F 
vs M + 

Sex 
Agnos. 

Prop Sig 
Dif F vs 
M + Sex 
Agnos. 

        

Trunk Fat % 190 537 19662 81 305 58 0.716 
WHR 2885 760 18291 35 496 21 0.600 
Height 474 716 26521 97 360 53 0.546 
Impedance Arm Left 46 131 8980 67 107 38 0.567 
Trunk Fat Free Mass 134 373 24103 43 295 25 0.581 
Basal Metabolic Rate 16 200 23428 0 152 0 0.000 
Body Fat % 11 343 20084 2 250 2 1.000 
Whole Body Water Mass 58 129 24025 28 166 25 0.893 
Trunk Predicted Mass 85 413 24096 43 271 15 0.349 
Whole Body Fat Free Mass 87 175 24100 92 210 74 0.804 

 

Amongst these 251 sets, the ones that presented differential enrichment most often across 

the traits considered included, once again, those pertaining to the q11 band of chromosome 

20, which was found to be differentially enriched across 8 of the 15 traits considered, and 
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which presented higher enrichment in male dominant sdGenes versus female dominant 

sdGenes and the background (Table 37). Other notable finds include the GO biological 

process gene set pertaining to pre-miRNA (microRNA) processing. This set, along with other 

sncRNA biogenesis and RNA-mediated silencing pathways (mentioned prior), upon 

investigation of a heatmap created using the data pertaining to the aforementioned 251 sets, 

was found to form a cluster amongst 3 female dominant sdGene FUMA runs pertaining to 

traits of anthropometric nature (discussed further in section 3.3.2.3, Figure 61). Other GO 

biological process sets found included those pertaining to the ribonucleoprotein granule and 

megakaryocyte differentiation, the enrichment of which, upon closer inspection, was found 

to be due to the same female dominant sdGenes, located in chromosome 1, across the same 

3 anthropometric traits where sncRNA/miRNA related pathways were found to be enriched 

(further discussed in section 3.3.2.3).  

 

As before, our PCA analysis showed a fairly good separation between sdGenes and 

background gene set enrichment across the 271 gene sets considered by PC1, which 

explained 60% of the variance in the data (Figure 62). Whilst PC2 (9.5% variance explained) 

managed to slightly separate female dominant from male dominant sdGene set enrichment 

results, these still largely overlapped, likely reflecting the absence of a gene set wide pattern 

of enrichment differentiating male and female dominant sdGenes.  

 

Table 37. Gene sets most often found to be differentially enriched between female and male dominant 
sdGenes, as well as differentially enriched compared to the background, across the traits considered. 
“M” indicates the number of traits for which a given gene set was found to be enriched in male dominant 
sdGenes, “F” indicates the same but for the female dominant sdGenes, and “Dif FvM + Sex-Agnos” 
indicates the number of traits for which a given set was found to be differentially enriched between both 
female and male dominant sdGenes, as well as when compared to the background (Fisher’s exact test q 
< 0.05). 
 

Category GeneSet M F 

Dif 
FvM + 
Sex- 
Ag. 

Chem + gen pertub NIKOLSKY_BREAST_CANCER_20Q11_AMPLICON 10 1 8 
Positional gene sets chr20q11 10 1 8 
Curated gene sets NIKOLSKY_BREAST_CANCER_20Q11_AMPLICON 10 1 8 
GO_cc GO_RIBONUCLEOPROTEIN_GRANULE 0 5 4 
GO_bp GO_PRE_MIRNA_PROCESSING 0 4 3 
GO_bp REGULATION_OF_MEGAKARYOCYTE_DIFFERENTIATION 1 3 3 
GO_bp MEGAKARYOCYTE_DIFFERENTIATION 1 3 3 
Cancer gene neighb. MORF_MSH3 0 5 3 
Cancer gene neighb. MORF_IL16 0 5 3 
Positional_gene_sets chr11p11 4 1 3 
GO_cc GO_ENVELOPE 5 0 2 
Cancer gene neighb. MORF_RUNX1 0 4 2 
Cancer gene neighb. MORF_NOS2A 0 4 2 
Cancer gene neighb. MORF_FOSL1 0 5 2 
Cancer gene neighb. MORF_MAGEA9 0 5 2 
Cancer gene neighb. MORF_ARL3 0 4 2 
Positional_gene_sets chr16q22 0 3 2 
Cancer gene neighb. MORF_SUPT3H 0 3 2 
TF_targets TEF1_Q6 2 4 2 
Positional_gene_sets chr1p34 0 2 2 
Immuno signatures KAECH_NAIVE_VS_DAY8_EFF_CD8_TCELL_UP 0 2 2 
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Figure 61. Heatmap with hierarchical clustering, considering the 251 gene sets that presented a 
significantly different enrichment between male and/or female dominant sdGenes and the background 
for at least one trait. Description the same as for Figure 59.  

 

 
Figure 62. PCA analysis of gene set enrichment -log10 q values, considering the 251 gene sets that 
presented a significantly different enrichment between male and/or female dominant sdGenes and the 
background for at least one trait, and the 15 traits for which gene set enrichment was assessed in female 
and/or male dominant sdGenes. Description the same as for Figure 60. 
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3.3.2.2. Tissue DEG set enrichment 

 

As mentioned previously, FUMA also looks for enrichment amongst pre-calculated gene sets 

declared to be differentially expressed across tissues in GTEx v8 (considering up-regulated 

DEGs, down-regulated DEGs, and DEGs irrespective of sign; see section 3.2.1.2). A total of 54 

tissues were considered, with three sets of genes assessed for enrichment per tissue (up and 

down regulated, and DEGs irrespective of sign), for a total of 162 DEG sets.  

 

DEG sets enriched in male and female dominant sdGenes 

 

A total of 116 DEG sets (42 down-regulated DEG sets, 29 up-regulated DEG sets, and 45 two-

sided DEG sets) were found to be enriched in either male or female dominant sdGenes in at 

least one trait across the 15 traits considered (hypergeometric test q < 0.05), with a total of 

111 (42 down-regulated DEG sets, 25 up-regulated DEG sets, and 44 two-sided DEG sets) when 

considering just the 10 traits with the largest number of sdGenes (Table 38). The trait which 

presented the largest number of enriched DEG sets was height, with a total of 82 (44 for 

female dominant sdGenes, and 78 for male dominant sdGenes).  

 

Table 38. Results of FUMA tissue DEG set enrichment analysis across the 15 traits considered. Columns 
equivalent to Table 30.   

 F M 
Sex-

Agnostic 
F or M F and M 

Prop F 
and M 

       
Ankylosing Spondylitis - 0 22 0 - - 
Gout - 5 33 5 - - 
Hyperthyroidism 27 - 34 27 - - 
Hypothyroidism 25 - 81 25 - - 
Malabsorption 26 - 27 26 - - 
       
Trunk Fat % 38 45 143 46 37 0.804 
WHR 73 41 139 75 39 0.520 
Height 44 78 151 82 40 0.488 
Impedance Arm Left 34 39 81 52 21 0.404 
Trunk Fat Free Mass 36 69 146 69 36 0.522 
Basal Metabolic Rate 17 37 144 37 17 0.459 
Body Fat % 20 37 142 38 19 0.500 
Whole Body Water Mass 35 12 146 36 11 0.306 
Trunk Predicted Mass 30 64 147 64 30 0.469 
Whole Body Fat Free Mass 31 32 145 41 22 0.537 

 

Contrary to our analysis of other gene sets (section 3.3.2.1), we found that, when considering 

the 10 traits for which enrichment was assessed for both male and female dominant sdGenes, 

sets were enriched in both male and female dominant sdGenes for a fair proportion of the 

enriched sets found, with the average percentage of shared enriched sets across traits being 

50.08% (SD = 12.68%, Table 38). This could suggest that, generally, whilst enriched gene sets 

and pathways potentially underlying differences in phenotype between the sexes are largely 

unshared between male and female dominant sdGenes, these need not differ in regards to 

the tissue of action (i.e. both could be up or down regulated within the same tissues), or, 

perhaps these genes are not particularly differentially expressed in a given tissue compared 
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to the rest (i.e. the levels of expression of these genes across all tissues considered are 

largely the same). 

 

DEG sets differentially enriched between male and female dominant genes 

 

Next, we assessed, for the sets found to be enriched in either male or female dominant 

sdGenes across our top 10 traits, which were also significantly differentially enriched 

between male and female dominant sdGenes, that is, which DEG sets presented a 

significantly different number of female and male dominant sdGenes. A total of 15/111 DEG 

gene sets (8 down-regulated DEG sets, 4 up-regulated DEG sets, and 3 two-sided DEG sets) 

were found to be significantly differentially enriched between male and female dominant 

sdGenes in at least one of the traits considered (Fisher’s exact test q < 0.05), with an average 

of 4.21% (SD 9.94%) of gene sets being differentially enriched across traits (Table 39). Only 

male and female dominant sdGenes for 2 of the 10 traits considered (impedance arm left and 

whole body water mass) presented at least one set with this behaviour, again indicating that 

differences in DEG set enrichment are not very widespread across sdGenes. 

 

Table 39. Number of differentially enriched DEG sets between male and female dominant sdGenes. 
Columns the same as for Table 31. 

 F M F or M Sig Dif 
F vs M 

Prop Sig 
Dif F vs M 

      
Trunk Fat % 38 45 46 0 0.000 
WHR 73 41 75 0 0.000 
Height 44 78 82 0 0.000 
Impedance Arm Left 34 39 52 6 0.115 
Trunk Fat Free Mass 36 69 69 0 0.000 
Basal Metabolic Rate 17 37 37 0 0.000 
Body Fat % 20 37 38 0 0.000 
Whole Body Water Mass 35 12 36 11 0.306 
Trunk Predicted Mass 30 64 64 0 0.000 
Whole Body Fat Free Mass 31 32 41 0 0.000 

 

DEG sets differentially enriched in male and female dominant sdGenes and the 

background 

 

As with our other gene sets, we also assessed which of the DEG sets enriched in either male 

or female dominant sdGenes were significantly differentially enriched when compared to the 

background (Fisher’s exact test q < 0.05, Table 40). We found that, when considering the 

traits for which enrichment was assessed for both male and female dominant sdGenes, the 

total number of gene sets that presented this behaviour was 22/111, whilst when considering 

all traits a total of 22/116 were found. For the top 10 traits, the average percentage of sets that 

were differentially enriched between male or female dominant sdGenes and the background 

was 4.21% (SD 7.73%). When assessing the 3 female-specific traits considered, as well as the 

2 male-specific traits, no significantly differentially enriched DEG sets to the background 

were found (Table 40). In total, only 3 of the 15 traits considered presented at least one DEG 

set that significantly differed in enrichment between sdGenes and background genes.  
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Table 40. Number of enriched DEG sets in male or female dominant sdGenes that are differentially 
enriched when compared to the background. Columns the same as in Table 32. 

 F M 
Sex-

Agnostic F or M 
Sig Dif 
Sex-

Agnostic 

Prop Sig 
Dif Sex-
Agnostic 

       
Ankylosing Spondylitis - 0 22 0 0 0.000 
Gout - 5 33 5 0 0.000 
Hyperthyroidism 27 - 34 27 0 0.000 
Hypothyroidism 25 - 81 25 0 0.000 
Malabsorption 26 - 27 26 0 0.000 
       
Trunk Fat % 38 45 143 46 0 0.000 
WHR 73 41 139 75 8 0.107 
Height 44 78 151 82 0 0.000 
Impedance Arm Left 34 39 81 52 12 0.231 
Trunk Fat Free Mass 36 69 146 69 0 0.000 
Basal Metabolic Rate 17 37 144 37 0 0.000 
Body Fat % 20 37 142 38 0 0.000 
Whole Body Water Mass 35 12 146 36 3 0.083 
Trunk Predicted Mass 30 64 147 64 0 0.000 
Whole Body Fat Free Mass 31 32 145 41 0 0.000 

 

Table 41. 22 DEG sets which were found to be both enriched in either male or female dominant sdGenes, 
as well as differentially enriched to the background. Indicated are the number of traits (from a total of 
15) for which a given DEG set was found to be significantly enriched in female or male dominant sdGenes 
(“F”, “M”), as well as in genes associated with a given phenotype (“Sex-Ag”). “F or M” indicates the 
number of genes for which the given gene set was found to be enriched in either M or F genes, whilst “F 
and M” shows number of traits for which the gene set was found to be enriched in both M and F dominant 
sdGenes. The “Dif Sex-Ag” column indicates the number of traits for which a given gene set was found 
to be enriched in male or female dominant sdGenes in a differential manner to the background genes (q 
< 0.05), whilst “Dif M vs Sex Ag” and “Dif F vs Sex Ag” show the same, but specifically for either male or 
female dominant sdGenes.  

DEG Tissue M F 
Sex 
Ag. 

F or 
M 

F & 
M 

Dif 
M 
vs 

Sex 
Ag. 

Dif 
F vs 
Sex 
Ag. 

Dif 
Sex 
Ag. 

Down Brain_Anterior_cingulate_cortex_BA24 7 12 15 12 7 0 2 2 
Down Brain_Amygdala 9 13 15 14 8 0 1 1 
Down Brain_Hippocampus 8 12 15 13 7 0 1 1 
Down Brain_Putamen_basal_ganglia 7 13 15 13 7 0 1 1 
Down Brain_Frontal_Cortex_BA9 6 9 15 12 3 0 1 1 
Down Brain_Substantia_nigra 8 9 13 10 7 0 1 1 
Down Kidney_Cortex 10 8 11 10 8 0 1 1 
Down Whole_Blood 10 7 11 10 7 1 0 1 
2Side Brain_Substantia_nigra 9 9 12 10 8 0 1 1 
2Side Kidney_Cortex 10 8 12 10 8 0 1 1 
Down Small_Intestine_Terminal_Ileum 2 1 9 3 0 1 0 1 
Up Brain_Amygdala 1 0 9 1 0 1 0 1 
Up Brain_Anterior_cingulate_cortex_BA24 1 0 9 1 0 1 0 1 
Up Brain_Caudate_basal_ganglia 1 0 9 1 0 1 0 1 
Up Brain_Cortex 1 0 9 1 0 1 0 1 
Up Brain_Frontal_Cortex_BA9 1 0 9 1 0 1 0 1 
Up Brain_Hippocampus 1 0 9 1 0 1 0 1 
Up Brain_Hypothalamus 1 0 9 1 0 1 0 1 
Up Brain_Nucleus_accumbens_basal_ganglia 1 0 9 1 0 1 0 1 
Up Brain_Putamen_basal_ganglia 1 0 9 1 0 1 0 1 
Up Brain_Spinal_cord_cervical_c-1 1 0 9 1 0 1 0 1 
Up Brain_Substantia_nigra 1 0 9 1 0 1 0 1 
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Table 42. 22 DEG sets which were found to be both enriched in either male or female dominant sdGenes, 
as well as differentially enriched between male or female dominant sdGenes and the background. Shown 
are the results of the Fisher’s exact test assessing difference in enrichment between either female or 
male dominant sdGenes (“F”/”M”) and the background (“Sex Agnos”). The “F”/”M”/”Sex Agnos” columns 
refer to the female/male dominant sdGenes or background found for the DEG set considered, whilst the 
“Total” columns represent the total number of these genes considered in our enrichment analysis. 
Results are also divided by the trait in which the dominant and background genes were determined, and 
for which at least one DEG was found to significantly differ between either male or female dominant 
sdGenes and the background (a total of 3). A Fisher’s q = 0.000 refers to q < 0.0005, due to rounding.  
 
F v GWAS 

Trait Tissue DEG Sex 
Agnos 

Total 
Sex 

Agnos 
F Total 

F 
Fisher

q 

WHR 

Brain_Amygdala Down 1719 4057 170 325 0.011 
Brain_Hippocampus Down 1659 4057 165 325 0.011 
Brain_Putamen_basal_ganglia Down 1750 4057 173 325 0.011 
Kidney_Cortex 2Side 1446 4057 148 325 0.011 
Kidney_Cortex Down 1258 4057 130 325 0.015 
Brain_Anterior_cingulate_cortex_BA24 Down 1467 4057 147 325 0.015 
Brain_Frontal_Cortex_BA9 Down 1081 4057 114 325 0.015 

Whole 
Body 
Water 
Mass 

Brain_Anterior_cingulate_cortex_BA24 Down 2960 8265 30 54 0.047 
Brain_Substantia_nigra Down 3305 8265 33 54 0.047 

Brain_Substantia_nigra 2Side 3865 8265 36 54 0.047 

 
       

M v GWAS 

Trait Tissue DEG 
Sex 

Agnos 

Total 
Sex 

Agnos 
M 

Total 
M 

Fisher 
q 

WHR Whole_Blood Down 1508 4057 77 153 0.049 

Imped. 
Arm 
Left 

Brain_Hypothalamus Up 56 1052 28 139 0.000 
Brain_Caudate_basal_ganglia Up 47 1052 25 139 0.000 
Brain_Anterior_cingulate_cortex_BA24 Up 53 1052 25 139 0.000 
Brain_Frontal_Cortex_BA9 Up 88 1052 32 139 0.000 
Brain_Amygdala Up 39 1052 20 139 0.000 
Brain_Hippocampus Up 43 1052 21 139 0.000 
Brain_Cortex Up 78 1052 28 139 0.000 
Brain_Nucleus_accumbens_basal_ganglia Up 60 1052 24 139 0.000 
Brain_Putamen_basal_ganglia Up 38 1052 19 139 0.000 
Brain_Substantia_nigra Up 36 1052 18 139 0.000 
Brain_Spinal_cord_cervical_c-1 Up 60 1052 22 139 0.000 
Small_Intestine_Terminal_Ileum Down 46 1052 16 139 0.005 

 

The 22 DEG sets that were found to be differentially enriched between our male/female 

dominant sdGenes and the background largely belonged to different sub-sections of brain 

tissue (Table 41). Dissecting our results further, we found that 9/22 of the DEG sets were 

found to be significantly differentially enriched between female dominant sdGenes and the 

background, whilst 13/22 were significantly differentially enriched between male dominant 

sdGenes and the background (Table 42). Interestingly, the brain DEG sets that were found to 

be differentially enriched between female dominant sdGenes and the background all 

belonged to down-regulated or two-sided DEG sets, whilst when considering the same for 

male dominant sdGenes only up-regulated or two-sided DEG sets were found (Table 42). This 

could thus suggest different directional transcription regulation between the sexes in the 

brain for male and female dominant sdGenes.   

 

As with our other gene sets, a heatmap was created in a search for patterns and clusters in 

our data (Figure 63). Interestingly, even though differentially enriched DEG sets between sex-
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dominant sdGenes and the background were only found for a total of 3 traits, and significant 

differences in enrichment in down-regulated brain DEGs were limited to female dominant 

sdGenes, our heatmap shows a general level of enrichment in down-regulated brain tissue 

DEG sets across most of the traits considered, both for male and female dominant sdGenes. 

Furthermore, whilst the results in Table 42 suggested a potential divide between male and 

female dominant sdGenes into up-regulated and down-regulated brain tissue DEGs 

respectively, the observed up-regulated enrichment seems to be limited to the male 

dominant sdGenes of a single trait, impedance arm left. Included in the cluster of down-

regulated DEG brain tissue sets, down-regulated DEG sets for whole blood and the kidney 

cortex tissues were also found (Figure 63). Given the low number of differentially enriched 

sets found, a PCA analysis was not performed for our DEG enrichment results.  

 
Figure 63. Heatmap with hierarchical clustering, considering the 22 DEG sets that presented a 
significantly different enrichment between male and/or female dominant sdGenes and the background 
for at least one trait, and the 15 traits for which gene set enrichment was assessed in female and/or male 
dominant sdGenes. “_F” and “_M” suffixes refer to female and male dominant sdGenes for each 
phenotype respectively. -log10 q values of enrichment were considered. X-axis corresponds to male or 
female dominant sdGenes for different traits, and y axis to DEG sets. Colour within plot represents -log10 
q-value of enrichment, “Sex” horizontal column indicates the sex in which the genes considered are 
dominant (pink for females, and blue for males), and “Tissue” vertical column indicates the tissue the 
DEG set belongs to, different colours pertaining to different general tissue types (brown: brain, green: 
blood, purple: kidney, and mustard: small intestine. 
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DEG sets differentially enriched between male and female dominant sdGenes, in 

addition to the background 

 

Finally, we assessed which DEG sets were both differentially enriched in male and female 

dominant sdGenes and also presented differential enrichment to the background (Table 43), 

for our top 10 traits. We found that 7 of the 15 sets (2 down-regulated DEG sets, 4 up-regulated 

DEG sets, and 1 two-sided DEG set) that presented differences in enrichment between male 

and female dominant sdGenes also presented a difference in enrichment to the background 

(Fisher’s exact test q < 0.05) in at least one of the traits considered, the mean percentage of 

gene sets presenting this behaviour across traits being 46.97% (SD 27.86%). These 

differences were only present in 2 of the 10 traits considered, impedance arm left (with a total 

of 4 DEG sets) and whole body water mass (with a total of 3).  

 

Table 43. Number of differentially enriched DEG sets between male and female dominant sdGenes, that 
are also differentially enriched when compared to the background. Columns the same as in Table 36. 

 F M 
Sex-

Agnos. 
Sig Dif 
F vs M 

Sig Dif 
Sex-

Agnos. 

Sig Dif F 
vs M + 

Sex 
Agnos. 

Prop Sig 
Dif F vs 
M + Sex 
Agnos. 

        

Trunk Fat % 38 45 143 0 0 0 - 
WHR 73 41 139 0 8 0 - 
Height 44 78 151 0 0 0 - 
Impedance Arm Left 34 39 81 6 12 4 0.667 
Trunk Fat Free Mass 36 69 146 0 0 0 - 
Basal Metabolic Rate 17 37 144 0 0 0 - 
Body Fat % 20 37 142 0 0 0 - 
Whole Body Water Mass 35 12 146 11 3 3 0.273 
Trunk Predicted Mass 30 64 147 0 0 0 - 
Whole Body Fat Free Mass 31 32 145 0 0 0 - 

 

Table 44. 7 DEG sets which were found to be both differentially enriched in either male and female 
dominant sdGenes, as well as differentially enriched between male or female dominant sdGenes and the 
background. Indicated are the number of traits (from a total of 10 considered) for which a given DEG set 
was found to be significantly enriched in female or male dominant sdGenes (“M”, “F”). “Dif FvM + Sex Ag” 
shows the number of traits in which a given set was found to be differentially enriched in male and female 
dominant sdGenes as well as differentially enriched to the background. 

DEG Tissue M F 
Dif FvM + 
Sex-Ag. 

Down Brain_Anterior_cingulate_cortex_BA24 1 0 1 
Up Brain_Anterior_cingulate_cortex_BA24 1 0 1 
Up Brain_Caudate_basal_ganglia 1 0 1 
Up Brain_Cortex 1 0 1 
Up Brain_Frontal_Cortex_BA9 7 9 1 
2Side Brain_Substantia_nigra 8 9 1 
Down Brain_Substantia_nigra 9 9 1 

 

 

The 7 DEG sets that presented a significant difference not only to the background but also 

between male and female dominant sdGenes are listed in Table 44, with the results of the 

Fisher’s exact test across sets for the two traits that presented at least one DEG set with 

significantly different enrichment shown in Table 45. As opposed to the results listed in 

Table 41 and Table 42, which list the 22 DEGs that were found to differ in enrichment when 
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compared to the background, we only found DEG sets pertaining to different brain tissues. 

DEG sets enriched for female dominant sdGenes in whole body water mass were all down- 

regulated, whilst those pertaining to the male dominant sdGenes in impedance arm left were 

all up-regulated. The results of the clustering of our enrichment results via the creation of a 

heatmap (Figure 64) for the aforementioned 7 DEG sets considered once again mirrored the 

observations from Figure 63, where enrichment of down-regulated DEG sets from brain 

tissues seemed generally widespread across all sdGene enrichment analyses, with some 

exceptions. 

