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Abstract
With sufficient training data, attentional encoder-decoder models have given outstand-

ing ASR results. In such models, the encoder encodes the input sequence into a se-

quence of hidden representations. The attention mechanism generates a soft alignment

between the encoder hidden states and the decoder hidden states. The decoder pro-

duces the current output by considering the alignment and the previous outputs.

However, attentional encoder-decoder models are originally designed for machine

translation tasks, where the input and output sequences are relatively short and the

alignments between them are flexible. For ASR tasks, the input sequences are notably

long. Further, acoustic frames (or their hidden representations) typically can be aligned

with output units in a left-to-right order, and compared to the length of the entire utter-

ance, the duration of each output unit is usually small. Conventional encoder-decoder

models have difficulties in modelling long sequences, and the attention mechanism

does not guarantee the monotonic left-to-right alignments.

In this thesis, we study attention-based sequence-to-sequence ASR models and

address the aforementioned issues. We investigate recurrent neural network (RNN)

encoder-decoder models and self-attention encoder-decoder models. For RNN encoder-

decoder models, we develop a dynamic subsampling RNN (dsRNN) encoder to shorten

the lengths of the input sequences. The dsRNN learns to skip redundant frames. Fur-

thermore, the skip ratio may vary at different stages of training, thus allowing the

encoder to learn the most relevant information for each epoch. Thus, the dsRNN al-

leviates the difficulties of encoding long sequences. We also propose a fully trainable

windowed attention mechanism, in which both the window shift and window length

are learned by the model. Our windowed method forces the attention mechanism to

attend inputs within small sliding windows in a strict left-to-right order. The proposed

dsRNN and windowed attention give significant performance gains over traditional

encoder-decoder ASR models.

We next study self-attention encoder-decoder models. For RNN encoder-decoder

models, we have shown that restricting the attention within small windows is bene-

ficial. However, self-attention encodes input sequences by comparing each element

of the sequence with all other elements of the sequence. Therefore, we investigate if

the global view of self-attention is necessary for ASR. We note that the range of the

learned context increases from the lower to the upper self-attention layers, and suggest

that the upper encoder layers may have seen sufficient contextual information without

the need for self-attention. This would imply that the upper self-attention layers can
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be replaced with feed-forward layers (we can view the feed-forward layers as strict

local left-to-right self-attention). In practice, we observe replacing upper encoder self-

attention layers with feed forward layers does not impact the performance. We also

observe that there are individual attention heads that only attend local information, and

thus the self-attention mechanism is redundant for these attention heads. Based on

these observations, we propose randomly removing attention heads during training but

keep all heads at testing. The proposed method achieves state-of-the-art ASR results

on benchmark datasets of different ASR scenarios.

Finally, we investigate top-down level-wise training of sequence-to-sequence ASR

models. We find that when training sequence-to-sequence ASR models on noisy data,

the use of upper layers trained on clean data forces the lower layers to learn noise-

invariant features, since the features which fit the clean-trained upper layers are more

general. We further show that within the same dataset, conventional joint training

makes the upper layers quickly overfit. Therefore, we propose to freeze the upper

layers and retrain the lower layers. The proposed method is a general training strategy;

we use it not only to train ASR models but also to train other neural networks in other

domains. The proposed training method yields consistent performance gains across

different tasks (e.g., language modelling, image classification).

In summary, we propose methods which enable attention-based sequence-to-sequence

ASR systems to better model sequential data, and demonstrate the benefits of training

neural networks in a top-down cascade manner.
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Lay Summary

Speech recognition refer to the task of transcribe audio to text. It is relatively easy for

humans to distinguish relevant acoustic information for speech recognition from non-

useful information. For example, background noise (if the amplitude is not large) and

pauses between words usually do not affect humans’ speech recognition performance.

Furthermore, people typically process speech following the time order in real time.

People usually do not depend on what is to be said to recognise what has been said.

However, sequence-to-sequence automatic speech recognition (ASR) systems (sys-

tems which transcribe audio to text directly) are generally vulnerable to noise or other

redundant input information. Also, offline sequence-to-sequence ASR systems typi-

cally begin to generate outputs after they have processed the entire acoustic frame in-

put sequence which is corresponding to an utterance. Therefore, it is worth exploring

if using the future frames to generate the current output (e.g., a character or a word) is

beneficial. In this thesis, we develop methods which enable the sequence-to-sequence

ASR models to more effectively capture useful information of the inputs and to better

use the contextual information of the inputs to generate the outputs.

In this thesis, we also explore the training of neural networks. Neural networks

have achieved impressive performance in many tasks (e.g., speech recognition, image

classification and machine translation). People usually have intuitions on if objects

are similar to each other. For example, people generally think apples and oranges are

similar in some degree, while these two kinds of fruit are not similar to vehicles. In this

thesis, we propose methods to make neural networks firstly have such “intuitions” (in

simple terms, a sense of relationships between objects). We then use such intuitions

to further train the neural networks. Our proposed training methods have obtained

consistent performance gains on a variety of tasks.
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Chapter 1

Introduction

1.1 Motivation

Statistical sequence-to-sequence models directly map an input sequence to an output

sequence. In this thesis, we use the term “sequence-to-sequence” to denote fully differ-

entiable models. That is, we say a model is “sequence-to-sequence” if every compo-

nent of it can be jointly optimised with gradient descent rather than be trained through

a pipeline.

Automatic speech recognition (ASR) refers to the task of translating a sequence of

acoustic frames into a sequence of words, and thus sequence-to-sequence models are

suitable for solving these tasks. Given a sequence of acoustic frames X, sequence-to-

sequence models estimate the probability P(Y|X), where Y is a sequence of words or

sub-word units.

For ASR tasks, the length of the input sequence and the output sequence generally

differ from each other significantly. For an utterance, the input sequence can have

hundreds to thousands of frames, while the output sequence usually contains a few

words (or the corresponding sub-word units). Also, the alignment between the input

sequence and the output sequence is unknown. For sequence-to-sequence models,

there are two common methods to address these issues. In the first method, the model

assumes monotonic alignments and has an output distribution for each input frame.

During training, for each valid alignment between the inputs and the outputs, each

input frame is assigned an output label. Since each output unit usually spans for a few

frames and the input sequence is longer than the output sequence, consecutive input

frames are allowed to be assigned a same output label. Since the alignment between

the input frames and output units is unknown, the model considers all valid alignments.
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Connectionist Temporal Classification (CTC) (Graves et al., 2006), RNN-Transducers

(Graves, 2012) and End-to-End Lattice-free Maximum Mutual Information (Hadian

et al., 2018) employ the aforementioned method. HMM based acoustic models in

hybrid ASR systems are also sequence-to-sequence models. However, hybrid ASR

systems, which contain an acoustic model, a lexicon and a language model, are not

fully differentiable. Therefore, hybrid ASR systems are beyond the scope of this thesis.

The second approach does not assume monotonic alignments and does not assign

an output for each input. Rather, by using an encoder-decoder strategy, the outputs can

be generated at a different rate. The conventional building blocks of encoder-decoder

models are recurrent neural networks (RNNs). Sutskever et al. (2014) proposed to use

an RNN encoder to map the input sequence into a sequence of hidden states, and then

use an RNN decoder to decode the outputs from the last hidden state of the encoder

hidden state sequence. Therefore, unlike the first approach, the encoder-decoder ap-

proach does not estimate an output probability for each input frame. It worth noting

that conventionally “sequence-to-sequence” models refer to the model proposed by

Sutskever et al. (2014) and its variants. However, in the scope of this thesis, we use

this term based our own definition.

For the model proposed by Sutskever et al. (2014), the last encoder hidden state is

a fixed dimension vector, and thus it may not have the representation power to include

all relevant information of the input sequence, especially when the input sequence

is long. In addition, the RNN encoder tends to “forget” the earlier frames when it

processes the the later frames. Attention mechanisms (Bahdanau et al., 2015; Luong

et al., 2015) alleviate these issues. For attention-based encoder-decoder models, at

each decoding time step, the attention mechanism uses the current decoder hidden

state and the encoder hidden states to produce weights. Then, a context vector is

generated as the weighted sum of encoder hidden states. Both the context vector and

the decoder hidden state are used to generate the current output distribution. Since

the attention mechanism looks all the encoder hidden states, the aforementioned issues

are alleviated. In addition, the attention weights can be viewed as a soft alignment

between the input and output units. Therefore, the attention mechanism also learns the

alignment between the inputs and the outputs. Also, with the attention mechanism, the

decoder does not need to be initialised with the last encoder state.

Recently, a self-attention based encoder-decoder model (i.e., Transformer) is pro-

posed (Vaswani et al., 2017). The self-attention encodes sequences by comparing each

element of the sequence with all the elements of the sequence, and thus it has a global



1.1. Motivation 3

view of the sequence and can capture temporal relationships within any range.

Although attentional encoder-decoder models have given impressive results, they

have characteristics which may not be suitable for ASR tasks. In this thesis, we aim to

make attentional encoder-decoder models more suitable for ASR tasks. We first study

the attentional encoder-decoder models thoroughly and pinpoint their weaknesses for

ASR task. We then present our methods which make attentional encoder-decoder mod-

els more suitable for ASR tasks.

We particularly focus on improving the encoder, the attention mechanism and the

training of the attentional encoder-decoder models. For the RNN encoder, it is chal-

lenging to encode speech sequences which are usually noticeably long (Lu et al., 2015;

Chan et al., 2016). The attention mechanism in RNN encoder-decoder models is too

flexible to model the underlying alignments in ASR tasks. For ASR, each output unit

typically only relates to a small window of consecutive input frames, and the align-

ments between the output and the input usually follow a monotonic left-to-right order.

The conventional attention mechanism (Bahdanau et al., 2015; Luong et al., 2015) does

not guarantee such alignments. For self-attention based ASR models, since acoustic

events which relate to output units usually happen within relatively small time spans,

the global view of the sequence may not be useful.

To make attentional encoder-decoder models more suitable for ASR tasks, we

present methods which make the RNN encoder better able to model long input se-

quences, and methods which enable the attention mechanism in RNN encoder-decoder

model more natural alignments. For Transformer-based ASR models, we investigate

the usefulness of the self-attention mechanism, and aim to improve self-attention based

models based on our investigation.

During our investigation of the training of sequence-to-sequence models, we gener-

alise our study to the training of deep neural networks (DNNs) in general. For DNNs,

the lower layers can be viewed as a feature extractor, which learns to extract useful

pattern from the data. With more training data, the feature extractor becomes better

able to extract useful patterns. Based on this, previous works have built DNNs in a

bottom-up manner through transfer learning or self-supervised pre-training (Bengio,

2012; Swietojanski et al., 2012; Ghoshal et al., 2013; Devlin et al., 2018; Schneider

et al., 2019). In transfer learning, a base model is firstly trained on well-resource data;

then, the trained feature extractor is used to extract features on low-resource data. In

self-supervised pre-training, large amount of unlabeled training data is used to make

the feature extractor learn underlying patterns.
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However, to the best of our knowledge, there are few works on building DNNs in a

top-down manner. While the lower layers of DNNs can be viewed as a feature extrac-

tor, the upper layers of DNNs can be viewed as a classifier. Since there are general fea-

ture extractors which are able to extract relevant features among different datasets, we

investigate if there are “general classifiers” which give suitable classification bound-

aries across different tasks. We also aim to develop methods of constructing general

classifiers, along with algorithms which utilise general classifiers to train DNNs.

1.2 Contributions

In this thesis, we make attentional encoder-decoder models more effectively model the

input sequences and the alignments between the outputs and inputs. For RNN encoder-

decoder models, our contributions are the following:

• A dynamical subsampling RNN. The proposed dynamical subsampling RNN

(dsRNN) learns to skip frames which are not useful for the training. By drop-

ping redundant frames, dsRNN shortens the length of the input sequences, and

dsRNN encoder can more effectively model the input sequence.

• A fully-trainable windowed attention mechanism. The proposed windowed

attention mechanism restricts the attention mechanism to only attend frames in a

sliding window following a left-to-right order. All the window parameters (i.e.,

window shift and window length) are trainable. The proposed method helps the

attention mechanism to generate more natural alignments between the input and

the output. Also, since the learned window length is small, at each decoding

time step, the time complexity of attention mechanism is reduced from O(n) to

O(1), where n denotes the length of the input sequence.

For self-attention based encoder-decoders (Transformer models), we present the

following contributions:

• Experiments which show that self-attention is not useful for upper encoder
layers. To investigate if self-attention is useful, we propose to replace the self-

attention layers in Transformer encoders with feed-forward layers. When the

upper self-attention layers are replaced with feed-forward layers, we observe no

performance drop, but in fact minor accuracy gains. We also develop a novel

metric of the diagonality of attention matrices, and find the averaged diagonality
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of each encoder layer increases from the lower layers to the upper layers, indicat-

ing the self-attention mechanism is essential for the lower layers but redundant

for the upper layers.

• Experiments which show there are redundant individual attention heads.

We further analyse if the global view of the sequence is necessary for each in-

dividual attention head. We find in trained Transformers, there are individual

attention heads which almost always generate high diagonality attention matri-

ces, which indicates the self-attention mechanism in these attention heads only

focus on local information.

• A training method which randomly drops attention heads during training.

Since the search for the redundant attention heads is time-consuming, we pro-

pose to randomly drop attention heads during training and keep all the attention

heads at testing. As a result, the trained model is an ensemble of structures with

reduced numbers of attention heads. However, at testing, the model has the full

representation power of all the attention heads.

For the training of DNNs, our contributions is as follows:

• Demonstration of the existence of general classifiers. We view the lower lay-

ers of DNNs as a feature extractor and the upper layers of DNNs as a classifier.

We show that in analogy to the concept of the general feature extractor, there

are also general classifiers. We conceptually show that general classifiers should

properly reflect the relationships between classes. We also experimentally show

that the classifiers become more general if we increase the amount of training

data.

• A top-down transfer learning algorithm. We develop a top-down transfer

learning algorithm, which trains the classifier on clean dataset, and then trains

the feature extractor on the noisy dataset with the trained clean classifier. We find

the clean classifier helps the feature extractor to learn noise-invariant features.

• A top-down layer-wise training algorithm. We present a training algorithm

which trains DNNs from upper layers to lower layers in a cascade. We observe

that in conventional training where all the layers are trained jointly, the upper

layers tend to overfit. We propose to freeze the upper layers to prevent this be-

haviour, and retrain the lower layers to make the lower layers sufficiently trained.
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1.3 Thesis Outline

The structure of the remainder of the thesis are the followings:

• In Chapter 2, we describe RNNs and self-attention networks, which are the basic

building blocks of sequence-to-sequence models. We then present the architec-

tures of attentional encoder-decoder models. We also introduce the ASR datasets

on which we conduct experiments.

• In Chapter 3, we present the dynamical subsampling RNN. We show the exper-

imental results on the TIMIT corpus. We also analyse the skip ratios of dsRNN

encoders, and compare dsRNN with static subsampling RNN as well as random

subsampling RNN.

• In Chapter 4, we present our fully-trainable windowed attention mechanism. We

show experimental results on TIMIT and WSJ datasets. On TIMIT, we also give

a detailed analysis of our method. In terms of accuracy, we compare our win-

dowed attention mechanism with conventional attention mechanisms and CTC-

attention.

• In Chapter 5, we investigate the usefulness of self-attention for Transformer

based ASR models. We show empirical evidence that for upper encoder layers,

the self-attention mechanism is redundant. On WSJ and Switchboard dataset, we

present experiments of replacing upper encoder self-attention layers with feed-

forward layers. We also develop a metric of the diagonality of attention matrices.

Based on this metric, we analyse the averaged diagonality of each self-attention

layers.

• In Chapter 6, we present a training algorithm which randomly removes attention

heads at training. We firstly analyse the usefulness of individual attention heads.

Next, we present the proposed training algorithm. We test the proposed method

on WSJ, Switchboard, AISHELL and AMI datasets. We also gave significance

tests upon the improvements, and analyse the behaviour of attention heads that

are trained through the proposed method.

• In Chapter 7, we describe our top-down level-wise training methods. We firstly

introduce the concept of general classifier. Next, we show top-down training

methods across different datasets (i.e., transfer learning) and within the same
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dataset (i.e., layer-wise training). We demonstrate the effectiveness of the top-

down transfer learning method by experiments of transferring classifiers from

WSJ to CHiME-4, and also the benefits of top-down layer-wise training through

ASR experiments on WSJ, CHiME-4, Switchboard, image classification experi-

ments on CIFAR-10 and language modelling experiments on WikiText-2.

• In Chapter 8, we conclude the thesis by summarising our work and discussing

potential future work.
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Chapter 2

Background

In this chapter, we introduce CTC and attention-based encoder-decoder ASR models,

which are the models we will study thoroughly in this these.

We firstly introduce recurrent neural networks (Elman, 1990) and self-attention

networks (Vaswani et al., 2017), which can be used as the basic building blocks of

sequence-to-sequence ASR models. We then discuss CTC. Finally, we present attention-

based sequence-to-sequence ASR models, which include RNN encoder-decoder (Chan

et al., 2016), CTC-attention (Kim et al., 2017), Transformer (Vaswani et al., 2017) and

Conformer (Gulati et al., 2020).

2.1 Recurrent Neural Network

We firstly discuss the building blocks of sequence-to-sequence models. Recurrent neu-

ral networks (RNNs) are powerful in modelling sequential data with variable length.

An RNN maps a sequence of input vectors (x1,x2, · · · ,xT ) into a sequence of hidden

states, (h1,h2, · · · ,hT ). The RNN processes the input data in a sequential order. For

each time step t, it takes the current element xt and the previous hidden state ht−1 as

its inputs. Thus, an RNN can be described as:

ht = f (Vxt +Uht−1 +b) (2.1)

where xt ∈ Rd,ht−1 ∈ Rn,V ∈ Rn×d,U ∈ Rn×n, b ∈ Rn. V, U and b are trainable.

Sigmoid or tanh are usually used as the activation function f . For the first time step,

the initial hidden state h0 is often set as a zero vector.

9
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Although RNNs are designed to model sequential data with variable lengths, due

to the vanishing gradient problem (Hochreiter, 1991) it is hard for RNNs to learn long-

range dependencies (Bengio et al., 1994). We describe the vanishing gradient problem

here. RNNs are usually trained through gradient descent:

θ = θ−η▽θ (2.2)

where θ denotes the trainable parameters of the RNN and η is the learning rate.

Consider a time step t. Let u = (U11,U12, · · · ,U1n,U21,U22, · · · ,U2n, · · · ,Unn) and

at = Vxt +Uht−1 +b. Then

∂ht

∂u
=

∂ht

∂at

∂at

∂u
(2.3)

∂at

∂u
= ht−1 +

∂ht−1

∂u
(2.4)

Thus, ∂ht
∂u can be expressed as:

∂ht

∂u
=

t−1

∑
i=1

hi

t

∏
j=i+1

∂h j

∂a j
(2.5)

where h0 is set as a zero vector. For a time step k, it can be shown that with sig-

moid or tanh activation functions whose derivative is bounded, the contribution of

hk ∏
t
j=k+1

∂h j
∂a j

to ∂ht
∂u goes to 0 exponentially fast with t− k (Pascanu et al., 2013), and

this phenomenon is referred as vanishing gradient. Due to the vanishing gradient prob-

lem, when the distance between two events are significant large, it could be challenging

for RNNs to learn long-range dependencies.

To alleviate the vanishing gradient problem, Long Short-Term Memory (LSTM)

is proposed (Hochreiter and Schmidhuber, 1997). LSTM also processes the input se-

quence (x1,x2, · · ·xT ) in a sequential order. However, at each time step, LSTM uses

three trainable gates to control the information flow. The three gates contain an input

gate, a forget gate, and an output gate. For each time step t, a non-linear function (usu-

ally sigmoid function) takes the current frame xt and the previous hidden state ht−1 to

generate a candidate vector c̃t which may be used to update the memory of LSTM. The

input pair (xt ,ht−1) is also fed to all the gates. The input gate decides how much in-

formation from the candidate vector should be used to update the memory. The forget

gate controls what information should be retained in the memory. Finally, the output

gate manages how much information from the memory should be used to produce the
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Figure 2.1: An illustration of an LSTM unit. Each gate controls how much information

should be passed. The white boxes denote vectors. The yellow boxes are element-wise

functions. The red lines indicate affine transformation while the blue lines mean copy of

the value.

output vector. Thus, at time step t, an LSTM unit can be described as:

c̃t = tanh(Wcxt +Ucht−1 +bc) (2.6)

it = sigmoid(Wixt +Uiht−1 +bi) (2.7)

ft = sigmoid(W f xt +U f ht−1 +b f ) (2.8)

ct = it ◦ c̃t + ft ◦ ct−1 (2.9)

ot = sigmoid(Woxt +Uoht−1 +bo) (2.10)

ht = ot ◦ tanh(ct) (2.11)

where it is the output vector of the input gate, ft denotes the output vector of the forget

gate, ot denotes the output vector of the output gate. Wc,Uc,bc,Wi,Ui,bi,W f ,U f ,b f ,Wo,

Uo and bo are trainable. ◦ denotes the element-wise product (Hadamard product). h0

and c0 are often initialised as zero vectors. The architecture of an LSTM unit is illus-

trated in Figure 2.1.

The gates control what information should be kept and what information should be

dropped. Thus, they may help the model to learn long-range dependencies. Below is

an intuitive explanation. For example, start from time step k and until time step t−1,

if the input gate always generates zero vectors and the forget gate only gives vectors

of ones, then the information in the memory cell from time step k will be preserved to

time step t. When executing back-propagation at time step t, the error signal passes
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Figure 2.2: A comparison between the gradient flow of the RNN and LSTM. The blue

boxes in the lower part of each sub-figure denote the inputs and the blue boxes in the

upper part of each sub-figure denote RNN or LSTM units. The red lines denote the

gradient flow. In the RNN, the gradient flow passes through each time step. Thus, the

vanishing gradient problem may cause the RNN fails to learn the long-range depen-

dency. For LSTM, if all the input gates are closed (denoted by the horizontal bars in the

figure) and all the forget gates are open (denoted by the circles in the figure), then the

error signal passes to the first time step as if it is directly passed from the last time step

to the first time step. Note this is an illustrative comparison. In practice the gates are

never fully open or closed.

to time step k as if it is directly passed from the time step t without any intermediate

time steps. Thus, if the distance between t and k is large and the inputs at these two

time steps has dependency, LSTM may learn this long-range dependency. It worth

noting that this example is illustrative, since the gates are never fully open or closed.