 
Table 45. Results of the Fisher’s exact test comparing male and female dominant sdGene enrichment 
across the 7 DEG sets which were found to be both differentially enriched in either male and female 
dominant sdGenes, as well as differentially enriched between male or female dominant sdGenes and the 
background. The “F”/”M” columns refer to the female/male dominant sdGenes found for the DEG set 
considered, whilst the “Total” columns represent the total number of these genes considered in our 
enrichment analysis. Results are also divided by the trait in which the dominant and background genes 
were determined, and for which at least one DEG was found to significantly differ between male and 
female dominant sdGenes, and the background (a total of 2). 
 

Trait Tissue DEG F 
Total 

F 
M 

Total 
M 

Fisher
q 

Imped.
Arm 
Left 

Brain_Anterior_cingulate_cortex_BA24 Up 4 91 25 139 0.028 
Brain_Cortex Up 5 91 28 139 0.028 
Brain_Frontal_Cortex_BA9 Up 7 91 32 139 0.028 
Brain_Caudate_basal_ganglia Up 5 91 25 139 0.047 

Whole 
Body 
Water 
Mass 

Brain_Substantia_nigra Down 33 54 46 131 0.032 
Brain_Substantia_nigra 2Side 36 54 53 131 0.032 

Brain_Anterior_cingulate_cortex_BA24 Down 30 54 43 131 0.036 

 
Figure 64. Heatmap with hierarchical clustering, considering the 7 DEG sets that presented a 
significantly different enrichment between male and female dominant sdGenes, as well as a significantly 
different enrichment to the background for at least one trait. Description the same as that for Figure 63. 

 

3.3.2.3. Per-trait analysis 

 

Having obtained an overall look at our gene set enrichment results in the previous section, we 

next looked to assess our results on a trait by trait basis. The results from our gene set 

enrichment analysis seemed to mirror those of Chapter 2 in that sex differences in genetic 



Functional analysis of sexually different SNPs 153 

architecture are very heterogeneous across traits and do not conform to a single pattern 

across all phenotypes under study. Besides two notable groups of gene sets relating to miRNA 

regulation and the immune function respectively, which were identified by means of 

heatmaps/hierarchical clustering and were previously described in section 3.3.2.1 

(highlighted in Figure 59 and Figure 61), sdGenes for each trait seemed to possess distinct 

gene set enrichment profiles. As such, in an effort to delve further into the underlying biology 

of sex differences in complex traits, we (i) looked into the aforementioned clusters of sets 

found, and (ii) looked into the gene sets that presented a significant difference in enrichment 

between male and female dominant sdGenes, as well as a difference in enrichment to the 

background, on a trait by trait basis. Basal metabolic rate and body fat percentage were left 

out from this discussion due to the low numbers of sets found (0 and 2 respectively).  

 

Hypothyroidism, hyperthyroidism and malabsorption/coeliac disease 

 

The first cluster of sets found (Figure 59) was formed by the female dominant sdGenes 

pertaining to hypothyroidism, hyperthyroidism, and malabsorption/coeliac disease, which 

showed a significantly different enrichment across a variety of immune gene sets when 

compared to the background (Figure 65). Notably, whilst all showed significant enrichment 

across these sets, these were only found to significantly differ in enrichment when compared 

to the background for female dominant sdGenes found for hypothyroidism (i.e. 

hyperthyroidism and malabsorption female dominant sdGene sets were not found to be 

significantly differentially enriched when compared to the background).   

 

Amongst the sets found within this cluster, the most predominant were those related to 

immune response related pathways, such as those pertaining to antigen processing and 

presentation, the MHC, positive regulation of the immune system response, and more (Figure 

65). This is unsurprising, given that sdGenes found for these three traits largely belonged to 

the MHC/HLA region in chromosome 6 (Supplementary Figure 2, Supplementary Figure 3, 

Supplementary Figure 4). Furthermore, these diseases have an autoimmune nature, with 

hypothyroidism and hyperthyroidism mostly being caused by the immune system attacking 

the thyroid gland and disrupting its normal function, and malabsorption/coeliac disease 

occurring due to an immune response in the gut tissue triggered by gluten consumption. 

Interestingly, ankylosing spondylitis, another autoimmune disease which presented male 

dominant sdGenes in the same genomic region (Supplementary Figure 5), did not appear in 

this cluster. Sex steroid hormones are known to regulate components of innate and adaptive 

immunity301, thus this likely contributing to some of the gene by sex interactions observed 

across the aforementioned diseases. Furthermore, as discussed in section 1.4.3, it has been 

postulated that sex-specific immune adaptation to account for pregnancy and placentation 

could underlie sex differences across the disease phenome176. This in turn makes a further 

case for the immune system as a potential modulator of sex differences, and could thus 

explain the sex-specific genetic associations found within areas enriched for immune 

function. Other sets pertaining to this cluster included the KEGG pathway for type 1 diabetes 

mellitus,  as well as sets pertaining to vesicle transport, the Golgi apparatus and the 

endoplasmic reticulum. The genes driving these enrichments were also encoded within the 

HLA region.  
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Figure 65. Enrichment -log10 q values in female dominant sdGenes across sets pertaining to immune 
related functions, which were found to cluster together, for hypothyroidism, hyperthyroidism, and 
malabsorption traits.  

 

Trunk fat free mass, whole body fat free mass and trunk predicted mass 

 

The second cluster of gene sets found (Figure 61) consisted of sets relating to pre-miRNA 

processing, small non-coding RNA, and RNA-mediated silencing, for female dominant 

sdGenes across 3 anthropometric traits (trunk fat free mass, whole body fat free mass and 

trunk predicted mass). These sets were found to present differential enrichment in male and 

female dominant sdGenes, as well as differential enrichment when compared to the 

background, when considering the female dominant sdGenes found for whole body water 

mass. As was the case in the previous cluster, whilst the female dominant sdGenes for the 

other two traits were not found to be differentially enriched in the same manner as those for 

whole body fat free mass, they did present significant enrichment across the sets 

considered. The sets pertaining to this cluster and their corresponding enrichment q-values 

are displayed in Figure 66.  

 

Interestingly, it has previously been postulated that miRNA may play a role in the regulation 

of phenotypic sex differences due to its ability to regulate large numbers of genes with a high 
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degree of specificity, with intervention of the sex chromosomes and/or gonadal hormones302. 

Furthermore, the most recent flagship GTEx paper looking into differences between the sexes 

in gene expression found an enrichment in miRNA target sets when considering sex biased 

gene expression164. However, upon closer inspection, we found that the genes leading to 

enrichment across these sets were AGO1, AGO3, and AGO4, all located within chromosome 1 

within close proximity of each other. As such, a potential caveat of this finding is that these 

sdGenes might have arisen due to LD, as discussed previously, thus this enrichment 

potentially being the result of a positional bias.  

 
Figure 66. Enrichment -log10 q values in female dominant sdGenes across sets pertaining to small non-
coding RNA (sncRNA) biogenesis and RNA-mediated silencing pathways, which were found to cluster 
together, for trunk fat free mass, whole body fat free mass, and trunk predicted mass traits. 

 

Having delved into the two clusters of sets found in our gene set analyses, we next moved on 

to assess the sets obtained for each trait considered in our enrichment analysis that 

presented a significant difference in enrichment between male and female dominant 

sdGenes, as well as a significant difference when compared to the background, in a search 

for trait-specific molecular mechanisms that could be underlying sex differences. 

 

Waist-hip circumference ratio 

 

When considering the sets that presented a significant difference in male and female 

dominant sdGenes, as well as a difference in enrichment when compared to the background 

for WHR (Figure 67), we found that sets enriched in female dominant sdGenes included the 

GO biological processes of response to peptide hormone as well as reproductive system 

development. These sets did not present any overlap with the male dominant sdGenes found 

for the trait. This could be highlighting the presence of sex-specific molecular mechanisms, 

with the role of hormones in the regulation of the trait being present in females but not in 

males. Hormones are known to regulate body fat composition in a sex-specific way, with 

testosterone facilitating fat deposition in the abdominal region, and oestrogen mediating fat 

deposition in the gluteo-femoral regions303,304. Furthermore, previous studies have 

hypothesised the role of sex hormones in genetic regulation leading to differences in WHR 

between the sexes214.  

 



 156 

Interestingly, when considering sets enriched in male dominant sdGenes, several sets 

relating to mental health, including GWAS catalog sets for neuroticism, loneliness, and short 

sleep duration were found. These findings could suggest the role of stress or other 

social/societal factors influencing phenotypic variability in males to a greater extent than in 

females, for whom hormonal regulation is likely the key factor underlying this phenotype. 

Indeed, the stress hormone cortisol has been associated with higher levels of abdominal fat 

and therefore higher WHR305. 

 

 
Figure 67. For waist-hip circumference ratio, barplot showing enrichment of gene sets that were found 
to be significantly differentially enriched between male and female dominant sdGenes, as well as 
significantly differentially enriched to the background, filtered for redundancy across databases. Length 
of bar represents the log10 q-values for both male (left, pink, -log10) and female (right, blue, log10) 
dominant sdGenes. Annotated for each bar is the number of female/male dominant sdGenes found within 
the given set, as well as the total number of genes within the set.  

 

Whole body water mass 

 

When considering sets that were significantly differentially enriched between male and 

female dominant sdGenes, as well as to the background, for whole body water mass, we again 

found sets that were exclusively enriched in either male or female dominant sdGenes (Figure 

68). Considering sets enriched in female dominant sdGenes, we found several GWAS catalog 

sets, including those pertaining to LDL cholesterol levels, as well as severe acne and the 

tendency to wake up earlier in the morning (“morning person”). Whilst enrichment for these 

sets was driven by 4 genes, upon closer inspection we found that these did not completely 

overlap across sets, i.e. enrichment was not being driven by the same genes. 

 

Other interesting sets found included the miRNA MIR511 target set (sncRNA regulation having 

been discussed previously in this section), as well as the transcription factor TEF1 (also known 

as TEAD1) target set, which has been associated with nervous system development as well as 

positive regulation of transcription by RNA polymerase II, including the positive regulation of 

primary miRNA (a precursor of mature miRNA) transcription306,307. The fact that the latter was 

found to be enriched in genes outside of the AGO gene region (discussed prior), including 

CCDC18, DR1, POGK and LAMB3, offers further evidence into the potential role of miRNA in 

phenotypic differences between males and females.  
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Finally, female dominant sdGene enrichment was found across several cancer gene 

neighborhoods and immunologic signatures, the enrichment of which was driven by the same 

genes, including C1orf216, MLLT10, KIAA0586, COLQ and SGCD. On the other hand, sets 

enriched in male dominant sdGenes included the GWAS catalog blood protein level set, GO 

envelope pathway, and the set pertaining to the location in chromosome 20q11, previously 

discussed in section 3.3.2.1. 

 

 
Figure 68. For whole body water mass, barplot showing enrichment of gene sets that were found to be 
significantly differentially enriched between male and female dominant sdGenes, as well as significantly 
differentially enriched to the background, filtered for redundancy across databases. Length of bar 
represents the log10 q-values for both male (left, pink, -log10) and female (right, blue, log10) dominant 
sdGenes. Annotated for each bar is the number of female/male dominant sdGenes found within the given 
set, as well as the total number of genes within the set. 

 

Trunk fat percentage 

 

Next, we moved on to the results for trunk fat percentage, evaluating once again the sets that 

were found to present a significant difference in enrichment in male and female dominant 

sdGenes, as well as when compared to the background (Figure 69). As opposed to the other 

traits considered, we found a greater number of sets which presented overlap in both male 

and female dominant sdGenes, including the GWAS catalog sets for height, body fat 

distribution, and hip circumference, as well as the sets pertaining to the chromosomal 20q11 

location described previously and the SOX2 transcription factor target set. Along with SOX2, 

other transcription factor target sets were found to be enriched in female dominant sdGenes, 

including those for CREB and Nanog. In the developing brain, CREB participates in 

proliferation, differentiation and survival of cells, whilst in the adult brain its involved in 

neuronal plasticity, memory, and learning308. CREB presents differential phosphorylation 

levels between the sexes at birth, and may be involved in the hormone-mediated 

differentiation of the brain309, as well as in sex-differential memory formation in later stages 

of life310.  
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When considering sets enriched in male dominant sdGenes, we found, as we did for male 

dominant sdGenes in WHR, an enrichment in GWAS catalog sets relating to loneliness and 

neuroticism. Furthermore, we found an enrichment in several pathways relating to olfactory 

stimulation and perception of smell, a potentially interesting finding given the nature of the 

phenotype considered. 

 

 
Figure 69. For trunk fat percentage, barplot showing enrichment of gene sets that were found to be 
significantly differentially enriched between male and female dominant sdGenes, as well as significantly 
differentially enriched to the background, filtered for redundancy across databases. Length of bar 
represents the log10 q-values for both male (left, pink, -log10) and female (right, blue, log10) dominant 
sdGenes. Annotated for each bar is the number of female/male dominant sdGenes found within the given 
set, as well as the total number of genes within the set. 

 

Impedance of arm  

 

An impedance analysis is a method of assessing body composition through the measurement 

of body fat in relation to lean body mass. This is done by placing electrodes on the arms/feet, 

and then sending an electrical current through the body. As such, the measure of impedance 

indicates how this electrical current is impeded through different tissues, where those that 

contain large amounts of electrolytes and water have high conductivity, like blood, and those 

like fat or bone do not. UK Biobank measured impedance on several parts of the body of its 

participants, the trait considered here relating to the measurement of impedance for the left 

arm. 

 

As such, given the nature of this trait and its relation to body fat content, it was unsurprising 

to find GWAS catalog sets pertaining to body mass index amongst those that were found to 
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be differentially enriched between male and female dominant sdGenes, as well as 

differentially enriched when compared to the background (Figure 70). GWAS catalog sets 

relating to hypertension and mean arterial pressure were also found to be enriched in female 

dominant sdGenes. Interestingly, when considering sets enriched in male dominant sdGenes, 

we found numerous sets relating to ion transport, including the GO sets for metal ion 

transport, transmembrane transport, cation transport, inorganic ion transmembrane 

transport and more. This may be related to the bioelectrical nature of the phenotype 

considered. 

 

 
 
Figure 70. For impedance of arm (left), barplot showing enrichment of gene sets that were found to be 
significantly differentially enriched between male and female dominant sdGenes, as well as significantly 
differentially enriched to the background, filtered for redundancy across databases. Length of bar 
represents the log10 q-values for both male (left, pink, -log10) and female (right, blue, log10) dominant 
sdGenes. Annotated for each bar is the number of female/male dominant sdGenes found within the given 
set, as well as the total number of genes within the set. 

 

Height 

 

Finally, we assessed our gene set enrichment results for height, looking again at sets that had 

differed in enrichment between male and female dominant sdGenes, as well as when 

compared to the background (Figure 71). When considering sets enriched in female dominant 

sdGenes, we found sets relating to steroid hormone mediated signaling pathways. These 

were, similarly to the case of WHR, not enriched in male dominant sdGenes, which might 

suggest the presence sex-specific hormonally-mediated pathways underlying sex 

differences in height. Indeed, oestrogen stimulates long bone growth, and males and females 

present different oestrogen levels throughout puberty, with females reaching the growth-

stopping oestrogen peak years before males given the higher production of this hormone by 

the ovaries, this ultimately leading to differences in height311. Other sets enriched in female 

dominant sdGenes included GO sets relating to muscle contraction, glycerophospholipid 
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metabolism, and the mitochondrial protein complex set. Furthermore, several immunological 

signatures were also found to be enriched. 

 

When considering sets enriched in male dominant sdGenes, we found several sets relating to 

immune signatures, and, once again, found a set related to sncRNA, this time pertaining to 

the miRNA target set for MIR126.  

 

 
 

Figure 71. For height, barplot showing enrichment of gene sets that were found to be significantly 
differentially enriched between male and female dominant sdGenes, as well as significantly differentially 
enriched to the background, filtered for redundancy across databases. Length of bar represents the 
log10 q-values for both male (left, pink, -log10) and female (right, blue, log10) dominant sdGenes. 
Annotated for each bar is the number of female/male dominant sdGenes found within the given set, as 
well as the total number of genes within the set. 

 

Overall, despite the similarities of the phenotypes considered in our gene set enrichment 

analysis, a varied set of gene sets was found. However, further work is needed to truly 

understand the biological mechanisms underlying differences between males and females 

across these phenotypes. 

 

3.3.3. Motif enrichment analysis 

 

As described in section 3.2.1.3, traits and their corresponding sets of sdGenes in the three 

categories considered (female dominant, male dominant and dimorphic irrespective of sex 

dominance) were selected for motif enrichment analyses if, for a given trait, at least 25 
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sdGenes had been found for any of the categories, as defined by the q2T, qM, and qF < 0.01 

threshold. In total, 53 traits were assessed for motif enrichment across 412 known motifs.  

 

Overall, very few enriched known motifs (q < 0.05) were found. 7 traits presented at least one 

enriched motif when considering any of the 3 sdGene lists, with a total of 4 being enriched 

when considering sdGenes irrespective of sex dominance (impedance of arm (right), leg fat-

free mass (right), leg predicted mass (right), and hyperthyroidism), 1 when considering 

female dominant sdGenes (“other diseases of the digestive system”), and 2 when considering 

male dominant sdGenes (leg fat mass (left) and arm fat-free mass (right)). The motifs that 

were found to be enriched (q < 0.05) across these 7 traits are shown in Table 46 for sdGenes 

irrespective of sex dominance, Table 47 for female dominant sdGenes, and Table 48 for male 

dominant sdGenes respectively. 

 

Some of the enriched motifs included that for TEAD1 when considering hyperthyroidism, for 

which binding sites were found to be enriched in female dominant sdGenes for whole body 

water mass in our gene set enrichment analysis (section 3.3.2.3). On the other hand the motif 

for TEAD4, a transcription factor of the same family, was found to be enriched for “other 

disorders of the digestive system”. The motif for PRMD9, a histone methyltransferase 

involved in genetic recombination at meiosis, was found to be enriched in sdGenes for the 

impedance of arm trait.  

 

Table 46. Motifs that were found to be enriched at a q < 0.05 threshold when considering our sdGenes 
irrespective of sex dominance. 

Motif Trait Consensus F M 
Two 
Tail 

ZBTB18(Zf)/HEK293-ZBTB18.GFP-
ChIP-Seq(GSE58341)/Homer 

Leg fat free mass, 
leg predicted mass AACATCTGGA 0 0 2 

TEAD1(TEAD)/HepG2-TEAD1-ChIP-
Seq(Encode)/Homer 

Hyperthyroidism CYRCATTCCA 0 0 1 

PRDM9(Zf)/Testis-DMC1-ChIP-
Seq(GSE35498)/Homer 

Impedance of arm 
ADGGYAGYAGCA

TCT 
0 0 1 

 

 

Table 47. Motifs that were found to be enriched at a q < 0.05 threshold when considering our female 
dominant sdGenes. 

Motif Trait Consensus F M 
Two 
Tail 

TEAD4(TEA)/Tropoblast-Tead4-ChIP- 
Seq(GSE37350)/Homer 

Other disorders of 
digestive system 

CCWGGAATGY 1 0 0 

 

 

Table 48. Motifs that were found to be enriched at a q < 0.05 threshold when considering our male 
dominant sdGenes. 

Motif Trait Consensus F M 
Two 
Tail 

Elf4(ETS)/BMDM-Elf4-ChIP-
Seq(GSE88699)/Homer 

Leg fat mass ACTTCCKGKT 0 1 0 

Bcl11a(Zf)/HSPC-BCL11A-ChIP-
Seq(GSE104676)/Homer 

Arm fat free mass TYTGACCASWR
G 

0 1 0 
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3.3.4. eQTL analysis 

 

Differences between the sexes in complex traits could be partially explained by sex-specific 

gene expression regulation, which could lead to differences downstream across biological 

pathways and traits, and consequently to the detection of GxS in GWASs. As stated in section 

3.1.2, studies looking into differences in gene expression between males and females across 

tissues have been carried out, the latest and biggest effort looking at this phenomenon 

published in late 2020 by Oliva and collaborators, making use of the GTEx v8 release164. 

However, studies linking sex to differences in gene expression regulation have been less 

numerous, and have presented contradictory results in the past157,264–266,269. Many of these 

studies have focused on a single or few tissues, thus the heterogeneity in the results reported 

could be due to the contribution of GxS to gene expression being tissue specific. These 

differences could however also be due to lack of sufficient statistical power to detect GxS, 

due to the generally small sample sizes, or the fact that GxS is only present in a small number 

of genes. 

 

In this context, to shed light on potential intermediary mechanisms underlying differences in 

genetic architecture between the sexes, we investigated whether our lead sdSNPs could be 

acting as sb-eQTLs, or, in other words, if differences in gene expression regulation could be 

associated with dimorphism in GWAS efforts. To do this, we performed an eQTL analysis, 

looking for GxS in gene expression, considering the transcripts of genes within a 1Mb window 

of our lead sdSNPs (section 3.2.2.2). In total, 88 and 264 autosomal lead sdSNPs for binary 

and non-binary traits led to 4,533 and 6,519 sdSNP-gene pairs respectively. Our 37 X-

chromosome lead sdSNPs led to a total of 95 sdSNP-gene pairs for non-binary traits (no 

sdSNPs in the X chromosome were found for binary traits, as described in Chapter 2). Our 

analysis was performed for a total of 39 tissues from the GTEx consortium v6p, originating 

from up to 450 individuals.  

 

When running our eQTL analysis we found that two tissues returned missing values across all 

tests performed with PLINK (section 3.2.2.2), the brain anterior cingulate cortex BA24 and 

the small intestine terminal ileum tissues. These are the two tissues with the smallest number 

of samples, therefore this absence of results is likely due to not enough variation being 

present in the phenotype/genotype across the samples considered. For the remaining 

tissues, the number of gene transcript-sdSNP pairs tested for significant GxS in gene 

expression ranged from 1,422 in brain putamen basal ganglia tissue to 1,850 in lung tissue 

for binary traits, and from 1,553 in brain putamen basal ganglia tissue to 2,214 in nerve tibial 

tissue for non-binary traits (Table 49). When considering sdSNP-transcript pairs in the X 

chromosome, numbers ranged from 15 in brain putamen ganglia to 38 in lung tissue for non-

binary traits. 

 

Very few sdSNP-transcript pairs were found to present a significant GxS term, potentially due 

to the low sample sizes available (minimum of 70, median of 149 per tissue, Table 49). When 

considering our autosomal sdSNP-transcript pairs, we found 2 and 4 significant sb-eQTLs for 

non-binary and binary traits respectively (q < 0.05, FDR correction applied per tissue). When 

considering our X-chromosome variant-gene pairs, we found a total of 2 significant sb-eQTLs 
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at the same threshold. Thus, in total, 8 sb-eQTLs were found at a q < 0.05 threshold, listed in 

Table 50. The small number of sb-eQTLs found parallels to the findings of Porcu et al269 

(discussed further in section 3.3.4.2), where they conclude that millions of samples would 

be necessary to observe sex-specific trait associations that are fully driven by sb-eQTLs. 

 

Table 49. eQTL results for autosomal sdSNP-transcript pairs found in binary and non-binary traits, as 
well as for X-chromosome sdSNP-transcript pairs for non-binary traits. For each tissue considered, the 
number of autosomal sdSNP-transcript pairs tested is stated (Tests), along with the number of these 
which presented a significant GxS term at a q < 0.05 threshold. 

  
Autosomal 

Binary 
Autosomal 
Non-Binary 

X-chrom 
Non-Binary 

Tissue Samples Tests  
q < 

0.05 
Tests 

q < 
0.05 

Tests 
q  < 
0.05 

Heart_Left_Ventricle 188 1476 1 1476 0 21 0 

Brain_Nucleus_accumbens_basal_ganglia 91 1560 1 1560 0 24 0 

Brain_Hypothalamus 79 1553 0 1553 0 33 0 

Brain_Cerebellar_Hemisphere 87 1552 0 1552 0 22 0 

Spleen 87 1658 0 1658 0 24 0 

Pituitary 85 1526 0 1526 0 25 0 

Artery_Aorta 195 1564 0 1564 0 24 0 

Liver 95 1478 0 1478 0 37 0 

Brain_Caudate_basal_ganglia 98 1546 0 1546 0 20 0 

Colon_Sigmoid 122 1534 0 1534 0 21 0 

Adipose_Subcutaneous 296 1639 0 1639 0 35 1 

Pancreas 147 1506 0 1506 0 20 0 

Esophagus_Muscularis 216 1548 0 1548 0 28 0 

Brain_Cerebellum 101 1571 0 1571 0 23 0 

Esophagus_Gastroesophageal_Junction 125 1519 0 1519 0 24 0 

Brain_Frontal_Cortex_BA9 90 1521 0 1521 0 22 0 

Artery_Tibial 283 1522 0 1522 0 23 0 

Breast_Mammary_Tissue 181 1716 0 1716 0 27 0 

Cells_Transformed_fibroblasts 270 1519 0 1519 0 27 0 

Adipose_Visceral_Omentum 183 1640 0 1640 0 30 1 

Muscle_Skeletal 359 1441 1 1441 0 25 0 

Small_Intestine_Terminal_Ileum 75 0 0 0 0 0 0 

Whole_Blood 336 1650 0 1650 0 26 0 

Colon_Transverse 167 1656 0 1656 1 22 0 

Nerve_Tibial 254 1658 0 1658 0 32 0 

Thyroid 276 1815 0 1815 0 30 0 

Esophagus_Mucosa 239 1724 0 1724 0 26 0 

Adrenal_Gland 124 1528 0 1528 0 28 0 

Brain_Anterior_cingulate_cortex_BA24 70 0 0 0 0 0 0 

Brain_Hippocampus 79 1496 0 1496 0 21 0 

Skin_Sun_Exposed_Lower_leg 300 1704 0 1704 0 28 0 

Lung 276 1850 0 1850 1 38 0 

Artery_Coronary 116 1534 0 1534 0 24 0 

Brain_Cortex 94 1537 0 1537 0 23 0 

Brain_Putamen_basal_ganglia 80 1422 0 1422 0 15 0 

Heart_Atrial_Appendage 157 1464 0 1464 0 23 0 

Stomach 168 1610 0 1610 0 29 0 

Cells_EBV-transformed_lymphocytes 112 1551 0 1551 0 19 0 

Skin_Not_Sun_Exposed_Suprapubic 194 1688 1 1688 0 28 0 
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Table 50. Eight sex biased eQTLs found at a q < 0.05 threshold. From left ro right: tissue in which sb-eQTL 
was found, chromosome location of sb-eQTL, transcript regulated by sdSNP and its corresponding gene, 
sdSNP found to be an sb-eQTL, trait(s) for which sdSNP was found, and q-value of GxS in eQTL model.  

Tissue Ch Transcript Gene sdSNP Trai q GxS 

Skin Not Sun 
Exposed 

Suprapubic 
22 

ENSG00000205
643.6 

CDPF1 
22_46384477_C

_T_b37 / 
rs62228068 

Fibroblastic disorders 
Soft tissue disorders 

0.017 

Brain Nucleus 
accumbens 

basal ganglia 
6 

ENSG00000204
396.6 

VWA7 
6_31327738_C_

A_b37 / 
rs13213216 

Ankylosing spondylitis 0.019 

Heart Left 
Ventricle 

6 
ENSG00000204

482.6 
LST1 

6_31377974_C_
T_b37 

rs28559870 
Ankylosing spondylitis 0.001 

Muscle 
Skeletal 

6 
ENSG00000204

520.8 
MICA 

6_31391591_G_
A_b37 / 

rs56705452 
Ankylosing spondylitis 0.003 

Lung 8 
ENSG00000133

878.4 
DUSP26 

8_33276040_C_
T_b37 / 

rs190243662 

Comparative height size 
at age 10 

0.016 

Colon 
Transverse 

19 
ENSG00000167

685.10 
ZNF444 

19_56873089_G
_T_b37 / 

rs116953569 

Impedance of whole body 
Impedance of arm 

Arm predicted mass 
Arm fat-free mass 

0.031 

Adipose 
Visceral 

Omentum 
X 

ENSG00000011
201.6 

KAL1 
X_8918959_T_C

_b37 / 
rs2405111 

Haematocrit percentage 0.017 

Adipose 
Subcutaneous 

X 
ENSG00000165

591.6 
FAAH2 

X_57010138_C_
T_b37 / 

rs912956 

Hip circumference 
Arm fat percentage  
Leg fat percentage 

Leg fat mass 
Arm fat mass 

Whole body fat mass 

0.011 

 

3.3.4.1. Sex biased eQTLs 

 

As mentioned previously, of the 8 sb-eQTLs found, 4 were sdSNPs for binary traits, and 4 for 

non-binary traits (2 autosomal, 2 X-chromosomal, Table 50). Interestingly, and paralleling the 

findings of Oliva et al164, only one of the genes for which a sb-eQTL was found also presented 

sex biased expression in the discovery tissue (q < 0.05, VWA7 in the brain nucleus 

accumbens). As sb-eQTLs could help explain biological mechanisms underlying the sdSNPs 

found in Chapter 2, these are explored further in this section, noting as an important 

limitation that, due to small sample sizes, not all genotypes could be represented in our 

models for all sdSNPs, especially for those with low MAFs, which could be leading to less 

accurate GxS effect estimates.  

 

Potentially one of the most interesting sb-eQTLs found was the variant rs56705452 (Figure 

72). This variant, located in the MHC region on chromosome 6,  was found to be a sb- eQTL for 
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the transcript ENSG00000204520.8, which corresponds to the gene MICA, in skeletal muscle 

tissue. This gene encodes the highly polymorphic MHC class I chain-related protein A, and 

variations of this gene have been associated with susceptibility to psoriasis, psoriatic 

arthritis and ankylosing spondylitis, amongst others312. Interestingly, FOXA1 has been shown 

to bind this sdSNP through chromatin immunoprecipitation sequencing (ChIP-seq) 

experiments243, a protein that dictates the binding location of androgen and oestrogen 

receptors, and that has been found to play a role in the sexually dimorphic presentation of 

various cancers313,314. Furthermore, this sdSNP was found to act in a sexually different manner 

in regards to its association to ankylosing spondylitis in our genome-wide sdSNP analysis 

(Chapter 2). This result would thus be consistent with a hypothesis where this sdSNP is 

regulating MICA in a sex-dependent manner in muscle tissue, leading to differences in 

ankylosing spondylitis presentation between the sexes when one possesses a particular 

variant. 

 
 

Figure 72. Gene expression of the transcript ENSG00000204520.8 regressed on genotype at variant 
rs56705452 in muscle skeletal tissue, for males and females separately. 

 

Another interesting sb-eQTL found was the X chromosome variant rs912956, which regulated 

the transcript ENSG00000165591.6, corresponding to gene FAAH2, in a sexually dimorphic 

manner (Figure 73). The FAAH2 gene encodes a fatty acid amide hydrolase that shares a 

conserved protein motif with the amidase signature family of enzymes. On the other hand, 

our sdSNP rs912956 was found to have a significant difference in genetic effect between 

males and females on phenotypes including hip circumference, arm fat percentage and 

whole-body fat mass. One could therefore hypothesise that this variant is participating in the 

regulation of FAAH2 in a sex-dependent manner in adipose tissue, leading to differences in 

the aforementioned phenotypes between the sexes. This example is, however, more limited 

given that males, as opposed to females, only possess a single allele at this sdSNP, which 

would lead to a less accurate GxS effect estimation.  
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Figure 73. Gene expression of the transcript ENSG00000165591.6 regressed on genotype at variant 
rs912956 in adipose subcutaneous tissue, for males and females separately.  Note that for males the 
“CC” phenotype corresponds to “C” and the “TT” phenotype corresponds to “T” due to the possession 
of a single X chromosome.  

 

The 6 remaining sex biased eQTL plots can be found in the Annex. 

 

Whilst currently limited, this type of pipeline could assist future studies when short-listing 

biomarkers for risk susceptibility in males and females, helping develop precision medicine 

strategies for each of the sexes, and to shed light onto the underlying mechanisms of the 

disease/trait of interest as well as possible underlying sexually different molecular networks, 

once larger sample sizes become available. 

 

3.3.4.2. Comparison with literature 

 

A recent study by Porcu and collaborators269 looked for sb-eQTLs in whole blood samples 

originating from 3,500 individuals,  finding a total of 18 genes with at least one sb-eQTL 

(termed eGenes), corresponding to a total of 462 SNP-gene pairs. Next, they performed a 

phenome-wide association study (PheWAS) to assess if any of the aforementioned also 

presented a significant association to any of the 700 phenotypes from UK Biobank 

considered, as well as a significant difference in association between the sexes (i.e. whether 

any of the sb-eQTLs found were also sdSNPs). Their results pointed to just a single gene, 

PSMD5, for which sb-eQTLs could be leading to a difference in sex-specific association for 

several obesity traits. Furthermore, when assessing whether sdSNPs could be leading to sb-

eQTLs (in an effort similar to that described in this thesis) for two traits, waist-hip 

circumference ratio and testosterone levels, no sb-eQTLs were found.  

 

Importantly, their work included a power analysis that highlighted the need for millions of 

samples in GWAS to identify sdSNPs whose detection was driven by sb-eQTLs. This could thus 
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explain the small number of sb-eQTLs found when assessing sdSNP-gene pairs. Furthermore, 

we found no overlap between our 8 sb-eQTLs and their 18 eGenes, which could be due to the 

aforementioned lack of power to detect sb-eQTLs linked to sdSNPs. This could also be due to 

their consideration of just whole blood RNA-seq samples, as opposed to the 39 tissues 

considered in this study, as well as the difference in sample size to detect sb-eQTLs in whole 

blood (336 versus 3,447).  

 

As mentioned previously (section 1.4.1 and section 3.1.2), as of the latter half of 2020 an 

extensive look into sex biased gene expression and sb-eQTLs across 44 tissues has been 

published by Oliva and collaborators164, making use of the GTEx v8 release. This study found 

a total of 369 sb-eQTLs, of which the majority pertained to breast tissue, followed by muscle, 

skin and adipose tissues. We compared our results to those reported, and found no overlap 

in sb-eQTLs. However, the authors of this work also found weak replication of their results, 

both internal (dividing their dataset into discovery and validation) and external, citing 

generally poor replication of sb-eQTLs in the literature, and attributing this to low power and 

methodological and study design differences. Importantly, they also found that cell 

composition differences between males and females in the bulk tissue samples considered 

were responsible for a fair number of the sb-eQTLs found, a phenomenon that could 

potentially also be impacting our study.   

 

3.3.5. eQTL enrichment 

 

3.3.5.1. Enrichment in sex biased eQTLs 

 

Given that our search for sb-eQTLs was limited by sample size, we sought to further assess 

potential differences in gene expression regulation by sdSNPs through an enrichment 

analysis. As such, as a background to compare our results to, and to assess whether the 

number of GxS in gene expression found when considering sdSNPs and their nearby genes 

was more than what you would expect when compared to non-sexually dimorphic variants 

(non-sdSNPs), we repeated our sb-eQTL analysis (section 3.2.2.2) for the latter. As described 

in the methods section (section 3.2.2.3), non-sdSNPs were defined as those which presented 

a p > 0.5 in our sex difference in genetic effects t test (section 2.2.4). Furthermore, we limited 

these SNPs to those that were significantly associated with at least one of our original 530 

phenotypes (section 2.2.1.1), with an association p < 1 x 10-8. Only autosomal variants were 

considered for this exercise. 

 

A total of 1,675 and 19,552 autosomal lead non-sdSNPs were found for binary and non-binary 

traits respectively (LD clumped within trait, and then across traits, as described in section 

section 2.2.4). As was done with our sdSNPs, these were mapped to nearby genes as 

described in section 3.2.2.2 to then assess sex biased gene expression regulation, with a 

total of 60,208 and 586,326 non-sdSNP-gene pairs considered for binary and non-binary 

traits respectively.  
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Because of the limited number of sb-eQTLs found using a q < 0.05 threshold, and because 

our objective with this exercise was to assess enrichment rather than search for plausible sb-

eQTLs, we considered more lax significance thresholds of p < 1 x 10-3, as well as p < 0.01, that 

would allow for the assessment of differences in number of sb-eQTLs between sdSNPs and 

non-sdSNPs. The number of resulting sb-eQTLs found at this threshold across both sdSNPs 

and non-sdSNPs, for binary and non-binary traits, is stated in Supplementary Table 1. 

Furthermore, given that a fixed nominal significance threshold for both the study of GxS in 

sdSNP-gene pairs and non-sdSNP gene pairs would not account for false positives arising 

from multiple testing equally due to the much larger number of tests performed for the latter 

(4,533/6,519 SNP-gene pairs for sdSNPs, and 60,208/586,326 SNP-gene pairs for non-

sdSNPs), we also performed our enrichment analysis using FDR corrected p-values at lax 

thresholds (q < 0.4 and q < 0.5). As such, the false discovery rate was set to be equal for both. 

The results of our search for sb-eQTLs across tissues considering these thresholds are shown 

in Supplementary Table 2. 

 

We then tested whether the number of GxS found in our model was larger for sdSNPs than 

non-sdSNPs by means of Fisher’s exact test (section 3.2.2.3). Table 51 shows results for the 

tests that showed up as moderately significant (p < 0.1) across tissues when considering the 

number of GxS terms found at thresholds p < 1 x 10-3 and 0.01. When considering a p < 1 x 10-

3  sex biased eQTL significance threshold, a total of 7 tissues (3 when considering sdSNPs in 

non-binary traits, and 4 in binary traits) presented a moderately significant difference (p < 

0.1) in the number of sb-eQTLs found given sdSNPs as opposed to non-sdSNPs, whilst when 

considering a laxer threshold of p < 0.01, 6 instances were found (2 in non-binary traits and 4 

in binary traits). 

 

Considering the stricter threshold of p < 1 x 10-3, we found that of the 7 tissues which 

presented a Fisher’s exact test p < 0.1, all presented an OR > 1, meaning an enrichment in sb-

eQTLs was found for sdSNP-gene pairs over non-sdSNP-gene pairs. When considering the 

more lax threshold of p < 0.01, 4/6 tissues found presented an OR > 1, whilst the other 2/6 

presented a depletion (OR < 1) in sb-eQTLs when comparing sdSNP-gene pairs to non-sdSNP 

gene pairs. This could be due to the laxer threshold allowing for more false positives to enter 

the analysis, especially when the number of tests is so large for non-sdSNP-gene pairs as 

opposed to sdSNP-gene pairs. This could also be due to us considering as non-sdSNPs those 

that were found to have a significant association with the traits included in our analysis 

(association p < 1 x 10-8). In turn, this could be biasing our enrichment test, as it’s possible 

that significantly associated SNPs might present a generally larger baseline number of sb-

eQTLs, independently of dimorphism in genetic effects.  

 

As mentioned prior, as a further means to ensure that the difference in false positive rate 

between non-sdSNP-gene pairs and sdSNP-gene pairs wasn’t leading to significant 

differences in our enrichment analysis, we assessed the latter when considering FDR-

corrected GxS q-values, using lax thresholds to determine sb-eQTLs. Table 52 shows results 

for the Fisher’s exact tests that showed up as significant (p < 0.05) across tissues when 

considering the number of GxS found at thresholds q < 0.4 and 0.5. We found a considerable 

larger number of significant differences in the number of sb-eQTLs found than before, for a 
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total of 9 tissues (3 in non-binary traits, and 6 in binary traits) when considering a q < 0.4 

threshold, and a total of 13 (4 in non-binary traits, and 9 in binary traits) when considering a 

q < 0.5 threshold. Furthermore, all instances of significant difference in the number of sb-

eQTLs found between sdSNPs and non-sdSNPs presented an OR > 1, thus indicating 

enrichment of GxS in gene expression in genes nearby sdSNPs as opposed to non-sdSNPs. 

We do note that, in some instances, the reduced number of sb-eQTLs at these thresholds (for 

example, in lung or colon sigmoid tissue when considering sdSNPs found in binary traits, 

Table 52), could be leading to inaccurate tests.  

 

 

Table 51. Results of Fisher’s exact test for number of sb-eQTLs found at different thresholds (p < 10-3, p 
< 0.01, as stated in rightmost column) in sdSNP-gene pairs and non-sdSNP-gene pairs. A-D are the 
number of GxS/non-GxS terms found for dimorphic/non-dimorphic SNPs (see footnote). OR indicates 
odds ratio and p the p-value of Fisher’s exact test. Pink represents results for non-binary traits, whilst 
blue represents results for binary traits. 

 

Tissue A* B** C*** D**** A/(A+B) C/(C+D) OR p 
 

Spleen 26 1821 1729 178554 0.0141 0.0096 1.47 0.05 

p
 <

 0
.0

1 

Esophagus 
Gastroesoph. Junction 

10 1802 1770 178513 0.0055 0.0098 0.56 0.07 

Artery Coronary 5 1832 194 182420 0.0027 0.0011 2.57 0.05 

p
 <

 10
-3 

Liver 5 1699 187 161922 0.0029 0.0012 2.55 0.05 

Skin Not Sun Exposed 
Suprapubic 

5 1999 220 204785 0.0025 0.0011 2.33 0.07 

Non-Binary          
Binary          

Artery Tibial 26 1496 198 20220 0.0171 0.0097 1.77 0.01 

p
 <

 0
.0

1 

Skin Not Sun Exposed 
Suprapubic 

28 1660 218 21238 0.0166 0.0102 1.64 0.02 

Brain Frontal Cortex 
BA9 

8 1513 209 18028 0.0053 0.0115 0.46 0.02 

Esophagus Muscularis 24 1524 200 20201 0.0155 0.0098 1.59 0.04 

Muscle Skeletal 6 1435 22 19341 0.0042 0.0011 3.68 0.01 

p
 <

 10
-3 

Nerve Tibial 4 1654 17 21917 0.0024 0.0008 3.12 0.06 

Cells Transformed 
fibroblasts 

3 1516 11 19162 0.0020 0.0006 3.45 0.08 

Esophagus Muscularis 4 1544 21 20380 0.0026 0.0010 2.51 0.10 

 
* Number of GxS terms found at threshold for our dimorphic SNPs 
** Number of non-GxS terms found at threshold for our dimorphic SNPs 
*** Number of GxS terms found at threshold for our non-dimorphic SNPs 
**** Number of non-GxS terms found at threshold for our non-dimorphic SNPs 
 

 



 170 

Table 52. Results of Fisher’s exact test for number of sb-eQTLs found at different thresholds (q < 0.4, q 
< 0.5, as stated in rightmost column) in sdSNP-gene pairs and non-sdSNP-gene pairs. Columns same as 
Table 51. p-values marked as 0.00 indicate those that were lower than 0.005.  

Tissue A* B** C*** D**** A/(A+B) C/(C+D) OR p 
 

Skin Not Sun Exposed 
Suprapubic 

13 1675 1 21455 0.7701 0.0047 166.52 0.00 
q

 <
 0

.5
 

Heart Atrial 
Appendage 

11 1453 6 18997 0.7514 0.0316 23.97 0.00 

Muscle Skeletal 8 1433 6 19357 0.5552 0.0310 18.01 0.00 

Brain Putamen basal 
ganglia 4 1418 7 16897 0.2813 0.0414 6.81 0.01 

Muscle Skeletal 8 1433 3 19360 0.5552 0.0155 36.03 0.00 

q
 <

 0
.4

 

Skin Not Sun Exposed 
Suprapubic 

3 1685 1 21455 0.1777 0.0047 38.20 0.00 

Brain Putamen basal 
ganglia 

4 1418 7 16897 0.2813 0.0414 6.81 0.01 

Non-Binary          

Binary          

Skin Not Sun Exposed 
Suprapubic 

9 1995 4 205001 0.4491 0.0020 231.20 0.00 

q
 <

 0
.5

 

Brain Nuc. accumbens 
basal ganglia 

6 1764 11 168915 0.3390 0.0065 52.23 0.00 

Brain Cerebellum 4 1750 2 178052 0.2281 0.0011 203.49 0.00 

Colon Transverse 4 2001 4 201429 0.1995 0.0020 100.66 0.00 

Nerve Tibial 3 2211 3 214445 0.1355 0.0014 96.99 0.00 

Whole Blood 4 1939 35 197722 0.2059 0.0177 11.65 0.00 

Brain Frontal Cortex 
BA9 

3 1726 36 164553 0.1735 0.0219 7.94 0.01 

Lung 1 2205 1 223010 0.0453 0.0004 101.14 0.02 

Colon Sigmoid 1 1814 2 185110 0.0551 0.0011 51.02 0.03 

Skin Not Sun Exposed 
Suprapubic 

9 1995 4 205001 0.4491 0.0020 231.20 0.00 

q
 <

 0
.4

 

Brain Cerebellum 4 1750 2 178052 0.2281 0.0011 203.49 0.00 

Brain Frontal Cortex 
BA9 

3 1726 19 164570 0.1735 0.0115 15.05 0.00 

Colon Sigmoid 1 1814 1 185111 0.0551 0.0005 102.05 0.02 

Lung 1 2205 1 223010 0.0453 0.0004 101.14 0.02 

Colon Transverse 1 2004 1 201432 0.0499 0.0005 100.2 0.02 

 
* Number of GxS terms found at threshold for our dimorphic SNPs 
** Number of non-GxS terms found at threshold for our dimorphic SNPs 
*** Number of GxS terms found at threshold for our non-dimorphic SNPs 
**** Number of non-GxS terms found at threshold for our non-dimorphic SNPs 
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We further performed a visual inspection of plots comparing GxS term -log10(p-values) to 

those expected under a uniform distribution, for both sdSNP and non-sdSNP models. The 

clearest divergence from the null was observed for esophagus muscularis tissue when 

considering sdSNPs found in binary traits (Figure 74), but overall no consistent trends were 

seen across tissues for which an enrichment p < 0.05 was found via Fisher’s exact tests.  

 

 

 

Figure 74. Comparison of expected to observed -log10(p-values) for GxS terms in our eQTL models, for 
sdSNP-gene pairs and for non-sdSNP-gene pairs, in esophagus muscularis tissue.  

 

Overall, our results could indicate a potential enrichment in sb-eQTLs when considering 

sdSNPs as opposed to non-sdSNPs for some tissues, which could suggest that differences in 

gene expression regulation are leading to some of the dimorphism observed in our sex-

stratified GWAS efforts. However, our qq plots did not show a clear and consistent pattern of 

divergence in GxS significance distributions when comparing sdSNP results to those of non-

sdSNPs, which could suggest the presence of spurious enrichment results. Thus, further work 

and larger sample sizes are required.  

 

3.3.5.2. Enrichment in sex biased expression 

 

In a further attempt to connect sdSNPs to differences at the transcriptome level, we looked 

to assess whether sdSNPs were more likely to be close to genes presenting sex biased 

expression as opposed to our non-sdSNPs. As such, as described in section 3.2.2.3, we 

looked for a significant effect of sex (S) within our eQTL models, for each of our sdSNP-gene 

pairs, as well as for our non-sdSNP-gene pairs. In other words, we searched for genes near to 

sdSNPs that on average presented a significantly different expression in one sex versus the 

other, independently of the genotype presented at a given sdSNP. Once again, we used lax 

thresholds in order to obtain large enough sample sizes to assess enrichment. As such, we 

considered that our sdSNP/non-sdSNP-gene pairs presented a significant S term considering 

the p < 10-3 and p < 0.01 thresholds, the results shown in Supplementary Table 3. 