Figure 2.2 shows an comparison between RNN and LSTM.

2.2 Self-attention Network

RNNs have been widely used for processing sequential data. However, as discussed

in the previous section, due to the gradient vanishing problem, the main weakness

of RNN is that it is ineffective in capturing long-range dependencies (even with gated

structures). Thus, in this section, we introduce self-attention networks (SANs) (Vaswani
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(a) Self-attention (b) RNN

Figure 2.3: A comparison between self-attention (a) and RNN (b). Each rectangle de-

notes an element in the input sequence. For the sub-figure (a) of self-attention, the

lines indicate the inputs (after linear transformations) will be compared. For the sub-

figure (b) of RNN, the arrow means the hidden representation of the previous input will

be used to generated the hidden state of the the current input. The self-attention com-

pares the elements with each other directly to capture the relationships between them.

In this figure, the relationship between the second element and the last element can be

captured regardless of the distance between them. In contrast, the RNN processes the

input elements in sequential order. Therefore, in this example, if the sequence is too

long, due to the vanishing gradient problem, the RNN cannot capture the relationship

between the second and the last element.

et al., 2017) which can greatly alleviate this problem. SANs have also been widely used

to build sequence-to-sequence models.

SANs can model relationships between events without being limited by their dis-

tances. Instead of processing inputs in a sequential way, self-attention encodes se-

quences through the attention mechanism (Bahdanau et al., 2015). For each pair of

elements xt and xr in the input sequence X, self-attention compares xt and xr (or their

hidden representations) directly to learn the relationship between them. Therefore,

self-attention has a global view of the input sequence and thus can capture relation-

ships within any range. Figure 2.3 shows a comparison between the self-attention and

the RNN.

Formally, the self-attention mechanism takes a 3-tuple of sequences (XQ,XK,XV)

as its input. When using self-attention to encode a sequence X, we have XQ = XK =

XV = X. We discuss the situation where the sequences in the 3-tuple are not equal
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to each other in Section 2.3.4. The input sequences (XQ,XK,XV) are mapped to a

Query/Key/Value triplet (Q,K,V) through linear transformations. After that, a dot-

product is applied to compute the similarity scores between each element qt in the

Query sequence and each element kt in the Key sequence. Then, the similarity scores

are normalised to generate attention scores. The tth element of the output sequence of

the self-attention is a weighted sum of all the elements in the Value sequence V, where

the weights are the attention scores between qt and all the elements in K. Thus, the

self-attention mechanism can be described as:

A(XQ,XK,XV) = softmax(
QKT
√

dK
)V (2.12)

(Q,K,V) = (XQWQ,XKWK,XVWV), (2.13)

where XQ ∈ RT×dM
, XK,XV ∈ RS×dM

are inputs and T,S denote the lengths of the

input sequences; WQ,WK ∈ RdM×dK
and WV ∈ RdM×dV

are trainable matrices.

For the 3-tuple input sequences (XQ,XK,XV), multiple independent self-attention

mechanisms are usually used to capture different representations of the sequences. The

multiple independent self-attention mechanisms are referred to as multi-head attention

(MHA). In an MHA that has h heads, each individual attention head Ai can be de-

scribed as:

Ai(XQ,XK,XV) = softmax(
QiKT

i√
dK

)Vi (2.14)

(Qi,Ki,Vi) = (XQWQ
i ,X

KWK
i ,X

VWV
i ) (2.15)

where XQ ∈ RT×dM
, XK,XV ∈ RS×dM

are inputs and T,S denote the lengths of the

input sequences; WQ
i ,W

K
i ∈ RdM×dK

and WV
i ∈ RdM×dV

are trainable matrices. Then,

the outputs of the h attention heads (A1,A2, · · · ,Ah) are combined linearly to generate

the output of MHA:

MHA(XQ,XK,XV) = (A1,A2, · · · ,Ah) UH, (2.16)

where UH is a trainable matrix and UH ∈ RdH×dM
,dH = h×dV.

The self-attention mechanism only has linear transformations. To introduce non-

linearity, the output of the MHA component is fed to a point-wise feed-forward com-

ponent. To alleviate the gradient vanishing problem and build deep networks, residual

connections are used. The feed-forward component can be described as:

X′ = XQ +MHA(XQ,XK,XV) (2.17)

X′′ = X′+ReLU(X′WFF1 +bFF1)WFF2 +bFF2 (2.18)
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Figure 2.4: Architectures of a self-attention layer. The boxes show the components of

a self-attention layer. The arrows indicate the flow of the forward pass. “LN” denotes

layer normalisation. “Weight” denotes linear transformation. The position of “LN” follows

Wang et al. (2020) and Karita et al. (2019).

where WFF1 ∈ RdM×dFF
, WFF2 ∈ RdFF×dM

, bFF1 ∈ RdFF
and bFF2 ∈ RdM

are trainable

matrices and vectors. Dropout (Srivastava et al., 2014) and layer normalisation (Ba

et al., 2016) are also used in the self-attention layer. Figure 2.4 shows the architecture

of a self-attention layer.

The self-attention mechanism does not consider positional information since each

element in the Query sequence is directly compared with each element in the Key

sequence. For a given Query sequence, any permutation of the Key sequence (as well

as the Value sequence) will lead to the same output sequence of MHA. To address

this, positional embedding is used (Gehring et al., 2017; Vaswani et al., 2017). For

each input sequence, the positional embedding for the element at position i can be

described as:

PE(i,2m) = sin(i/100002m/dM
) (2.19)

PE(i,2m) = cos(i/100002m/dM
) (2.20)

where m denotes the dimension of the elements in the input sequences. The positional

embedding is either added (Vaswani et al., 2017) or concatenated (Sperber et al., 2018)

to the input sequences (XQ,XK,XV). As a result, each element in the input sequences

contains the positional information.
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2.3 Sequence-to-Sequence ASR Models

We have discussed RNNs and self-attention networks, which can be used as the ba-

sic building blocks for sequence-to-sequence ASR models. In this section, we intro-

duce the sequence-to-sequence ASR models which we study in this thesis (CTC and

attention-based models). It is worth noting that for the term “sequence-tosequence”

we follow our definition in Chapter 1 rather than following the conventional definition

as in Sutskever et al. (2014). Other sequence-to-sequence ASR models, such as RNN-

Transducers (Graves, 2012) and End-to-End Lattice-free MMI (Hadian et al., 2018),

are beyond the scope of this thesis.

In general, sequence-to-sequence models directly map the input sequence X =

(x1,x2, · · · ,xT ) to the output sequence Y = (y1,y2, · · · ,yM) through a single neural

network (although for ASR having an additional language model component is usually

helpful). The training objective is to maximise the conditional probability P(Y|X). For

sequence-to-sequence ASR, the input sequences consist of acoustic frames and the out-

put sequences consist of characters or other sub-word units. Thus, the input sequences

are usually noticeably longer than the output sequences. Further, the alignments be-

tween the inputs and the outputs are unknown. Therefore, modelling the alignments

between variable length input and output sequences is an essential task for sequence-

to-sequence ASR models.

2.3.1 CTC

CTC uses RNNs or SANs to map the input sequence into a sequence of hidden states.

Then, each hidden state ht is fed into the softmax function to generate an output prob-

ability. However, input sequences made of acoustic frames are longer than the output

sequences containing sub-word units. To address this, CTC allows repeated output

units and blank symbols (−). The repeated characters between blank symbols are

merged to generate the final output sequence Y = (y1, · · · ,yM). For example, for the

input sequence X = (x1, · · ·x5) and the output sequence Y = (c,a, t), A = (c,c,−,a, t)
and A = (c,a,a,a, t) are valid CTC outputs while A = (c,−,c,a, t) is not a valid CTC

output for the word “cat”.

Since the alignment between the inputs and the outputs is unknown, CTC considers

all the valid alignments between the inputs and the outputs. During training, for each

utterance, the model maximises the probability of the ground truth label sequence,
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which is the sum of the probabilities of all valid alignments:

P(Y|X) = ∑
A∈S

P(A|X) , (2.21)

where S represents the set of all valid alignments. CTC models assume the outputs

are conditionally independent. With this assumption, the probability of each valid

sequence is given by:

P(A|X) =
n
∏

i = 1
P(oi|X) (2.22)

where oi denotes the output at each time step. The sum of probabilities over all the

valid alignments can be computed efficiently through a forward-backward algorithm.

The decoding can be performed in a greedy way or using beam search. The main

weakness of CTC is the outputs are conditionally independent.

2.3.2 RNN Attentional Encoder-Decoder

In this section, we introduce encoder-decoder model, which do not have the condi-

tionally independent problem. The encoder-decoder model can be built through RNNs

or SANs. Although the overall structures of RNN based and SAN based encoder-

decoder models are similar, they differ in several aspects. We discuss the RNN based

attentional encoder-decoder in this section and present SAN based encoder-decoder

(i.e.Transformer Models) in Section 2.3.4 and Section 2.3.5.

The RNN attentional encoder-decoder uses an RNN encoder to map the inputs

X = (x1, · · · ,xT ) into a sequence of hidden states H. For ASR tasks, the input se-

quences usually contain hundreds or thousands of frames. Due to the vanishing gradi-

ent problem which we have discussed in Section 2.1, it is difficult for RNNs to encode

such long sequences. Even with gated structure such as LSTM, vanilla RNN encoders

(including LSTM encoders) often give inferior ASR results (Lu et al., 2015; Chan et al.,

2016). To alleviate this, subsampling of the input sequence is usually used. One com-

monly used method is to read every second element in the input sequence. Thus, the

hidden state sequence H = (x1, · · · ,xS) is usually shorter than the input sequence X.

In the original encoder-decoder sequence-to-sequence model Sutskever et al. (2014),

since the last hidden state hS of H summaries the information of the input sequence, it

is used to initialise the RNN decoder which generates the output sequence. However,

a single vector hS usually does not have the capacity to include all the essential infor-

mation of such long sequences. To address this, attention mechanisms are proposed
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(Bahdanau et al., 2015; Luong et al., 2015). Through the attention mechanism, at each

decoding time step, the model is allowed to revisit all the encoder hidden states and

learns soft alignments.

At each decoding time step m, the decoder RNN uses the previous output ym−1,

the previous decoder RNN hidden state qm−1 and the previous context vector cm−1

to generate the current decoder hidden state qm. The context vector summarises the

alignment information and it is generated through the attention mechanism. At de-

coding time m, the attention mechanism uses the current decoder hidden state qm and

the sequence of encoder hidden states H to compute an alignment vector αm. The

alignment vector represents a soft alignment between the current output and the in-

puts. Using the elements in the alignment vector αm as weights, the context vector cm

is computed as a weighted sum of the encoder hidden states. Finally, the decoder uses

the current context vector cm and the current decoder hidden state qm to estimate the

current label distribution P(ym|X,Y1:m−1). Following the previous work (Chan et al.,

2016), the decoder can be described as follows:

qm = RNN(qm−1, [ym−1,cm−1]) (2.23)

αms = Attention(qm,hs) (2.24)

cm = ∑
s

αmshs (2.25)

ym ∼ LabelDistribution(cm,qm) (2.26)

There are several methods to compute the attention vector. The following equations

describe commonly used approaches:

ems = ψ(qm)
T

φ(hs) (dot−product) (2.27)

ems = vT tanh(Wqm +Vhs +b) (Content) (2.28)

ems = vT tanh(Wqm +Vhs +Ufms +b) (Location) (2.29)

fm = F ∗αm−1 (2.30)

where ψ and φ denotes MLP networks, v,W,V,U,F,b are trainable parameters, ∗
denotes convolution. The attention vector is:

αms =
exp(ems)

∑
S
k=1 exp(emk)

(2.31)

We can also use a temperature parameter τ to control how the attention weights are

distributed. That is, Equation 2.31 becomes to:

αms =
exp(τ−1ems)

∑
S
k=1 exp(τ−1emk)

(2.32)
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Figure 2.5: A demonstration of the RNN based attentional encoder-decoder. SOS de-

notes “start of sentence” and EOS denotes “end of sentence”. The decoder stops

generating outputs after it produced the EOS symbol. Subsampling is used so the en-

coder only reads the every second input frames.

where τ can be set as a hyper-parameter or learned by the model. When τ > 1, it makes

the attention weights distribute more uniformly; when τ < 1, it makes the peak of the

attention weight distribution sharper. In this thesis, we do not use the τ parameter

(or equivalently, we set it to 1). Figure 2.5 shows an illustration of the RNN based

attentional encoder-decoder.

Because of the RNN decoder, RNN encoder-decoder does not have the problem

of conditional independent outputs. However, the attention mechanism is too flexible

to guarantee the left-to-right alignments between output units and input frames. The

conventional attention mechanism is allowed to generate alignments of any kind .

2.3.3 Regularise Attentional Models with CTC

CTC only allows strict left-to-right alignments between the inputs and the outputs.

However, the outputs of CTC are conditionally independent. For attentional encoder-

decoder models, the current output depends on the previous outputs. Nevertheless, the

left-to-right alignments between the inputs and the outputs are not guaranteed.

CTC-attention is proposed to combine CTC with attentional encoder-decoder (Kim

et al., 2017). The neural network architecture of CTC-attention and attentional encoder-
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decoder is the same. However, CTC outputs are generated from the hidden states of

the encoder. The training loss L of the CTC-attention is:

L = (1−λ)LD +λLCTC. (2.33)

where LD denotes the decoder loss, LCTC denotes the CTC loss and λ is set as a

hyper-parameter. The CTC loss provides additional alignment information to the en-

coder, and thus implicitly encourages the attention mechanism to generate monotonic

alignments between the inputs and the outputs. Furthermore, the outputs of the decoder

part do not suffer the problem of conditional independence.

2.3.4 Transformer

Since it is relatively difficult to for RNN to model long-range dependencies and self-

attention can capture global information, SANs are used to build sequence-to-sequence

models. The self-attention based encoder-decoder is known as Transformer (Vaswani

et al., 2017). The encoder is a stack of self-attention layers. Every encoder self-

attention layer reads the output of its previous layer (the lowest layer reads the input se-

quence of the Transformer). For each encoder self-attention layer, the input sequences

in the 3-tuple are the same. That is, for each encoder layer j, XQ
j = XK

j = XV
j = X j.

The structure of encoder self-attention layers is the same as the self-attention layer de-

scribed in Section 2.2. The positional embedding is either added to/concatenated with

the inputs of the first self-attention layer or fed to all the self-attention layers.

The decoder also has a stack of self-attention layers. However, in contrast to the en-

coder self-attention layer which has one MHA component, each decoder self-attention

layer has two MHA components. At decoding time step m, for the lowest decoder

layer, the first MHA looks at the outputs of the Transformer up to decoding time step

m−1. When fed into the first decoder layer, the sequence of the outputs begins with a

“start of sentence” label, so the outputs are right-shifted by one position. Thus, the cur-

rent output only depends on the previous outputs. The second MHA takes the outputs

of the first MHA as the Query sequence and the outputs of the topmost encoder layer

as the Key/Value sequences. The output of the second MHA is fed into a feed-forward

component. The subsequent decoder self-attention layers have the same architecture

as the first decoder self-attention layer.

Mathematically, for a decoding time step m, the MHA components in the jth self-
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Figure 2.6: Architectures of a self-attention decoder layer. LN denotes layer normalisa-

tion. For the second MHA component, Y′j is the Query sequence, Xe is the outputs of

the topmost encoder layer and it used as the Key/Value sequence.

attention decoder can be described as:

Y′j = Y j +MHAdec
j (Y j,Y j,Y j) (2.34)

Y′′j = Y′j +MHAdec−enc
j (Y′j,Xe,Xe) (2.35)

where for the lowest decoder self-attention layer, Y0 denotes the outputs of the Trans-

former up to decoding time step m−1; for the subsequent decoder self-attention layers,

Y j denotes the outputs of the previous decoder self-attention layer; and Xe denotes the

outputs (hidden representations) of the topmost encoder layer. The structure of the

feed-forward component in the decoder self-attention layer is the same as the structure

of the feed-forward component in the encoder self-attention layer (Section 2.2). The

positional embedding is either injected into the inputs of the first decoder self-attention

layer or fed to all the decoder self-attention layers. Figure 2.6 shows the architecture

of a decoder self-attention layer.

2.3.5 Conformer

Since self-attention encodes sequences through attention mechanisms, it can model de-

pendencies within any range. However, previous works have shown that self-attention

is less effective in capturing local information (Wu et al., 2020; Zhang et al., 2021).
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(a) Feed-forward Component

(b) Convolution Component

Figure 2.7: The feed-forward component (a) and the convolution component (b) of a

conformer layer. Glu denotes gated linear units (Dauphin et al., 2017).

As a matter of fact, acoustic events usually happen within relatively short periods and

local context information is essential for ASR tasks. Since convolution neural net-

works (CNNs) are suitable for capturing local context, Gulati et al. (2020) propose

Conformer, which augments Transformer encoder self-attention layers with CNNs. A

Conformer layer can be described as:

X̃ = X+
1
2

FF(X) (2.36)

X′ = X̃+MHA(X̃, X̃, X̃) (2.37)

X′′ = X′+Conv(X′) (2.38)

X′′′ = LayerNorm(X′′+
1
2

FF(X′′)) (2.39)

where FF denotes the feed-forward component, Conv denotes the convolution compo-

nent and LayerNorm denotes layer normalisation. The architecture of the feed-forward

component is shown in Figure 2.7 (a) and the architecture of the convolution com-

ponent is presented in Figure 2.7 (b). The half-step feed-forward networks (1
2FF in

Equation 2.36 and Equation 2.39) have resulted in better accuracies compared to the

full-step feed-forward network (Gulati et al., 2020).

Conformer also uses a different positional embedding method compared to Trans-

former. Here, we use X[i] to denote the ith element in the sequence X. For an attention

head, consider the element XQ[i] in XQ and the element XK[ j] in XK. Suppose the

positional embedding is added to the input sequences. Then, the attention score Aabs
i j

between XQ[i] and XK[ j] can be expressed as:

Aabs
i j = (XQ[i]+Pi)WQ · (XK[ j]+P j)WK

= XQ[i]WQ(WK)T (XK[ j])T +XQ[i]WQ(WK)T (P j)
T

+PiWQ(WK)T (XK[ j])T +PiWQ(WK)T (P j)
T (2.40)
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where Pi and P j denote the positional embedding. Conformer uses relative positional

embedding proposed by Dai et al. (2019). With the relative positional embedding, the

attention score Arel
i j is:

Arel
i j = XQ[i]WQ(WK)T (XK[ j])T +XQ[i]WQ(WP)T (Pi− j)

T

+u(WK)T (XK[ j])T +v(WP)T (Pi− j)
T (2.41)

where WP is a trainable matrix, u and v are trainable vectors. There are several dif-

ferences between Equation 2.40 and Equation 2.41. Firstly, the relative positional

embedding only considers the relative positions between XQ[i] and XK[ j]. The mo-

tivation is when the attention mechanism considers where to attend, only the relative

distance between positions matters. Thus, the absolute positional embeddings Pi and

P j are replaced by the relative positional embedding Pi− j. Secondly, in Equation 2.40,

the positional embedding P j is multiplied by the matrix WK. However, WK is to trans-

former the input sequence XK to the key sequence K (Equation 2.13). Therefore, to

make the content vector XK and the position vector Pi− j have different weight ma-

trices, Equation 2.41 uses a distinct trainable matrix WP to multiply with the relative

positional embedding Pi− j. Lastly, in Equation 2.40, the vector PiWQ is invariant to

the content of the input sequences. Therefore, Equation 2.41 replaces this vector with

trainable vectors u and v.

In the original Conformer paper (Gulati et al., 2020), LSTM was used as the de-

coder. We use the term “Conformer” to denote the Conformer Encoder–Transformer
Decoder structure.

2.4 Datasets

In this section, we describe the speech recognition datasets on which we conduct our

experiments. Table 2.1 summaries these datasets. Except AISHELL (Bu et al., 2017)

which is a Chinese corpus, all other datasets are English datasets.

TIMIT (Garofolo et al., 1993). TIMIT is a read speech dataset. It contains 6300

utterances read by 630 speakers of eight major dialects of American English. Each

speaker reads 10 sentences. Phone level transcription is provided. The phones in the

transcription are from a 61-phone set. For the evaluation of ASR models, the 61-phone

set is usually reduced to a 39-phone set.
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Table 2.1: Datasets Description

datasets language hours speech style

TIMIT EN 5 read (clean)

WSJ EN 81 read (clean)

AISHELL ZH 170 read (clean)

CHiME-4 EN 18 read (multi-channel noisy)

SWBD EN 260 telephone conversation

AMI EN 100 meeting

Wall Street Journal (WSJ) (Paul and Baker, 1992). WSJ is a corpus which con-

tains read sentences from Wall Street Journal news. For the experiments conducted

on WSJ, we use WSJ si284 as the training set. WSJ si284 contains 81 hours of read

speech data from 284 speakers.

AISHELL (Bu et al., 2017). AISHELL is a read speech Chinese dataset. It con-

tains 170 hours of Chinese mandarin speech data from 400 speakers of 4 major Chinese

accent. The dataset covers topics from 11 different domains.

CHiME-4 (Vincent et al., 2017; Barker et al., 2017). CHiME-4 contains read

speech recorded by a tablet that has a 6-channel microphone array. The speech is

recorded in 4 noisy environments: on a bus, cafe, pedestrian area, and street junction.

There are 4 speakers in total. The data can be divided into two categories: real and

simulation. The “real data” contains the utterances which are read in the real noisy

environment. The “simulation data” is generated by adding the noise from the envi-

ronment to the clean read data.

Switchboard (SWBD) (Godfrey et al., 1992). SWBD is a telephone conversation

dataset. It contains about 2400 two-side telephone conversations. There are 543 speak-

ers from all areas of the US. In the dataset, no two speakers would have conversations

more than once. The dataset covers 70 topics. No one speaker would talk about a topic

more than once.