. 
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For the reasons previously stated in section 3.3.5.1, as a further technical validation, and 

given that a fixed nominal significance threshold would differentially account for false 

positives in sdSNP-gene pairs and non-sdSNP-gene pairs, we also performed our sex biased 

enrichment analysis using FDR corrected p-values at lax thresholds. However, the thresholds 

chosen were lower than those in the previous section, due to the larger prevalence of sex 

biased gene expression as opposed to sb-eQTLs in the transcriptome164, which was evidenced 

by the large numbers of sex biased gene expression found when considering lax q thresholds. 

As such, q < 0.1 and q < 0.2 thresholds were used to assess significance of sex on gene 

expression, the results shown in Supplementary Table 4.  

As in the case of sb-eQTLs, we then tested whether the number of genes presenting sex 

biased expression was larger for those near to sdSNPs than non-sdSNPs by means of a 

Fisher’s exact test (section 3.2.2.3). Table 53 shows results for the tests that showed up as 

significant (p < 0.05) across tissues when considering the number of significant S terms 

found at thresholds p < 1 x 10-3 and 0.01. When considering a p < 1 x 10-3  threshold, a total of 

6 tests (1 in non-binary traits and 5 in binary traits) showed up as significant at a p < 0.05 

threshold, whilst when considering a laxer threshold a total of 11 tests (4 in non-binary traits 

and 7 in  binary traits) showed significance. 

 

Interestingly, thyroid tissue consistently showed up across thresholds, and for both binary 

and non-binary sdSNP-gene pairs. However, across all tests the OR was < 1, thus suggesting 

a depletion in sex biased expression when considering sdSNP-gene pairs as opposed to non-

sdSNP-gene pairs. Indeed, when considering the stricter threshold of p < 1 x 10-3, we found 

that of the 6 tests performed, 4 presented ORs < 1. These included the aforementioned 

thyroid tissue, as well as adipose subcutaneous and whole blood tissues. The two tissues that 

presented OR > 1 were brain putamen basal ganglia and skin sun exposed lower leg tissues. 

When considering the laxer threshold of p < 0.01, once again we did not find a consistent 

direction enrichment/depletion of sex biased expression across sdSNP-gene pairs, with 9/11 

tissues presenting OR < 1. 

 

These findings suggest that, unlike the case of sb-eQTLs, for which sdSNP-gene pairs showed 

a more consistent enrichment (OR > 1) when compared to non-sdSNP-gene pairs, no 

consistent enrichment of sex biased gene expression for genes nearby sdSNPs is found. In 

fact, evidence for a significant depletion of sex biased gene expression was found for some 

tissues when considering sdSNP-gene pairs. However, and as discussed prior, these findings 

could be the result of larger amounts of false positives when considering non-sdSNP-gene 

pairs entering our analysis as opposed to sdSNP-gene pairs, due to the far larger number of 

tests considered, which could be leading to the observed depletions. These results could, 

however, be reflecting the widespread sex biases reported in gene expression across 

tissues164, potentially more frequent near regulatory sites/GWAS hits, which were considered 

here as our background (non-sdSNPs). Indeed, several of the tissues in which depletion was 

found were reported to present large numbers of sex biased gene expression164.  
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The results of our significant enrichment (p < 0.05) Fisher’s exact tests across tissues, when 

considering significant sex biased gene expression at q < 0.2 and q < 0.1 thresholds, are 

shown in Table 54. We found a larger amount of significantly different presence of sex biased 

gene expression between sdSNP-gene pairs and non-sdSNP gene pairs than when 

considering nominal significance thresholds (Table 53). When considering a q < 0.1 

threshold, 15 instances (8 when considering sdSNPs/non-sdSNPs in non-binary traits, 7 in 

binary traits) of significant differences were found (Fisher’s exact test p < 0.05), whilst when 

considering a laxer q < 0.2 threshold 24 (15 in non-binary traits and 9 in binary traits) were 

found across tissues. We found a smaller proportion of ORs < 1 across both significance 

thresholds than when considering nominal significance thresholds (Table 53), with a total of 

3/15 instances when considering a q < 0.1 threshold, and 7/24 when considering a q < 0.2 

threshold. This might suggest that the presence of different false positive rates when 

assessing the number genes with sex biased expression using fixed nominal significance 

thresholds might be reason for the large numbers of depletion results obtained. However, 

these results still suggest the presence of significant depletion for a decent number of 

tissues when comparing sex biased expression in genes nearby sdSNPs when compared to 

non-sdSNPs.  

 

Table 53. Results of Fisher’s exact test for number of sex biased genes found at different thresholds (p 
< 0.10-3, p < 0.01, as stated in rightmost column) in sdSNP-gene pairs and non-sdSNP-gene pairs. A-D are 
the number of significant/non-significant S terms found for sdSNPs/non-sdSNPs (see footnote). OR 
indicates odds ratio and p the p-value of Fisher’s exact test. Pink represents results for non-binary traits, 
whilst blue represents results for binary traits. p-values marked as 0.00 indicate those that were lower 
than 0.005. 

Tissue A* B** C*** D**** A/(A+B) C/(C+D) OR p 
 

Esophagus 
Gastroesophageal 

Junction 
84 1728 10828 169455 0.0464 0.0601 0.76 0.01 

p
 <

 0
.0

1 

Artery Coronary 125 1712 14892 167722 0.0680 0.0815 0.82 0.04 

Cells EBV-
transformed 
lymphocytes 

52 1649 3254 165374 0.0306 0.0193 1.60 0.00 

Thyroid 53 2095 7253 203377 0.0247 0.0344 0.71 0.01 

Thyroid 7 2141 1713 208917 0.0033 0.0081 0.40 0.01 

p
 <

 10
-3 Non-Binary         

Binary         

 

Thyroid 24 1791 698 22147 1.32 0.0306 0.43 0.00 

p
 <

 0
.0

1 

Stomach 8 1602 357 20409 0.50 0.0172 0.29 0.00 

Adipose 
Subcutaneous 

23 1616 558 21253 1.40 0.0256 0.54 0.00 

Pituitary 29 1497 575 17751 1.90 0.0314 0.60 0.01 

Heart Left Ventricle 16 1460 389 18490 1.08 0.0206 0.52 0.01 

Whole Blood 24 1626 508 20488 1.45 0.0242 0.60 0.01 
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Cells EBV-
transformed 
lymphocytes 

38 1513 295 18622 2.45 0.0156 1.59 0.01 

Adipose Visceral 
Omentum 

60 1580 556 20463 3.66 0.0265 1.40 0.02 

Thyroid 2 1813 132 22713 0.11 0.0058 0.19 0.00 
p

 <
 10

-3 

Brain Putamen 
basal ganglia 

5 1417 14 16890 0.35 0.0008 4.26 0.01 

Adipose 
Subcutaneous 

2 1637 117 21694 0.12 0.0054 0.23 0.02 

Whole Blood 1 1649 79 20917 0.06 0.0038 0.16 0.03 

Skin Sun Exposed 
Lower leg 

32 1672 279 22338 1.88 0.0123 1.53 0.03 

 
* Number of significant S terms found at threshold for our dimorphic SNPs 
** Number of non-significant S terms found at threshold for our dimorphic SNPs 
*** Number of significant S terms found at threshold for our non-dimorphic SNPs 
**** Number of non-significant S terms found at threshold for our non-dimorphic SNPs 

 
Table 54. Results of Fisher’s exact test for number of sex biased genes found at different thresholds (q 
< 0.1, q < 0.2, as stated in rightmost column) in sdSNP-gene pairs and non-sdSNP-gene pairs. Column 
descriptions the same as Table 53. 

Tissue A* B** C*** D**** A/(A+B) C/(C+D) OR p 
 

Cells EBV-transformed 
lymphocytes 

28 1673 138 168490 1.6461 0.0818 20.43 0.00 

q
 <

 0
.2

 

Thyroid 6 2142 3671 206959 0.2793 1.7429 0.16 0.00 

Esophagus Mucosa 10 1959 194 202880 0.5079 0.0955 5.34 0.00 

Heart Left Ventricle 23 1775 857 177749 1.2792 0.4798 2.69 0.00 

Stomach 5 1961 41 197669 0.2543 0.0207 12.29 0.00 

Adipose Visceral 
Omentum 

16 1924 577 199751 0.8247 0.2880 2.88 0.00 

Whole Blood 21 1922 973 196784 1.0808 0.4920 2.21 0.00 

Adipose Subcutaneous 51 2113 3093 208888 2.3567 1.4591 1.63 0.00 

Skin Not Sun Exposed 
Suprapubic 

2 2002 1005 204000 0.0998 0.4902 0.20 0.01 

Liver 6 1698 159 161950 0.3521 0.0981 3.60 0.01 

Skin Sun Exposed 
Lower leg 

44 2115 6464 210149 2.0380 2.9841 0.68 0.01 

Artery Coronary 5 1832 122 182492 0.2722 0.0668 4.08 0.01 

Cells Transformed 
fibroblasts 

90 1802 6730 179379 4.7569 3.6162 1.33 0.01 

Brain Caudate basal 
ganglia 

2 1784 17 168326 0.1120 0.0101 11.10 0.02 

Brain Cerebellum 3 1751 65 177989 0.1710 0.0365 4.69 0.03 
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Adipose Visceral 
Omentum 

12 1928 217 200111 0.6186 0.1083 5.74 0.00 
q

 <
 0

.1 

Stomach 4 1962 14 197696 0.2035 0.0071 28.79 0.00 

Brain Cerebellum 3 1751 6 178048 0.1710 0.0034 50.84 0.00 

Adipose Subcutaneous 20 2144 899 211082 0.9242 0.4241 2.19 0.00 

Thyroid 4 2144 1284 209346 0.1862 0.6096 0.30 0.01 

Skin Sun Exposed 
Lower leg 

13 2146 2643 213970 0.6021 1.2201 0.49 0.01 

Esophagus Mucosa 3 1966 43 203031 0.1524 0.0212 7.20 0.01 

Artery Coronary 3 1834 62 182552 0.1633 0.0340 4.82 0.03 

Non-Binary          
Binary          

Skin Sun Exposed 
Lower leg 

123 1581 842 21775 7.2183 3.7229 2.01 0.00 

q
 <

 0
.2

 

Artery Aorta 17 1547 27 20069 1.0870 0.1344 8.17 0.00 

Pituitary 1 1525 259 18067 0.0655 1.4133 0.05 0.00 

Esophagus 
Gastroesoph. Junction 6 1513 2 19095 0.3950 0.0105 37.86 0.00 

Adipose Visceral 
Omentum 

27 1613 132 20887 1.6463 0.6280 2.65 0.00 

Artery_Tibial 2 1520 210 20208 0.1314 1.0285 0.13 0.00 

Cells EBV-transformed 
lymphocytes 

10 1541 38 18879 0.6447 0.2009 3.22 0.00 

Muscle_Skeletal 30 1411 677 18686 2.0819 3.4964 0.59 0.00 

Cells Transformed 
fibroblasts 16 1503 360 18813 1.0533 1.8776 0.56 0.02 

Cells EBV-transformed 
lymphocytes 

6 1545 3 18914 0.3868 0.0159 24.48 0.00 

q
 <

 0
.1 

Adipose Visceral 
Omentum 

7 1633 7 21012 0.4268 0.0333 12.87 0.00 

Skin Sun Exposed 
Lower leg 

55 1649 390 22227 3.2277 1.7244 1.90 0.00 

Artery Aorta 6 1558 8 20088 0.3836 0.0398 9.67 0.00 

Muscle Skeletal 7 1434 296 19067 0.4858 1.5287 0.31 0.00 

Cells Transformed 
fibroblasts 

12 1507 79 19094 0.7900 0.4120 1.92 0.04 

Breast Mammary 
Tissue 

2 1714 3 22034 0.1166 0.0136 8.57 0.05 

 
* Number of significant S terms found at threshold for our dimorphic SNPs 
** Number of non-significant S terms found at threshold for our dimorphic SNPs 
*** Number of significant S terms found at threshold for our non-dimorphic SNPs 
**** Number of non-significant S terms found at threshold for our non-dimorphic SNPs 
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As with our enrichment analysis of GxS, we performed a visual inspection of plots comparing 

observed to expected -log10(p-values) of the effect of sex on expression for our sdSNP-gene 

and non-sdSNP gene pairs. We found no clear, consistent divergence between the two 

distributions across the tissues for which an enrichment Fisher’s exact test p < 0.05 had been 

found. Indeed, often when divergence was found, tissues presented a larger divergence from 

the null when considering non-sdSNP-gene pairs, as opposed to the sdSNP counterparts. 

Figure 75 shows said behaviour in artery coronary and skin (sun exposed, lower leg) tissues, 

noting that these were amongst some of the most sex biased tissues (i.e. presented largest 

numbers of sex biased genes) as per the work of Oliva et al164.   

 

 

 
Figure 75. Comparison of expected to observed -log10(p-values) for S terms in our eQTL models, for 
sdSNP-gene pairs and for non-sdSNP-gene pairs, in artery coronary, and skin sun exposed lower leg 
tissues. 

 

Overall, the presence of both depletion and enrichment of sex biased expression when 

considering genes nearby sdSNPs as compared to non-sdSNPs, as well as inconsistent trends 

when comparing expected to observed p-values, are a likely indicator that no consistent trend 

is present across all tissues and pairs considered.  



Functional analysis of sexually different SNPs 177 

3.4. Conclusions 
 

As has been discussed throughout this thesis, little is known about the mechanisms 

underlying differences between the sexes across the phenome. Having found evidence of 

gene by sex interactions across the genome in Chapter 2, this chapter has focused on the 

search for functional insights into sex differences in genetic architecture. To this end, we 

made use of in silico techniques to uncover associations between biological networks and 

the SNPs we had found to present different effects in males and females. Furthermore, given 

the accepted notion of the transcriptome as an intermediary phenotype to explain 

associations between genetic loci and complex traits, we looked to assess whether the 

sdSNPs found in the previous chapter were involved in sex-differential gene expression 

regulation across a wide array of tissues. 

 

We began our search for functional insights by performing a variant-to-gene analysis, 

aggregating our SNP-level data to pin-point genes that were differentially associated with the 

traits under study (sdGenes). This unlocked the possibility of studying differences between 

the sexes from a broader perspective, allowing for easier interpretation of the potential 

biological consequences of sdSNPs. We found that, generally, a larger number of sdGenes 

was found for each phenotype than sdSNPs, hypothesising that this was likely due to the 

lesser multiple-testing burden associated with gene analyses as opposed to GWAS. Indeed, 

we found that sdGenes accounted for around 20% of the total genes that our SNPs were 

mapped to. Furthermore, we found that 13 and 17 traits presented only sdGenes with larger 

effect in females or in males respectively (which we termed female and male dominant 

sdGenes). Some of these traits included hypothyroidism and gout, which are known to 

present differences in prevalence between the sexes. Notably, our results further suggest 

that male and female dominance is conserved across the traits considered, i.e. an sdGene 

that has a larger effect in females will likely possess this larger effect in females across all 

traits for which it was found to be differentially associated between the sexes. This, however, 

could also be influenced by the similarity across traits considered.  

 

The number of sdGenes found and their distribution across the genome highlighted a myriad 

of different genetic architectures pertaining to differences in association between the sexes 

across traits, paralleling the findings of Chapter 2. However, their distribution also suggests 

that LD likely has affected our gene analysis, as evidenced by instances of genes lying close 

together within the genome which presented correlation in their association to the 

phenotype under study. As such, this was noted as a potential caveat. Indeed, the software 

used for our variant-to-gene analysis, MAGMA, was designed to perform gene analyses and 

gene set analyses in two steps, first performing a gene analysis as described in this thesis, 

and second searching for enrichment across sets, whilst taking into account correlations 

between the genes found in the first step253. Given that different software was used for the 

second step in this study, these correlations were not considered. Furthermore, another 

important caveat of our sdGene assignment is that sdGenes are annotated based on data 

pertaining to nearby sdSNPs. This assumes that sdSNPs are acting via nearby genes, but, this 

need not be the case as sdSNPs could potentially be exerting a regulatory function long-

distance through chromatin loops315. Indeed, the physical distance of a variant to a gene is 
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not substantive evidence of causality231, although regulatory variants have been found to be 

enriched in the vicinity of the TSS of the genes they regulate87,316. As such, going forward, 

more considered gene analyses and fine-mapping frameworks might be deemed more 

appropriate, including those that integrate functional information about the variants 

considered.  

 

Next, we looked for enrichment of sdGenes across biological processes and pathways 

through a gene set enrichment analysis, across 15 traits (5 of which only presented female or 

male dominant sdGenes). We further repeated this analysis considering associated genes to 

use as a background. A total of around 6,000 gene sets were found to be enriched in either 

female or male dominant sdGenes, across all traits considered, and around a third of these 

also presented a significant difference in enrichment when compared to the background. 

Furthermore, for the 10 traits which presented both male and female dominant sdGenes, 

around 250 gene sets also presented a significant difference in enrichment between them. 

Interestingly, we found that gene sets were generally only enriched in male or female 

dominant sdGenes, or, in other words, did not show a larger amount of both male and female 

dominant sdGenes than what would be expected by chance.  

 

Two clusters of gene sets were found when considering our gene set enrichment results 

across the traits considered. The first pertained to female dominant sdGenes for 

hypothyroidism, hyperthyroidism, and malabsorption/coeliac disease, for which sets relating 

to immune response pathways and antigen presentation were found to be enriched. Genes 

leading the enrichment across these sets were located within the HLA region of chromosome 

6, and all 3 traits considered are known to be autoimmune diseases. The second cluster of 

sets pertained to female dominant sdGenes for trunk fat free mass, whole body fat free mass, 

and trunk predicted mass, which were found to be enriched in sets relating to sncRNA 

biogenesis and RNA-mediated silencing pathways. Interestingly, miRNA has been suggested 

in the past to be a potential player in the regulation of phenotypic sex differences302. An 

important caveat is that both clusters seem to be related to sets enriched in genes that hold 

proximity within the genome, the first considering genes within the HLA region, and the 

second considering a family of genes within chromosome 1, and as such enrichment might 

be arising due to gene-gene correlations. However, potential arguments against this are that 

(i) ankylosing spondylitis, which is also an autoimmune disease and which also presented 

sdGenes within the HLA region, albeit male dominant, was not a part of the first cluster, and 

(ii) that numerous miRNA target sets were found to be enriched across multiple phenotypes 

within the study, the genes overlapping these sets not pertaining to the cluster of genes 

described previously.  

 

Interestingly, not many enriched hormone-related gene sets, nor enriched binding sites, were 

found across the sdGenes considered. This parallels findings of Mayne et al’s study163 into 

sex biases in gene expression, where only 32% of genes presenting sex biased expression 

contain androgen or oestrogen hormone response elements, which might suggest that the 

majority of autosomal genes are not under direct influence of sex hormones. Similarly, a 

recent study by Lopes-Ramos et al did not find enrichment of oestrogen or androgen 

receptors within genes found to present sex biases in gene expression317. Furthermore, Oliva 
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et al found that sets enriched among genes presenting biased expression were extremely 

varied, and included those relating to epigenetic marks, embryonic development and tissue 

morphogenesis, fat metabolism, immune response, and more164. A limitation of our analysis 

is that only 15 traits were considered, across which anthropometric traits were heavily 

represented, and as such this likely does not pose a representative example of the wealth of 

complex traits exhibiting differences between males and females. 

 

An important limitation of gene set enrichment analyses is that, whilst certain pathways have 

been carefully characterised and this type of framework can be of great value when linking 

GWAS findings to biological function, pathway annotation remains sparse and skewed 

towards well-studied genes318. As such, our results could be biased towards the latter, and 

potentially interesting mechanisms might be being missed. Furthermore, beyond the 

analyses presented here, much is yet to be explored in regards to the functional analysis of 

sdSNPs. For example, differences in epigenetic marks between the sexes have been reported, 

yet here we have not delved into a potential link between GxS in the genome and the 

epigenome. In this context, data generated by the ENCODE project243, the NIH Roadmap 

EpiGenome project242, the Functional Annotation Of the Mammalian genome (FANTOM) 

consortium319, as well as others, which extensively characterise the epigenome as well as 

potential regulatory elements, could help bridge the gap between the genome and other key 

players in genetic regulation, and in turn aid the search for mechanistic insights into GxS.  

 

Having assessed the enrichment of sdGenes across potentially interesting sets, we next set 

out to assess whether our lead sdSNPs could also be acting as sb-eQTLs, in a search for links 

between sex differences in the genome and the transcriptome. This situation could arise, for 

example, if an sdSNP lay within the binding site of a regulatory sex-specific factor, thus 

affecting expression in a sex-specific manner. To this end, we performed an eQTL analysis, 

looking for GxS in gene expression, considering genes within a 1Mb window to our lead 

sdSNPs. This was done for a total of 39 tissues from the GTEx v6p release, originating from 

up to 450 individuals. A total of 8 sb-eQTLs were found at a q < 0.05 threshold, with further 

work needed to (i) replicate findings, and (ii) establish if differences in gene expression 

regulation could be causally leading to differences in phenotype presentation.  

 

To further assess a potential link between sdSNPs and the transcriptome, we performed an 

enrichment analysis. As such, we assessed differences in the number of sb-eQTLs found 

when considering gene-variant pairs for variants that presented evidence of sex differences 

(sdSNPs) versus those that did not (non-sdSNPs, genetic effect comparison between the 

sexes p > 0.5). Similarly, we assessed whether sdSNPs lay close to genes with sex biased 

expression more often than non-sdSNPs. Our findings suggest that sdSNPs could be leading 

to differences in gene expression regulation between the sexes for a number of the tissues 

considered, as evidenced by our enrichment results, however further work is required. As 

such, this might suggest that, as larger sample sizes become available, larger amounts of 

sdSNPs will be found that are also associated with differences in gene expression regulation 

between the sexes. On the other hand, we did not find evidence to suggest that sdSNPs were 

associated with sex biased gene expression, as evidenced by our enrichment analysis. 

Furthermore, of the 8 genes for which sb-eQTLs found, only one presented significant sex 
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biased expression in the discovery tissue. This mirrors the findings of Oliva et al, who found 

that only 14% of genes for which sb-eQTLs were found also exhibited sex biased expression164. 

The authors state that this observation is compatible with small sb-eQTL effects not 

translating into detectable differences in gene expression and/or with different mechanistic 

bases for the two phenomena. 

 

Our analysis into sb-eQTLs, as well as that of others, has several important limitations. The 

first large limitation impeding the discovery of links between sdSNPs and differences in the 

regulation of gene expression across tissues is the limiting number of samples available, 

which, along with the generally small GxS effect sizes and high interindividual expression 

heterogeneity, greatly affects the statistical power to detect sb-eQTLs164. As such, much 

larger cohorts are needed. Indeed, a recent study Porcu et al269 concluded that millions of 

samples would be necessary to observe sex-specific trait associations that are fully driven 

by sb-eQTLs, which could explain the relative absence of overlap between sdSNPs and sb-

eQTLs.  

 

The second large limitation, as evidenced by the latest GTEx paper looking into differences in 

gene expression between the sexes164, is cell heterogeneity. At the moment, cohorts like GTEx 

consider bulk tissue as opposed to single-cell data, and, as demonstrated in the 

aforementioned work, cell type composition differences between the sexes, along with other 

unknown factors confounded with sex, can lead to the discovery of “false” sb-eQTLs. As such, 

to truly disentangle sex-specific gene-expression networks, as well as differences in 

regulation, single-cell data is needed.  

 

Thirdly, studies have shown that sex biases in gene expression change throughout human 

development. A study by Shi and collaborators obtained transcriptomic profiles of the brain 

for males and females across major developmental stages (prenatal, childhood, puberty and 

adulthood), and found little overlap in sex biased genes across them, with puberty presenting 

the largest number of sex biased genes (a total of 4,164)165. Given this, as well as hormone 

fluctuations throughout a person’s life, it’s likely that sex biased gene expression and its 

regulation are also a function of developmental stage. Furthermore, given that GTEx 

participants are generally older (half of participants of GTEx v8 being 50 years or older), our 

results, similarly to those found in Chapter 2 when considering the mature population of UK 

Biobank, are representative of a particular portion of the human lifespan, and, further, 

predominantly of European genetic variation. As such, given the fluid nature of the 

transcriptome and of sex biases across developmental stages, diseases, and environmental 

exposures (section 1.4.2.4), future studies should consider variation across all stages of the 

human lifespan, disease, and endogenous/exogenous environments to truly understand 

differences in gene regulation between the sexes320.  

 

Finally, in this study we have only considered cis sb-eQTLs. Indeed, sdSNPs could be 

regulating gene expression in a sex biased manner in trans, and as such this remains to be 

explored. Furthermore, the GTEx cohort is made up of data generated from non-diseased 

tissue, thus gene expression profiles might not be concordant with those from individuals 

from UK Biobank which presented the diseases studied through our sex-stratified GWAS 



Functional analysis of sexually different SNPs 181 

efforts in Chapter 2. As such, this could potentially limit the linking of sdSNPs found to 

differences in transcriptome regulation between the sexes. In addition, sdSNPs considered 

in our eQTL analysis were those that presented the smallest sexual dimorphism p-value 

across all sdSNPs within LD “peaks” (i.e. lead sdSNPs), which does not provide appropriate 

evidence on causality. As such, our study into sb-eQTLs may have been misdirected by 

studying sdSNPs that do not present a causal relationship to the phenotype. Finally, an ideal 

study would involve the identification of sdSNPs within the same cohort in which gene 

expression differences are assessed, in order to link the genome and the transcriptome most 

effectively.   

 

Overall, much remains to be understood in regards to GxS. We have found sex biases across 

the genome, but what could be underlying these differences in association remains a 

mystery. Our gene-level analyses did not provide evidence of a shared mechanism across 

genes presenting evidence of dimorphism in association to the phenotypes under study, nor 

enrichment in transcription factor binding motifs, a hypothesised regulatory mechanism 

thought to underlie GxS. However, a more considered in silico analysis could shed further 

light on this phenomenon, as well as a broader look across phenotypes. Furthermore, we have 

seen that our sdSNPs do not readily translate to sex biased eQTLs of nearby genes. An 

indication of enrichment of sex biases in gene expression regulation at sites near to sdSNPs 

were found, but further work is required as well as a dissection of sex biases in cell-type 

composition to ensure the absence of false positives. In this context, large population 

cohorts employing single-cell transcriptomic technologies will be invaluable. 

 

In addition, Porcu et al highlighted that larger sample sizes are needed to detect GxS arising 

through sex biased gene expression regulation, which although explains the absence of sb-

eQTLs across the sdSNPs found, does not explain why sdSNPs were detected in the first place. 

Alas, this could be explained partially or fully by the orders of magnitude difference in size 

between the two cohorts considered for the detection of sdSNPs and sb-eQTLs (UK Biobank 

and GTEx), meaning that larger sizes will uncover further sb-eQTLs that overlap with the 

sdSNPs found. Overall, several questions remain to be answered: if sb-eQTLs, are not driving 

the detection of the sdSNPs found, through downstream effects of gene expression 

differences between the sexes ultimately leading to differences in phenotype, then what is? 

Are sdSNPs leading to sex differences in gene expression regulation in trans, and as such are 

being missed by cis-focused analyses? If sdSNPs do lead to differences in gene expression 

regulation, how do these changes affect cellular or organismal phenotypes and influence 

disease risk? Are the sdSNPs found leading to differences in complex traits between males 

and females through mechanisms beyond the regulation of gene expression, such as post-

transcriptional and post-translational modifications, or through direct regulation of protein 

levels (pQTLs)? Can all or most sdSNPs be explained through a shared mechanism or does 

each complex trait present its own sex-specific etiology giving rise to these dimorphic 

associations across the genome?  

 

In this context, further efforts are needed to understand what underlies differences in 

genetic architecture between the sexes, moving beyond transcriptomic regulation and 

looking at other biological regulatory mechanisms and omics data sets, including but not 
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limited to proteomics, epigenomics, metabolomics, microbiome studies, and studies of 

chromatin 3D organisation. Indeed, Lopes-Ramos et al recently found hugely differing 

transcriptional regulatory networks between the sexes that were mediated by transcription 

factors, and that did not translate to differences in gene expression, concluding that limiting 

information on sex differences can be obtained when considering just sex biases in mRNA 

levels317. As with transcriptomics, single-cell technologies will further help untangle “true” 

sex biases across biological levels beyond differences in cell type composition across 

tissues. Each of these frameworks will help shed light on sex biases across proteins, 

metabolites, and other key molecular endophenotypes giving rise to observable differences 

in complex traits between males and females, as well as map them to the genome to gain a 

richer understanding of the molecular machinery of genetic regulation through molQTL 

studies using methods like those described in this thesis. Furthermore, beyond the individual 

study of sex biases at each biological level, integrative multi-omic and systems biology 

analyses will further aid in understanding the interplay between molecular levels and help 

elucidate the cascade of molecular effects contributing to sexually differentiated traits113,317. 

To this end, deeply phenotyped large cohorts will be essential, as well as characterisation of 

cell-specific environments. Indeed, projects like the recently proposed Human Cell Project321, 

which strives to create comprehensive reference maps of all human cells, will prove 

invaluable in our understanding of the effect of genetic variation on a myriad of 

endophenotypes, and ultimately on complex traits. In addition, and in parallel to population 

cohorts and omic technologies, continued improvement of animal models reflecting 

differences in male and female specific genetic content and hormonal milieus, as well as that 

of genome editing techniques such as CRISPR-Cas9, will further aid in the biological 

validation of potential future drug targets to close the gap in sex disparities in health care.  

 

3.5. Contributions 
 

Andrea Talenti and James Prendergast designed the analysis and created the majority of 

scripts for the variant-to-gene and gene set analysis pipeline. Both my supervisors provided 

comments on versions of this chapter.  
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Chapter 4 
Final conclusions 

 
Human genetics in the 21st century, characterised by the completion of the HGP and the rise 

of NGS, computational biology, GWAS, and population cohorts (Chapter 1), has seen an 

immense growth in our understanding of the genetic architecture underlying complex traits. 

However, much is yet to be understood. A strong emphasis has been placed on the role of 

additive genetic variance and its influence on phenotypes. Furthermore, despite the widely 

accepted notion that the etiology of common diseases and complex traits involves not only 

genetic and environmental causes, but also interactions between the two, studies on GxE 

have been limited. GxE studies are restricted in part by challenges due to lack of statistical 

power, difficulties in exposure measurement, and reproducibility.   

 

On the other hand, sex is arguably one of the most important differentiating characteristics 

in mammalian species, separating populations into different groups, with varying behaviors, 

morphologies, and physiologies based on their complement of sex chromosomes, amongst 

other factors. In humans, despite males and females sharing nearly identical genomes, there 

are differences between the sexes in complex traits and in the risk of a wide array of diseases 

that span well beyond morphological and reproductive phenotypes (section 1.4.1), as well as 

in the gene expression of roughly one third of genes in at least one tissue164. Despite this, the 

processes behind how the biology of sex affects the phenome are still relatively unknown. In 

humans, sex provides the genome with a distinct environment, characterised by a specific 

hormonal milieu, differential gene expression, and environmental exposures arising from 

gender societal roles. As such, sex differences can be modeled under a GxE model 

framework113, here referred to as GxS, where, as opposed to other environmental factors, 

classification and measurement of “exposure” is straightforward, measured by the presence 

or absence of the Y chromosome, and sample sizes are large, given that roughly 50% of the 

population falls under the umbrella of each sex.   

 

In recent years, growing evidence of GxS contributing observable phenotypic differences 

between males and females has been found, with common genetic variation presenting 

different effects on males and females (Chapter 2). These studies have however been limited 

in regards to the number of traits studied and/or statistical power. Furthermore, insights into 

how differences in genetic architecture translate to differences in complex traits have been 

lacking (Chapter 3). Understanding sex differences in genetic architecture is of great 

importance as this could lead to improved understanding of potential differences in 

underlying biological pathways and disease etiology between the sexes, and in turn help 

inform personalised treatments and precision medicine. 

 

In an effort to shed light on the effect of sex on the genetic architecture of complex traits, 

this PhD aimed to find GxS across the genome (Chapter 2), as well as shed light on the 

potential underlying mechanisms behind this phenomenon (Chapter 3), making use of large 
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population cohorts and gold-standard quantitative genetics and bioinformatics frameworks. 

In this section, I will summarise our work and findings, highlight the latter’s main 

implications, and discuss future directions in the search for gene by sex interactions across 

the genome and beyond.  

 

4.1. Summary of findings and implications 
 

We began our search for sex biases in genetic architecture by fitting sex-stratified LMMs for 

530 phenotypes originating in around 450,000 participants from the biggest existing 

population cohort, UK Biobank. As such, this work marked the largest examination of GxS in 

both depth and breadth to date. These models consequently allowed us to obtain sex-specific 

heritability estimates, calculate genetic correlations, and identify genetic variants 

presenting differences in genetic effects across the genome (Chapter 2). We found 

widespread evidence of sex differences in genetic architecture across the 530 traits under 

study, of generally modest magnitude. In total, 71 traits were found to present a significantly 

different heritability estimate between the sexes, whilst 69 presented genetic correlations 

that significantly differed from one. Our sex-stratified GWAS analyses yielded a total of 103 

traits with at least one sexually different variant (sdSNP). Numerous sanity checks were 

performed to ensure our results were not likely the result of unknown artifacts. Furthermore, 

we found that sdSNPs represent a minority of the genome, with 0.046% and 0.099% of the 

total genetic variants considered presenting a significant difference in effect in at least one 

trait, for non-binary and binary traits respectively.  

 

We further investigated whether sex-agnostic (non-stratified) efforts could potentially be 

missing information of interest, including sex-specific trait-relevant loci and increased 

phenotype prediction accuracies. To assess whether sex-specific loci were being missed we 

performed a masking analysis. We found evidence of potential masking across a total of 176 

traits, with a significant correlation between the number of sdSNPs and the number of 

potentially masked variants found when considering non-binary traits. Furthermore, we 

investigated possible improvements in the prediction of high-level phenotypes when using 

sex-specific as opposed to sex-agnostic models, and whilst no statistically significant 

difference was found at a q < 0.05 threshold, a consistent increase in prediction accuracy 

was observed across all non-binary traits with at least 10 lead sdSNPs.  

 

Finally, we studied the potential functional role of sex differences in genetic architecture 

through sb-eQTL and gene-level analyses (Chapter 3). We found a total of 8 sdSNP-gene pairs 

that presented sex differences in gene expression regulation and found an enrichment of sb- 

eQTLs when considering sdSNPs and their nearby genes, as compared to non-sdSNPs and 

their corresponding nearby genes. Our gene-level analyses highlighted a lack of common 

female or male dominant pathway that could be leading to differences between the sexes 

across the 15 traits considered. Two clusters of gene sets were found across the 

aforementioned, the first pertaining to genes presenting a larger effect in females for the 

traits hypothyroidism, hyperthyroidism and malabsorption/coeliac disease, and which were 

found to be enriched in immune-related pathways. The second cluster pertained to genes 
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which presented a significantly larger effect in females in body-mass related traits, and 

which were enriched in sncRNA biogenesis and RNA-mediated silencing gene sets.  

 

Overall, our findings parallel previous reports, suggesting the presence of sexual genetic 

heterogeneity across complex traits. Extensive discussion into these findings and their 

limitations can be found in the conclusions of Chapter 2 and Chapter 3. As such, this section 

will serve as a summary of the latter. The main conclusions and implications of our work are 

as follows: 

 

4.1.1. The autosomal genome plays a role in sex differences 

 

Historically, studies have postulated the role of the elements that are readily known to differ 

between males and females, namely the sex chromosomes and hormones, as “culprits” of 

the sex differences observed across complex traits and diseases. However, despite decades 

of research, the underlying mechanisms behind these differences is still not well understood. 

This study, along with those of others highlighting widespread differences in the 

transcriptome of males and females, has highlighted that these sex-specific factors and 

cellular/systemic environments are likely interacting with the shared autosomal genome, 

leading to regulatory differences across gene networks, and finally culminating in 

differences in complex traits. As such, future studies looking to understand differences 

between the sexes should consider GxS across the autosomes as an additional player that 

could help piece together underlying sex-differing mechanisms and etiology. 

 

4.1.2. No “one-size-fits-all” sex-specific genetic architecture 

 

We have found that the distribution of GxS across the genome is extremely diverse, mirroring 

findings of genetic architectures across complex traits (section 1.3). Indeed, whilst some 

traits presented evidence of GxS across large numbers of loci throughout the genome, such 

as was the case of WHR, others presented sex differences in an oligogenic manner, i.e. only 

across several loci, as was the case for hypothyroidism or gout, or even for a single genomic 

region, as was the case for ankylosing spondylitis. Throughout this thesis we further 

observed great heterogeneity across all analyses performed, from the number of sdSNPs 

presenting opposite sign effects between the sexes, to the pathways enriched in genes 

nearby sdSNPs, which further backs the theory that there is no unique mechanism underlying 

differences in genetic architecture between the sexes.  

 

4.1.3. Sex differences can be pleiotropic 

 

Evidence of sex-specific pleiotropy was found across sdSNPs. Indeed, numerous sdSNPs 

were found to present differences in association between the sexes across multiple traits, 

with the largest pleiotropy observed pertaining to a SNP in chromosome 16 that presented 

GxS for a total of 17 traits. Furthermore, our gene-level analysis, which partitioned sdSNPs 

into those with a larger effect in males and those with a larger effect in females, provided 
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evidence of consistent sex-specific dominance across traits, that is, an sdSNP with larger 

effect in males consistently presented a larger effect in males across all traits for which it 

was deemed to be an sdSNP.  

 

4.1.4. Gene by sex interactions are small yet widespread 

 

Sex differences in genetic architecture were found for a large portion of the traits considered, 

yet, with a few exceptions, these were generally small, i.e. very few SNPs presented evidence 

of sex differences in genetic effect, heritability differences were generally small, and genetic 

correlations did not greatly differ from one. These findings parallel those from transcriptomic 

studies, which highlight that sex effects on gene expression are small, despite being 

ubiquitous. We hypothesise that, as sample sizes grow larger, more sdSNPs will be found, 

especially in regards to disease traits for which statistical power was more limited in this 

study. This is backed by (i) larger amounts of sdSNPs for traits like WHR and height having 

been uncovered as sample sizes have gotten larger, (ii) the fact that the sdSNPs found seem 

to generally account for a small portion of sex-specific heritability, and (iii) theoretical 

postulations of the omnigenic model, extended to alterations by sex-specific factors on 

interconnected gene networks, which would ultimately lead to genome-wide dimorphism of 

small effect.  

 

4.1.5. Potential future improvement of phenotypic prediction 

 

Our prediction analyses using polygenic scores did not show a statistically significant 

improvement in prediction accuracy when using sex-specific genetic effect estimates as 

opposed to sex-agnostic estimates, but a consistent upwards trend was found. Taken 

together with the previous point, this could suggest that, as sample sizes get larger and 

further insights into sex-specific genetic architecture are obtained, sex-specific models 

could surpass their sex-agnostic counterparts in usefulness when assessing disease risk 

across the population.  

 

4.1.6. Masking: a case for sex-aware frameworks 

 

Our findings suggest that sex-agnostic cohorts could be masking sex-specific signals. As 

such, this could be leading to loci of interest being missed, which in turn could help explain 

the genetic basis of complex traits and diseases in males and/or females. Thus, future efforts 

should strive to perform not only sex-agnostic analyses, but also seek to stratify by sex. 

Importantly, this practice should be adopted beyond the study of traits presenting evidence 

of sexual dimorphism, given that large differences in phenotype do not translate to an 

absence of sex-specific genetic architecture. Furthermore, instances of masking may also be 

occurring in transcriptomic analyses, as discussed by the most recent GTEx paper on the 

effect of sex on gene expression, which further highlights the need for sex-aware analyses164.  
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4.1.7. Sex differences in gene expression regulation: time will tell 

 

Our study linking sdSNPs to the transcriptome yielded a total of 8 sdSNPs that were found to 

also regulate gene expression in a sex biased manner. Furthermore, we found enrichment of 

sb-eQTLs in the vicinity of sdSNPs as opposed to non-sdSNPs, which could suggest that, as 

larger sample sizes become available, more sdSNPs that also act as sb-eQTLs will be found. 

However, and as discussed at length in section 3.4, there are important hurdles that need to 

be overcome to truly understand how GxS is linked to the transcriptome, including the 

limiting sample sizes available for most tissues and cell-heterogeneity across male and 

female samples. Indeed, despite gene expression regulation being a widely accepted 

mechanism by which regulatory variation contributes to complex traits, more work needs to 

be done before we can conclude that the transcriptome is the intermediary phenotype that 

gives rise to the GxS observed across the genome, and the phenome.  

 

4.1.8. Beyond direct hormonal regulation? 

 

Another postulation regarding the mechanism driving GxS is that sex specific factors, namely 

sex hormones, are likely drivers leading to differences in genetic architecture between the 

sexes. Despite this, our gene set and motif analyses did not return widespread enrichment 

for hormone-related pathways across the sdGenes found in the traits considered. Indeed, 

recent transcriptome analyses have found that only about a third of genes presenting sex 

biases in gene expression contain hormone response elements, and a myriad of biological 

pathways have been found to be enriched in these genes that span well beyond hormonal 

regulation164. As such, these results suggest that sdSNPs might be arising beyond the direct 

action of gonadal steroid hormones. This is further supported by an extensive regulatory 

network analysis by Lopes-Ramos et al, which integrated information on transcription factor 

motifs, gene expression, and protein-protein interactions, and which found that transcription 

factors well beyond gonadal steroid hormones presented sex biased and tissue specific 

targeting patterns317. As such, a more considered fine-mapping effort of sdSNPs and sdGenes 

across a wider range of traits, and with the integration of multi-omics data, is needed to 

ascertain candidate regulatory mechanisms underlying this phenomenon. 

 

4.2. Outlook and future directions 
 

This work has served as an in important basis to gather insights into the scope of GxS across 

a hugely varied set of phenotypes, and at a scale not previously achievable. Indeed, this study 

would not have been possible without the advances made in human genetics and 

computational biology in the 21st century, including the efforts made by international projects 

and consortia like the HGP, the HapMap project, and UK Biobank. However, as I’ve highlighted 

throughout the previous chapters in further detail, much is yet to be understood and explored 

regarding the effects of sex on human genetic architecture. Here I will summarise the main 

points regarding future directions in the continued search for knowledge in this field.  
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4.2.1. Larger sample sizes and sex-awareness to further unlock GxS 

 

Given the generally small effects associated with GxS, large statistical power is needed to 

assess its scope across the phenome. This study has served as an important first step, but 

larger cohorts, especially those honing in on binary traits (i.e. diseases) will be fundamental 

to gain insights into sex differences in prevalence and etiology between the sexes. Indeed, 

UK Biobank is a healthy cohort, made up of people from a very specific age bracket and human 

subpopulation, and as such, large, diverse cohorts covering multiple developmental stages 

will be required to further characterise GxS. Studies should shy away from traditionally male 

dominant studies, instead opting for sex-aware designs to ensure the ability to capture sex 

heterogeneity across complex traits.  

 

4.2.2. Rare variants 

 

Microarray technology and imputation algorithms have unlocked the power of GWAS in the 

last 15 years. However, they are not without caveats, the most important being their inability 

to accurately capture rare genetic variation across the human genome. Whilst in the past rare 

variants of large effect have been essential in the dissection of rare, Mendelian diseases, 

their role in common, complex traits is yet to be determined. Rare variants, especially those 

in the exome, are more likely to modify protein sequences and have large phenotypic 

consequences. Furthermore, they are more readily interpretable than common variants, and 

can provide insights into potential drug targets and precision medicine322. In addition, rare 

variants are postulated to account for a considerable portion of the missing heritability of 

complex traits, as has been shown for height91. In this context, WES and WGS efforts will be 

essential to understand the spread of GxS beyond common genetic variation. Thanks to 

recent efforts by the UK Biobank, as well as other population cohorts, this will soon be an 

attainable reality. 

 

4.2.3. XWAS and YWAS 

 

Historically, the sex chromosomes have been excluded from GWAS efforts due to the 

challenges associated with their analysis (section 1.4.2.1), and those that do include them 

generally employ methods originally designed for the autosomes. As such, this could be 

leading to statistical inaccuracies. Indeed, no variant-trait associations have been discovered 

on the Y chromosome to date113. In this context, several methods have been developed for the 

accurate analysis of the X chromosome, including XWAS127 and XYalign123, whilst the 

development of methods for the Y chromosome lags behind, with no widely available 

reference panels or genotype imputation methods, limiting association studies to 

haplogroups126. Given the underrepresentation of the sex chromosomes and the likely 

contribution of genetic variation within them to phenotypic differences between the sexes, 

as further statistical frameworks are developed for the appropriate analysis of common and 

rare genetic variation in the latter, future efforts should strive to incorporate them into their 

analyses.    
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4.2.4. GxS as a function of time 

 

Throughout this study, we have treated sex as an all-encompassing environmental context 

for the human genome. However, the molecular context that sex provides can vary 

throughout a person’s lifetime as a consequence of hormone fluctuations, as well as 

potentially those of other sex-specific factors. Indeed, differences between males and 

females can change at major developmental and reproductive stages, both in regards to 

complex traits and disease presentation, as is the case of diseases like cardiovascular 

disease101 or asthma102, as well as in regards to gene expression, as is the case of the sex 

differential transcriptome across different brain developmental stages165. As such, future 

studies looking into GxS should take age and lifetime stages into account to ensure a 

thorough understanding of sexual dimorphism and its contributors.  

 

4.2.5. GxS across populations 

 

UK Biobank, along with other main population cohorts, is mainly constituted of participants 

of European descent. As such, our findings on GxS are not readily applicable to broader 

ancestries. Indeed, lack of diversity has been noted as an important limitation of most current 

GWAS efforts (section 1.1.5). Beyond impeding our understanding of genetic variation and 

creating inequality in the translational impact of genetic science, the study of sex biases in 

genetic architecture across populations could help narrow down sdSNPs that are likely causal 

in regards to differences in complex traits and diseases, as well as help discern between sex-

associated cultural practices leading to differences in the phenome and true sex-specific 

biological mechanisms. As such, future studies looking to unravel the effect of sex on genetic 

architecture should strive to replicate findings in non-European cohorts.  

 

4.2.6. Causal inference and fine-mapping 

 

Association does not imply causation, as in, not all genetic variants found to be associated 

with a given phenotype are causal, as they could be arising due to the LD structure in the 

genome. Despite this, most GWAS efforts report SNPs that present the smallest p-values of 

association to a given phenotype within LD blocks (lead SNPs) as likely players in the genetic 

architecture of the complex traits under study. In the context of the study of sex biases 

across the genome, whilst this method is simple and can serve to quantify the total number 

of independent loci presenting GxS, as well as likely genomic regions of interest, it also 

potentially impedes the accurate functional dissection of sexual heterogeneity in genetic 

architecture. Furthermore, investigation into the regulatory effects of GWAS hits is generally 

performed in cis, i.e. in regards to nearby genes. However, proximity does not entail a causal 

target, given 3D chromosomal configurations, and the potential existence of trans regulatory 

effects. As such, whilst these simplifications offer good preliminary insights into the 

functional and regulatory basis of GxS, future studies should employ considered fine-

mapping and causal inference frameworks to (i) find causal relationships amongst the 
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sdSNPs found, (ii) dissect likely molecular functions of sdSNPs, (iii) determine which genes 

are affected by sdSNPs, and (iv) determine how changes in the regulation of affected genes 

lead to differences in phenotype between the sexes232. 

 

4.2.7. Sex biased gene expression regulation across cell types 

 

The GTEx cohort has provided scientists with a broad look into genotype-transcript 

connections across a myriad of human tissues, a feat that had previously been limited to just 

those most readily available, namely blood. However, the study of GxS in gene expression 

regulation from bulk tissue data is limited by differences in tissue cell composition between 

the sexes, which could be leading to false positives in the detection of sb-eQTLs. 