AMI (Renals et al., 2007). AMI consists of meeting recordings. Different record-

ing instruments are used, including close-talk and far-field microphones. The meetings

were in three rooms with different acoustic properties. Most speakers are non-native

speakers.



Chapter 3

Trainable Dynamic Subsampling

Encoder for RNN Attentional Models

3.1 Introduction

The RNN encoder, which learns the hidden representations of the input sequences, is

an essential component in attentional encoder-decoder models. However, as discussed

in Chapter 2, RNNs are less effective in modelling long sequences. For ASR tasks

where the input sequences are often notably long, encoder-decoder models with vanilla

RNN/LSTM encoders often yield poor results (Lu et al., 2015; Chan et al., 2016). Chan

et al. (2016) demonstrated that with a vanilla multilayer LSTM encoder, the model

gives poor ASR results even with an extremely long training time.

Subsampling has been proposed to train neural network acoustic models (Van-

houcke et al., 2013; Miao et al., 2016). To alleviate the training problem of encoder-

decoder ASR models, subsampling is also used. Chan et al. (2016) use encoder layers

which read the concatenation of every two hidden states of its previous layer, while Lu

et al. (2015) and Bahdanau et al. (2016) employ encoder layers which read one of ev-

ery two hidden states of its previous layer. Thus, in these methods, each encoder layer

reduces the the sequence length by a factor of 2. However, these methods subsample

statically, and does not consider different acoustic situations. For example, for silence

or for a section in which the acoustic features are similar, subsampling rates should be

high. When the acoustic features change rapidly, the amount of subsampling should be

lower. A fixed, static subsampling method fails to consider these situations, resulting

in the retention of redundant information and the loss of relevant information.

To address this, we propose a novel dynamic subsampling RNN (dsRNN) archi-

25
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Figure 3.1: Subsampling: static (above) vs. dynamic (below). In this example, the static

subsampling keeps the unnecessary silence frame. However, it drops the frames at the

transitions of acoustic events. In contrast, the dsRNN drops the redundant information

while keeping the important frames.

tecture. We use the dsRNN to build the encoder for the encoder-decoder models. This

learned subsampling strategy is helpful in two aspects:

• First the network learns what to skip – it learns to skip redundant frames but

keeps the important frames. Thus, the skip policy forces the RNN encoder only

to consider the most relevant inputs during training.

• Second, it learns how frequently to skip input frames – in practice this may be

adaptively modified during training. At the start of training, we observe the skip

rates to be high, enabling the encoder to learn the hidden representations for the

most essential frames at the early training stage. As training progresses, the skip

rate decays, allowing the encoder to retain more input information.

Because of these two abilities, the dsRNN encoder learns a better representation of

the input sequence and obtains a significant error rate reduction compared to the stat-

ically subsampled RNN encoder. Figure 3.1 demonstrate a comparison between the

static subsampling and the dynamic subsampling. Although our dsRNN encoder is

unidirectional, we observe increased accuracy compared to a bidirectional statically

subsampled RNN encoder.
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3.2 Related Work

For encoder-decoder models for speech recognition, subsampling between stacked en-

coder RNN layers has been proposed to reduce the length of the input sequence (Lu

et al., 2015; Chan et al., 2016). An encoder layer reads either one of every two hidden

states of the previous layer (or their concatenation), reducing the input length by a fac-

tor of 2. Subsampling is often performed between two or three layers, which leads to

a reduction rate of 4 or 8. High reduction rates (e.g. 32) are possible, but it requires

careful pre-training (Zeyer et al., 2018).

Although these length reduction methods yield improved results, the subsampling

is fixed. As discussed early, it does not consider different acoustic events: when the

input acoustic features change rapidly, the skip rate (amount of subsampling) should

be low while when the input acoustic features are similar, the skip rate should be high.

However, static subsampling fails to recognise these situations. This strategy may

retain redundant information, while dropping essential frames.

The skip RNN was proposed to allow an RNN to skip inputs dynamically (Campos

et al., 2018). The Skip RNN demonstrated promising results in several sequential

modelling tasks. However, the Skip RNN uses only the previous RNN hidden state

in order to predict if the current input should be skipped or not. This approach is

risky, since relevant inputs may be overlooked while unnecessary inputs may be kept.

For speech recognition, a similar Skip RNN model has been proposed, which also

skips without considering the current input (Song et al., 2018). Compared with regular

RNNs it has no gain in accuracy; neither has it been applied to sequence-to-sequence

models.

The Skip RNN and our proposed dsRNN are related to Highway Networks (Srivas-

tava et al., 2015). Highway Networks are feed-forward networks that use a transform

gate and a carry gate to decide how much information from the current layer should

be copied to the next layer. Similarly, Skip RNN and dsRNN determine if the hidden

state of the current time step should be copied to the next time step. However, there

are two main differences between Highway Networks and the dsRNN. First, Highway

Networks are feed-forward networks which may skip some intermediate layers. The

proposed dsRNN is a recurrent network. Although from the viewpoint of unfolding

computational graphs, it also omits some intermediate layers, the main characteristic

of the dsRNN is the dropping of inputs. Second, Highway Networks use gates to drop

intermediate layers in a soft way, while the dsRNN skips inputs in a hard fashion – the
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inputs are either retained or discarded.

Chung et al. (2017) propose a hierarchical multi-scale RNN which uses a hard gat-

ing mechanism to enable the model to learn hierarchical boundaries – the upper layers

could learn the event boundaries of the lower layers. In contrast, although the proposed

dsRNN could also detect boundaries, the main objective is to drop unessential inputs.

It does not learn the hierarchical boundaries through layers.

In the perspective of a single time step, our method has some similarity to dropout

(Srivastava et al., 2014). However, dropout randomly drops some weights of the net-

work while our model learns to skip the input. Thus, dropout puts a random mask on

the network weights while our model puts a learned mask on the input.

3.3 Dynamic Subsampling RNN

A dsRNN maps a sequence of input frames (x1, · · · ,xT ) to a sequence of hidden rep-

resentations (h1, · · · ,hS). At each time step t, for the vanilla RNN, the hidden state ht

is computed recurrently by the RNN:

ht = RNN(xt ,ht−1) (3.1)

Compared to RNN, our dsRNN has an additional update gate. The RNN compo-

nent of dsRNN can be any variant of RNN, such as LSTM. For simplicity, we use RNN

to denote the RNN component of dsRNN, which may be any variant of RNN models.

The update gate takes the previous hidden state ht−1 and the current input xt to output

an indicator ut ∈ {0,1}, where 0 stands for skip xt and 1 indicates using xt to update

the hidden state. The process is described below.

First, the RNN component computes a temporary current hidden state h̃t :

h̃t = RNN(xt ,ht−1) . (3.2)

The update gate takes the concatenation of the temporary current RNN hidden state

and the previous RNN hidden state as its input and uses a multilayer perceptron (MLP)

to compute the increment of the skip probability ∆pt :

∆pt = sigmoid(MLP([ht−1, h̃t ])) (3.3)

When the RNN is composed of multiple layers, ht−1 and h̃t can be the hidden states

of one specific layer or the concatenation of the hidden states of all the layers. The

MLP can be viewed as measuring the similarity between the current temporary hidden
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state and the previous hidden state. The advantage of computing an increment skip

probability over estimating a skip probability directly is it distributes the probability

over a time span, thus the network depends more on the context to make skips. It also

prevents the network from making too few skips.

The current skip probability pt is the sum of the previous accumulated skip proba-

bility ct−1 and the increment of the skip probability ∆pt :

pt = ct−1 +min(∆pt ,1− ct−1) . (3.4)

The min operator is to ensure a valid probability.

The network can choose to skip the current input according to the skip probability

pt . However, it may lead to unstable behaviors of the network. Thus, the probability is

fed to a binariser to produce a binary value ut ∈ {0,1}:

ut = Binariser(pt). (3.5)

If pt is above a threshold, then ut is set to 1. Otherwise, ut is set to 0. The threshold for

the binarization function is set to 0.5 for the original Skip RNN (Campos et al., 2018).

In this work, considering the duration of different acoustic events varies, we use an

MLP which takes the previous RNN hidden state ht−1 as the input to adjust the thresh-

old. The binarization function is not differentiable. We set the binarization function

to behave as a linear function with slope 1 during backpropagation as in Bengio et al.

(2013). Thus, during backpropagation,

∂Binariser(pt)

∂pt
= 1 (3.6)

If ut is 1, the current input is used to update the RNN hidden state and the accu-

mulation skip probability is reset to 0. Otherwise, the current input is skipped. The

current RNN hidden state hi and the accumulation skip probability ct are:

ht = ut h̃t +(1−ut)ht−1 (3.7)

ct = 0+(1−ut)pt . (3.8)

Therefore, the proposed network learns to skip input frames dynamically by examining

both history and current information. Figure 3.2 shows the architecture of the dsRNN.

The LSTM is similar to the proposed dsRNN, since it also uses gated structures

to control the input information. However, in our experiments, we found LSTM and

dsRNN behave differently. Furthermore, in our experiments, we use LSTM as the
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Figure 3.2: An illustration of the dsRNN. It uses both the current temporary hidden state

and the previous hidden state to decide if the current hidden state should be a copy of

the previous hidden state or it should be updated to the temporary hidden state.

RNN component in our dsRNN. We observed the proposed skip method is compatible

with LSTM.

We employ unidirectional dsRNN encoder. If we make dsRNN bidirectional, the

forward direction and the backward direction may not always skip the same frame.

We have tested concatenating a forward direction dsRNNs with a backward direction

dsRNN regardless whether they agree to skip the same frames. However, we observe

the bidirectional dsRNN quickly becomes unidirectional during training – in very early

epochs the dsRNN in one direction soon learns to skip almost everything. We argue

this behavior could be due to that the disagreement of two directions may cause serious

mismatches of information in the hidden states of the two directions, and concatenating

such hidden states of both directions may harm the performance of the model.

Although our dsRNN is unidirectional, it will be compared with both unidirectional

and bidirectional RNNs in our experiments.

3.4 Experimental Setup

We test our model on the TIMIT dataset. The dataset is divided into training, valida-

tion and test sets following the Kaldi (Povey et al., 2011) s5 recipe. The input features

are 80-dimensional filter-bank features with energy extracted by the Kaldi toolkit. The

input features were rescaled by subtracting the mean and divided by the standard devi-
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ation from the training set. The outputs are 39 phone with start/end sentence (sos/eos)

and the space token, which make 42 labels in total.

For the encoder-decoder architecture, we use three layers of dynamic subsampling

unidirectional LSTM (dsULSTM) as the encoder. The baseline models use three layers

of unidirectional LSTM (ULSTM) or bidirectional LSTM (BLSTM) as the encoder.

For the baseline encoders, the top two layers read every second hidden state from their

previous layers, resulting in the input sequence length being reduced by a factor 4.

For all models the decoder is a one layer ULSTM and content-based attention is used

(Bahdanau et al., 2015; Luong et al., 2015). We test two settings of the number of

hidden units. The first setting is to optimise the dsULSTM encoder. The number of

hidden units is 300 for ULSTMs and 150 in each direction for BLSTM. The second

setting is to optimise the baseline. The number of hidden units is 512 for ULSTMs and

256 in each direction for BLSTM. The MLP for estimating the increment of the skip

probability uses Leaky ReLU (Xu et al., 2015) as its activation function. The number

of hidden units of the MLP is 150 for the dsULSTM encoder with 300 hidden units

and 100 for the dsULSTM encoder with 512 hidden units respectively.

The Adam algorithm (Kingma and Ba, 2015) is used as the optimisation method.

All the models are trained for 25 epochs. Beam search with a beam size 20 is used

for decoding. All the models are implemented through the ESPnet toolkit (Watanabe

et al., 2018) and PyTorch (Paszke et al., 2019).

3.5 Results and Discussion

3.5.1 dsULSTM vs. baseline models

First, we compare the dsULSTM with the Skip LSTM (i.e., use the previous hidden

state to predict if current input should be skipped), as well as the baseline ULSTM

models. Since the LSTM encoders have three layers, we test using the hidden states

in the bottom layer, in the middle layer, in the top layer, and the concatenation of the

hidden states of all the three layers to make the skip decisions respectively.

The results in Table 3.1 show that subsampling is essential for good accuracy. Our

dsULSTM encoder is notably better than LSTM encoder with static subsampling and

it indicates that the static subsampling method omits some relevant information. The

Skip LSTM does not yield a competitive PER, which implies that for speech recogni-

tion, skipping input frames blindly is harmful.
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Table 3.1: The phone error rates (PER) on TIMIT test set of using hidden states in

different layers to make the skip decisions.

Layer used for skip decision PER

Bottom 23.8%

Middle 20.5%

Top 19.4%
Concatenation of all layers 22.5%

Skip LSTM (use the top layer) 26.4%

ULSTM 29.4%

ULSTM + static subsampling 24.7%

(a) static subsampling (b) dynamic subsampling

Figure 3.3: Attention vectors of the model with the static subsampling ULSTM encoder

and the dsULSTM encoder.

Since our proposed dsRNN compares the temporary hidden states of the input

frames, it has some similarities with the attention mechanism. We also sampled one

utterances from the TIMIT dev set and plotted the attention vectors generated by the

dsRNN with the top layer and the ULSTM with static subsampling baseline. Figure 3.3

shows the attention vector. With the dsRNN, the attention mechanism is able to gen-

erate a left-to-right alignment, which implicates the dsRNN helps the model to encode

most relevant information.

To better understand the dsULSTM encoder, we make a statistic of the average

ratio between the number of skipped frames and the number of all frames for each

sequence on the TIMIT development set for each training epoch. The average skip

ratios are shown in Figure 3.4. The skip ratios go to zero after the first few epochs,
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Figure 3.4: The average skip ratios on TIMIT development set for each epoch.
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except when using the bottom layer to decide the skips. This is unsurprising. We argue

that when using the bottom layer, the hidden states are similar to each other when the

input frames are similar, and leads to high skip rates. When using the top layer, the

hidden states are more abstract and well separated and resulting in low skip rates. We

find that high skip rates in the first epochs is important for low PER – it forces the

encoder to learn the abstract information of the most relevant frames at the beginning

of the training. Then, the low skip rates in the remaining epochs retain more input

information. Both Skip LSTM and dsULSTM using middle layer to decide skips have

overall low skip ratios but Skip LSTM has a much higher PER. Furthermore, Skip

LSTM also has a higher PER than the static subsampling method. Thus, we conclude

Skip LSTM often makes unsuitable skips.

3.5.2 dsULSTM vs. random subsampling

We observe that when using the top layer or the bottom layer to decide the skips,

even in the first epoch, the network already learns to make meaningful skips (e.g. it

always skips the silence part). To further show our model makes meaningful skips

rather than skipping randomly, we compare dsULSTM with random skips. In our best

model (using the top layer), the skip rates after the first epoch and the second epoch

are 0.14 and 0.02. Thus, we test randomly skipping inputs during training with a fixed

probability 0.14 and with a fixed probability 0.02, respectively.

To better mimic the behaviour of dsULSTM, we test randomly skipping input with

skip probability decay. Since the weights of dsULSTM are initialised around 0, the

initial skip rate is close to 0.5 because of the sigmoid function. Thus, the initial skip

probability is set to 0.5 for skip probability decay with random skips. The skip proba-

bility is 0.14 for epoch 2 and 0.02 for epoch 3. After the third epoch, the skip proba-

bility is 0.004, which is the average skip rates of dsULSTM for the remaining epochs.

We also compare the learned skip probability decay policy with two other skip proba-

bility decay strategies. The first method is decaying exponentially: the ratio between

the current skip probability and the previous skip probability is (1
2)

n, where n is the

number of epochs. The skip probability stops decaying after the third epoch, since

the probability is already close to 0. The second approach is to lower the initial skip

probabilities.

Surprisingly, Table 3.2 indicates that a random skip probability 0.14 has a better

PER compared with ULSTM with static subsampling. We also notice that the PER
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Table 3.2: PER on TIMIT test set of randomly skipping inputs during training.

Fixed random skip probability PER

0.2 26.7%

0.14 21.6%

0.1 22.7%

0.02 29.0%

Skip probability decay

0.5→ 0.14→ 0.02→ 0.004 21.1%

0.5→ 0.25→ 0.0625→ 0.0078 23.1%

0.35→ 0.1→ 0.02→ 0.004 23.7%

dsULSTM 19.4%

ULSTM + static subsampling 24.7%

increases when the random skip probability diverges from 0.14. Thus, we conclude

that for this architecture, the average redundant frame rate is around 0.14. A random

skip probability of 0.02 does not filter enough irrelevant frames nor sufficiently reduce

the length of the input sequence and leads to a poor result.

Although a fixed skip probability of 0.14 is beneficial and a fixed skip probability

of 0.02 is harmful, when combined the PER is lower than using the skip probability

0.14 alone. Moreover, all the tested skip probability decay policies yield better results

than ULSTM with static subsampling. This further supports the hypothesis that high

skip rates at the beginning of training are helpful, even when the skips are randomly

made. In the early epochs, due to random skips, the inputs are shortened – it is easier

for the encoder to learn the hidden representation of shortened sequences. Then, in

the remaining epochs, low skip probabilities ensure the encoder taking all inputs. In

contrast, static subsampling misses some input information.

Finally, we argue that our model learns the best dynamic skip strategy and makes

meaningful skips. Firstly, both the best random skip rate (0.14) and the best skip rate

decay method are learned by our model. Second, with a similar skip rate for each

epoch during training, our dsULSTM has a lower PER than the best skip rate decay

policy with random skips, which indicates that the dsLSTM makes meaningful skips

rather than skipping randomly.

All the experiments above for random skipping and dsULSTM use architectures

which are optimised for the dsULSTM (3 hidden layers with 300 hidden states for
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Table 3.3: PERs of different encoder models on TIMIT test set.

Encoder: 3 layers with 300 hidden units PER

ULSTM 29.4%

ULSTM + static subsampling 24.7%

BLSTM + static subsampling 21.1%

dsULSTM 19.4%

Encoder: 3 layers with 512 hidden units

ULSTM 28.3%

ULSTM + static subsampling 23.5%

BLSTM + static subsampling 20.4%

dsULSTM 19.9%

ULSTM encoders and 3 hidden layers with 150 hidden states in each direction for the

BLSTM encoder). We also test our model on an architecture optimised for the baseline

(3 hidden layers with 512 hidden states for ULSTM encoders and 3 hidden layers with

256 hidden state in each direction for the BLSTM encoder). Results are in Table 3.3.

The dsULSTM encoders result in lower PER than the BLSTM encoders, indicating

that the context information gained from BLSTM is inferior to the information loss

from the static subsampling.

3.5.3 dsULSTM on ULSTM

Static subsampling does not allow LSTM encoders to drop inputs directly – the bottom

layer always reads the entire input sequence and subsampling operations are between

stacked LSTM layers. Thus, we test to stack two dsULSTM layers on one ULSTM

layer. Table 3.4 shows for the second architecture of the encoders, two dsULSTM lay-

ers stacked on one ULSTM layer yields significant better results than all other models.

This may be due to the fact that the bottom ULSTM layer prevents the model from

losing any input information, since the bottom ULSTM does not drop any input frame.

However, in the first architecture, though better than static subsampling, stacked dsUL-

STM on ULSTM is no better than the pure dsULSTM encoder. We notice that the

performance of the ULSTM as well as the ULSTM with static subsampling of the first

architecture (300 hidden units) is also worse than the second architecture (512 hidden

units). Therefore, we argue that in this task, the ULSTM with 300 hidden units may

have more difficulties in modelling the sequences. In the model where dsULSTM is
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Table 3.4: PERs of different models on TIMIT test set. The bidirectional GRU encoder-

decoder is better than our BLSTM models. However, it requires complicated training

and decoding procedures (Chorowski et al., 2015).

Encoder: 3 layers with 300 hidden units PER

ULSTM + static subsampling 24.7%

BLSTM + static subsampling 21.1%

dsULSTM 19.4%
dsULSTM on ULSTM 23.3%

Encoder: 3 layers with 512 hidden units

ULSTM + static subsampling 23.5%

BLSTM + static subsampling 20.4%

dsULSTM 19.9%

dsULSTM on ULSTM 16.8%

Results of previous end-to-end models

CNN CTC (Zhang et al., 2017) 18.2%

BLSTM CTC (Graves et al., 2013) 18.4%

Bidirectional GRU encoder-decoder (Chorowski et al., 2015) 18.7%

Segmental RNNs (Lu et al., 2016) 20.5%

stacked on ULSTM, the dsULSTM relies on the ULSTM to access the input informa-

tion. If the ULSTM has difficulty in encoding the input sequence, dsULSTM may not

be able to be trained well. Thus, the inferior ULSTM architecture (300 hidden units)

leads to inferior results. A comprehensive investigation is left as a future work.
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3.6 Summary

We proposed a novel dynamic subsampling RNN and used it as the encoder in encoder-

decoder models. Compared with statically subsampled RNN encoders, our dsRNN

encoder has given significant performance gains. The dsRNN encoder learns a good

dynamic subsampling strategy – the skip rate decay. Also, it learns to make mean-

ingful skips rather than skipping randomly. Thereby, at the beginning of training, the

skip rates are high and the skips are valid, which makes the encoder learn the hidden

representations of the most relevant input frames. As training progresses, the low skip

rates retain input information.

Although arguably, the input gate and the forget gate in LSTM should have the

ability to drop inputs and copy hidden states dynamically, the dsLSTM has resulted in

lower PERs than LSTM for speech recognition experiments on TIMIT. Thus, encour-

aging RNNs to drop inputs and copy hidden states in a hard fashion could be beneficial

for speech recognition tasks.

Although the time complexity of our proposed dsRNN should be similar to the

static subsampling dsRNN, we find in practice the training time of the proposed dsRNN

is significantly longer. The reason is during training, it is not suitable to assume all the

sequences inside the same batch will make skips at the same time steps. To address

this, we iterate each sequence in the batch to ensure the model makes suitable skips at

proper time steps for every input sequence. However, the iteration inside each batch

leads to slow computation. Therefore, although we have obtained positive results on

TIMIT, due to computation limitations, we did not test our proposed on other larger

datasets such as WSJ.