Furthermore, given the difficulties associated with obtaining tissue-wide samples from non-

diseased participants, sample numbers are very limited. In turn, given small GxS effects and 

interindividual expression heterogeneity, detection of sex biases in gene regulation has 

proven difficult. In this context, large single-cell population cohorts, such as the recently 

proposed Human Cell Atlas project321, will be essential to unravel sex effects on gene 

expression regulation. Furthermore, single-cell data can provide insights into X chromosome 

silencing, allowing for more accurate dissection X chromosome variation and the phenome.  

 

4.2.8. Systems biology and multi-omics 

 

The mechanisms underlying GxS are still not known. Whilst we found enrichment of sb-eQTLs 

nearby sdSNPs as opposed to non-sdSNPs, a clear connection between sex biases in gene 

expression regulation and sdSNPs was not found. Indeed, given the complexity of sex as a 

biological variable, insights into biological levels beyond the transcriptome are needed. In 

this context, studies delving into sex differences in the proteome, metabolome, microbiome, 

epigenome, and more, as well as their connection to genetic variation through molQTL 

studies, across different ancestries, cell types, disease contexts, and developmental stages, 

will help understand the regulatory cascade culminating in the differences observed in 

complex traits. Furthermore, multi-omic integration and systems biology frameworks will 

help connect all different players, and map regulatory mechanisms across biological levels.   

 

4.3. Final words 
 

The turn of the century has seen a renaissance in genetic science, which has only been 

amplified by the development of large population cohorts that have allowed for thorough 

inquiries into the genotype-phenotype connection. In turn, these are being further advanced 

year after year, with an emphasis on deep phenotyping and the integration of newer 

technologies that allow for the finer dissection of the molecular bases of complex traits. 

Indeed, it has been thanks to these advances that the work presented here has been made 

possible, and we expect that, as these projects and consortia continue to grow, larger 

instances of and further insights into GxS across a continually growing characterised 

phenome will be found.  
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However, the growth of population cohorts has also highlighted the complexities underlying 

human phenotypes. Indeed, the majority of GWAS signals found fall within non-coding 

regions, making interpretation difficult. Furthermore, as sample sizes get bigger so do the 

number of loci presenting a significant association to the phenotypes under study. These 

findings are encapsulated within the recently proposed omnigenic model32,92, which argues 

that as GWAS cohorts grow, so will yielded associations, but these will present continually 

smaller effects, and eventually all genes expressed within relevant cell types will be found to 

present an association to the phenotype under study as a result of complex interconnected 

gene networks. In this context, whilst the genetic architecture of plenty of phenotypes is yet 

to be characterised given limiting numbers of cases and the cohorts to study them, and as 

such still have much to gain from the continued growth of population cohorts, others are 

likely to soon hit a wall in regards to benefitting from larger sample sizes, as is the case of 

traits like height. 

 

In this context, given the seeming absence of interpretable information that GWAS hits 

provide, post-GWAS studies are necessary to understand the molecular underpinnings of 

complex traits, GxS studies being no exception. Functional and multi-omics frameworks will 

thus be essential in the study of GxS going forwards if we are to obtain translational insights 

that can lead to discernible differences in medicine. Indeed, molecular mechanisms that 

differ between males and females might suggest novel targets for therapeutic intervention 

in disease traits that present differences in prevalence. Furthermore, improved knowledge of 

interactions between sex, genetic variation, and drugs can offer insights into therapy 

efficacy and avoid unforeseen adverse effects. 

 

All in all, sex is a fundamental characteristic of the human species, with clear and strong 

influences across the phenome. As such, a continued unraveling of its effect on genetic 

architecture and beyond is imperative. As we inch closer to the age of precision medicine, we 

urge geneticists to perform sex-aware analyses, in turn helping close the gap in sex 

disparities in health care and in our understanding of one of the most defining human 

attributes.
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Annex 
 

Supplementary Figures 
 

 

(A) 

 
 

(B) 

 
Supplementary Figure 1. Manhattan plot of height corresponding to gene annotation analysis using 
MAGMA, where x is the genomic position and y is -log10(q) across genes, using (A) qF (thus showing 
female dominant sdGenes) and (B) qM (thus showing male dominant sdGenes). Each pink point 
represents a gene with q < 0.01. Annotated are genes with -log10(q) > 5. 
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Supplementary Figure 2. Manhattan plot of malabsorption/coeliac disease corresponding to gene 
annotation analysis using MAGMA, where x is the genomic position and y is -log10(q) across genes, using 
qF (thus showing female dominant sdGenes). Each pink point represents a gene with q < 0.01. Annotated 
are genes with -log10(q) > 5. 

 

 

 

 

 
Supplementary Figure 3. Manhattan plot of hypothyroidism corresponding to gene annotation analysis 
using MAGMA, where x is the genomic position and y is -log10(q) across genes, using qF (thus showing 
female dominant sdGenes). Each pink point represents a gene with q < 0.01. Annotated are genes with -
log10(q) > 5. 
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Supplementary Figure 4. Manhattan plot of hyperthyroidism corresponding to gene annotation analysis 
using MAGMA, where x is the genomic position and y is -log10(q) across genes, using qF (thus showing 
female dominant sdGenes). Each pink point represents a gene with q < 0.01. Annotated are genes with -
log10(q) > 5. 

 

 

 

 
 
Supplementary Figure 5. Manhattan plot of ankylosing spondylitis corresponding to gene annotation 
analysis using MAGMA, where x is the genomic position and y is -log10(q) across genes, using qM (thus 
showing male dominant sdGenes). Each pink point represents a gene with q < 0.01. Annotated are genes 
with -log10(q) > 5. 
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Supplementary Figure 6. Gene expression of the transcript ENSG00000205643.6 regressed on genotype 
at variant rs62228068 in skin (not sun exposed – suprapubic) tissue, for males and females separately.   

 

 

 

 
 
Supplementary Figure 7. Gene expression of the transcript ENSG00000204396.6 regressed on genotype 
at variant rs13213216 in brain nucleus accumbens basal ganglia tissue, for males and females separately.  
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Supplementary Figure 8. Gene expression of the transcript ENSG00000204482.6 regressed on genotype 
at variant rs28559870 in heart left ventricle tissue, for males and females separately.   

 

 

 

 
 
Supplementary Figure 9. Gene expression of the transcript ENSG00000133878.4 regressed on genotype 
at variant rs190243662 in lung tissue, for males and females separately.   
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Supplementary Figure 10. Gene expression of the transcript ENSG00000167685.10 regressed on 
genotype at variant rs116953569 in colon transverse tissue, for males and females separately.   

 

 

 

 
 
Supplementary Figure 11. Gene expression of the transcript ENSG00000011201.6 regressed on genotype 
at variant rs2405111 in adipose visceral omentum tissue, for males and females separately. Note that for 
males the “CC” phenotype corresponds to “C” and the “TT” phenotype corresponds to “T” due to the 
possession of a single X chromosome.   
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Supplementary Tables 
 

Supplementary Table 1. Number of sb-eQTLs found across sdSNP-gene pairs, for binary and non-binary 
traits, at a p < 10-3 and a p < 0.01 threshold (in blue), as well as the number of sb-eQTLs found across non-
sdSNP-gene pairs, for binary and non-binary traits, at the same thresholds (in pink), across tissues. 

 
sdSNP 
Binary 

sdSNP 
Non-Binary 

Non-sdSNP 
Binary 

Non-sdSNP 
Non-Binary 

Tissue 
p < 
10-3 

p < 
0.01 

p < 
10-3 

p < 
0.01 

p < 
10-3 

p < 
0.01 

p < 
10-3 

p < 
0.01 

Heart_Left_Ventricle 3 12 3 12 25 181 203 1804 

Brain_Nucleus_accumbens_basal_ganglia 1 24 1 24 31 196 204 1823 

Brain_Hypothalamus 2 9 2 9 14 160 151 1475 

Brain_Cerebellar_Hemisphere 0 12 0 12 22 188 196 1714 

Spleen 1 26 1 26 18 178 182 1729 

Pituitary 2 18 2 18 22 211 223 1962 

Artery_Aorta 3 21 3 21 21 215 209 1957 

Liver 1 21 1 21 25 199 187 1734 

Brain_Caudate_basal_ganglia 1 13 1 13 22 202 164 1637 

Colon_Sigmoid 1 21 1 21 23 211 187 1923 

Adipose_Subcutaneous 2 18 2 18 23 229 244 2176 

Pancreas 4 18 4 18 21 201 189 1877 

Esophagus_Muscularis 4 24 4 24 21 200 211 1976 

Brain_Cerebellum 2 15 2 15 25 220 216 2054 

Esophagus_Gastroesophageal_Junction 1 10 1 10 21 181 191 1770 

Brain_Frontal_Cortex_BA9 1 21 1 21 24 209 197 1815 

Artery_Tibial 2 20 2 20 19 198 225 1970 

Breast_Mammary_Tissue 1 18 1 18 21 231 214 2023 

Cells_Transformed_fibroblasts 3 25 3 25 11 175 218 1991 

Adipose_Visceral_Omentum 3 16 3 16 17 188 191 1956 

Muscle_Skeletal 6 21 6 21 22 186 194 1944 

Small_Intestine_Terminal_Ileum 0 0 0 0 0 0 0 0 

Whole_Blood 1 18 1 18 25 238 240 2069 

Colon_Transverse 1 20 1 20 22 209 221 1981 

Nerve_Tibial 4 27 4 27 17 232 242 2150 

Thyroid 3 23 3 23 31 228 235 2171 

Esophagus_Mucosa 1 18 1 18 22 196 222 1978 

Adrenal_Gland 0 20 0 20 21 202 187 1916 

Brain_Anterior_cingulate_cortex_BA24 0 0 0 0 0 0 0 0 

Brain_Hippocampus 1 12 1 12 25 175 201 1705 

Skin_Sun_Exposed_Lower_leg 1 18 1 18 26 256 223 2360 

Lung 0 22 0 22 21 213 234 2259 

Artery_Coronary 2 22 2 22 20 216 194 1891 

Brain_Cortex 2 19 2 19 24 225 193 1902 

Brain_Putamen_basal_ganglia 3 19 3 19 21 194 202 1692 

Heart_Atrial_Appendage 1 20 1 20 23 203 187 1903 

Stomach 0 22 0 22 30 241 213 2072 

Cells_EBV-transformed_lymphocytes 2 12 2 12 25 189 177 1714 

Skin_Not_Sun_Exposed_Suprapubic 3 22 3 22 25 218 220 2159 



 212 

Supplementary Table 2. Number of sb-eQTLs found across sdSNP-gene pairs, for binary and non-binary 
traits, at a q < 0.4 and a q < 0.5 threshold (in blue), as well as the number of sb-eQTLs found across non-
sdSNP-gene pairs, for binary and non-binary traits, at the same thresholds (in pink), across tissues. 

 sdSNP 
Binary 

sdSNP 
Non-Binary 

Non-sdSNP 
Binary 

Non-sdSNP 
Non-Binary 

Tissue 
q < 
0.4 

q < 
0.5 

q < 
0.4 

q < 
0.5 

q < 
0.4 

q < 
0.5 

q < 
0.4 

q < 
0.5 

Heart_Left_Ventricle 3 3 0 0 0 0 7 12 

Brain_Nucleus_accumbens_basal_ganglia 1 1 0 6 14 17 0 11 

Brain_Hypothalamus 2 2 0 0 0 0 0 0 

Brain_Cerebellar_Hemisphere 0 0 0 0 4 4 19 25 

Spleen 0 0 0 0 0 0 0 0 

Pituitary 0 2 0 0 0 0 0 0 

Artery_Aorta 0 0 0 0 0 0 5 5 

Liver 0 0 5 5 3 6 0 0 

Brain_Caudate_basal_ganglia 0 0 0 0 1 21 0 0 

Colon_Sigmoid 0 0 1 1 0 15 1 2 

Adipose_Subcutaneous 0 0 0 0 1 3 3 7 

Pancreas 4 4 1 1 0 0 7 15 

Esophagus_Muscularis 11 21 0 0 0 0 3 4 

Brain_Cerebellum 0 0 4 4 0 0 2 2 

Esophagus_Gastroesophageal_Junction 0 0 0 0 0 0 10 18 

Brain_Frontal_Cortex_BA9 0 0 3 3 6 6 19 36 

Artery_Tibial 11 17 3 3 0 0 0 0 

Breast_Mammary_Tissue 1 1 0 0 0 2 6 6 

Cells_Transformed_fibroblasts 0 5 0 0 0 0 4 4 

Adipose_Visceral_Omentum 2 15 0 0 0 0 0 0 

Muscle_Skeletal 8 8 2 2 3 6 0 0 

Small_Intestine_Terminal_Ileum 0 0 0 0 0 0 0 0 

Whole_Blood 0 0 1 4 1 1 25 35 

Colon_Transverse 1 1 1 4 0 1 1 4 

Nerve_Tibial 4 4 0 3 0 0 1 3 

Thyroid 0 0 0 0 0 0 0 0 

Esophagus_Mucosa 0 0 0 0 1 1 0 0 

Adrenal_Gland 0 0 0 0 0 0 0 0 

Brain_Anterior_cingulate_cortex_BA24 0 0 0 0 0 0 0 0 

Brain_Hippocampus 0 0 0 0 5 5 0 0 

Skin_Sun_Exposed_Lower_leg 0 0 0 0 0 1 0 0 

Lung 0 0 1 1 0 0 1 1 

Artery_Coronary 2 4 8 9 0 0 0 0 

Brain_Cortex 2 2 0 0 0 5 6 6 

Brain_Putamen_basal_ganglia 4 4 0 0 7 7 5 5 

Heart_Atrial_Appendage 0 11 0 0 4 6 5 10 

Stomach 0 0 0 0 4 4 4 5 

Cells_EBV-transformed_lymphocytes 0 12 1 1 0 0 0 0 

Skin_Not_Sun_Exposed_Suprapubic 3 13 9 9 1 1 4 4 
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Supplementary Table 3. Number of sex biased genes found across sdSNP-gene pairs, for binary and non-
binary traits, at a p < 10-3 and a p < 0.01 threshold (in blue), as well as the number of sex biased genes 
found across non-sdSNP-gene pairs, for binary and non-binary traits, at the same thresholds (in pink), 
across tissues. 

 
sdSNP 
Binary 

sdSNP 
Non-Binary 

Non-sdSNP 
Binary 

Non-sdSNP 
Non-Binary 

Tissue p < 
10-3 

p < 
0.01 

p < 
10-3 

p < 
0.01 

p < 
10-3 

p < 
0.01 

p < 
10-3 

p < 
0.01 

Heart_Left_Ventricle 2 16 10 16 80 389 880 4286 

Brain_Nucleus_accumbens_basal_ganglia 5 32 3 32 30 265 269 2303 

Brain_Hypothalamus 0 18 0 18 7 130 125 1320 

Brain_Cerebellar_Hemisphere 3 19 3 19 22 258 270 2209 

Spleen 2 24 0 24 22 210 192 2034 

Pituitary 5 29 8 29 129 575 918 4789 

Artery_Aorta 10 37 4 37 75 506 779 4680 

Liver 1 22 7 22 44 350 502 3132 

Brain_Caudate_basal_ganglia 0 12 2 12 21 179 258 2162 

Colon_Sigmoid 2 23 0 23 18 219 271 2147 

Adipose_Subcutaneous 2 23 20 23 117 558 1493 7134 

Pancreas 3 26 1 26 22 255 292 2281 

Esophagus_Muscularis 2 23 7 23 33 345 665 4032 

Brain_Cerebellum 2 34 6 34 58 349 464 3139 

Esophagus_Gastroesophageal_Junction 6 29 2 29 39 308 394 2709 

Brain_Frontal_Cortex_BA9 4 32 6 32 28 269 442 3153 

Artery_Tibial 5 43 14 43 120 652 1760 7378 

Breast_Mammary_Tissue 6 33 4 33 64 459 885 4864 

Cells_Transformed_fibroblasts 12 44 27 44 153 690 2153 8136 

Adipose_Visceral_Omentum 9 60 13 60 115 556 835 4467 

Muscle_Skeletal 10 53 28 53 246 848 2418 8474 

Small_Intestine_Terminal_Ileum 0 0 0 0 0 0 0 0 

Whole_Blood 1 24 13 24 79 508 983 5288 

Colon_Transverse 4 23 5 23 82 421 708 4069 

Nerve_Tibial 2 34 8 34 94 531 1072 5031 

Thyroid 2 24 7 24 132 698 1713 7253 

Esophagus_Mucosa 3 29 10 29 52 338 682 4178 

Adrenal_Gland 1 12 2 12 19 265 435 3060 

Brain_Anterior_cingulate_cortex_BA24 0 0 0 0 0 0 0 0 

Brain_Hippocampus 3 28 3 28 20 250 337 2699 

Skin_Sun_Exposed_Lower_leg 32 92 17 92 279 1018 2393 8769 

Lung 1 24 9 24 50 403 775 4297 

Artery_Coronary 1 21 5 21 40 336 616 4061 

Brain_Cortex 1 11 1 11 20 218 242 2189 

Brain_Putamen_basal_ganglia 5 13 2 13 14 178 241 1970 

Heart_Atrial_Appendage 5 12 3 12 34 262 278 2465 

Stomach 0 8 7 8 58 357 638 3878 

Cells_EBV-transformed_lymphocytes 9 38 10 38 74 295 548 3254 

Skin_Not_Sun_Exposed_Suprapubic 3 27 7 27 64 466 1020 5134 
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Supplementary Table 4. Number of sex biased genes found across sdSNP-gene pairs, for binary and non-
binary traits, at a q < 0.1 and a q < 0.2 threshold (in blue), as well as the number of sex biased genes found 
across non-sdSNP-gene pairs, for binary and non-binary traits, at the same thresholds (in pink), across 
tissues. 

 
sdSNP 
Binary 

sdSNP 
Non-Binary 

Non-sdSNP 
Binary 

Non-sdSNP 
Non-Binary 

Tissue q < 
0.1 

q < 
0.2 

q < 
0.1 

q < 
0.2 

q < 
0.1 

q < 
0.2 

q < 
0.1 

q < 
0.2 

Heart_Left_Ventricle 0 0 3 23 38 61 389 857 

Brain_Nucleus_accumbens_basal_ganglia 1 1 0 0 0 1 11 14 

Brain_Hypothalamus 0 0 0 0 0 0 3 3 

Brain_Cerebellar_Hemisphere 0 0 0 1 0 0 8 12 

Spleen 0 0 0 0 0 0 10 14 

Pituitary 0 1 6 8 50 259 271 1102 

Artery_Aorta 6 17 0 3 8 27 115 484 

Liver 0 0 1 6 5 5 44 159 

Brain_Caudate_basal_ganglia 0 0 1 2 1 4 13 17 

Colon_Sigmoid 0 0 0 0 0 3 23 26 

Adipose_Subcutaneous 0 0 20 51 29 126 899 3093 

Pancreas 0 0 0 0 1 1 10 26 

Esophagus_Muscularis 0 0 0 1 6 7 162 353 

Brain_Cerebellum 1 1 3 3 14 25 6 65 

Esophagus_Gastroesophageal_Junction 0 6 0 0 2 2 55 107 

Brain_Frontal_Cortex_BA9 3 3 0 1 0 0 10 27 

Artery_Tibial 2 2 9 30 49 210 1551 4259 

Breast_Mammary_Tissue 2 2 1 3 3 6 138 636 

Cells_Transformed_fibroblasts 12 16 36 90 79 360 2588 6730 

Adipose_Visceral_Omentum 7 27 12 16 7 132 217 577 

Muscle_Skeletal 7 30 36 72 296 677 2966 7275 

Small_Intestine_Terminal_Ileum 0 0 0 0 0 0 0 0 

Whole_Blood 0 0 3 21 15 34 315 973 

Colon_Transverse 1 1 0 2 8 30 35 271 

Nerve_Tibial 1 1 4 5 20 61 445 1072 

Thyroid 0 0 4 6 37 223 1284 3671 

Esophagus_Mucosa 0 0 3 10 4 15 43 194 

Adrenal_Gland 0 0 0 0 0 0 42 68 

Brain_Anterior_cingulate_cortex_BA24 0 0 0 0 0 0 0 0 

Brain_Hippocampus 0 0 1 1 0 0 8 42 

Skin_Sun_Exposed_Lower_leg 55 123 13 44 390 842 2643 6464 

Lung 0 0 2 4 7 10 125 340 

Artery_Coronary 0 0 3 5 0 10 62 122 

Brain_Cortex 0 0 0 0 0 0 2 3 

Brain_Putamen_basal_ganglia 0 0 0 0 0 0 13 21 

Heart_Atrial_Appendage 0 0 0 0 0 0 7 16 

Stomach 0 0 4 5 0 0 14 41 

Cells_EBV-transformed_lymphocytes 6 10 0 28 3 38 25 138 

Skin_Not_Sun_Exposed_Suprapubic 0 0 2 2 12 35 418 1005 
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In recent years, there has been growing evidence of common 
genetic variation having different effects on males and females1,2. 
This, along with sex biases observed in the human transcrip-

tome3–10, the presence of a distinct hormone milieu in each sex and 
differential environmental pressures arising from societal gender 
roles2,11, has led to an increased study of the potential importance 
of GxS interactions to understand the underlying biology of com-
plex traits, including the estimation of disease risk. Previous stud-
ies have investigated differences in heritability between the sexes 
(h2)12–15 and the departure of genetic correlations from 1 (rg)12,14,16–19, 
and have performed sex-stratified genome-wide association stud-
ies (GWASs) to directly assess differences in the effects of genetic 
variants between the sexes6,20–27. These studies have, however, been 
limited with regard to the number of traits studied or statistical 
power. Furthermore, insights into how differences in genetic archi-
tecture translate into differences in complex traits have been lack-
ing. Accounting for sex differences is of great importance because 
sex-agnostic analyses could potentially be masking sex-specific 
effects, which could—if better understood—lead to better person-
alized treatment and an improved understanding of the biological 
mechanisms driving these differences17,28.

The objective of the present study was to assess both the exis-
tence and the scope of GxS interactions in the human genome by 
estimating sex-specific heritability and genetic correlations, as well 
as performing sex-stratified GWASs. To this end, we analyzed 530 
traits using 452,264 individuals of European ancestry from the 
UK Biobank. Furthermore, we evaluated the potential of improv-
ing trait predictions using sex-stratified polygenic scores (PGSs), 
and also looked into the possibility of missing loci of interest in 
nonsex-stratified studies. Finally, to shed light on the downstream 
effects of sex differences in genetic architecture, we performed a 
functional in silico analysis.

Results
Data overview. Using the July 2017 release of the UK Biobank 
dataset, we performed sex-stratified GWASs and partition of 
variance analyses for 530 traits (446 binary and 84 nonbinary; 

Supplementary Table 1) within 452,264 individuals of European 
ancestry (245,494 females and 206,770 males) using DISSECT29. 
Linear mixed models (LMMs) were fitted for each phenotype by 
sex. We then tested the association of 9,072,751 autosomal and 
17,364 X-chromosomal genetic variants, obtaining estimates of 
the genetic effects of each variant in each sex. In our quality con-
trol (QC) stage we excluded genetic variants with a minimum 
allele frequency (MAF) <10% in the analysis of binary traits, due 
to the generally limited number of cases available, thus reducing 
the number of variants considered for these traits to 4,229,346 
autosomal and 7,227 genotyped X-chromosomal genetic variants 
(Methods). The results of the autosomal analyses were used to esti-
mate sex-stratified genetic parameters (such as heritability) and 
genetic correlations. We then tested for differences in these genetic 
parameters and between the effects of genetic variants estimated 
within the sexes (Methods).

As a result of the different QC treatment of binary and nonbi-
nary traits, as well as the difference in phenotype characteristics, 
results are presented separately for both throughout this work, not 
as a means of comparing the results between the two but so as to 
contain them both within their own separate categories.

Heritability differences between the sexes. Heritability (here 
referring to SNP heritability30) is defined as the fraction of the 
variation of a trait that can be explained by the additive effects of 
genetic variation. A difference in heritability between the sexes 
would entail a difference in the fraction of the variance of a trait 
that is accounted for by the genotype, and thus a possible differ-
ence in the underlying genetic mechanisms of said trait. Out of 
the 530 traits studied, 41/84 (48.88%) nonbinary traits and 30/446 
(6.73%) binary traits showed significant differences in their heri-
tability between the sexes (false discovery rate (FDR)-corrected P, 
termed q, <0.05; Fig. 1 and Supplementary Table 1). Of these, a total 
of 25/41 (60.98%) nonbinary and 14/30 (46.67%) binary traits had 
a larger heritability in males than in females. Nonbinary traits with 
the largest significant difference in heritability between the sexes 
included body mass traits, whereas binary traits included ankylos-
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ing spondylitis, disorders of mineral metabolism and soft-tissue dis-
orders (Supplementary Table 1).

Although differences in the heritability of traits between the 
sexes can offer potential insights into genetic differences, one must 
also consider that these could arise due to differences in environ-
mental variances. Hence, we looked for differences in genetic vari-
ance between the sexes (q < 0.05). We found that 65/84 (77.38%) 
nonbinary and 136/446 (30.49%) binary traits showed significant 
differences in the amount of genetic variance estimated in each sex, 
including impedance-related traits, and diseases of the thyroid and 
heart (Extended Data Figs. 1 and 2, and Supplementary Table 1). 
A total of 6/84 (7.14%) nonbinary traits and 4/446 (0.90%) binary 
traits presented a significant difference in heritability but no sig-
nificant difference in genetic variance between the sexes, indicating 
differences in environmental variance. These included numerous 
blood phenotypes (such as lymphocyte percentage and mean retic-
ulocyte volume), ease of skin tanning, venous thrombosis disease, 
anaphylaxis/allergy and diseases of the digestive system.

Finally, we observed significant differences in evolvability 
(a measure of the ability to undergo adaptation) between sexes 
for 56/84 (66.67%) nonbinary and 35/446 (7.85%) binary traits 
(q < 0.05; Extended Data Fig. 2 and Supplementary Table 1). These 
included binary traits such as ankylosing spondylitis and malab-
sorption/celiac disease, as well as nonbinary traits such as current 
tobacco smoking. These estimates offer further evidence for differ-
ences in the underlying genetic architecture of the traits considered, 
paralleling previous reports at smaller scales for traits including 
height, waist:hip circumference ratio and weight12–14.

Genetic correlations indicate genotype by sex interactions. 
Genetic correlations between two subgroups of the population are 
usually interpreted as a measure of shared underlying genetics, and 
are a means of estimating the size of putative genotype by group 
interactions. Genetic correlations between the sexes can thus offer 
insights into the common genetic control of complex traits and dis-
eases of males and females.

We obtained genetic correlations between the sexes for a total 
of 83 nonbinary and 77 binary traits with >5,000 cases using link-
age disequilibrium score regression (LDSC; Supplementary Table 
1)31, which met our QC criteria (Methods). Genetic correlations 
ranged from 0.716 to 0.996 for nonbinary traits and from 0.226 
to 1.099 for binary traits (note that, with heritability close to zero, 
application of LDSC can result in rg exceeding the theoretically 
valid range [−1,1]32). A total of 58/83 (69.88%) nonbinary traits and 
11/77 (14.29%) binary traits had an rg significantly different from 

1 (q < 0.05; Fig. 2a). These included binary traits, such as hernia 
(rg = 0.59, q = 4.04 × 10−10), eczema (rg = 0.61, q = 0.04) and gastric 
reflux (rg = 0.67, q = 0.02), and nonbinary traits, such as waist:hip 
circumference ratio (rg = 0.72, q = 8.43 × 10−37) and alcohol intake 
frequency (rg = 0.85, q = 7.49 × 10−9; Fig. 2b). Our rg estimates 
for several nonbinary traits were in line with what has previously 
been published, noting that one of the compared studies also used 
UK Biobank data (Supplementary Table 2 and Extended Data  
Fig. 3)12,14,16.

Genome-wide genetic effect comparison across traits. We directly 
assessed whether each genetic variant in the genome had different 
effects in males and females through sex-stratified GWASs. Our 
genome and trait-wide genetic effect comparison between the sexes 
(Methods) yielded a total of 61/84 (72.62%) nonbinary and 42/446 
(9.42%) binary traits with at least one autosomal genetic variant 
presenting a significantly different effect at a P < 1 × 10−8 threshold 
(Supplementary Table 3), henceforth termed a sex-dimorphic SNP 
or sdSNP (Table 1 shows traits with the largest number of indepen-
dent autosomal sdSNPs, that is, lead sdSNPs, found). The distribu-
tion of sdSNPs across the genome for the traits with most autosomal 
lead sdSNPs is shown in Fig. 3. When testing the X-chromosome 
variants, we found 28/84 (33.33%) nonbinary traits with at least one 
sdSNP. Considering the autosomal genome, the trait with the larg-
est number of sdSNPs was waist:hip circumference ratio, a complex 
trait that has appeared frequently in analyses of sex differences in 
genetic architecture12,20,21. A total of 2,421 sdSNPs were found for 
this trait, which represent 100 unique loci after linkage disequi-
librium (LD) clumping (Supplementary Note). The trait with the 
most sdSNPs in the X-chromosome was hematocrit percentage, 
with a total of 12 that mapped to 5 unique loci after LD clumping 
(Supplementary Tables 1 and 3). Our results include replications of 
several previously reported loci for traits including anthropometric 
measurements or diseases such as gout20–24,33.

A total of 4,179 (4,179/9,072,751 = 0.046%) and 4,196 
(4,196/4,229,346 = 0.099%) autosomal genetic variants showed 
evidence of GxS in at least one nonbinary or binary trait, respec-
tively (P < 1 × 10−8), which mapped to 264 and 88 independent loci, 
respectively. A total of 37 (37/7,227 = 0.213%) X-chromosome vari-
ants showed evidence of sex differences in at least one nonbinary 
trait (P < 1 × 10−8), which mapped to 8 unique loci. The sdSNP 
associated with the highest number of traits (a total of 17) was 
rs115775278, an imputed intergenic variant found on chromosome 
16. The closest genes to this variant include LOC105371341 (an 
uncharacterized nonprotein-coding RNA gene, with transcription 
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Fig. 1 | Sex-specific heritability estimate comparison. Scatterplots of male heritability estimates against female heritability estimates for binary traits 
(on the left) and nonbinary traits (on the right) are shown. Each point represents a trait, which is marked in pink when heritability between the sexes is 
significantly different (Methods) at a threshold of q < 0.05. Note that, for the binary traits, heritability estimates were considered on the liability scale, 
which led to some estimates >1 (Methods). The blue line corresponds to x = y, and traits of interest are annotated.
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start site (TSS) ~40 kb downstream), LOC390739 (MYC-binding 
protein pseudogene, TSS ~50 kb upstream), PMFBP1 (polyamine 
modulated factor 1-binding protein 1, TSS ~60 kb downstream) 
and LINC01572 (a long intergenic, nonprotein-coding RNA gene, 
TSS ~470 kb upstream). PMFBP1 has been linked to spermatogen-
esis function34. The distribution of hits across the autosomal and 
X-chromosome genome is shown in Extended Data Figure 4.

Several sanity checks were performed to support these results 
(Supplementary Note), which included fitting alternative models 
(including logistic mixed models, LogMMs35), comparison against 
the Genetic Investigation of Anthropometric Traits (GIANT) 
cohort20,21 and a randomization scheme. These checks suggested 
that results for the nucleated red blood cell percentage trait probably 
represented false positives (Supplementary Note), hence its exclu-
sion from future discussion.

Phenotype prediction with sex-stratified effect estimates. We 
studied whether genetic prediction could potentially be improved 
using sex-stratified models. To this end, we estimated genetic effects 
in a training population of 300,000 UK Biobank white British indi-
viduals in two different ways: (1) including both sexes in the model 
(obtaining sex-agnostic effects) and (2) using each sex in a sepa-
rate model (obtaining sex-specific effects; Methods). We then used 
a testing population consisting of 43,884 white British individuals 
to compare the performance of these two models in three different 
ways using PGSs: (1) obtaining predictions from the sex-agnostic 
effects (agnostic PGS), (2) obtaining predictions using the female 
effects applied to females and the male effects applied to males 
(same PGS), and (3) obtaining predictions using the female effects 
to predict in males and vice versa (opposite PGS). Prediction accu-
racy was measured as the correlation (r) between or the area under 
the ROC curve (AUC) for our prediction and the true phenotype 
value for nonbinary and binary traits, respectively. Only lead sdSNPs 
were used in our PGS calculation. Due to the general low number 
of sdSNPs across traits, we focused our comparison on phenotypes 
with at least ten lead sdSNPs. These included seven nonbinary traits 
(waist:hip circumference ratio, standing height, trunk fat percent-
age, hip circumference, whole body water mass, trunk predicted 
mass and trunk fat-free mass) and three binary traits (ankylosing 
spondylitis, gout and hypothyroidism/myxedema).

Although, of the seven nonbinary traits tested, only the waist:hip cir-
cumference ratio showed a moderately significant difference in predic-
tion accuracy (correlation comparison P = 0.059; Methods) between 
same PGS and agnostic PGS in males (Supplementary Table 11),  
all seven traits consistently presented a larger prediction accuracy 
when comparing the sex-stratified model with the agnostic model, 
thus suggesting that the stratified model captures genetic effect sizes 
better than the agnostic model. On the other hand, we consistently 
observed smaller prediction accuracies when the stratified model 
was used to perform predictions on the opposite sex (opposite PGS). 
We did not observe any consistent prediction improvements for the 
three binary traits considered (Supplementary Table 11).

A limitation of our approach is the overlap between our discovery 
dataset (used to establish sdSNPs) and our training and testing data-
sets in our prediction analysis (Methods). We repeated our analysis 
with independent datasets (Methods) for waist:hip circumference 
ratio, and we found that the same PGS and agnostic PGS had simi-
lar predictive ability in females (r = 0.132 with P = 1.85 × 10−98 and 
r = 0.133 with P = 4.02 × 10−99, respectively), the same PGS surpass-
ing the agnostic PGS for males (r = 0.038 with P = 7.91 × 10−8 and 
r = 0.024 with P = 9.97 × 10−4, respectively); however, the differences 
in predictive power were not significantly different in either case 
(correlation comparison P > 0.05).

A possible explanation for the modest increase in predictive 
power found when using our sex-stratified models, when taking 
observed differences in heritability into account, is the potential 
existence of large numbers of SNPs of small dimorphic effect across 
the genome. These small effects remain undetected in a GWAS and, 
as such, are not being included in our predictions. This reasoning 
parallels the missing heritability problem36, where the predicted her-
itability of traits cannot be explained by the detected GWAS asso-
ciations, a hypothesis for which is the existence of large amounts of 
variants of small effect that are yet to be found. Consistent with this 
theory, we found that our sdSNPs generally accounted for a very low 
percentage of the sex-specific heritability for the considered traits 
(Supplementary Table 12 and Methods), which ranged from 0.18% 
to 0.65%. The waist:hip circumference ratio was the exception, for 
which our sdSNPs accounted for 12.10% and 1.70% of the female- 
and male-specific heritability, respectively, which could be due to 
the substantially larger number of sdSNPs identified. This could, 
however, also be due to sdSNPs having a generally small effect on 
the phenotypes considered.

Genetic correlations (rg) ≠ 1
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Fig. 2 | Genetic correlations between the sexes across traits. a, Barplot 
of genetic correlations (rg) between the sexes for traits that were found 
to have an rg significantly different from 1 (q < 0.05; Methods). Black bars 
indicate the s.e. of the rg estimates (rg ± s.e.rg). b, Histogram of genetic 
correlations that were found to be significantly different from 1 (q < 0.05) 
for both binary and nonbinary traits.
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Potential masking of loci in sex-agnostic studies. Currently, many 
GWASs fit nonsex-stratified models. However, a situation could 
arise in which (1) a locus possesses a differentially signed genetic 
effect in each sex or (2) a genetic variant shows a larger effect in 
one of the sexes and a small or no effect in the other. In either of 
these situations, the power of detecting the variant will be reduced 
in a nonstratified analysis, and the variant effect size misesti-
mated in both sexes. We termed this phenomenon ‘masking’ of a  
genetic effect.

To assess masking effects in the UK Biobank, we evaluated the 
total number of genetic variants that were found to be significantly 
associated with a trait in a sex-stratified GWAS (that is, associated 
with a trait in males and/or females), but were not significantly asso-
ciated in a sex-agnostic model. We performed this analysis on the 
530 traits in our study, considering a genetic variant as potentially 
masked if it is significantly associated in females and/or males but 
not for the mixed population at a P < 1 × 10−8 threshold (Methods).

We found that 98/446 (21.97%) binary and 78/84 (92.86%) non-
binary traits had at least one genetic variant that showed potential 
masking across the autosomal genome (Supplementary Table 14 
and Extended Data Figure 5a). On average, the percentage of these 
variants that presented opposite signs in each sex was 20.03% (s.d. 
36.25%) in binary traits and 5.34% (s.d. 9%) in nonbinary traits 
(Extended Data Figure 5b). This may indicate that, for a small per-
centage of traits, opposite signed genetic effects are leading to mask-
ing. However, this could also be the result of smaller sample sizes 
leading to false positives in one sex but not the other.

A total of 93 traits (33 binary and 60 nonbinary) presented at 
least one sdSNP and one potentially masked variant. We also found 
a significant correlation between the number of potentially masked 
variants and the number of sdSNPs (r = 0.624, P = 9.793 × 10−8) for 
nonbinary traits, as shown in Extended Data Figure 6. On average, 
the percentage of masked variants that presented sex differences 
in binary traits was 3.83% (s.d. 18.97%) and 1.39% (s.d. 2.22%) in 

nonbinary traits (Extended Data Figure 5c). These low percentages 
could indicate that masked variants may have different effects on 
the two sexes, just not surpassing our significance threshold to be 
considered sdSNPs. On the other hand, 42 of our 103 traits with at 
least one sdSNP had one of these sdSNPs potentially masked and, 
on average, the percentage of sdSNPs that were potentially masked 
in binary traits was 12.30% (s.d. 30.59%) and 18.44% (s.d. 21.99%) 
in nonbinary traits (Extended Data Figure 5d). This could suggest 
that a number of potentially interesting variants that present a dif-
ference in genetic effect between the sexes could be being missed in 
sex-agnostic studies.

Gene-level analyses. To gain insight into the biological meaning 
of these results, gene-enrichment analyses were carried out for all 
103 phenotypes with at least one sdSNP. To do this, the two-tailed 
sex-comparison P values for the sdSNPs found were converted to 
two one-tailed P values (PF and PM) according to the sex that pre-
sented the largest genetic effect (Methods). Using these two sets of 
P values in combination with MAGMA37, we then estimated the 
degree of sex dimorphism of each gene, thus obtaining dimorphic 
gene lists, which were dominant in females or males (that is, which 
presented a significantly larger effect in one sex versus the other; 
Methods, Supplementary Tables 15 and 16, and Supplementary 
Note). The GENE2FUNC tool in FUMA38 was then used to investi-
gate any functional enrichments among these dimorphic gene lists 
(Supplementary Tables 17–19 and Supplementary Note) for the ten 
traits with the largest number of sexually different genes. These 
were largely all of the anthropometric class and were: standing 
height, waist:hip circumference ratio, trunk predicted mass, trunk 
fat-free mass, trunk fat percentage, whole body fat-free mass, basal 
metabolic rate, impedance of arm (left), body fat percentage and hip 
circumference. As a background for comparison of our results, this 
procedure was repeated using sex-agnostic GWAS results, obtaining 
gene sets enriched in genes associated to each of our ten phenotypes 
(Methods).

A total of 4,840 gene sets was found to be enriched in either 
male- or female-dominant genes across the ten traits considered 
(q < 0.05; Supplementary Tables 18 and 19). Genes dominant in 
one sex or the other were found to be enriched in sets in an exclu-
sive manner (that is, sets would not show a larger amount of both 
male- and female-dominant genes than what would be expected 
randomly), with the average percentage of shared enriched sets 
across traits being 3.3% (s.d. = 3.34%; Supplementary Table 17). A 
total of 383/4,840 gene sets were found to be significantly differ-
entially enriched between male- and female-dominant genes in at 
least one of the traits considered (Fisher’s exact test, q < 0.05), with 
an average of 12.88% (s.d. 12.96%) of gene sets being differentially 
enriched across traits (Supplementary Table 17). Furthermore, 
251/383 gene sets were found to also show a significant differ-
ence in enrichment when comparing with the results of our back-
ground of sex-agnostic-associated genes (Fisher’s exact test, q < 0.05; 
Methods), the mean percentage of gene sets presenting this behavior 
across traits being 67.30% (s.d. 18.87%; Supplementary Table 17).

Heatmaps were produced considering the aforementioned 251 
gene sets, with hierarchical clustering both by gene set and by trait 
(Extended Data Figure 7). Most notably, we find clusters of sets 
pertaining to small noncoding RNA biogenesis and RNA-mediated 
silencing, enriched in female-dominant genes for body mass-related 
traits. It has previously been postulated that microRNAs may play 
a role in the regulation of phenotypic sex differences due to its abil-
ity to regulate large numbers of genes with a high degree of speci-
ficity, with intervention of the sex chromosomes and/or gonadal 
hormones39.

Sex differences in gene expression regulation. Differences 
between the sexes in complex traits could be partially explained by 

Table 1 | Number of lead sdSNPs found across traits

Trait P < 1 × 10−8 
(sdSNPs)

P < 1 × 10−8 LD 
clumped (lead 
sdSNPs)

Waist circumference:hip 
circumference

2,421 100

Ankylosing spondylitis 626 18

Standing height 86 18

Gout 708 16

Nucleated red blood cell percentagea 26 16

Trunk fat percentage 432 15

Hip circumference 124 12

Whole body water mass 39 12

Trunk predicted mass 163 12

Trunk fat-free mass 141 12

Hypothyroidism/myxedema 168 11

Arm predicted mass (left) 52 10

Impedance of arm (left) 149 10

Impedance of whole body 233 10

Impedance of arm (right) 155 10

Traits with the largest number of autosomal sdSNps, that is, SNps that presented a statistically 
significant difference between male and female genetic effect estimates (P < 1 × 10−8, two-sided 
Student’s t-test; Methods), are shown. For each trait, the total number of sdSNps found across 
the genome is shown, along with the total number of independent loci presenting sex differences 
post-LD clumping (lead sdSNps). Traits are sorted by number of lead sdSNps. aOur analyses point 
to nucleated red blood cell percentage probably being a false positive (Supplementary Note).
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sex-specific gene expression regulation, which could lead to differ-
ences downstream across biological pathways and traits, and thus to 
the detection of GxS interactions in GWASs. Although studies have 
been carried out searching for differential gene expression between 
the sexes in a variety of tissues of interest, studies linking sex to 
differences in gene expression genetic regulation (sex-specific or 
sex-biased expression quantitative trait loci (eQTLs)) are few, with 
often contradictory results5,40–43. These mixed results could be due 
to the contribution of GxS to gene expression being tissue specific, 
a lack of sufficient statistical power or the fact that this contribution 
occurs only for a small number of genes42. Overall, a system-wide 
analysis (that is, across a wide variety of tissues) would determine 
whether there is evidence of sex-biased eQTLs and whether some 
tissues are more prone to sex-specific regulation than others.

To bring light to potential intermediary mechanisms underlying 
differences in genetic architecture between the sexes, we investigated 
whether our lead sdSNPs could also be acting as sex-biased eQTLs. 
To do this, we performed an eQTL analysis, looking for GxS interac-
tions in gene expression, considering genes within a 1-Mb window 
of our lead sdSNPs (Supplementary Table 3 and Methods). This was 
done for a total of 39 tissues from the Genotype-Tissue Expression 
(GTEx) consortium v.6p, originating from up to 450 individuals.

A total of eight sex-biased eQTLs was found at a q < 0.05 thresh-
old (Supplementary Tables 20–23). We also checked for enrichment 
of GxS in gene–variant pairs for variants that presented evidence 
of sex dimorphism (genetic effect comparison between the sexes, 
P < 1 × 10−8) versus those that did not (genetic effect comparison 
between the sexes, P > 0.5), using contingency tables (Methods). 
We found enrichment for a small number of the tissues considered 
(Supplementary Note and Supplementary Table 24).

The variant rs56705452 from chromosome 6 was found to be 
a sex-biased eQTL for the transcript ENSG00000204520.8, which 
corresponds to the gene MICA (Extended Data Fig. 8), in muscu-
loskeletal tissue. This gene encodes the highly polymorphic major 
histocompatibility complex class I chain-related protein A, and 
variations of this gene have been associated with susceptibility to 
psoriasis, psoriatic arthritis and ankylosing spondylitis, among oth-
ers44. This sdSNP has been shown to bind FOXA1 through chroma-
tin immunoprecipitation–sequencing experiments45, a protein that 
dictates the binding location of androgen and estrogen receptors, 
and that has been found to play a role in the sexually dimorphic 
presentation of various cancers46,47. Furthermore, this sdSNP was 
found to be differentially associated between males and females 
with ankylosing spondylitis in our genome-wide sdSNP analysis. 
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This result would be consistent with a hypothesis where this sdSNP 
is regulating MICA in a sex-dependent manner in the muscle tissue, 
thus leading to differences in ankylosing spondylitis presentation 
between the sexes when a patient possesses a particular variant.

The small number of significant sex-biased eQTLs found par-
allels in the findings of a recent study by Porcu et al.43, which con-
cluded that millions of samples would be necessary to observe 
sex-specific trait associations that are fully driven by sex-biased 
eQTLs. Overall, this type of pipeline could help in the future 
when short-listing biomarkers for risk susceptibility in males and 
females, help develop precision medicine strategies for each of 
the sexes and bring light into the underlying mechanisms of the 
disease/trait of interest, as well as possible underlying sexually 
different molecular networks, once larger sample sizes become 
available.

Discussion
In the present study, we have delved into the differences in genetic 
architecture between the sexes in the UK Biobank for a total of 530 
traits from around half a million individuals. This has enabled us 
to assess the genetics of sex differences at a depth and breadth not 
previously achieved.

Overall, we have found evidence of sex differences for a large 
number of the traits considered, albeit of generally modest mag-
nitude, through a thorough investigation of sex-specific genomic 
parameters. A total of 71 traits was found to present significantly 
different heritability estimates between the sexes, whereas a total 
of 69 presented genetic correlations between the sexes that signifi-
cantly differed from 1, indicating the presence of genetic heteroge-
neity across these complex traits. To dissect this heterogeneity and 
pinpoint genetic sites that could be differentially associated with 
these traits, sex-stratified GWASs were performed, yielding over 
100 traits with at least one sdSNP that will require independent 
replication. These traits included those of the anthropometric class 
as well as diseases such as gout, ankylosing spondylitis and hypo-
thyroidism. These results reinforce the need for future studies to 
account for genetic sex heterogeneity to fully understand the genetic 
underpinnings of disease and, ultimately, shed light on potential 
sex-specific biological mechanisms.

Having found evidence of GxS across the genome, we investi-
gated whether sex-specific genetic models could improve pheno-
typic prediction. Although no statistically significant improvement 
in prediction was found for the traits considered, a consistent trend 
of increased predictive accuracy was seen when comparing the 
results of sex-specific models with those of a sex-agnostic model. 
Putting our results in the context of the heritability differences 
found, we postulated the potential existence of large numbers of loci 
presenting small amounts of dimorphism with insufficient statisti-
cal power to be detected in our analysis that could account for both 
this missing heritability difference and the absence of increased 
predictive power. We also investigated whether sex-agnostic models 
could potentially be missing loci of interest, and found indications 
of potential masking for 176 traits, with further investigation being 
needed to replicate these results.