In conclusion, compared to the RNN/LSTM, our dsRNN enables the encoder to

better model the input sequences for ASR tasks.

The proposed method is also suitable for speech translation, since for this task the

input sequence is also usually noticeably long. However, This extension is beyond the

scope of this thesis.

our proposed dsRNN can also be applied to self-attention. Before we transfer the

input sequence into a Key/Query/Value tuple, we can use dsRNN to reduce the length

of the input sequence. Encoding the sequence with reduced length may require less

computation time. However, adding a dsRNN component to the self-attention harms

the parallelisation. This extension is also beyond the scope of this thesis.



Chapter 4

Windowed Attention Mechanisms for

RNN Attentional Models

4.1 Introduction

In the previous chapter, we have presented dsRNN, which enables the encoder to better

model the long speech input sequences. In this chapter, we study windowing methods

which force the attention mechanism to focus on local context information and gener-

ate left-to-right alignments.

As discussed in Chapter 2, the attention mechanism models the alignment between

the inputs and the outputs. For ASR tasks, the link between output units and acoustic

events is usually left-to-right. However, the traditional attention mechanisms are too

flexible to guarantee monotonic left-to-right alignments between the input and output

sequences. Since the attention mechanism relies heavily on the content of the hidden

representations of the input units, a left-to-right alignment is easily corrupted by similar

input speech fragments or noise (Chan et al., 2016; Kim et al., 2017). Furthermore, the

attention mechanism considers all input frames when calculating the alignment vector.

However, since one output unit usually only corresponds to a small input time span,

it is arguably unnecessary to consider the entire input sequence when estimating the

alignment.

We propose a novel fully-trainable windowed attention for speech recognition to

generate left-to-right attention. At each decoding time step, instead of considering

the entire input sequence, the attention mechanism only considers the inputs within a

window. Within the window, a Gaussian function or a concatenation of two sigmoid

functions are used to predict a location score for the alignment. The location score

39
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alleviates the problem of extensively using the content of hidden states to generate

the alignments. We employ a model to predict the step (shift) size and window size,

consequently making these two window parameters trainable.

We also use content-based attention to generate content scores, since the location

information is processed by the windowing mechanism. In the proposed approach the

final attention score is the product of the location score and the content score.

We test the proposed method on TIMIT and WSJ. We observe the learned window

size is notably small. Thus, in term of speed, the time complexity of the proposed

windowed attention is O(1) at each decoding time step. In contrast, at each decoding

time step, the time complexity of conventional attention mechanisms is O(n), where n

denotes the length of the input sequence. In terms of accuracy, the proposed model out-

performs content-based attention on TIMIT and WSJ. It also has comparable results to

CTC-attention on WSJ. However, the proposed model is a pure encoder-decoder model

and it does not have the additional CTC loss. When combined with CTC-attention, the

proposed method leads to faster decoding without harming the performance.

4.2 Related Work

We have presented content-based attention mechanism and location based attention

mechanism in Section 2.3.2. Content-based attention does not consider the location

information or the alignments of the previous time steps. Several mechanisms have

been proposed for location-aware or coverage-aware attention. At a decoding time

step, the attention vector at the previous time step or the alignments of all previous

output units are exploited to generate the current attention vector. Thereby, the atten-

tion mechanism has an awareness of the location or the coverage (Chorowski et al.,

2015; Chorowski and Jaitly, 2017; Zeyer et al., 2018). However, there is no restric-

tion on where the attention mechanism could attend, and these approaches does not

guarantee the best performance (Prabhavalkar et al., 2017).

CTC-attention implicitly encourages monotonic attention by adding a CTC loss to

the encoder of encoder-decoder models (Kim et al., 2017; Hori et al., 2017). In this

case, CTC provides a soft left-to-right constraint. Windowing methods put a hard lo-

cation constraint on the attention mechanism. Previous works have restricted attention

to inputs within a fixed length window. Bahdanau et al. (2016) set the window centre

to the position of the median of the attention weights and used a window size of 8

seconds. Chiu and Raffel (2018) proposed to restrict the attention into moving chunks.
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However, it uses both the encoder hidden states and the decoder hidden state to decide

the movement of the chunk. Also, the chunk size is fixed. Prabhavalkar et al. (2017)

proposed to move the fixed length window if an “end-of-window” symbol is generated,

and they found the model’s performance improves as the window size increases. When

the step size is learned, a short fixed-size window can yield good results (Tjandra et al.,

2017). However, there is no analysis on why with a trained step size small window can

suffice. and the window size is still not trainable. Nguyen et al. (2020) proposed to use

differentiable windows to restrict the attention in self-attention based models. How-

ever, rather than generating left-to-right attention, the goal of this previous work is to

encourage the attention to focus more on specific areas on the sequence.

4.3 Windowed Attention Mechanism

As mentioned above, windowed attention mechanisms force the attention mechanism

only to attend inputs within a shift window. If the window size is small, the windowing

methods force the attention mechanism only consider the local context and generate

monotonic left-to-right alignments. We firstly introduce the rule-based windowed at-

tention, then present our proposed fully-trainable windowed attention.

4.3.1 Rule-based windowed attention

In rule-based windowed attention methods (Jaitly et al., 2016; Bahdanau et al., 2016;

Prabhavalkar et al., 2017; Sainath et al., 2018), at each decoding time step m, the

attention vector αm can be described as:

αms =


exp(ems)

∑
om+Dr
k=om−Dl

exp(emk)
, s ∈ [om−Dl,om +Dr]

0, otherwise
(4.1)

where s is the index of the encoder hidden states, om is the centre of the window, and

Dl and Dr are the size of the left half and right half of the window respectively. The

method of moving the window and the window length are pre-defined. The window

shift and window length are not trainable.

Such rule-based window methods have been found to require a large window size

– often close to the length of the entire utterance – in order to get good performance

(Bahdanau et al., 2016; Prabhavalkar et al., 2017). However, if the window size is
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Figure 4.1: The windowed attention mechanism. At decoding time step m, the system

uses an MLP to estimate a step size um. The centre of the window is moved from om−1

to om. Only the encoder hidden states which are within the window will be exploited to

calculate the context vector. The window length can either be set as a hyper-parameter

or learned.

comparable to the utterance length, then it does not particularly help to generate a

monotonic alignment nor to reduce the computational effort.

4.3.2 Fully-trainable windowed attention

We propose a fully-trainable windowed attention (Figure 4.1). In this model, all the

window parameters (window shift and window size) are trainable and the learned win-

dow size is small. The step size um is predicted by an MLP,

um =U sigmoid(MLP(qm)) , (4.2)

where U is the maximum allowed step size, set as a hyper-parameter. The model

records the window centre at the previous decoding time step.

Within the window, we use content-based attention to compute the content score

ems. We use a differentiable function to calculate the location score lms. The differ-

entiable function also makes the step size and window size trainable. We choose two
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differentiable functions, the Gaussian function,

lms =

 exp(− (s−om)
2

2(Dml/2)2 ), s ∈ [om−Dml,om]

exp(− (s−om)
2

2(Dmr/2)2 ), s ∈ (om,om +Dmr]
(4.3)

and the concatenation of two sigmoid functions,

lms =

{
σ(k(s−om)+b), s ∈ [om−Dml,om]

σ(k(om− s)+b), s ∈ (om,om +Dmr]
(4.4)

where Dml and Dmr denote the length of the left and the right half windows respectively

while k and b are hyper-parameters. The final weight is defined as:

αms =
exp(ems)lms

∑
om+Dmr
k=om−Dml

exp(emk)lmk
. (4.5)

and the attention weights αms still sum to one.

The Gaussian function makes the final weight tend to be large near the centre of

the window. Thus, it provides a strong location constraint. The sigmoid functions,

when the hyper-parameter b is set large, give location scores that are almost uniformly

distributed within the window. Thus, they nearly only provide the indices of the most

related encoder hidden states; within the window, the content-based attention almost

solely determines the final weight.

When the half window sizes Dml and Dmr are equal, the location scores are sym-

metrically distributed within the window. When they are different, the location score

makes the model tend to further rely on the past or the future context. The half window

sizes can either be set as hyper-parameters or learned by one MLP so the window is

symmetric or learned by two MLPs so the window may be asymmetric. The window

size MLP is defined as:

Dm = Dsigmoid(MLP(qm)) (4.6)

where D is the maximum allowed half window size. To prevent the window size from

shrinking to zero, we also compute it using:

Dm = d +Dsigmoid(MLP(qm)) (4.7)

where d is set as a hyper-parameter and it controls the minimal length of the window.

We only use decoder hidden state to decide the window parameters since first, our

goal is to compute the location score without using the content of the encoder hidden

states; second, the decoder hidden state contains the relevant information about the

current output unit, and thus we can model the duration of the current output unit

through the decoder hidden state.
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4.4 Experimental Setups

We performed two sets of experiments: phone recognition on TIMIT and character

recognition on WSJ and subsets of WSJ. The TIMIT dataset is split into training, de-

velopment, and test sets following the Kaldi s5 recipe. We use 80 mel-scale filter-bank

features with energy as input features. The outputs are 39 phones with start/end sen-

tence (sos/eos) and space tokens.

For the WSJ dataset, we use train si284 as the training set, dev93 as the devel-

opment set and eval92 as the test set. The input features are 40 mel-scale filter-bank

features with delta and delta delta. There are 33 output labels: 26 letters, and the

apostrophe, period, dash, space, noise and sos/eos tokens.

All models are implemented using ESPnet and PyTorch. For the experiments on

TIMIT, the encoder is a BLSTM layer on top of two pyramid BLSTM (Chan et al.,

2016) layers with 256 hidden units in each direction. The decoder is a one layer LSTM

with 512 hidden units. For the experiments on WSJ, the encoder is two BLSTM layers

on top of two pyramid BLSTM layers with 320 hidden units in each direction. The

decoder is a one layer LSTM with 320 hidden units. We use the AdaDelta (Zeiler,

2012) learning algorithm with gradient clipping (Pascanu et al., 2013). All weights are

initialised uniformly within the range [−0.1,0.1]. For decoding, we use a beam search

with beam size 20.

4.5 Results and Discussion

On the TIMIT dataset, the results in Table 4.1 show our fully-trainable model out-

performs the content-based attention baseline significantly, reducing the phone error

rate (PER) by about 17% relative. Our windowed attention mechanism yields the best

result when the window size is trained by two separate MLPs.

When the window size is learned, we set a minimum window size which covers

5 encoder hidden states (0.2s; d = 2 in Equation 4.7 for the left/right window) – this

is key to successfully learning the step size. Without using a minimum window size,

the window sizes for some output units shrink to zero quickly. We also used other

methods to alleviate this problem, such as pre-training the model with a fixed size

window, making the window size MLP share one bottom layer with the step size MLP,

or setting both the maximum step size and window size to a large value. However,

although these methods are able to give valid window sizes, they do not yield the best
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Table 4.1: PER on TIMIT test set. U,Dl,Dr denote the maximum allowed step size,

left window size and right window size. “2 window MLPs” denotes using two separate

MLPs to compute the left/right window size. One unit of the step/window size is 0.04s.

If using fMLLR features and changing the activation function of the step size MLP and

the window size MLP from tanh to LeakyRELU, the network achieves 14.9% PER on

the test set.

Function Type U , Dl , Dr PER (Test)

Baseline: content-based attention 20.1%

Gaussian-Fixed window 5, 3, 3 17.0%

Gaussian-Fixed window 5, 4, 2 17.3%

Gaussian-Fixed window 5, 2, 4 17.3%

Gaussian-1 window MLP 5, 12, 12 16.8%

Gaussian-2 window MLPs 4, 6, 6 16.7%

sigmoid(±1.5x+3) 5, 4, 4 17.8%

sigmoid(±1.5x+7) 5, 4, 4 23.4%

sigmoid(±1.5x+7) 5, 7, 7 19.1%

Hierarchical maxout CNN (Tóth, 2015) 16.5%

Wavenet (Oord et al., 2016) 18.8%
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(a) Gaussian (b) Sigmoid

Figure 4.2: Attention vectors generated by different constraint functions. The utterance

is fgjd0 sx279 in the TIMIT development set (/sil ae l s ih z ah sil b ih l ah sil t iy sil t ah w

er sil k w ih th aw sil s uw sil p er v ih sh ih n ih z n ow sil w er dh iy sil/ ). The horizontal

axis denotes the encoder states and the vertical axis denotes the decoder states.

results. Furthermore, we found that if a fixed size window length of 0.2s is used, with

the same maximum allowed step size, the model fails completely and is unable to learn

a meaningful alignment vector, resulting in a very high PER.

As shown in Figure 4.2, the concatenation of two sigmoid functions can predict the

suitable position of the window but the alignments are not proper at many positions.

Moreover, when the sigmoid functions are flat within the window, this approach gives

worse PER compared to the baseline. When the sigmoid functions are flat, the location

score is almost uniformly distributed within the window. Thus, if only provided with

the small window, and without a strong location constraint, content-based attention

alone cannot generate the best alignment.

We summarise the average step size and its standard deviation of all the 39 phones

using all the utterances in TIMIT development set and test set (Figure 4.3). Based on

the statistics and our experiments using sigmoid window functions, we hypothesise

two reasons for why a large window size is required when using a rule-based step

size (Bahdanau et al., 2016; Prabhavalkar et al., 2017). First, the standard deviation

is large. Thus, if the step size is fixed or rule-based, it will be often that the step size

is smaller or bigger than the best step size. If the window size is small, then the most

related encoder hidden states may not be included in the window. Second, even given

the proper step size, our experiments indicate that without a strong location constraint

within the window the attention mechanism is unable to generate the best alignment

when the window size is small.
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Figure 4.3: The average learned step size for each phone and its standard deviation.

The data is collected on TIMIT development set and test set.

On the WSJ dataset our model again outperforms the baseline but does not surpass

the CTC-attention model (Table 4.2). We believe a major reason for this is that long

pauses often occur in WSJ utterances. Thus, the maximum allowed step size and

window size have to be relatively large so the model can jump over the silence part.

However, large maximum window and step sizes are not optimal for non-silence parts.

For WSJ, we set both the maximum window size and step size to 1.32s (33 encoder

hidden states inside the window), which is small compared to the window size (8.0s)

in the rule-based method with a fixed step size (Bahdanau et al., 2016). Furthermore,

except for the silence part, the learned step size and window size are much smaller

than the maximum size. When combined with CTC, our model yields almost identical

results to CTC-attention, but the computational requirements of the CTC-Gaussian

attention approach are noticeably lower.

Since the utterances in WSJ begin with silence of varying lengths, and the silence

part makes our model difficult to train, we pad the beginning of the text for each utter-

ance with a padding word which is made of eight padding characters. This approach

improves the performance of the content-based attention significantly. Thus, we argue

using padding to handle the silence can also improve the performance of the baseline

system. The lower part of Table 4.2 gives results for reduced subsets of the train si284

training data, using 15k and 30k utterances.
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Table 4.2: Character error rate (CER) on WSJ. Settings of the encoder-decoder and

the optimiser are similar to Kim et al. (2017). After removing the padding characters in

the decoding text generated by the baseline location-based attention encoder-decoder

model, the CER on eval92 is 7.5%, which is still significantly better the previous work

without padding.

Model(train) CER(dev) CER(eval)

train si284 dev93 eval92

Baseline: content-based attention 11.1% 8.9%

location-based attention 9.6% 6.9%

Gaussian-2 window MLPs 9.0% 6.5%

CTC-attention 7.7% 5.9%

CTC-Gaussian 7.8% 5.8%

Previous results (Kim et al., 2017) (no padding):

content-based attention 13.7% 11.1%

location-based attention 12.0% 8.2%

CTC-attention 11.3% 7.4%

train si284 subset (30K) dev93 eval92

Baseline: content-based attention 9.9% 7.9%

Gaussian-2 window MLPs 9.5% 7.2%

CTC-attention 9.1% 6.9%

train si284 subset (15K) dev93 eval92

Baseline: content-based attention 15.7% 13.7%

Gaussian-2 window MLPs 13.2% 9.6%

CTC-attention 10.8% 8.3%
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4.6 Summary

In this chapter, we made the attention mechanism more effectively model the align-

ment between the input sequence and the output sequence. Since the link between

acoustic events and output units is usually left-to-right, and each output unit is usually

corresponding to a relatively small time span, we proposed a fully-trainable windowed

attention mechanism to force the attention mechanism only consider local information

and generate monotonic left-to-right attention. Compared to previous windowed atten-

tion approaches which use a rule-based step size, both the window shift and window

length are learned. With small learned window size, our method has given competitive

results. The proposed model outperformed the content-based attention and location-

based attention on TIMIT and WSJ. It also offered comparable ASR results to CTC-

attention on WSJ while having lower computation costs.

Since our proposed method predicts the window size and the step size, it could be

applied to streaming ASR. When applying our method to streaming ASR, the encoder

does not need to process the entire sequence before the decoder generating outputs.

Instead, at each decoding time step, the encoder only needs to process the inputs within

the predicted window. Applying our proposed method to streaming ASR is left as a

future work.

The proposed method could also be applied to Transformer based models. It may

not be suitable to apply our proposed method to all the self-attention layers, since

it will eliminate the global information which could be learned by the standard self-

attention architecture. For the cross-attention between the Transformer encoder and

the Transformer decoder, the proposed method could still be beneficial. However, the

goal of this chapter is to study and improve the attention mechanism between the RNN

encoder and the RNN decoder. Thus, detailed experiments of applying the proposed

method to Transformer models are beyond the scope of this thesis.





Chapter 5

Usefulness of Self-attention Layers for

Transformer Models

5.1 Introduction

In Chapter 3 and Chapter 4, we have studied RNN based encoder-decoder models.

Based on the characteristics of ASR tasks, we propose methods which enable RNN

encoder-decoder models to more effectively model the input sequences and the align-

ments between the outputs and inputs.

In this chapter, we investigate self-attention networks (SANs). SANs have recently

been widely employed for NLP and ASR tasks. For example, they have been used

for machine translation (Vaswani et al., 2017), language model pre-training (Devlin

et al., 2018; Brown et al., 2020), acoustic modeling (Povey et al., 2018; Wang et al.,

2020) and end-to-end ASR (Karita et al., 2019; Gulati et al., 2020). SAN base models

can yield superior results compared to RNN based models. When learning the hidden

representation for each time step of a sequence, the self-attention mechanism has a

global view of the entire sequence and thus can capture temporal relationships without

the limitation of range. This is believed to be a key factor for the success of SANs

(Vaswani et al., 2017).

However, the reason for the success of SANs leads to a seeming contradiction: if

the global view provided by the attention module of self-attention layers is beneficial,

why then does forcing the attention mechanism to focus on local information in a left-

to-right order result in performance gains for RNN encoder-decoder models?

To investigate this, we study self-attention based encoder-decoder models (i.e.,

Transformers). Since the self-attention decoder attends both the acoustic information

51
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and the language information, we focus on the self-attention encoder which solely pro-

cesses acoustic frames. We notice that the range of encoded context stacks up from the

lower encoder self-attention layers to the upper encoder self-attention layers. Thus,

we argue that if the lower layers have learned sufficient contextual information, it is

not necessary for the upper layers to have the global view. To verify this, we train

Transformers with upper (further from the input) feed-forward layers and lower self-

attention layers in the encoder. The feed-forward layers can be viewed as monotonic

left-to-right diagonal attention. We perform a series of experiments on the WSJ read

speech corpus and the SWBD conversational telephone speech corpus, finding that

the upper feed-forward layers do not lead to higher error rates – they even give minor

improved accuracies.

To further analyse each self-attention layer, we develop a novel metric of the diag-

onality of attention matrices. Based on this metric, we find that the overall trend of the

average diagonality of each layer indeed increases from the lower layers to the upper

layers. The high diagonality of the upper layers implies although given a global view

of inputs, the upper layers learn to only attend local information. In contrast, the low

diagonality of the lower layers indicates long-range contextual contextual information

is captured by the lower layers.

These observations resolve the apparent contradiction between the previous studies

on forcing the attention mechanism in RNN encoder-decoder models to be monotonic

and the observed success of SAN-based models. For RNN attentional models, the

attention mechanism interacts with both the decoder and the encoder. The attention

mechanism attends high-level hidden representations of the inputs. Since an output

unit (e.g. a character) is often related to a short time span of acoustic features, the

attention layer should attend to a small window of the encoded inputs in a left-to-right

order. In contrast, self-attention encoders learn the hidden representations of the input

sequences. The global view of the input sequences enables the lower layers to encode

context information well. Our observations show that when the lower layers capture

sufficient contextual information, the self-attention mechanism is not useful for the

upper layers.

5.2 Related Work

Press et al. (2019) viewed the multi-head attention component and the feed-forward

component in the self-attention layer as individual layers, and they randomly arranged
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the order of multi-head attention layers and feed-forward layers. They observed the

structures that have lower multi-head attention layers and upper feed-forward layers

outperform other structures. In this work, we do not decompose the self-attention

layers. We demonstrate the upper self-attention layers behave like feed-forward layers.

The observations of the previous work and our experiments are consistent.

Previous works have investigated restricting each self-attention layer to attend a

small window of context and observed a decrease in accuracy (Wang et al., 2020;

Lu et al., 2020). In this work we observed that the lower self-attention layers tend

to learn a larger window of context compared to the upper layers. Thus assigning a

uniform window length to each layer may not be optimal. We investigate replacing

the upper self-attention layers with feed-forward layers. The upper feed-forward lower

self-attention layers encoders can be viewed as imposing a window of length one for

the upper layers, without restricting the window length for the lower layers.

When the upper self-attention layers are replaced with feed-forward layers, the

architecture of the encoder is similar to the CLDNN (Convolutional, Long Short-Term

Memory Deep Neural Network) (Sainath et al., 2015). The CLDNN uses an LSTM

to model the sequential information and a deep neural network (DNN) to learn further

abstract representation for each time step. Stacking a DNN on an LSTM results in a

notable error rate reduction compared to pure LSTM models. In this work, we observe

that the self-attention layers gradually behave like feed-forward layers. However, we

find stacking more feed-forward layers on self-attention layers does not result in further

performance gains.

5.3 Feed-Forward Transformer Encoder Layers

In Transformer encoder, since each self-attention layer learns contextual information

from its lower layer, the span of the learned context increases from the lower layers

to the upper layers. Since acoustic events often happen within small time spans in a

left-to-right order, we argue that if the inputs to the upper layer have encoded a suffi-

cient large span of context, then it is unnecessary for the upper layers to learn further

temporal relationships. In this situation, the self-attention module which extracts the

contextual information could be redundant. However, if modelling contextual informa-

tion is unnecessary, the self-attention mechanism could only focus on a narrow range

of inputs to model local information. That is, we argue that when the lower layers

have encoded sufficient context and when the upper layers only need to model local
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information, for each attention head in each upper layer:

softmax(
QKT
√

dK
)≈ I (5.1)

softmax(
QKT
√

dK
)V≈ V (5.2)

where I denotes the identity matrix. Thus, the multi-head attention is close to a linear

transformation and the self-attention mechanism is not useful. We therefore argue that

in this situation, replacing self-attention layers with feed-forward layers will not lead

to a drop in accuracy. Thus, for each encoder self-attention layer:

X′j = X j +MHA(X j,X j,X j) (5.3)

X′′j = X′j +ReLU(X′jW
FF1 +bFF1)WFF2 +bFF2 (5.4)

where X j = X′′j−1 and thus denotes the output sequence of the previous layer, MHA

denotes the multi-head attention component, we propose to remove the attention heads

so the self-attention layer becomes a feed-forward layer:

X′′j = X j +ReLU(X jWFF1 +bFF1) WFF2 +bFF2 (5.5)

Figure 5.1 demonstrates the architecture of a self-attention layer and a feed-forward

layer.

5.4 Metric of Diagonality of Attention Matrices

To further analyse each attention layer, we propose a novel metric of the diagonality

of attention matrices, since high diagonality indicates the attention mechanism only

focus on local information in a left-to-right order. The jth element in the ith row of the

attention matrix is the attention weight between the ith element and the jth element of

the input sequence of the self-attention layer. The attention weights sum to 1 in each

row and the attention vector can be viewed as a probability distribution over each row.

In the ith row, if all the probability mass is allocated to the ith element then it indicates

that for this row, all the attention weight is on the diagonal of the attention matrix.

When the probability mass is assigned to be as far as possible from the ith element in

the ith row for all rows, then the attention matrix has the lowest diagonality. Based on

this, we first define the centrality Ci of row i:

Ci = 1−
∑

n
j=1 ai j |i− j|

Max(|i−1| , |i−2| , · · · , |i−n|)
(5.6)
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(a) SA (b) FF

Figure 5.1: Architectures of a self-attention (SA) encoder layer with multi-head attention

(MHA) and a feed-forward (FF) encoder layer. LN is layer normalisation (Ba et al.,

2016). We omit LN and dropout (Srivastava et al., 2014) in the equations of encoder

layers (Equation 5.3 and Equation5.4 ) but they are applied in the experiments.
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where j denotes the index of each column, n denotes the length of the input sequence,

ai j denotes the attention weight between the ith element and the jth element of the in-

put sequence, and |i− j| is the distance between the ith element and the jth element

of the input sequence. Based on this definition, consider the first row of a 5× 5 at-

tention matrix. For such a matrix, (1,0,0,0,0) will have centrality 1, (0,0,0,0,1) will

have centrality 0, and (0.2,0.2,0.2,0.2,0.2) will have centrality 0.5. We define the

diagonality D of an attention matrix as the average over the centrality of all its rows:

D =
∑

n
i=1Ci

n
. (5.7)

5.5 Experimental Setups

We experiment on WSJ. We use WSJ si284 as the training set. The test sets are WSJ

dev93 and eval92. We use Kaldi for data preparation and feature extraction – 83-dim

log-mel filterbank frames with pitch (Ghahremani et al., 2014). The output units for

the WSJ experiments are 26 characters, and the apostrophe, period, dash, space, noise

and sos / eos tokens.

We employ 12-layer encoders, since a 12-layer architecture is consistent with pre-

vious works and has been widely used for Transformer models (Dong et al., 2018;

Karita et al., 2019; Michel et al., 2019; Nakatani, 2019; Lu et al., 2020). We also test

6-layer encoders. For both encoder architectures, the Transformer decoder has 6 lay-

ers. In each model, below the Transformer’s encoder there are two convolutional layers

with 256 channels, with a stride of 2 and a kernel size of 3, which map the dimension

of the input sequence to dM = 256. The multi-head attention components of the self-

attention layers have 4 attention heads. For each attention head, the dimension of the

input sequences is dM = 256. The dimension of the Value, Key, Query sequences for

each head is dV = dK = dQ = 64. And thus the output of the multi-head attention com-

ponents of each self-attention layer is dM = 256. For the feed-forward module of the

self-attention layers, the hidden dimension dFF is 2048. Input sequences to the encoder

and the decoder are concatenated with sinusoidal positional encoding (Vaswani et al.,

2017). Models are implemented using ESPnet and PyTorch.

We follow the training configuration of previous works (Dong et al., 2018; Karita

et al., 2019). Adam is used as the optimiser. The number of warm up steps is 25000.

Gradient clip with a factor 3 is used. The batch size is 32. Label smoothing with

smoothing weight 0.1 is used. Dropout rate 0.1 is used when dropout is applied. We
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train the model for 100 epochs and the averaged parameters of the last 10 epochs are

used as the parameters of the final model Dong et al. (2018). Besides the loss from the

Transformer’s decoder LD, a connectionist temporal classification (CTC) loss LCTC is

also applied to the Transformer encoder. Following the previous work (Karita et al.,

2019), the final loss L for the model is:

L = (1−λ)LD +λLCTC (5.8)

where λ = 0.3 for WSJ and λ = 0.2 for SWBD.

5.6 Results and Discussion

We first train a baseline model with a 12-layer self-attention encoder on WSJ. We then

use the baseline model to decode WSJ eval92 and compute the attention matrices of a

randomly sampled utterance from eval92. Figure 5.2 shows the plots of the attention

matrices for each attention head of the lowest layer, a middle layer and the highest

layer. The lowest layer attends to a wider range of context. The middle layers put more

attention weight on the diagonal, and the middle two heads of the topmost layer have

close to pure diagonal attention matrices. This implies that even given a global view

of inputs during training, the topmost layer learned to only focus on local information

and the context information is captured by the lower layers.

5.6.1 Replacing Self-attention Layers with Feed-forward Layers

After training the baseline, we train models whose encoders are built by different num-

bers of self-attention layers and feed-forward layers. For the encoder of these models,

there are 12 layers in total and the lower layers are self-attention layers while the upper

layers are feed-forward layers. We start from an encoder with 6 self-attention layers

and 6 feed-forward layers. Keeping the total number of layers the same, we then in-

crease the number of self-attention layers and decrease the number of feed-forward

layers. The purpose of this set of experiments is not to obtain significant improvement

gains. Instead, our purpose is to test the importance of the self-attention mechanism

for each layer. Compared to the baseline, if there is no drop in performance, then this is

an indication of the redundancy of the self-attention. Table 5.1 shows that as the num-

ber of self-attention layers increases, the character error rate (CER) decreases, which

implies learning further contextual information is beneficial.
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(a) Attention matrices of each attention head of encoder self-attention layer 12

(b) Attention matrices of each attention head of encoder self-attention layer 5

(c) Attention matrices of each attention head of encoder self-attention layer 1

Figure 5.2: A sample of attention matrices of encoder self-attention layers generated by

the baseline Transformer with a 12-layer encoder. The sampled utterance is form WSJ

eval92. While the lowest layer (layer1, near input) attends a wide range of context, the

middle layer focus more on the local information and the topmost layer assigns nearly

all the attention weight to the diagonal.
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However, when the number of self-attention layers increases to 10, with 2 upper

feed-forward layers, the encoder gives almost identical results compared to the 12-

layer self-attention baseline, although the 10-layer self-attention encoder has notably

higher CERs. Furthermore, although the 11-layer self-attention encoder gives worse

results compared to the 12-layer baseline, the encoder which has 11 self-attention lay-

ers and one upper feed-forward layer yields the best results. Increasing the number of

self-attention layers to 12 and decreasing the number of feed-forward layers to 0 is not

helpful. This set of experiments shows it is crucial for the layers below the 10th layer

to encode temporal relationships. Upon the 10th layer the global view of the sequence

is not useful, indicating that the contextual information is well captured by the lower

layers.

We further tested if stacking more feed-forward layers to make deeper encoders

is beneficial. As shown in Table 5.1, this does not give performance gains. We also

investigated modifications to the architecture of the stacked feed-forward layers, such

as removing residual connections or using an identity mapping (He et al., 2016). These

modifications did not result in a CER reduction compared to the 11-layer self-attention

1-layer feed-forward encoder.

We also tested the 6-layer encoder architecture and the results are also shown in

Table 5.1. The baseline model has 6 self-attention layers as its encoder. Then we

replace the top one, two and three layers with feed-forward layers respectively. We

observe that replacing the topmost layer of the 6-layer self-attention encoder does not

lead to reductions in accuracy but to minor improvements, which is consistent with the

experimental results for the 12-layer encoder.

It is interesting to see that the performance of the model with 6 self-attention layers

and 6 feed-forward layers and the model with only 6 self-attention layers are almost

the same. Along with the experiments which stacking feed-forward layers on 11 self-

attention layers or 12 self-layers, these experiments show simply stacking feed-forward

layers on self-attention layers may not lead to performance gains. However, it is not

contradict with the argument when self-attention is not useful, it can be replaced with

feed-forward layers. We also observe the upper self-attention layers indeed behave like

feed-forward layers, see Section 5.6.2 for a detailed discussion.

We further test replacing upper self-attention layers on the larger and more chal-

lenging SWBD corpus. The results are shown in Table 5.2. The encoder with 10

self-attention layers is less accurate than the encoders with 11 and 12 self-attention

layers. Also, the 12-layer self-attention encoder has higher word error rates (WERs)
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Table 5.1: CERs on WSJ for the Transformer models with different encoders. The

evaluation sets are WSJ eval92 and dev93. SA denotes self-attention layer and FF

denotes feed-forward layer.

Number of Layers CER/%

Total SA FF eval92 dev93

12 12 0 3.5 4.6

12 11 1 3.4 4.5
12 10 2 3.6 4.6

12 9 3 3.8 4.8

12 8 4 3.9 4.9

12 7 5 4.0 5.1

12 6 6 4.2 5.3

11 11 0 3.6 4.7

10 10 0 4.0 5.2

13 12 1 3.6 4.7

13 11 2 3.6 4.6

14 11 3 3.7 4.6

6 6 0 4.2 5.4

6 5 1 4.2 5.3
6 4 2 4.1 5.6

6 3 3 4.4 5.9

Table 5.2: WERs of the experiments on SWBD for the Transformer models with differ-

ent encoders. The evaluation sets are eval 2000 SWBD/callhome. SA denotes self-

attention layer and FF denotes feed-forward layer.

Number of Layers WER/%

Total SA FF SWBD Callhome

12 12 0 9.0 18.1

12 11 1 9.0 17.8

12 10 2 8.9 17.6

12 9 3 9.5 18.5

11 11 0 9.0 17.7

10 10 0 9.2 18.4

Transformer(Karita et al., 2019) 9.0 18.1

Transformer(Pham et al., 2019) 10.4 18.6

Transformer(Zeyer et al., 2019) 10.6 22.3
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than the 11-layer encoder. However, the encoder with 10 self-attention layers and

2 feed-forward layers, which has 12 layers in total, gives the lowest WERs. The 9

self-attention layers + 3 feed-forward layers encoder yields higher WERs. Thus, the

layers below the 10th layer are crucial in learning contextual information. Upon the

10th self-attention layer feed-forward layers are sufficient in learning further abstract

representations.
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5.6.2 Diagonality of Self-attention Layers

To further evaluate the usefulness of self-attention for each layer, we compute the aver-

age diagonality of each attention head for every layer of the baseline 12-layer encoder

model on WSJ eval92, and the average diagonality over all attention heads of each

layer. As shown in Figure 5.3, the overall trend of the average diagonality indeed

increases from the lower layers to the upper layers. In the experiments on replacing

self-attention layers, models with more than 2 feed-forward layers and fewer than 10

self-attention layers yield higher error rates (Table 5.1). Figure 5.3 shows that the av-

erage diagonality from the 9th layer to the 10th layer is relatively low, compared to the

topmost two layers. These consistent observations indicate contextual information is

necessary for the 9th layer and the 10th layer and thus the self-attention mechanism is

essential for these two layers. For the topmost two layers, even with the self-attention

mechanism, the diagonality is close to 1, which shows that they focus on local in-

formation. This is also consistent with the finding in Table 5.1 that replacing these

self-attention layers with feed-forward layers leads to no increase in error rate. We

also computed the average diagonality of each layer of the baseline 6-layer Trans-

former encoder. Figure 5.4 shows the trend of the average diagonality increases from

the lower layers to the upper layers.

To investigate how the diagonality changes after the upper layers are replaced by

feed-forward layers, we compute the average diagonality of each layer of the models

with one and two feed-forward layers in the encoder, where the performance does not

drop. Figure 5.5 and Figure 5.6 show the overall trend of the average diagonality still

increases from the lower layers to the upper layers.
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Figure 5.3: The averaged diagonality with ± standard deviation of each self-attention

layer of the 12-layer encoder baseline. Layer 12 is the topmost layer. The dash line is

the trend line.

Figure 5.4: The averaged diagonality with ± standard deviation of each self-attention

layer of the 6-layer encoder baseline. Layer 6 is the topmost layer. The dash line is the

trend line.
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Figure 5.5: The averaged diagonality of each layer of the encoders. Layer 12 is the

topmost layer. Feed-forward layers have diagonality 1.

Figure 5.6: The averaged diagonality of each layer of the encoders. Layer 6 is the

topmost layer. Feed-forward layers have diagonality 1.
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5.7 Summary

In this chapter, based on the observation that restricting the attention mechanism to

use only local context to generate left-to-right alignments is beneficial for the RNN

encoder-decoder, we investigated if the global view of the self-attention is necessary

for ASR tasks. Our experiments on WSJ and SWBD showed that for the encoder in

Transformer models, replacing the upper self-attention layers with feed-forward layers

does not increase the error rates. We also developed a novel metric of the diagonality

of the attention matrix, finding the overall diagonality indeed increases from the lower

layers to the upper layers. These observations indicated that the lower layers are able

to capture sufficient context information, and in this situation the global view and the

self-attention mechanism are not necessary for the upper layers.





Chapter 6

Stochastic Attention Head Removal for

Transformer Models

6.1 Introduction

In the previous chapter (Chapter 5), we investigated the usefulness of the self-attention

encoder layers, finding that the upper encoder layers can be replaced with feed-forward

layers. In this chapter, instead of considering self-attention layers, we study individual

attention heads. We analyse the diagonality of individual attention heads. We find that

in trained Transformer ASR models, the attention matrices of some attention heads are

close to the identity matrices, indicating that the attention mechanism is just an identity

mapping. Thus, the input sequence (after a linear transformation) can be directly used

as the output of the corresponding attention head.

This observation leads to a question: if there are redundant attention heads in

trained Transformer models, then when we train a model from scratch, can we remove

some attention heads without harming the model performance? In our experiments,

we find some architectures with reduced numbers of attention heads offer better accu-

racies. However, searching for the best structure is time consuming. To address this,

we propose to randomly remove attention heads during training, and keep all the at-

tention heads at the test time. Through this method, the trained model is an ensemble

of different architectures.

Our method also enables the networks to better utilise the representation power

of the multi-head attention architecture. The redundancy of attention heads in the

baselines indicates some heads learn the most crucial patterns while other heads merely

extract redundant features which can be disregarded (this is also observed by Voita

67
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et al. (2019)). In contrast, our method forces all attention heads to learn crucial features

– since heads are randomly removed during training, the model cannot only rely on

some specific heads for extracting key features. Thus, the proposed method forces each

head to learn useful information and enables the model to better use the representation

power of the multi-head attention structure.

We employ the proposed method to train Transformer and Conformer ASR mod-

els. Our method offers consistent accuracy improvements on datasets of different

ASR scenarios, including WSJ, AISHELL, SWBD and AMI. On SWBD and AMI,

to the best of our knowledge, we have achieved state-of-the-art (SOTA) performance

for sequence-to-sequence Transformer based models.

6.2 Related Work

At first sight, the proposed method appears to be similar to dropout (Srivastava et al.,

2014); however, the objectives of these two methods are different. Dropout randomly

drops units in neural networks to prevent the co-adaptation between these units. In

this work, we randomly remove entire attention heads, motivated by the observation

that some architectures with reduced numbers of attention heads can lead to better

performance, but avoiding the need for a time prohibitive search for the best architec-

ture. Instead, we effectively train an ensemble of different structures. Furthermore,

we observe our method forces the attention heads which are redundant in the baseline

systems to learn useful patterns. We also have employed dropout in our experiments

and found it is complementary to our method.

Previous works have proposed to use a development set (Michel et al., 2019) or a

trainable hard gate head (Voita et al., 2019) to drop attention heads. These methods

remove attention heads in a static manner – once an attention head is removed during

training, it will never be present in the structure. Also, little performance gain is ob-

tained by these methods. Our proposed method removes attention heads randomly and

consistently yields better accuracies.

To build very deep networks, previous works have proposed to drop self-attention

layers randomly or following a schedule (Pham et al., 2019; Fan et al., 2019). During

training, the network becomes shallower dynamically and thus the gradient vanishing

problem is alleviated. At testing, all the layers are kept and thus the final trained model

is still a deep neural network. Rather than dropping self-attention layers, in this work

we remove attention heads randomly to train models with different number of attention
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heads. Our method is compatible with these previous works. The combination of our

method and the previous work will results in shallower networks with different number

of attention heads during training.

Peng et al. (2020) proposed to train subsets that contain h− 1 elements of the h

attention heads. During testing, the output is a linear combination of the outputs of

these subsets. In our work, the attention heads are randomly removed. Therefore, the

number of trainable attention heads changes dynamically.

6.3 Experimental Setups

We experiment on datasets of a variety of scenarios, including WSJ (reading), AISHELL

(reading Chinese), SWBD (telephone conversation) and AMI (meeting). We use Kaldi

for data preparation and feature extraction – 83-dim log-mel filterbank frames with

pitch (Ghahremani et al., 2014). SpecAugument (Park et al., 2019) is used on all

datasets but WSJ. On all datasets, following the previous works (Dong et al., 2018;

Karita et al., 2019; Lu et al., 2020), we employ the 12layer Encoder-6layer Decoder
architecture. The multi-head attention components of the self-attention layers have 4

attention heads and dV = dK = 64, dM = 256. For the feed-forward module of the

self-attention layers, dFF = 2048. Below the encoder of the Transformer, there are two

convolutional layers with 256 channels, with a stride of 2 and a kernel size of 3, which

map the dimension of the input sequence to dM. For Conformer models, the struc-

ture of the self-attention component is the same as the Transformer. The kernel size

of the convolution component is either 31 for SWBD and 15 for other datasets. Input

sequences to the encoder and the decoder are concatenated with sinusoidal positional

encoding (Vaswani et al., 2017; Dai et al., 2019). All models are implemented using

ESPnet and PyTorch.

The training schedule follows Dong et al. (2018). Dropout rate 0.1 is used. The

training lasts 100 epochs for WSJ and 50 epochs for other datasets. The averaged

parameters of the last 10 epochs are used as the parameters of the final model (Dong

et al., 2018). Adam is used as the optimiser. The output units for WSJ/AISHELL/AMI

are characters and the output tokens for SWBD experiments are tokenised at word-level

using Byte Pair Encoding (BPE) (Sennrich et al., 2016). The batch size is 32. Label

smoothing with smoothing weight 0.1 is used. Besides the loss from the Transformer’s

decoder LD, a CTC loss LCTC is also applied to the Transformer/Conformer encoder.
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(a) 12-layer Encoder (b) 6-layer Encoder

Figure 6.1: The heat map of the averaged diagonality of each attention head in each

layer. The topmost row denotes the topmost layer. The 5th column shows the average

diagonality over all heads of each layer. The red color denotes high diagonality and the

blue color indicates low diagonality.

Following Karita et al. (2019), the final loss L for the model is:

L = (1−λ)LD +λLCTC. (6.1)

where λ = 0.2 for SWBD and λ = 0.3 for other datasets.

6.4 Diagonality of Individual Attention Heads

We study the diagonality of individual attention heads in this section. We train two

baseline Transformers on WSJ. For the first baseline, the encoder has 12 layers. For

the second baseline, the encoder has 6 layers. Then, for all utterances of WSJ eval 92,

we compute the average diagonality of each individual attention head in each encoder

layer of these two baselines.

Figure 6.1 shows the heat map of the mean diagonality of each attention head.

Table 6.1 and Table 6.2 show the averaged diagonality with one standard deviation

of each individual attention heads. We observe that the standard deviation is small,

which indicates whether an attention head focuses on local or global information varies

marginally over different utterances. The attention heads which have large diagonality

almost always only attend local information, indicating the redundancy of the self-

attention mechanism for these heads. We also notice that for some layers, the diago-

nality of individual heads differ significantly from each other – although the averaged
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diagonality of the entire layer is high, the diagonality of some individual heads could

be low. In Chapter 5, replacing the entire self-attention layer with feed-forward layer

does not consider the possibility that the diagonality of individual attention heads may

vary within the same layer. Thus, based on these observations, we propose to remove

the individual attention heads which have high diagonality and retrain the model from

scratch.

Table 6.1: The mean diagonality ± standard deviation for all attention heads of each

layer for the 12-layer encoder. The topmost row denotes the topmost layer.