Finally, gene-set enrichment and eQTL analyses were performed 
in an effort to translate our GWAS results to function and bring light 
to potential mechanisms underlying the observed differences across 
traits. Our eQTL analysis found a total of eight sex-biased eQTLs, 
but our results parallel previous reports on the need for larger sam-
ple sizes to truly uncover potential links between sex-biased eQTLs 
and sdSNPs. Our gene-set enrichment analysis suggests a link to 
microRNA regulation, which has been hypothesized in the past to 
underlie sex differences. Further studies are needed to truly under-
stand what underlies sdSNPs, moving beyond gene expression 
regulation mechanisms and looking at other biological regulatory 
mechanisms and -omics datasets.
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Methods
UK Biobank data. UK Biobank is a large population-based prospective study with 
participants aged 40–69 years at recruitment, with extensive matching phenotypic 
and genomic data48. In the present study, of about 490,000 individuals whose data 
were released in July 2017, we considered data pertaining to a total of 452,264 
white European individuals. Of these, 245,494 were females and 206,770 males, 
referring in the present study to individuals whose self-proclaimed sex coincided 
with a XX or XY chromosomal content for females and males, respectively, thus 
excluding individuals whose self-reported sex did not coincide with the said 
genotypes. We also excluded individuals who were identified by the UK Biobank 
as outliers, based on genotyping missingness rate or heterogeneity, and individuals 
whose first or second genomic principal component differed by over 5 s.d. from 
the mean of self-reported white Europeans. Finally, we removed individuals with 
a missingness rate >5% for the genetic variants that passed QC (described in 
Genotypes), arriving at the aforementioned number of individuals.

Genotypes. UK Biobank’s participants were genotyped using either of two arrays: 
the Affymetrix UK BiLEVE Axiom or the Affymetrix UK Biobank Axiom array. 
Later they were augmented by imputation of >90 million genetic variants from the 
Haplotype Reference Consortium, the 1,000 Genomes project and the  
UK10K project.

We excluded variants that did not pass the UK Biobank QC procedures in any 
of the genotyping batches and retained only biallelic variants with P > 1 × 10−50 
for departure from the Hardy–Weinberg equilibrium and an MAF > 1 × 10−4, 
computed on a subset of 344,057 unrelated (kinship coefficient <0.0442) 
individuals of white British descent, with missingness rate >2% in the study cohort, 
paralleling the QC procedure followed by Canela-Xandri et al.49.

A second round of QC was done before performing everything that followed 
the sex-stratified GWAS and genetic parameter estimation (described below), 
including calculation of genetic correlations and genetic effect comparisons 
between the sexes. This was done to account for the smaller sample sizes (versus 
those of ref. 49) as well as to be more stringent because we were comparing 
between groups. Variants were further filtered if they possessed P < 1 × 10−6 
for departure from the Hardy–Weinberg equilibrium and an MAF < 1 × 10−3, 
computed on the aforementioned subset of unrelated individuals. A stricter 
MAF threshold (MAF < 1 × 10−1) was set for binary traits due to the generally 
limited number of cases available that can lead to an inflation of type I error 
rates in association tests50. Briefly, this is based on simulations from Loh et al.’s 
work50, where, when the case:control ratio is 0.001, a MAF filter of 10% shows 
no significant inflation of type I error rates for the sample sizes considered in 
the present study. Furthermore, variants with a significant effect (P < 1 × 10−8) 
when running a GWAS on sex for the aforementioned subset were also 
excluded, because these could arise due to sampling bias51. Finally, only imputed 
variants with no genotyped counterpart and an imputation score >0.9 were 
retained. As a result, a total of 9,072,751 (602,984 genotyped and 8,469,767 
imputed) autosomal genetic variants and 17,364 X-chromosome genetic variants 
remained for our analysis of nonbinary traits, and 4,229,346 autosomal (244,743 
genotyped and 3,984,603 imputed) and 7,227 genotyped X-chromosome genetic 
variants for our analysis of binary traits.

Phenotypes. In total we analyzed 530 nonsex-specific traits. These included 
446 binary traits, which had at least 400 cases in each of the sexes, relating to 
self-reported disease status, International Classification of Disease, 10th revision 
(ICD-10)52 codes from hospitalization events and cancer registries, as well as 
84 nonbinary traits comprising nonscale-transformed, continuous and ordered 
integral measures.

Our starting point was the 778 traits considered in the GeneATLAS study49. 
These were in turn extracted from the UK Biobank June 2017 release. From these 
original 778 traits, we further removed binary traits that had fewer than 400 traits 
in either sex (this thus excluded traits that were sex specific from the present 
study). We further removed several blood measurement-related traits as well as 
others that did not pass our QC stage. The remaining 530 traits were considered 
in the present study. For more information on the treatment and filtering of the 
phenotype data, see ref. 49.

Sex-stratified parameter estimation. To obtain genetic and environmental 
variance estimates for each of the sexes we used DISSECT29 following the same 
methodology as described in ref. 49. Briefly, a partition of variance analysis was run 
using LMMs, which were fitted for each trait with a Genetic Relationship Matrix 
containing all common autosomal genetic variants (MAF > 5%) that passed QC.

Heritability was then calculated as:

h2g = σ2
g/
(

σ2
g + σ2

ϵ

)

,

where σ2
g and σ2

ϵ are the estimates of the additive genetic and residual variance. 
Heritability for binary traits was transformed from the observed scale to the 
liability scale, using the sex-specific population prevalence of the trait, under the 
assumption that there was an underlying normal distribution of liability to the 
considered trait, as described in ref. 53.

Wanting to see whether the sexes differ in regard to their ability to undergo 
adaptation, evolvability was calculated for males and females separately. 
Evolvability, defined as the expected evolutionary response to selection per unit of 
selection54, or the ability of populations to respond to natural or sex selection55, was 
calculated as:

e = σg/m2

where σg is the additive genetic variance of the trait and m is the trait mean.
To establish differences across heritability, genetic variance and evolvability 

between the sexes, we used the t statistic:

t = Xmales − Xfemales
√

s.e.2males + s.e.2females

where X represents heritability, genetic variance or evolvability, assumed to be 
independent between the sexes, and s.e. the standard error of the aforementioned, 
for males and females, respectively. Two-tailed P values were then FDR corrected 
(using the Benjamini–Hochberg procedure) to account for multiple testing.

Sex-stratified GWAS. To test the genetic effect of each variant for each of the sexes 
on the 530 chosen traits, we ran a sex-stratified GWAS. The procedure followed for 
each of the sexes is that described in ref. 49, using the DISSECT software29. Briefly, a 
LMM was fitted:

y = Xβ + g + ϵ,

with y being the vector of phenotypes, X the matrix of fixed effects, β the effect size 
of these effects, g the polygenic effect that captures the population genetic structure 
and ϵ the residual effect not accounted for by the fixed and random effects. 
Following the procedure described in ref. 49, our curated genetic variants were 
regressed against the residuals of the LMM to assess association.

Genetic correlations. Genetic correlations between the sexes were calculated using 
the bivariate LDSC regression analysis software31, which works directly on GWAS 
summary data and can thus be applied to very large sample sizes. As we were 
using data of European origin, we used the LD scores provided by LDSC’s authors 
and limited our calculation of genetic correlations to the genetic effect estimates 
of SNPs for which such scores were available (1,189,831 total genetic variants, of 
which 1,169,868 passed LDSC’s QC filters and were used in the computation). 
These scores were computed using the 1,000 Genomes European data. We 
furthermore restricted our binary traits to those that had at least 5,000 cases in 
each of the sexes, as was recommended in the documentation. Note that, for traits 
with very low heritability, this computation was unsuccessful. In total, genetic 
correlations were obtained for 83 nonbinary and 77 binary traits.

To establish which correlations differed from 1, we used the t statistic:

t = rg − 1
s.e.rg

where rg is the genetic correlation, and s.e.rg is the s.e. of the genetic correlation. 
Two-tailed P values were FDR corrected to account for multiple testing.

Sex differences in genetic effects. To compare genetic effects across the genome 
between the sexes for all traits we considered the following two-tailed Student’s 
t-test, as used in previous sex-stratified GWAS comparison studies20,23:

t = bmales − bfemales
√

s.e.2males + s.e.2females − 2r × s.e.males × s.e.females

where b is the estimated effect of the genetic variant considered for a given trait 
for males and females, s.e. the s.e. of the effect and r Spearman’s rank correlation 
between the sexes across all genetic variants for a given trait. Both the s.e. and 
b were adjusted by the s.d. of the trait, for each sex, to correct for scale effects 
that could act as confounders in the study. Some studies have opted to ignore 
the third term in the denominator, which estimates the covariance of the error 
terms, assuming r to be equal to 0 (ref. 6). However, for the traits considered, this 
correlation ranged from −0.00335 (cervical spondylosis) to 0.34173 (standing 
height), and hence our decision to include it.

As this test was done for all variants and all phenotypes, this effort resulted 
in a total of 4,808,558,030 statistical tests (9,072,751 × 530). Binary traits were 
then filtered further as stated in Genotypes. To account for multiple testing, we 
considered the commonly used genome-wide significance cut-off of P < 1 × 10−8.

To cluster our results into independent lead variants, we used the clump option 
in PLINK 1.9 (ref. 56). For each individual trait, variants found to be genome-wide 
significant with regard to difference between the sexes were clustered into lead 
variants, assigning them variants in LD within 10 Mb, with an r2 > 0.2 for the lead 
variant. To obtain the total number of independent loci across all traits, the same 
clustering method was used but for all variants found to be leads across traits, 
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choosing the variant with the lowest P value if variants were found in more than 
one trait.

Analysis checks. Our replication/sanity check methods can be divided into 
technical (different models, sex randomization, LogMMs using REGENIE35, 
simulations of effect of case–control imbalance on heritability estimates) and 
biological (comparison to the GIANT cohort). Detailed information and results of 
these analyses can be found in the Supplementary Note.

Calculation of PGSs. Using the subset of unrelated white British individuals from 
the UK Biobank, we calculated PGSs for our traits with most evidence of GxS 
found using our lead sdSNPs.

PGSs are calculated as:

PGSi =
n

∑

j
bj × Dosageij

where PGSi is the polygenic risk score estimate for individual i, bj is the genetic 
effect estimate for variant j, Dosageij is the effect allele count (0, 1 or 2) of variant j 
in individual i and n is the total number of genetic variants considered in the PGS 
calculation (in the present study just the lead sdSNPs).

The genetic effects used in our PGS calculations were obtained re-running 
our original model using the UK Biobank’s unrelated white British participants, 
randomly selecting 150,000 females to obtain female-specific genetic effects, 
150,000 males to obtain male-specific genetic effects, and 75,000 males and 75,000 
females to obtain sex-agnostic genetic effects. This was done to match sample sizes.

We then proceeded to calculate PGSs for a total of 34,928 females and 8,956 
males from the UK Biobank who were self-reported white European, which had 
not been considered in the calculation of the genetic effects. We did this in three 
ways: (1) using the genetic effects corresponding to the sex of the individual 
(same PGS); (2) using the genetic effects corresponding to the opposite sex of 
the individual (opposite PGS); and (3) using the genetic effects for the whole 
population (agnostic PGS). Thus, in total, each of our approximately 44,000 
individuals had 3 PGSs calculated.

To assess predictive power, the phenotypes of our 44,000 individuals (corrected 
by all the covariates in our original model to account for population structure 
and other effects) were then regressed on the same, opposite or agnostic PGSs, 
respectively, in the case of nonbinary traits, and, in the case of binary traits, the 
AUC was calculated for the receiver operating characteristics curve for the three 
PGS groups. The statistical significance of the AUCs was assessed using the 
two-tailed Mann–Whitney U-test57. To assess differences between PGS–phenotype 
correlations, these were transformed using Fisher’s z transformation58, and then 
compared using the resulting z-scores (two-tailed z test). AUCs were compared 
using the roc.test function from the pROC R-package59. Correlation, AUC and 
comparison statistics, and P values are reported in Supplementary Table 11.

An important caveat of this methodology is that there is an overlap between 
the discovery (the population used to declare variants as sexually different) and 
the replication (for which genetic effects were recalculated and/or PGSs were 
obtained) populations. As a way of checking whether the overlap could potentially 
be influencing our results, we repeated this step by obtaining the genetic effects for 
the approximately 408,000 individuals of white British ethnicity in the UK Biobank, 
repeating the steps described under Sex differences in genetic effects, to establish 
genetic effect differences across the genome. Then, we calculated the different 
PGSs for the remaining approximately 42,000 individuals of white ethnicity, again 
regressing on the phenotype, for our most representative trait: waist:hip circumference 
ratio. This, however, serves as a validation for only a single trait, meaning that caution 
should be taken when interpreting the predictive power of the PGSs calculated.

Heritability explained by sdSNPs. To put our prediction analysis into context, we 
obtained the proportion of sex-specific heritability explained by the sex-specific 
genetic effect estimates of the lead sdSNPs found for each trait. To do this, for each 
trait with i sdSNPs, the heritability of sdSNPs was calculated for males and females 
separately, as:

h2sdSNP =

∑

i 2pi(1 − pi)b2i
σ2
g + σ2

e

where, for each of the i lead sdSNPs for a given trait, bi is the sex-specific genetic 
effect and pi is the frequency of the reference allele, and σ2

g and σ2
e are the 

sex-specific genetic and residual variance estimates for each trait, respectively. The 
proportion of the sex-specific heritability explained by sdSNPs was then calculated 
for each sex as h2sdSNP/h2sex.

Masking analysis. To evaluate potential masking across traits in the UK Biobank, 
we compared the results from sex-stratified models to those from a nonstratified 
model, across the 530 traits in the present study. Genetic effects across the genome 
were assessed for significant association in males and females, and were deemed 
to be potentially masked if significance was reached in either at a P < 1 × 10−8 
threshold, but not in a sex-agnostic model. Some 209 traits were found to have 
at least one potentially masked genetic variant, with a total of 127/446 (28.48%) 
binary and 82/84 (97.62%) nonbinary traits (Supplementary Table 13).

We also performed this analysis by LD clumping the results from our 
sex-stratified models before assessing significance in a sex-agnostic model across 
traits to account for the effects of random fluctuation (Supplementary Table 14). 
Using this methodology, a total of 176 traits, 98/446 (21.97%) binary and 78/84 
(92.86%) nonbinary, were found to present at least one potentially masked genetic 
variant. Although we found a high correlation with our original results (r = 0.96, 
P = 4.59 × 10−299; Supplementary Table 14 and Supplementary Fig. 8), numbers 
of potentially masked variants found decreased by around half for each trait 
(regression slope = 0.49; Supplementary Fig. 8). To be conservative, these are the 
results considered in the main text.

Gene-level analysis. We performed a gene-level analysis to translate our SNP data 
into a more manageable and interpretable form. This was done for the subset of 
traits that presented at least 1 sdSNP for a total of 103 traits.

As we wanted to obtain genes relevant to each of the sexes, we began by 
partitioning our two-tailed P values (P2T) from the genetic effect (b) comparison 
between the sexes into two one-tailed P values. For genetic variants where bF > bM, 
one-tailed P values were calculated as:

PF =
P2T
2

and PM = 1 −

(P2T
2

)

.

On the other hand, when the genetic effect was larger in males, the P values 
were calculated as:

PM =
P2T
2

and PF = 1 −

(P2T
2

)

.

This process led to the creation of two additional distinct sets of P values for 
each phenotype, corresponding to sites where the genetic effect was significantly 
greater in males or females.

Each of these sets of P values (P2T, PM and PF) was subsequently used to 
identify gene-level associations using MAGMA37. First, we annotated every gene 
(that is, defined which SNPs were in the gene region), considering a range of 1 kb 
upstream and downstream. MAGMA was then run for each phenotype and each 
set of one-tailed P values separately, considering two distinct SNP-wise models 
(SNP mean and top SNP), using a random sample of 1,000 unrelated white British 
individuals from the UK Biobank, 500 males and 500 females, as a base population 
for LD and MAF correction. The analysis provides three distinct P values for each 
gene, one for the SNP mean model, one for the SNP top model and a combined  
P value. For subsequent analyses, we considered the combined P value for each 
gene. Genes were declared to be significantly dimorphic and female or male 
dominant if an FDR-corrected combined P value (q) <0.01 was obtained when 
considering PF or PM, respectively.

The set of genes that reached our threshold was then used in the gene-set 
enrichment analyses using the GENE2FUNC tool in FUMA38. This was run for 
the top ten traits with the largest number of significant genes when considering 
a two-tailed P value. As a result, FUMA was run for ten traits for both male- and 
female-dominant genes.

Briefly, FUMA takes our list of candidate genes and checks for enrichment 
across: (1) differentially expressed genes for different tissues (tissue enrichment 
analysis was conducted considering the GTEx v.6p database60) and (2) biological 
pathways/functional categories (considering MSigDB v.7, WikiPathways and 
GWAS Catalog61). Enrichment is assessed using a hypergeometric test. In the 
present study, we focused on just biological pathways/functional categories. 
Significantly differentially enriched gene sets between female- and male-dominant 
genes were assessed using a Fisher’s exact test and P values were FDR corrected.

As a background, the same procedure as described in this section was followed 
using sex-agnostic GWAS results for the ten traits of interest. Using MAGMA, 
genes associated with each of the traits were obtained, and sets enriched for genes 
associated with each trait were obtained using FUMA. Significantly differentially 
enriched gene sets between our background and our female- and male-dominant 
genes were obtained using Fisher’s exact test, and P values were FDR corrected.

Heatmaps of the scaled −log10(q values) per set were created for each 
phenotype and sex. Heatmaps for gene sets were limited to those both significantly 
differentially enriched in at least one sex versus our background (Fisher’s exact 
test, q < 0.05), as well as significantly differently enriched between female- and 
male-dominant genes (Fisher’s exact test, q < 0.05).

GTEx data. To assess whether differences in genetic architecture, as established 
by our analysis of the UK Biobank data, lead to differences in gene expression, 
we proceeded to complete an eQTL analysis looking for GxS interactions in gene 
expression. The data from the GTEx project v.6p release was used, which consists 
of samples and genotypes from 449 human donors (292 males and 158 females) 
and 39 nonsex-specific and nondiseased tissue types. Each tissue type holds a 
different number of samples (minimum of 70, median of 149), with a male bias 
present in all of them (the percentage of female samples ranging from 25% to 44%).

Processed, filtered and normalized RNA-sequencing data were downloaded 
from the GTEx portal for both the autosomal genome and the X-chromosome, the 
number of transcripts varying across tissues due to tissue-specific expression, with 

NATURE GENETiCS | www.nature.com/naturegenetics

http://www.nature.com/naturegenetics


Articles NaTUrE GENETIcS

a median of 23,538 autosomal transcripts and 793 X-linked transcripts per tissue. 
Covariates were also downloaded for each of the considered tissues. Genotype 
data were also obtained for all the donors from dbGaP, which included a total of 
11,607,846 genetic variants, from genotyping efforts with Illumina OMNI 5M and 
2.5M SNP Arrays, and imputation from the 1,000 Genomes Project Phase I v.3 
reference panel. For more information about the processing of the data, see the 
GTEx v.6p analysis methods documentation.

Analysis by eQTL. To assess whether our sdSNPs had different effects on the 
expression of nearby genes depending on sex, we assigned our lead sdSNPs close 
to genes (1-Mb window) using Granges62 and the Biomart resource63. The total 
number of sdSNP–gene pairs was 6,591 when considering our autosomal hits 
for nonbinary traits, 4,533 when considering them for binary traits and 95 when 
considering our X-chromosome hits for nonbinary traits.

For each of the 39 tissues, we tested for GxS in gene expression for each variant–
gene pair using a linear regression model in PLINK 1.9, which was adjusted for three 
genotyping principal components (PCs) and PEER factors, the number of which 
included in the model depended on the sample size (sample sizes <150 had 15 PEER 
factors, sample sizes between 150 and 250 had 30 PEER factors, and sample sizes 
>250 had 35 PEER factors), as indicated in refs. 64,65. In the end, our gene expression 
model for each gene within 1 Mb of a sdSNP, and each tissue, was formulated as:

y = μ + β1 × Sex + β2 × SNP + β3 × SNP × Sex + PC1−3 + PEER + ε

where y is the gene expression of the given gene in a given tissue, μ is the mean 
expression levels, β1 and β2 are the regression coefficients for sex and genotype of 
the sexually dimorphic variant, respectively, β3 is the regression coefficient for the 
interaction of the genotype with sex, PC1–3 and PEER are the PCs and PEER factor 
covariates, and ε is the residual. FDR correction was applied to account for multiple 
testing, within tissues.

When running our eQTL analysis we found that two tissues returned missing 
values across all tests performed with PLINK: the brain anterior cingulate cortex 
BA24 and the small intestine terminal ileum tissues. These are the two tissues with 
the smallest number of samples, therefore this absence of results is probably the 
result of not enough variation being present in the phenotype.

Enrichment with eQTL. To assess whether our sdSNPs were enriched for GxS 
interactions versus those not presenting sex differences, we proceeded to re-run 
our eQTL model using genetic variants significant for the whole population 
(P < 1 × 10−8), but that had no evidence of being sexually dimorphic (the t statistic 
comparing genetic effects between the sexes with P > 0.5). Using contingency tables 
and Fisher’s exact test, we considered whether the number of significant variant–
gene GxS terms (at a P < 1 × 10−3 threshold) was enriched for our sdSNPs for each 
of the tissues considered.

Ethics oversight. The UK Biobank project was approved by the National Research 
Ethics Service Committee North West-Haydock (REC reference: 11/NW/0382). An 
electronic signed consent was obtained from the participants (more information 
on UK Biobank participant consent can be found at: https://biobank.ctsu.ox.ac.
uk/crystal/crystal/docs/Consent.pdf). This research was conducted using the UK 
Biobank Resource under project 788.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
This research was conducted using the UK Biobank Resource under project 788. 
Data from the GTEx project v.6p release was also employed. Protected genotype 
data were accessed via dbGaP and processed gene expression data were downloaded 
from the GTEx portal, which is openly available: https://gtexportal.org. The GIANT 
cohort’s summary statistics were employed to compare findings (openly available: 
https://portals.broadinstitute.org/collaboration/giant), as well as Pulit et al.’s summary 
statistics pertaining to a GIANT-UKB meta-analysis21 (openly available: https://
github.com/lindgrengroup/fatdistnGWAS). The authors declare that the data 
supporting the findings of the present study are available within the paper and its 
supplementary information files. The GWAS summary statistics of both autosomal 
and X-chromosome variants from sex-stratified models are openly available from the 
University of Edinburgh DataShare repository within the following collection: https://
datashare.ed.ac.uk/handle/10283/3908 (clinical binary traits https://doi.org/10.7488/
ds/3046, nonclinical binary traits https://doi.org/10.7488/ds/3047, nonbinary traits 
https://doi.org/10.7488/ds/3048 and LogMM results https://doi.org/10.7488/ds/3049).

Code availability
We used DISSECT (v.1.15.2c, 24 May 2018, which is publicly available at http://
www.dissect.ed.ac.uk under GNU Lesser General Public License v.3), PLINK 
(v.1.9 and v.2.0, freely available online at https://www.cog-genomics.org/plink2), 
BGENIX (v.1.0 freely available online at https://bitbucket.org/gavinband/bgen), 
LD score regression (v.1.0.1, freely available online at https://github.com/bulik/
ldsc), MAGMA (v.1.06, freely available online at https://ctg.cncr.nl/software/

magma), FUMA (freely available online at https://fuma.ctglab.nl), GCTA (v.1.91.4, 
freely available at https://cnsgenomics.com/software/gcta) and REGENIE (v.1.0.7, 
freely available online at https://github.com/rgcgithub/regenie/tree/v1.0.7-latest). 
Customized code created to perform the analysis is openly available (https://
zenodo.org/record/4844680), with https://doi.org/10.5281/zenodo.4844680.
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