(near output) head 1 head 2 head 3 head 4

Layer 12 .906 ± .041 .951± .028 .917 ± .044 .926 ± .026

Layer 11 .850 ± .037 .885± .032 .710 ± .043 .883 ± .043

Layer 10 .938 ± .028 .814± .060 .772 ± .041 .678 ± .055

Layer 9 .815 ± .038 .838± .034 .657 ± .035 .911 ± .036

Layer 8 .930 ± .025 .769± .027 .721 ± .030 .953 ± .021

Layer 7 .966 ± .022 .970± .016 .705 ± .027 .733 ± .026

Layer 6 .686 ± .026 .631± .027 .982 ± .009 .987 ± .009

Layer 5 .662 ± .031 .695± .031 .740 ± .021 .625 ± .033

Layer 4 .697 ± .030 .645± .024 .634 ± .032 .712 ± .027

Layer 3 .608 ± .029 .613± .032 .636 ± .035 .606 ± .032

Layer 2 .627 ± .033 .661± .056 .618 ± .035 .841 ± .031

Layer 1 .533 ± .038 .568± .034 .612 ± .035 .588 ± .040

Table 6.2: The mean diagonality ± standard deviation for all attention heads of each

layer of the 6-layer encoder. The topmost row denotes the topmost layer.

(near output) head 1 head 2 head 3 head 4

Layer 6 .905 ± .028 .814± .023 .831 ± .049 .936 ± .025

Layer 5 .984 ± .006 .911± .023 .935 ± .020 .970 ± .011

Layer 4 .817 ± .028 .970± .009 .801 ± .022 .868 ± .023

Layer 3 .658 ± .021 .650± .015 .677 ± .018 .625 ± .022

Layer 2 .622 ± .023 .616± .014 .706 ± .019 .742 ± .004

Layer 1 .550 ± .044 .979± .005 .583 ± .013 .602 ± .017
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6.5 Static Attention Head Removal

We firstly test removing attention heads in a static way. That is, we remove the attention

heads that have diagonality above a threshold in the trained model. We then reinitialise

and and retrain the model. Figure 6.2 shows the diagonality heatmap of the baseline

model and the structures with the corresponding head removal strategy.

(a) Baseline Heat Map (b) Remove Diag> 0.95 (c) Remove Diag> 0.90

(d) Remove Diag> 0.85 (e) Remove Diag> 0.80

Figure 6.2: The tested encoder architectures. We remove the attention heads based

on their diagonality in the baseline model. The baseline has 12 self-attention layers.

Each non-white cell represents an attention head. Each white cell denotes there is no

attention head. When all the attention heads of a layer are removed (four white cells),

the feed-forward component of that layer is preserved. (a) heatmap of the averaged

diagonality of each attention head. (b-e) structures where some attention heads are

removed.

Table 6.3 shows the CERs of each model. We observed that if the attention heads

with diagonality larger than 0.95 are removed and the remaining architecture is trained

from scratch (re-initialising the weights), there will be no performance drop. There

are minor performance drops if we remove the attention heads whose diagonality is
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Table 6.3: CERs of trained Transformer models with different encoder architectures.

Removal Strategy # Encoder Heads eval92 (CER) dev 93 (CER)

Baseline 48 3.5 4.6

Diagonality> 0.95 42 3.4 4.6

Diagonality> 0.90 36 3.5 4.7

Diagonality> 0.85 33 3.6 4.7

Diagonality> 0.80 29 3.7 4.7

larger than 0.90. However, in this situation, the total number of attention heads is

only 3/4 compared to the total number of attention heads of the baseline. As we drop

more attention heads, the performance of the models becomes slightly worse. This

is expected, since small diagonality indicates the global view and the self-attention

mechanism are still useful.

We observe that although the topmost layer of the encoder has the largest averaged

diagonality, the individual attention heads which have the largest averaged diagonal-

ity are not necessarily in the upper most layer. Thus, we further investigate removing

individual heads that have the top-four largest diagonality. Figure 6.3 shows the cor-

responding architectures and Table 6.4 shows the CERs of each removal strategy. Sur-

prisingly, removing the attention heads with the top-four diagonality leads to inferior

performance. However, replacing the topmost self-attention layer with a feed-forward

layer, which is equivalent to removing all the attention heads in the topmost layer,

gives better performance compared to the baseline. We also test dropping all the four

attention heads in the lowest layer and it results in higher CERs. Thus, the position of

the attention heads may influence on whether the heads can be removed (with minor

effect on performance).
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(a) Baseline Heat map (b) Remove Diag > 0.96 (c) Topmost Removed

(d) Lowest Removed

Figure 6.3: The tested encoder architectures. The baseline has 12 self-attention layers.

Each non-white cell represents an attention head. Each white cell denotes there is no

attention head. When all the attention heads of a layer are removed (four white cells),

the feed-forward component of that layer is preserved. (a) heatmap of the averaged

diagonality of each attention head. (b-d) structures where some attention heads are

removed.
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6.6 Stochastic Attention Head Removal

In the previous section, we observed that training some architectures with reduced

number of attention heads from scratch could lead to better accuracies. However, the

search for the best architecture is time prohibitive . To address this, we propose to

randomly remove attention heads during training and keep all heads at the test time.

The proposed method can be viewed as training different architectures and using the

ensemble of these trained architectures as the final model at the test time. When pro-

cessing a training example, each attention head has a probability q of being removed,

where q is set as a hyper-parameter. If a head is kept, then the output of that head is

scaled by 1
1−q :

Ai(XQ,XK,XV) =
1

1−q
× softmax(

QiKT
i√

dK
)Vi (6.2)

At the test time, the scale factor 1
1−q is removed and all the attention heads are always

present. Thus, the expected output of the attention head is the same during training

and testing. During training, if all the attention heads of a layer are removed for an

utterance, then that layer becomes a feed-forward layer. The stochastic attention head

removal strategy is applied for both the encoder and the decoder. We apply the pro-

posed method in training both the Transformer models and the Conformer models.

Considering both the encoder and the decoder has 48 attention heads and in the exper-

iments of static attention head removal some encoder architectures with 48− 4 = 44

heads have yielded improved accuracies, we test removal probability values starting

from 4
48 .

Table 6.4: CERs of trained Transformer models with different encoder architectures.

Removal Strategy # Encoder Heads eval92 (CER) dev 93 (CER)

Baseline 48 3.5 4.6

Diagonality> 0.96 44 3.7 4.6

Topmost Heads Removed 44 3.4 4.5

Lowest Heads Removed 44 3.7 4.6

6.6.1 Results and Discussion

Table 6.5 summarises the experimental results on WSJ. The attention head removal

probability 8
48 consistently gives the best results on eval92, and it yields almost iden-

tical CERs on dev93 compared to the baseline. The removal probability 10
48 has CERs
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Table 6.5: CERs on WSJ for stochastic head removal.

eval92/dev93 (CER%)

removal probability seed1 seed 2 seed 3

0/48 (baseline) 3.5/4.6 3.6/4.5 3.5/4.6

4/48 3.6/4.5 3.5/4.6 3.5/4.4
6/48 3.4/4.5 3.5/4.6 3.4/4.7

8/48 3.4/4.6 3.4/4.6 3.4/4.6

10/48 3.5/4.6 3.5/4.5 3.4/4.5

Table 6.6: WERs on SWBD for Transformer models.

SWBD/Callhome (WER%)

Removal Probability seed 1 seed 2 seed 3

Transformer Models

0/48 (baseline) 9.0/18.1 9.1/18.2 9.1/17.9

4/48 8.9/17.5 8.7/17.6 -

6/48 8.6/17.2 8.7/16.9 8.7/16.8
8/48 8.8/17.6 8.9/17.2 -

Transformer (Karita et al., 2019) 9.0/18.1

Very deep self-attention (Pham et al., 2019) 10.4/18.6

Multi-stride self-attention (Han et al., 2019) 9.1/-

which are never worse than the baseline. Thus, we conclude the proposed stochastic

attention head removal strategy consistently improves the model’s performance.

We further test the proposed training method on larger and more challenging datasets.

Table 6.6 shows the results of applying the proposed method to train Transformers on

SWBD. We run the experiments with three different random seeds, and have obtained

consistently reduced word error rates (WERs) with all the seeds. To further show our

method has statistically significant gains, we apply Matched Pairs Sentence-Segment

Word Error significance tests (mapsswe) (Gillick and Cox, 1989) for the best Trans-

former models. On both SWBD/Callhome test sets, p < 0.001.

We also use our method to train Conformer models on SWBD. Noticing that in

the Transformer experiments the probability values which lead to the best models are

within the range of 0.1 to 0.2, we test using 0.1 or 0.2 as the removal probability. That

is, we test setting the removal probability without considering the total number of at-
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Table 6.7: WERs on SWBD for Conformer models. * indicates the number is the aver-

age of 5 runs. In these five runs, the WERs on SWBD and Callhome ranges from 6.7

to 6.8 and from 13.5 to 13.9, respectively.

Removal Probability SWBD/Callhome (WER%)

Conformer Models

0.0 (baseline) 8.4/17.1

0.1 8.2/16.4
0.2 8.1/16.4

+Speed Perturbation + RNNLM

0.0 (baseline) 6.9/14.0

0.1 6.4 /14.0

0.2 6.7*/13.7*

Conformer (Guo et al., 2020) 7.1/15.0

tention heads. In addition, we augment SWBD by speed perturbation (Ko et al., 2015)

with ratio 0.9 and 1.1 and decode with a recurrent neural network language model

(RNNLM) (Hori et al., 2017). Table 6.7 shows that our method is effective in this

set of experiments. We train Conformer models using a fixed random seed. The only

random factor is how the attention heads are removed in each training update and the

performance of the baseline is constant. We apply a two-tailed t-test to examine if the

mean WERs of the five runs of the conformer models trained with removal probabil-

ity 0.2 are significantly different from the baseline Conformer. On SWBD p < 0.003

and on Callhome p < 0.02, which shows the gains are statistically significant. To the

best of our knowledge, we have achieved the SOTA for end-to-end Transformer based

models on SWBD.

Table 6.8 shows the results on AISHELL. We have applied mapsswe. On the Dev

set, p < 0.001 for both the Transformer and Conformer models. On the test set, p =

0.030 for the Transformer and p = 0.023 for the Conformer. We notice there is a

performance gap between our Conformer models and the previous work (Guo et al.,

2020). This is because of different training configurations. We did not further tune our

Conformer models on AISHELL due to the large number of experiments and we have

indeed obtained statistically significant gains. Thus, we conclude on all the datasets,

our method has offered statistically significant performance gains.

We use AMI to test our method on a more difficult ASR task. We use the individual
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Table 6.8: CERs on AISHELL of stochastic head removal.

Removal Probability Dev/Test (CER%)

Transformer Models

0.0 + speed perturbation + RNNLM 6.0/6.5

0.1 + speed perturbation + RNNLM 5.8/6.3

0.2 + speed perturbation + RNNLM 5.8/6.3

Transformer (Karita et al., 2019) 6.0/6.7

+ 5,000 hours pretrain (Jiang et al., 2020) -/6.26

Memory equipped self-attention (Gao et al., 2020) 5.74/6.46

Conformer Models

0.0 + speed perturbation + RNNLM 5.3/6.0

0.1 + speed perturbation + RNNLM 5.2/5.8

Conformer (Guo et al., 2020) 4.4/4.7

headset microphone (IHM) setup. Table 6.9 shows our method has outperformed the

baselines. Our method has achieved the SOTA for Transformer based models on AMI.

We also applied mapsswe and p < 0.001 for both Transformer and Conformer models

on both dev and test sets.

We notice that the performance of our method varies among different removal

probabilities. However, the probabilities between 0.1 and 0.2 have given the best ac-

curacies. Also, the improvements are upon strong or even SOTA baselines with data

augmentation and RNN-based LM.

We further analyse the effect of the proposed method. We have plotted the training

loss of the baseline Conformer and the Conformer trained with removal probability

0.1 on SWBD. Figure 6.4 (a) shows the train loss curves. The proposed method has

higher train loss in each epoch. This is as excepted since in each training update only

a fraction of the network is trained. We also compute the averaged similarity of the

attention matrices of each attention head pair in each layer. We use the averaged cosine

similarity of rows of the same indices as the similarity of attention matrices since each

row vector shows how the attention weights are distributed to encode the input at the

row index. Figure 6.4 (b) show that with the random removal, the similarities between

attention heads increase. Thus, it indicates that the proposed method forces each at-

tention head to extract the most essential patterns while allowing different heads to

encode individual additional information. The baseline model has a smaller similarity
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Table 6.9: WERs on AMI for stochastic head removal.

Removal Probability dev/test (WER %)

Transformer Models

0.0 (baseline) 24.9/25.8

0.1 24.2/24.6

0.2 24.5/24.9

Conformer Models

0.0 (baseline) 24.9/25.8

0.1 24.1/24.2

2D Conv (Oglic et al., 2020) 24.9/24.6

TDNN (Oglic et al., 2020) 25.3/26.0
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Figure 6.4: The train loss and the averaged similarity between attention heads of the

baseline Conformer model and the Conformer model trained with stochastic attention

head removal (SAHR) probability 0.1. ”decoder-inter” denotes the MHA component that

interacts between the encoder and the decoder.
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between attention heads, further indicating each layer relies on some attention heads

to learn the most useful features while other heads encode unessential information.

Therefore, the proposed method more effectively utilises the representation powers of

the multi-head attention and gives improved accuracies.

6.7 Summary

In this chapter, we studied individual attention heads in Transformer based ASR mod-

els. We observed some attention heads are redundant – they only focus on local infor-

mation. Also, removing some attention heads and retraining the model from scratch

could lead to performance gains. Instead of searching for the best structure with re-

duced number of attention heads (which is time prohibitive), we proposed to randomly

remove attention heads during training and keeping all the attention heads at testing.

The proposed method also encourages each attention head to learn the key patterns

which share some similarities across all the heads in the same layer. The stochastic

attention head removal method has offered statistically significant improvements for

Transformer and Conformer models on datasets of different ASR scenarios.

Since our proposed SAHR can be viewed as a method in training self-attention

based models in general, this method can also be applied to other related tasks, such

as machine translation or speech translation. However, these further applications are

beyond the scope of this thesis.



Chapter 7

Top-down Level-wise Neural Networks

Training

7.1 Introduction

In the previous chapters (Chapter 3-6), we have studied attentional encoder-decoder

models. In this chapter, we present novel top-down level-wise neural network training

methods. That is, we propose to train neural networks from the upper layers (near the

output) to the lower layers (close to the input) in a cascaded way.

The lower layers of a deep neural network (DNN) can be interpreted as a feature

extractor while the upper layers can be viewed as a classifier. The feature extractor

learns useful features from the data (Krizhevsky et al., 2012; Bengio, 2012; Yosinski

et al., 2014). Transfer learning exploits this property – if the underlying features of

two datasets are similar, then the feature extractor which is trained on the base dataset

can be transferred to the target dataset, with the classifier trained on the target dataset.

For speech recognition, transfer learning has been widely employed in training ASR

models for low-resource languages – Swietojanski et al. (2012) applied unsupervised

restricted Boltzmann machine (RBM) (Smolensky, 1986) pre-training using different

languages; Thomas et al. (2012), Ghoshal et al. (2013) and Huang et al. (2013) em-

ployed shared feature extractors across different languages; Tong et al. (2017) and Cho

et al. (2018) explored building sequence-to-sequence ASR models for low-resource

language through transfer learning. The motivation of these previous works is that the

low-level features of different languages are similar while the output units are distinct.

Although the feature extractor can be transferred across different datasets, surpris-

ingly, it is not transferable within the same dataset – Yosinski et al. (2014) found that re-

81
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training the classifier based on a frozen trained feature extractor using the same dataset

usually results in a performance drop.

In this chapter, in contrast to training neural networks in a bottom-up way, we inves-

tigate training neural networks from the upper layers to the lower layers in a top-down
manner. Since we train the network from the upper layers to the lower layers rather

than fixing one part and train another part in iteration, the proposed method cannot

be categorised as a coordinate descent or an alternating minimization algorithm. The

upper layers and the lower layers can be trained using different datasets or the same

dataset. Figure 7.1 shows the process of the proposed top-down training. We demon-

strate that analogously to general feature, there are also general classifiers. That is,

1) while general feature extractors extract relevant features, general classifiers define

suitable classification boundaries which better reflect the relationships between differ-

ent classes; 2) when transferred to unseen data, general feature extractors/classifiers

should lead to models with good generalisation. We show that general classifiers can

be transferred across different datasets experimentally. In addition, we empirically

show unlike feature extractors, classifiers can be transferable within the same dataset
– retraining the feature extractor based on the frozen general classifier on the same

dataset can lead to performance gains.

The top-down training across different datasets is suitable for training noise-invariant

feature extractor. If a model is trained with a large amount of clean data, then it is rel-

atively easy for the feature extractor to learn extracting general features, and thus the

features which fit the classifier are close to the underlying patterns. Then, on the noisy

dataset, if we train the feature extractor with respect to the classifier which is trained on

large amount of clean data, we force the feature extractor to provide features which fit

the trained clean classifier. As a result, the feature extractor is constrained to provide

noise-invariant features. Experimentally, for CTC models, we train the feature extrac-

tor on CHiME-4 based on the classifier trained on WSJ. We use Aurora-4 (Pearce,

2002) test sets to test the model’s performance on unseen noisy conditions. We ob-

serve the model trained with the proposed method has significantly lower CERs on all

14 Aurora-4 test sets, indicating the feature extractor is indeed noise-invariant.

The top-down training within the same dataset prevents the classifier from (further)

overfitting. Within the same dataset, for the conventional training where all the layers

are trained jointly, we empirically find that the classifier becomes general then overfits

as the training continues. Thus, freezing the classifier before it begins to overfit, and

only retraining the feature extractor is beneficial – it prevents training the feature ex-
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Figure 7.1: An illustration of the top-down training. A base model is trained on the base

dataset. Then, on the target dataset, the feature extractor is trained with the trained

base classifier (we can group arbitrary many upper layers as the classifier; however,

the feature extractor should at least have one layer). The deep blue square indicates

the weights of the layer in the target model are from the weights of the layer in the base

model. The shallow blue squares indicate the weights of these layers are optionally

reinitialised. The target dataset and the base dataset can be either the same or differ-

ent. When the target dataset and the base dataset are different, we either freeze the

classifier or fine-tune it with a small learning rate. If the target dataset and the base

dataset are the same, we always freeze the classifier.
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tractor with respect to an overfitting classifier. We experimentally show the proposed

method is effective in training CTC, CTC-attention and Transformer models for ASR;

VGG (Simonyan and Zisserman, 2015) and ResNet (He et al., 2016) models for image

classification; AWD-LSTM (Merity et al., 2018) for language modelling.

In summary, this chapter presents three novel contributions:

Demonstration of the existence of general classifiers;

A Top-down training algorithm across different datasets;

A Top-down training algorithm within the same dataset.

7.2 Related Work

The proposed top-down training method can be viewed from different aspects. Thus,

it is related to previous works of different fields. We review these previous works of

different areas in this section.

7.2.1 Transfer Learning

Conventional transfer learning transfers the feature extractor across different datasets.

For ASR, this learning paradigm is widely used in training models for low-resource

languages (Thomas et al., 2012; Swietojanski et al., 2012; Ghoshal et al., 2013; Huang

et al., 2013; Tong et al., 2017; Cho et al., 2018), since the low-level features of differ-

ent languages are generally similar. However, this method is not suitable in training a

noise-invariant feature extractor. Although the underlying patterns should be invariant

to the noise conditions, it is not appropriate to transfer the feature extractor from the

clean dataset to the noisy dataset owing to the mismatch of acoustic conditions. In

contrast, our proposed method is suitable for training noise-invariant features. Also,

transferring the feature extractor within the same dataset (i.e., retraining the classifier

with the trained feature extractor) usually leads to performance drops (Yosinski et al.,

2014), while our top-down training method also leads to performance gains when ap-

plied within the same dataset.

7.2.2 Bottom-up Layer-wise Training

Top-down training within the same dataset trains neural networks from the upper layers

to the lower layers in a cascade manner, and thus can be viewed as a layer-wise training
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method. Layer-wise training without a joint fine-tuning stage has been investigated

by a number of researchers (Hettinger et al., 2017; Zhao et al., 2018; Mostafa et al.,

2018; Malach and Shalev-Shwartz, 2018; Marquez et al., 2018; Belilovsky et al., 2019;

Nøkland and Eidnes, 2019). However, these training methods build DNNs in a bottom-

up manner. In general, the reported experimental results do not indicate that these

training methods surpass conventional joint training.

Belilovsky et al. (2019) introduced auxiliary networks trained using layer-wise

training, demonstrating that it can generate models which outperform Alexnet (Krizhevsky

et al., 2012) and VGG on ImageNet (Deng et al., 2009). However, when using net-

works with the same auxiliary architecture, conventional joint training outperforms

layer-wise training.

Nøkland and Eidnes (2019) presented a layer-wise training approach which in-

terpolates a similarity loss with the cross-entropy loss. They found that in this case

layer-wise training surpasses joint training when using VGG-like models on CIFAR-

10. However, this training method is not useful for training networks with residual

connections. In contrast, our top-down training methods presented here surpasses joint

training for both VGG and ResNet on CIFAR-10. Our training method also leads to

better accuracies of Transformer based ASR models on SWBD, which further shows

it is effective for training networks with residual connections.

7.2.3 Dynamically Changed Learning Rate

In our top-down training method, we either fine-tune the trained classifier or freeze it

(in this case the learning rate can be viewed as 0). In gradient based optimization, the

learning rate can either be dynamically tuned by the user or be tuned by optimization

algorithms (Qian, 1999; Duchi et al., 2011; Zeiler, 2012; Kingma and Ba, 2015; Dozat,

2016). Our experiments show that the top-down procedure is compatible with popular

methods of changing the learning rate dynamically.

7.2.4 Reduction of Trainable Network Size

During training, both the proposed top-down methods and dropout (Srivastava et al.,

2014) reduce the size of the trainable part of neural network. Dropout can be viewed

as reducing the effective width of the network in a random manner, while our method

reduces the effective depth of the network by following a fixed schedule. When these

two methods are combined, during training narrower and shallower sub-networks are
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trained, while during testing, the model has the representation power of a wide and

deep network. In our experiments, the combination of these two methods yields sig-

nificant performance gains.

Hoffer et al. (2018) found training the lower layers with respect to a frozen softmax

layer with a random orthogonal weight matrix does not give big accuracy drops on im-

age classification, but yields inferior results on language modelling – the orthogonal

matrix does not capture correlations between classes. Furthermore, when the numbers

of output labels are not equal to the numbers of the hidden units, it is impossible to

construct an orthogonal weight matrix. In contrast, our method reduces the perplex-

ity of the trained language model and has no constraint on the shape of the weight

matrices.

7.3 General Classifiers

In this section, we firstly consider general classifiers from a conceptual viewpoint.

Then, to experimentally show if a classifier is more general, we make an analogy to

the concept of general feature extractor: if the classifier is more general, then training

the feature extractor with respect to it on unseen data should lead to better general-

isation compared to a classifier which is less general. Also, analogously to general

feature extractor, we hypothesise that with more training data, the trained classifier be-

comes more general and equivalently has higher quality. We conduct a series of CTC

experiments to verify our hypothesis.

7.3.1 A Conceptual Illustration

Although we can group arbitrary many layers as the classifier, for simplicity, we firstly

view the softmax layer, which is usually the uppermost layer of neural networks, as the

classifier. We consider the case where the weights of the softmax layer are frozen.

Suppose there are k output classes (c1,c2, · · · ,ck) for the network. If a training

sample belongs to class ci, then the training label for the neural network is a one-hot

vector y where the ith element yi is 1 and all other elements are zeros. For the neural

network, suppose there are n hidden units h = (h1,h2, · · · ,hn) below the softmax layer.

Then, the weight matrix of the softmax layer is a k×n matrix. For each class i, there

is a corresponding weight vector wi in the weight matrix. The output of the softmax

layer is (o1,o2, · · · ,ok) and for each oi:
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Figure 7.2: An illustration of a neural network. The final layer is a softmax layer and

o = (o1,o2,o3) is the output of the neural network. h = (h1,h2,h3,h4) denotes the final

hidden representation before the softmax layer. x = (x1,x2,x3,x4) is the input.

oi =
exp(si)

∑
k
j=1 exp(s j)

(7.1)

si = wi ·h (7.2)

The dot product si = wi ·h decides the ‘score’ (logit) of class i. Since all the weights

of the softmax layer is frozen, each wi can be viewed as the centre or the proxy of

each class. In this case, the dot product computes the similarities between the vector of

hidden units h and the centre of each class. During testing, if h is closest to wi, then oi

will be the maximum among (o1,o2, · · · ,ok) and the output label of the neural network

will be ci. Figure 7.2 shows an illustration of such a neural network.

It is easy to show that some weight matrices of the softmax layer will lead to bad

performance (e.g., for the weight matrix, w1 = w2 = · · ·= wk). We argue that a general

classifier should capture the underlying relationships between the classes well and thus

training with respect to it will lead to a feature extractor which learns the general

underlying patterns. Considering training with the frozen softmax layer. Suppose a

training example belongs to classes i and the loss function L is cross-entropy. Then,

during backpropagation:
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∂L
∂h

=
k

∑
j=1

(o j− y j)w j (7.3)

Thus, the final hidden vector h, or the final hidden representation of class i, will be

pushed towards wi but away from all other w j. Below is a toy example where the

weight vectors of the classifier do not capture the relationship well, and training with

respect to such a classifier will lead to poor generalisation. Suppose we have three

classes for the neural network to classify – apple, orange and car. Suppose the norms

of wapple, worange and wcar are the same and wapple ·wcar > wapple ·worange. During

training, the final hidden representation of each class will be pushed to the correspond-

ing weight vector of each class. Thus, in this example, the final hidden representations

of apples will be more similar (closer) to cars rather than oranges, which indicates the

learned features are not general. Therefore, the neural network will have poor general-

isation.

Arguably, it is possible that before the final layer, the general patterns which re-

flect the relationship between different classes are already learned at some lower layer.

Then, the layers above that layer transfer the underlying patterns to features which fit

the softmax layer. However, the general features must be learned at some layer of the

network. We can always group the layers from where the general features are learned

to the uppermost layer as the classifier, and demonstrate a general classifier is neces-

sary for good generalisation in a similar way as the case where we view the softmax

layer as the classifier.

It may seem beneficial to use a softmax layer with a frozen orthogonal weight

matrix to force the network learn well-separated features. However, previous works

(Hoffer et al., 2018) have shown this approach usually leads to worse performance.

Also, it is tempting to construct handcrafted classifiers which may reflect people’s

prior knowledge about the classes. However, when the relationships between classes

are not straight-forward and when the network’s structure is complicated (we can group

arbitrary many layers as the classifier as long as there is one layer left acts as the feature

extractor), it is not feasible to build such a classifier by hand.

7.3.2 Experimental Justifications

We have discussed general classifiers conceptually. However, it is difficult, if not im-

possible, to find the weight vectors which define the relationships between classes in
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the most rigorous way, and using these vectors to construct the weight matrix for the

ideal general classifier. Therefore, to justify our claim that there are classifiers that

are more general than other classifiers, we make an analogy to general feature extrac-

tors: if a classifier is more general, then training feature extractors with respect to it on

unseen data should lead to better generalisation compared to a classifier which is less

general. We hypothesise that with more training data, the trained classifier becomes

more general and has higher quality. To verify this, we conduct a series of end-to-end

speech recognition experiments.

Experimental setup. We use Kaldi to extract 40-dimension mel-scale filterbank

features with three pitch features, and we use the toolkit ESPnet to implement BLSTM

CTC models. All CTC models have the same architecture, similar to that used by Kim

et al. (2017). The network has 4 BLSTM layers. On top of each BLSTM layer is a pro-

jection layer, which is an affine layer with tanh activation functions. The top-most layer

is a softmax layer. We refer to this model architecture as (BLSTM-projection)×4–
softmax. Except for the softmax layer, all BLSTM and projection layers has 320

units. There are 50 output labels: 26 characters, apostrophe, period, dash, space, noise,

sos/eos tokens and some other special tokens. We used the Adadelta optimization al-

gorithm and gradient clipping. The training stops if after 5 epochs there is no improve-

ment upon the best validation loss. We divide the WSJ training set into 5%, 10%, 20%,

40% and 80% size subsets, leaving 20% unseen training data. We train CTC models

on these subsets following the same experimental setup. We group the softmax layer

and the topmost BLSTM layer, i.e. (BLSTM-projection)–softmax, as the classifier.

As shown in Table 7.1, with more training data, the model achieves better ASR

performance. To test if the classifiers from each trained model become more general

as the size of the training subsets increases, on the unseen 20% training set, we run

experiments of training the feature extractor with these frozen trained classifiers (the

feature extractor is always reinitialised). Figure 7.3 shows on the unseen training data,

training with respect to the frozen classifier trained on larger subsets consistently yields

lower character error rates (CERs). Thus, we conclude that the classifiers trained on

larger subsets are indeed more general and have higher quality, and training the feature

extractor with them leads to better generalisation.

We next show that the classifier trained with more clean data is also more general

than the classifier trained with a smaller amount of noisy data. We train a model using

the full WSJ si284 dataset, and refer the classifier of that model as the “clean classifier”.

We then freeze the clean classifier and retrain the feature extractor on CHiME-4. We
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Table 7.1: CERs of models trained on si284 subsets.

Training set dev93/eval92 (CER)

5% train si284 34.4/32.9

10% train si284 28.3/26.1

20% train si284 22.5/19.9

40% train si284 17.5/14.7

80% train si284 13.2/10.6

Figure 7.3: The CERs of models trained on the 20% unseen data with frozen classifiers

from trained models on different si284 subsets. The experiments are repeated 5 times

with different random seeds.
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Table 7.2: CERs of the model where all the layers are jointly trained on CHiME-4 and

the model whose classifier is trained on WSJ.

Training method dt05 multi/et05 real(CER)

Joint Train 29.0/38.7

Frozen Clean Classifier 25.7/36.0

(a) Loss on 80% joint training (b) CERs on 20% unseen

Figure 7.4: Train/dev loss for the joint training on the 80% subset and CERs of the

models trained on the 20% unseen data with frozen classifiers taken from the epochs

of the joint training.

compare the model trained with the clean classifier with a baseline CTC model where

all the layers are jointly trained on CHiME-4. Table 7.2 shows that compared to the

jointly trained baseline model, training with the frozen clean classifier leads to lower

CERs.

We have experimentally shown that we can obtain classifiers which are more gen-

eral by using more training data or increasing the quality of the training data. We

further explore in the joint training within the same dataset, whether the classifier be-

comes more general as the training proceeds. We train the CTC model on the 80%

subset for a sufficiently large number of epochs. We then take the classifiers from

the (jointly) learned models at different epochs and retrain the feature extractor (from

scratch) on the 20% unseen data using these frozen classifiers. Figure 7.4 shows that on

the 20% unseen data, the model trained with the frozen classifier which is from epoch

11 of the joint training on the 80% subset gives the lowest CERs. In the joint training

on the 80% subset, the model around epoch 11 also gives the lowest development loss.

On the 20% unseen data, the models trained with frozen classifiers which are from

later epochs of the joint training on the 80% subset have increasing CERs. Also, in
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the joint training on the 80% subset, the development loss increases after epoch 11.

Thus, the classifier firstly becomes general (low CERs when transferred to the unseen

data), and then becomes overfitting, leading to worse generalisation (high CERs when

transferred to the unseen data).

In summary, in this section, we have empirically shown that the classifier becomes

more general as the amount of training data increases; the classifier becomes more gen-

eral as the quality of training data increases and within the same dataset, the classifier

becomes more general then becomes overfitting as the joint training proceeds.

7.4 Top-down Training Algorithms

Based on the observations in the previous section, in this section, we develop top-down

training algorithms across different datasets and within the same dataset.

7.4.1 Top-down Training across Different Datasets

When applying top-down training across different datasets, it is suitable to use clean

data as the base dataset and the noisy data as the target dataset. Thus, this method can

be viewed as a transfer learning from the clean data to the noisy data. Specifically,

we propose to firstly train the model on the clean dataset to obtain the clean general

classifier. We then train the model on the noisy dataset. While training on the noisy

data, the clean classifier is either frozen or tuned with a small learning rate. The fea-

ture extractor is either reinitialised or initialised with the weights of the clean feature

extractor, as if the training on the clean data is considered as a pre-training stage. The

feature extractor is trained with the normal learning rate without any learning rate re-

scaling. In the proposed method, the feature extractor is constrained to learn features

that match the clean classifier. Since the features fit the clean classifier reflect more

about the underlying patterns, the clean classifier helps the feature extractor to learn

the noise invariant patterns from the noisy data. Algorithm 1 shows the the training

procedure.

In Algorithm 1, we do not only consider the output softmax layer as the classifier.

We also view the grouping of the softmax layer and several other upper layers as the

classifier. With more layers, the classifier is more powerful and may ease the burden

of learning features from noisy data for the feature extractor. However, more layers

for the classifier also means fewer layers for the feature extractor. It also makes the
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Algorithm 1 Top-down Transfer Learning From Clean Data to Noisy Data
Input: An n layer network M. A clean training set. A noisy training set. A noisy

validation set.

Train M on the clean training set.

e← validation error of M on the noisy validation set

N←M

for i = 1 to n−1 do
M′←M

Optionally reinitialise bottom n− i layers (near input) of M′

Train M′ using the noisy dataset; the top i layers are either frozen or fine-tuned

with a reduced learning rate.

e′← validation error of M′ on the noisy validation set

if e′ > e then
BREAK

end if
N←M′

e← e′

end for
Output: A trained n-layer network N.
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feature extractor less powerful and less flexible. Thus, with too few layers, the feature

extractor may not have the capacity to fit the classifier. Therefore, we use a validation

set to decide how many layers should we group as the clean classifier.

7.4.2 Top-down Training within the Same Dataset

Since in the joint training within the same dataset, the classifier becomes more gen-

eral before overfits, we develop a top-down training algorithm within the same dataset,

which can be viewed as a process of searching for high-quality classifiers. Since the

training is within the same dataset, the proposed method can be viewed as a top-down,

layer-wise training algorithm. The proposed algorithm searches among models trained

by conventional joint training along the epoch dimension and the layer dimension

(layer index). Algorithm 2 shows the top-down layer-wise training algorithm.

Algorithm 2 Greedy Layer-wise Top-down Training
Input: A trained n layer network M

e← validation error of M

for i = 1 to n−1 do
M′←M

Freeze top i layers (near output) of M′

Reinitialise bottom n− i layers of M′

Retrain bottom n− i layers of M′

e′← validation error of M′

if e′ > e then
BREAK

end if
M←M′

e← e′

end for
Output: A retrained n-layer network M

Searching the epoch dimension is useful since at the beginning of the training the

classifier is under-trained and at the end of the training the classifier tends to be overfit-

ting. We denote the model at epoch p as Mp. We search for the best classifier through

all Mp.

Searching the layer dimension is essential since arbitrarily many upper layers can



7.5. Experiments of Top-down Transfer Learning 95

be grouped and viewed as the classifier (the feature extractor should at least have one

layer). For a n-layer neural network M which is trained by joint training, freezing the

top i layers of it then reinitialising and retraining the bottom n− i layers generates a

new model Mi,n−i. For the model Mi,n−i, we can add newly retrained lower layers

to the classifier and retrain the remaining lower layers. Mi, j,n−i− j denotes a model

trained by freezing the top i + j layers of model Mi,n−i followed by retraining the

lower n− i− j layers. This corresponds to a search of ordered sequences of natural

numbers (i, j,k, · · · ,r) such that i+ j + k + · · ·+ r = n; for example, for a network

M with three layers, the search would be across M1,1,1, M1,2 and M2,1 (e.g., M1,1,1

indicates training all the layers jointly;then freezing the topmost layer and retraining

the bottom two layers; then freezing the top two layers and retraining the bottom most

layer. M2,1 denotes training all layers jointly; then freezing the topmost two layers and

retraining the bottom most layer).

As the complete search along these two dimensions is expensive, we use a greedy

search algorithm for layer-wise training (Algorithm 2), which uses a converged model

instead of doing a complete search along the epoch dimension. For the layer dimen-

sion, we freeze layers from top to bottom in a layer-by-layer manner (i.e. we only con-

sider M1,n−1,M1,1,n−2, · · ·M1,1,··· ,1). We also use the validation set to halt the search.

The complexity of this algorithm is O(n), where n denotes the number of layers of the

network. We omit the complexity of training the network since it is independent of the

top-down layer-wise training algorithm.

Unlike top-down transfer learning, in top-down layer-wise training, the trained

classifier is always frozen – further fine-tuning is not allowed. In the top-down transfer

learning, fine-tuning the classifier enables it to adjust the mismatched acoustic environ-

ment. However, the purpose of top-down layer-wise training is to prevent the classifier

from overfitting. Fine-tuning the classifier has the risk of making it overfit.

7.5 Experiments of Top-down Transfer Learning

We apply the proposed method to train CTC models. We use WSJ si284 as the clean

training data and CHiME-4 as the noisy training data. In our experiments, for CHiME-

4, the training data is the single channel simulated noisy data and the real noisy data

from all channels. We use dt05 multi isolated 1ch track as the development set and

et05 real isolated 1ch track as the evaluation set. The noise conditions in CHiME-4

training sets and CHiME-4 test sets match. To test the performance of the models in
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Table 7.3: The CNN architecture for the CNN-BLSTM model.

in channel out channel kernel stride

conv 1 64 3×3 1

conv 64 64 3×3 1

maxpool 2×2 2

conv 64 128 3×3 1

conv 128 128 3×3 1

maxpool 2×2 2

unseen noise conditions, we also use all 14 test sets in the Aurora-4 corpus as additional

test sets.

We use Kaldi to extract 40-dimension mel-scale filterbank features with three pitch

features, and the ESPnet toolkit to build convolutional neutral networks (CNNs) –

bidirectional long short-term memory (BLSTM) models. The architecture of the CNNs

is in Table 7.3. There are four BLSTM layers on top of the CNNs. Each BLSTM layer

is followed by a linear layer with tanh activation. All the BLSTM layers and linear

layers have 320 hidden units. There are 50 output labels in total, corresponding to

26 characters, apostrophe, period, dash, space, noise, sos/eos tokens, and some other

special tokens. Adadelta is used as the optimiser. The training stops after 5 epochs if

there is no reduction upon the lowest validation loss.

In the experiments, firstly a CTC model is trained using the clean WSJ si284 train-

ing set. This model is referred as the “clean model” and used as the base model for the

transfer learning. The top layers of this clean CTC model are viewed as a clean clas-

sifiers. While performing TL(transfer learning) in CHiME-4, we either freeze or tune

the clean classifier with a small learning rate (the learning rate given by Adadelta is re-

duced by a factor). The bottom layers are optionally reinitialised. We compare the per-

formance of the proposed method against models that trained only using the CHiME-4

dataset and also models trained using conventional TL from WSJ to CHiME-4, where

all the layers are tuned without learning rate rescaling.

7.5.1 Random Reinitialisation of the Feature Extractor

We execute the top-down transfer learning algorithm (Algorithm 1). Table 7.4 shows

the performance of the proposed TL approach to freeze the clean classifier trained in

WSJ, reinitialise randomly and retrain the feature extractor using CHiME-4 data. After
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Table 7.4: CERs of different models. No transfer learning means the models are trained

only using CHiME-4.

Model/CER dt05 multi et05 real

Freeze one layer 28.5 38.9

Freeze two layers 25.7 36.0
Freeze three layers 25.7 37.1

No transfer learning

CNN-BLSTM CTC 29.0 38.7

BLSTM CTC (Kim et al., 2017) / 48.8

freezing the top three layers, we halt the search among the layers of the clean model,

since the performance on the validation set (dt05 multi) stops improving. When the

top two layers (the softmax layer and the topmost BLSTM layer with its following

projection layer) are frozen, the model gives significantly smaller CER compared to

the CNN-BLSTM model trained only using CHiME-4 data. We also notice that if

only the softmax layer is frozen, the model does not outperform the baseline, which

implies the frozen softmax does not have the capacity to force the feature extractor to

learn better features. On the other hand, although freezing three layers surpasses the

baseline, it gives inferior results compared to freezing two layers, which indicates that

although the three-layered classifier has more capacity, the shallower feature extractor

is not powerful or flexible enough to well fit the classifier. The capacity of the classifier

and the feature extractor are well balanced when the top two layers are frozen.

7.5.2 Pre-training of the Feature Extractor

Here we consider the case of pre-training the feature extractor using WSJ and further

training using CHiME-4. That is, the feature extractor is not randomly reinitialised.

Instead, it is initialised by the weights of the clean CTC model. When training on

CHiME-4, the classifier is either frozen, or the learning rate is reduced by a small

factor. There is no learning rate re-scaling for the feature extractor. Due to the pre-

training, in the transfer learning, all the layers have seen more data compared to the

model which is trained by only using the noisy data. Thus, we compare the proposed

transfer learning method with the conventional transfer learning method. That is, for

all layers, there is no learning rate re-scaling. Table 7.5 summarises the results.

The CERs in Table 7.5 are lower than the CERs in Table 7.4, indicating that pre-
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Table 7.5: CERs for using the clean CTC model to initialise the training on CHiME-

4. The classifier is made of the topmost layer(s). During the training on CHiME-4, the

classifier is either frozen or the learning rate (LR) is scaled by a small factor. No transfer

learning means the model is trained only using CHiME-4.

Model dt05 Multi et05 real

Classifier: One layer

Frozen 22.0 33.8

LR scaled by 0.1 22.2 33.5

LR scaled by 0.5 22.6 34.2

Classifier: two layers

Frozen 22.5 33.8

LR scaled by 0.1 22.0 33.3

LR scaled by 0.5 (Model A) 21.9 32.9

Classifier: three layers

Frozen 24.6 36.6

LR scaled by 0.1 22.7 34.5

LR scaled by 0.5 21.9 33.4

No LR re-scale (Model B) 21.9 33.3

LR scaled by 0.5

for all layers (Model C)
22.1 33.4

No transfer learning 29.0 38.7
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training on WSJ gives a good initialisation for all the layers. Again, the capacity of

the classifier and the feature extractor are well balanced when the top two layers are

grouped as the classifier. The best CER is achieved by tuning the two-layered classifier

using a scaled learning rate (0.5). To ascertain if the performance gains of the best

model (Model A) is due to the smaller learning rate, we train a model by scaling the

learning rate for all layers by 0.5 (Model C), which gives inferior results. Thus, these

experiments imply that the classifier needs to be slightly tuned (compared to the feature

extractor) for the noisy data to get the best performance. We also test a two-stage fine

tune, i.e., first freeze the softmax layer then unfreeze it and do a fine-tuning. However,

it does not give better results compared to the best model.

To show our proposed method forces the models to learn noise invariant features,

we test the performance of Model A and Model B (Model B is trained by the con-

ventional transfer learning, in where all layers are trained jointly with no learning rate

re-scale) in unseen noise conditions by decoding them on all the 14 test sets of Aurora-

4 (Pearce, 2002) dataset. Aurora-4 has 14 test sets. The 14 test sets contain two clean

sets which were recorded by a primary closed microphone and a distant secondary mi-

crophone. These two sets were corrupted by six different additive noises to create the

other 12 test sets, making 14 test sets in total. The additive noise includes noise from

street traffic, train stations, cars, babble, restaurants and airports.

Table 7.6 shows that Model A surpasses Model B for all 14 test sets. Compared to

Model B, Model A has 11.3% relatively lower CER on average. These results show

that Model A is more capable of extracting domain invariant features. In the CHiME-4

dataset, the training set contains the noise conditions of the test set, and the conven-

tional transfer learning method makes Model B biased towards these observed noise

conditions. Thus, Model B has a good performance in the test set of CHiME-4 but

inferior results in the test sets of Aurora-4. Our transfer learning method only slightly

tuned the clean classifier and forces the feature extractor to extract the noisy invariant

underlying patterns. Thus, Model A has the best performance in both seen and unseen

noisy conditions.
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Table 7.6: CERs on all 14 test sets of Aurora-4. Both Model A and Model B are initialised

using the clean CTC model trained on WSJ. For Model A, the learning rate for the top

two layers (the softmax layer and the topmost BLSTM layer with its following linear

layer) are scaled by a factor of 0.5. For Model B, there is no learning rate re-scale.

wv1: utterances recorded by head-mounted close-talking microphone, wv2: utterances

recorded by desktop (far-field) microphone of a set of 18 microphones.

Test Set Model A Model B

airport wv1 11.3 12.2

babble wv1 12.0 13.1

car wv1 9.8 11.2

clean wv1 8.1 9.7

restaurant wv1 13.1 14.1

street wv1 12.7 14.0

train wv1 13.6 14.6

Average (wv1) 11.5 12.7

airport wv2 26.6 30.5

babble wv2 27.3 30.8

car wv2 24.1 26.9

clean wv2 22.1 25.2

restaurant wv2 27.4 31.5

street wv2 27.9 31.2

train wv2 28.2 32.5

Average (wv2) 26.2 29.8
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Table 7.7: Tasks and models used for top-down layer-wise training.

Task Dataset Model

Speech Recognition

(Clean)
WSJ

CTC

CTC-Attention

Speech Recognition

(Noisy)
CHiME-4 CTC

Speech Recognition

(Telephone Conversation)
SWBD Transformer

Image Classification CIFAR-10
VGG-13

ResNet-101

Language Modeling WikiText-2 AWD-LSTM

7.6 Experiments of Top-down Layer-wise Training

We apply the top-down layer-wise training algorithm to train a range of neural net-

works on speech, image and text domains. The models and datasets used are sum-

marised in Table 7.7. For the CTC experiments on WSJ, we apply the greedy top-down

layer-wise training algorithm as in Algorithm 2. For the other experiments, we either

perform part of the greedy search or part of the complete search.

7.6.1 CTC Models on Clean Speech

For CTC models trained on clean speech we used the experiment setup described in

Section 7.3, with the full WSJ-si284 training set. We group each BLSTM layer and the

following projection layer as one layer and we view the model as a 5 layer network,

i.e., (BLSTM-projection)×4–softmax. We used three different random seeds to build

three baselines, and executed greedy top-down layer-wise training (Algorithm 2) for

each baseline. In each round of retraining, we used a different random seed. For

Baseline 1, we also tested freezing the lowest BLSTM-projection layer, followed by

reinitializing and retraining the remaining upper layers.

Top-down layer-wise training significantly reduces the CER for each of the base-

line models (Table 7.8). For Baseline 1 and Baseline 2, the layer-wise training stops

at the lowest layer. For Baseline 3 (where the proposed method brings the least im-

provement), the training procedure stops at the layer above the lowest layer (i.e. the

final model is M1,1,1,2). An additional experiment on Baseline 1 indicates that if we
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Table 7.8: CERs for CTC experiments on WSJ.

Model(si284) dev93 eval92

Baseline 1 12.4 9.7

+ greedy top-down layer-wise training 10.8 8.2
+ freeze the bottom most layer 13.1 10.5

Baseline 2 12.6 10.4

+ greedy top-down layer-wise training 10.6 8.5

Baseline 3 12.6 10.2

+ greedy top-down layer-wise training 11.5 8.9

Dropout 0.2 11.0 8.7

Dropout 0.5 9.6 7.6

Dropout 0.7 11.1 8.9

Dropout 0.5 9.6 7.6

+ greedy top-down layer-wise training 8.2 6.3

Previous work

CTC DNN (Hannun et al., 2014) 10.0

BLSTM (Graves and Jaitly, 2014) 9.2

BLSTM (Kim et al., 2017) 11.5 9.0

Attention (Kim et al., 2017) 12.0 8.2

CTC-Attention (Kim et al., 2017) 11.3 7.4
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freeze the lowest layer and retrain the top layers, the accuracy of the model drops,

which is consistent with our hypothesis – within the same dataset, freezing the lower

layers and retraining the upper layers is not helpful, since the lower layers are in gen-

eral under-trained . This observation is also consistent with the findings of (Yosinski

et al., 2014).

Using the same initialisation as Baseline 3, we trained three models with different

dropout probabilities, with dropout probability 0.5 yielding the best model, followed

by top-down layer-wise training (still using dropout probability 0.5). The results are

shown in Table 7.8. When top-down layer-wise training is combined with dropout,

we observe large gains in test accuracy over both the baseline and the model trained

with dropout (38% and 17% relative gain, respectively). The combination of these

two training methods performs impressively, with the CTC model significantly outper-

forming the joint CTC-attention model (15% relative gain), which is more flexible and

has more capacity.

In Section 7.3, we observe that if we train the model on the 80% subset of WSJ

si284 for a sufficiently long time, the classifier will become overfitting. Using the

full WSJ si284, we also train Baseline 1 for a large number of epochs. Figure 7.5

shows that further training does not bring any improvement. Rather, the validation loss

increases rapidly during the extended training. In contrast, as shown in Figure 7.5,

in each iteration of the top-down layer-wise training, the develop error drops. Thus,

although in the joint training and the top-down layer-wise training, the number of the

total training epochs is large, the long joint training only makes the classifier overfit,

while in each iteration of the top-down layer-wise training, the proposed method offers

better models.

7.6.2 CTC Models on Noisy Speech

We use top-down layer-wise training to train CTC models on CHiME-4. The experi-

mental setup is described in Section 7.3, however, in these experiments we augmented

the noisy training dataset with WSJ si284. We view WSJ si284 and CHiME-4 as

an entire dataset. Section 7.5 demonstrates the experimental results of transferring

the classifier from WSJ to CHiME-4. The architecture of the network is (BLSTM-
projection)×4–softmax and we view each BLSTM layer with its projection layer as

one layer. We perform part of the complete search in these experiments.

Top-down layer-wise training method gives a notable CER reduction over the base-
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(a) Validation loss of the joint training and each iteration of the top-down

layer-wise training

(b) Validation CERs of each iteration of the top-down layer-wise training

Figure 7.5: The validation loss/CERs of the joint training and each iteration of the top-

down layer-wise training algorithm.
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Table 7.9: CERs of CTC models on CHiME-4.

tr05+si284 dt05 et05

Baseline 4 25.2 36.0

+ top-down layer-wise training 23.4 34.2

dropout 0.5 19.9 30.8

+ top-down layer-wise training 18.5 28.7
+ freeze the bottom most layer 20.6 31.4

Previous work (Kim et al., 2017)

CTC 37.6 48.8

Attention 35.0 47.6

CTC-Attention 32.1 45.0

line models (Table 7.9). The model trained with dropout has the same initial weights

as Baseline 4. In the top-down retraining of Baseline 4, we notice that in the first

round of retraining, it is essential to group the top three layers (BLSTM-projection

× 2 - softmax) as the classifier. Retraining with a shallow classifier does not bring a

performance gain. The final model after top-down layer-wise training for Baseline 4 is

M3,1,1. For the model trained with dropout, grouping the top two layers as the classifier

in the retraining brings a CER reduction. The final model is M2,1,1,1. Freezing the bot-

tom most layer and retraining the top layers yields a poorer performance. The previous

work only uses single channel noisy data and does not have data augmentation, thus it

has inferior results compared to the baseline model.

7.6.3 CTC-Attention Models on Clean Speech

We apply the proposed training method to train hybrid CTC-attention models on WSJ.

The feature extraction process and the labels are described in Section 7.3. We test two

architecture settings, which are similar to the settings used by Delcroix et al. (2018)

and Zhang et al. (2019). In the first architecture, the encoder is a 4 layer BLSTM,

with each BLSTM is followed by a projection layer, i.e., (BLSTM-projection)×4.

For the second architecture, the lowest layers of the encoder form a VGG-like convo-

lutional network, comprising 2× 2 max-pooling layers with stride 2 and 3× 3 con-

volution layers with stride 1 and padding 1. Above the VGG-like network are 6

BLSTM-projection layers. The full architecture of the encoder is conv64–conv64–
pool–conv64–conv128–pool–(BLSTM-projection)×6. For both settings, the decoder
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Table 7.10: CERs of CTC-Attention models on WSJ.

Model(si284) dev93 eval92

A: BLSTM CTC-Attention 8.0 6.2

+ freeze softmax layers from A 7.3 5.4
+ freeze softmax layers from B 7.5 5.7

B: VGG-BLSTM CTC-Attention 7.2 5.4

+ freeze softmax layers from B 7.0 5.2
+ freeze softmax layers from A 6.7 5.2

Previous works

Attention (Bahdanau et al., 2016) 9.0 6.8

+TwinNet (Serdyuk et al., 2018) 8.4 6.2

CTC-Attention (Kim et al., 2017) 11.3 7.4

+ pad silence (Zhang et al., 2019) 7.8 5.8

+ deep encoder (Delcroix et al., 2018) 7.4 5.5

is a 1-layer BLSTM; all the BLSTM and projection layers have 320 hidden units.

Location-based attention (Chorowski et al., 2015) with 10 centered convolution filters

of width 100 is used for both architectures. Adadelta with epsilon decay of 0.01 and

gradient clipping are used for optimization. The training stops when the best validation

loss does not drop after 5 epochs.

Top-down layer-wise training, joint training, and retraining use the same initialisa-

tion weights. We freeze only the softmax layer of the CTC part and the softmax layer

of the attention based encoder-decoder part (the final model is M1,n−1) due to the large

number of experiments; and performance gains are already observed on M1,n−1.

Table 7.10 demonstrates that, as far as we know, top-down layer-wise training re-

sults in state-of-the art character error rates for LSTM-based end-to-end models on

WSJ, without language model fusion or adaptations.

The architectures of the decoder/attention parts in Model A and Model B are the

same. However, Model B has a deeper encoder. Table 7.10 also indicates that by

executing a better training algorithm, a shallow model (Model A) achieves similar

performance to a deep model (Model B).Besides retraining each model with its own

trained frozen softmax layers, we also retrained Model A based on the frozen softmax

layers of Model B and vice versa. As shown in Table 7.10, retraining according to

the softmax layers of Model B leads to worse results than retraining based on the
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Table 7.11: WERs for experiments on SWBD

Model SWBD/Callhm (WER)

Baseline 9.0/18.1

+ freeze softmax layers 8.6/17.2

Previous works

Transformer (Karita et al., 2019) 9.0/18.1

Very deep self-attention (Pham et al., 2019) 10.4/18.6

Multi-stride self-attention (Han et al., 2019) 9.1/

softmax layers of Model A. This indicates that, compared to the shallow baseline, the

better performance of the deep baseline (CNN-BLSTM) comes from the deep feature

extractor (encoder), rather than the classifier.

7.6.4 Transformer Models on Telephone Conversations

We test the proposed training method on SWBD. We employ the Transformer based

CTC-attention model and the experimental setup follows Karita et al. (2019). We

freeze only the softmax layer of the CTC part and the softmax layer of the Trans-

former due to large number of experiments and performance gains already observed,

although executing the full top-down layer-wise training algorithm may give further

improvements. Table 7.11 shows the proposed method significantly reduces the word

error rates over the baseline, and gives noticeably better results compared to the previ-

ous works.

To the best of our knowledge, the work of Nøkland and Eidnes (2019) is the only

time that layer-wise training has outperformed joint training . However, that approach

was not effective for models with residual connections. In contrast, the proposed

method is able to improve the performance of Transformers, which has residual con-

nection within and across each self-attention layer. Section 7.6.5 further shows the

proposed top-down layer-wise training method is effective in training ResNet.

7.6.5 CNN Models for Image Classification

We apply top-down layer-wise training for training VGG-13 and ResNet-101 models

on CIFAR-10. For VGG-13, the architecture of the convolution layers was the same

as that used by Simonyan and Zisserman (2015). After the convolution layers, there



108 Chapter 7. Top-down Level-wise Neural Networks Training

Table 7.12: Test error in percent of VGG13 models on CIFAR-10.

Model Seed 1 Seed 2 Seed 3

VGG13 5.83

top-down layer-wise training M1,12 5.49 5.73 5.75

top-down layer-wise training M2,11 5.62 5.55 5.67

top-down layer-wise training M3,10 5.58 5.67 5.69

Previous works

VGG (Belilovsky et al., 2019) 7.5

VGG11B (Nøkland and Eidnes, 2019) 5.56

is an average pooling layer with output size 7× 7. For ResNet-101, the architecture

is the same as that used by He et al. (2016). Batch normalisation (Ioffe and Szegedy,

2015) was used for both models. Stochastic gradient descent with momentum 0.9 and

weight decay 0.0005 is used as the optimization method. The training lasts 350 epochs.

The initial training rate is 0.1 and it is decayed by 0.1 after every 100 epochs. Random

cropping and horizontal flipping are used for data augmentation. All models were built

using PyTorch.

For the VGG experiments, we grouped the topmost layer, the top two layers and

all the top three layers (the entire fully-connected sub-network) as the frozen classi-

fier, respectively. Retraining the lower layers results in final models M1,12, M2,11 and

M3,10. Each retraining is performed three times, one time with the same initial weights

as the baseline and twice initializing the weights with different random seeds. Ta-

ble 7.12 shows that top-down layer-wise training gives a lower error rate, compared to

the baseline. Due to high number of experiments, we do not further execute the top-

down layer-wise training (e.g. freeze more layers from M1,12 then retrain), although

achieving further performance gain is plausible.

For the ResNet experiments, we explored using the fully connected layer and the

fully connected layer with the topmost convolution layer as the frozen classifier, re-

spectively. We did not freeze any batch normalisation layer. In each round of retrain-

ing, we used the same initial weights as the base model. In this set of experiments, we

executed the search along both the epoch dimension and the layer dimension. The clas-

sifier from an arbitrarily picked early epoch (epoch 209) is also used for the top-down

layer-wise training. Table 7.13 summarises the results. The early epoch shows a higher

error rate for the joint training but lower error rates for the retraining, indicating that,
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Table 7.13: Test error in percent of ResNet 101 models on CIFAR-10.

Model Fully Trained Epoch 209

ResNet 101 4.41 4.89

+ freeze fully connected 4.34 4.18
+ freeze topmost CN 4.53 4.29

Table 7.14: Perplexity of the AWD-LSTM language models on WikiText-2.

Model Dev Test

Baseline seed 1 68.7 65.6

+ freeze topmost layer seed 1 68.2 65.3

+ freeze topmost layer seed 2 68.2 65.2
+ freeze topmost layer seed 3 68.1 65.2

Previous work (Merity et al., 2018) 68.6 65.8

for the baseline model, the classifier is over-trained at the end of training and searching

across the time dimension is beneficial. We did not perform a further search due to the

large number of experiments, but the current results already show that complete search

is beneficial.

7.6.6 AWD-LSTM Language Model

We apply the proposed method in training the AWD-LSTM language model (Merity

et al., 2018) on WikiText-2 dataset. The architecture of the networks and the training

procedure are same as in the previous work (Merity et al., 2018). All models are built

through PyTorch.

We freeze the topmost layer and retrain the bottom layers. The input/output em-

bedding are tied in both of the joint training and the retraining (so the input embedding

is also frozen during the retraining). This does not contradict to the top-down approach

since although tied with the input embedding, the output embedding is still the clos-

est to the output and in general the gains of the tied embedding is from the output

embedding (Press and Wolf, 2017). The top-down method can be viewed as making

the LSTM sufficiently trained by retraining the LSTM based on the trained and frozen

word embedding.

We run the retraining three times – with the same/different initial weights as the
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baseline. As shown in Table 7.14, although the performance gains from the top-down

layer-wise training are not as significant as the gains in previous experiments, the re-

duction of the perplexity is consistent. The proposed training method may implic-

itly overlap with some regularization techniques used in the training of AWD-LSTM.

However, these regularization methods do not nullify the advantages of the top-down

layer-wise training.

7.7 Summary

In this chapter, we have shown the existence of general classifiers. Based one this, we

proposed top-down training methods which transfer general classifiers across different

datasets and within the same dataset.

We demonstrated that classifiers trained on a large amount of clean data are more

general than classifiers trained with a small amount of noisy data. Based on this, we

presented a novel top-down transfer learning method that transfers classifiers from

clean data to noisy data for speech recognition. Our experimental results showed the

proposed transfer learning method forces the feature extractor to learn noise invariant

features and leads to significant performance gains.

We showed that in the conventional training where all the layers are jointly trained,

the classifier firstly becomes general, and then tends to overfit. To address this, we de-

veloped a novel layer-wise top-down training method, which freezes the trained classi-

fier to prevent it from overfitting. We demonstrated the proposed top-down layer-wise

training consistently outperforms conventional joint training across speech recognition,

image classification, and language modelling tasks.



Chapter 8

Conclusion and Future Work

8.1 Work Done

In this thesis, we proposed methods which enable attentional sequence-to-sequence

ASR models to more effectively model sequential data.

For RNN based encoder-decoder ASR models, we proposed a dynamical subsam-

pling RNN which enables the encoder to skip unessential frames during training. Our

proposed dynamical subsampling RNN encoder has outperformed baseline static sub-

sampling RNN encoders by a large margin (up to 23.5% relative PER reduction).

We also developed a fully trainable windowed attention mechanism which guaran-

tees monotonic left-to-right alignments between inputs and outputs. Compared to

the conventional attention mechanisms, our trainable windowed attention mechanism

achieved 17% relative CER reduction.

We further investigated the usefulness of self-attention for ASR models. We ob-

served that the self-attention mechanism is not essential for upper layers of Trans-

former encoders, and there are also redundant individual attention heads across all the

layers of Transformer models. We therefore proposed randomly removing attention

heads during training. Our proposed training method has improved very strong base-

line models and has achieved SOTA results on datasets with different ASR scenarios.

We next demonstrated that it is feasible to train neural networks in a top-down

manner. We showed that there are classifiers (upper layers of DNNs) which are more

general than other classifiers. We developed algorithms for searching for general clas-

sifiers, and showed that training DNNs with general classifiers enable the models to

have better generalisation on ASR, NLP and image classification tasks.
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8.2 Future Work

In this section, we discuss potential directions in which this thesis could be extended.

The areas for future work include online ASR and the pre-training of neural networks.

8.2.1 Online ASR Systems

To achieve low latency, offline ASR systems typically start to emit outputs before

seeing the entire input sequence. For the same reason, when generating outputs, these

models usually only have access to a chunk of inputs.

For online attentional encoder-decoder models, Jaitly et al. (2016) and Sainath et al.

(2018) proposed to process inputs chunk by chunk; when processing the current chunk,

if an “end-of-chunk” symbol is generated, the model will discard the current chunk

and begin to process the next chunk. Chiu and Raffel (2018) and Tsunoo et al. (2019)

compared the encoder hidden states with the decoder hidden states to decide the start

point of the current chunk. However, the chunk size is fixed and it is set as a hyper-

parameter.

RNN-Transducers, which consist of an audio encoder, a prediction network and a

joint network, are suitable for online ASR. Since self-attention based offline models

can outperform RNN based offline models, previous works have explored building

online Transformer-Transducer models with a self-attention audio encoder (Yeh et al.,

2019; Chen et al., 2021) or with a self-attention audio encoder and a self-attention

prediction network (Yeh et al., 2019; Zhang et al., 2020). In these models, the self-

attention audio encoder is restricted to only process inputs inside fixed length chunks.

The chunk size for each self-attention layer, number of frames for looking back and

looking ahead, and the step size of moving the chunk are hyper-parameters.

In this thesis, we have proposed methods which make sequence-to-sequence ASR

models better utilise contextual information. Although the models which we have

studied are offline models, we can develop online models based on our findings. For

example, rather than setting chunk parameters as hyper-parameters, we can further

explore making these parameters trainable, so they could be adaptively changed during

the test time.



8.2. Future Work 113

8.2.2 Self-supervised Pre-training

Previous works have studied self-supervised pre-training for natural language process-

ing tasks and speech processing tasks. For NLP, Devlin et al. (2018) and Brown et al.

(2020) explored the pre-training of deep self-attention models. For speech processing,

Schneider et al. (2019) and Kawakami et al. (2020) used contrastive loss to push the

hidden representations of temporally distant acoustic frames away from each other,

while Liu et al. (2020) and Chi et al. (2021) used reconstruction loss to predict the

masked frame through the hidden representations of the surrounding frames of the

masked frame. In these self-supervised pre-training methods, the learned hidden repre-

sentations are not task-specific. The DNNs which are obtained through these methods

can be used as feature extractors for downstream tasks.

In this thesis, we demonstrated that DNNs can be constructed based on trained

classifiers (upper layers) and the training with general classifiers leads to better gen-

eralisation. While the self-supervised pre-training methods yield feature extractors

which are not task-specific, our proposed top-down training method gives classifiers

which are task-specific. Therefore, it is worth exploring combining self-supervised

pre-training methods with our top-down training method, so that the model could have

both a strong feature extractor and a general classifier for the specific task.
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Bengio, Y., Léonard, N., and Courville, A. (2013). Estimating or propagating gra-

dients through stochastic neurons for conditional computation. arXiv preprint

arXiv:1308.3432.

Bengio, Y., Simard, P., and Frasconi, P. (1994). Learning long-term dependencies with

gradient descent is difficult. IEEE Transactions on Neural Networks, 5(2):157–166.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan,

A., Shyam, P., Sastry, G., Askell, A., et al. (2020). Language models are few-shot

learners. In NeurIPS.

115



116 Bibliography

Bu, H., Du, J., Na, X., Wu, B., and Zheng, H. (2017). Aishell-1: An open-source

mandarin speech corpus and a speech recognition baseline. In O-COCOSDA.
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Zeyer, A., Irie, K., Schlüter, R., and Ney, H. (2018). Improved training of end-to-end

attention models for speech recognition. INTERSPEECH, pages 7–11.

Zhang, Q., Lu, H., Sak, H., Tripathi, A., McDermott, E., Koo, S., and Kumar, S.

(2020). Transformer transducer: A streamable speech recognition model with trans-

former encoders and rnn-t loss. In ICASSP, pages 7829–7833.

Zhang, S., Loweimi, E., Bell, P., and Renals, S. (2019). Windowed attention mecha-

nisms for speech recognition. In ICASSP, pages 7100–7104.

Zhang, S., Loweimi, E., Bell, P., and Renals, S. (2021). On the usefulness of self-

attention for automatic speech recognition with transformers. In IEEE SLT, pages

89–96.

Zhang, Y., Pezeshki, M., Brakel, P., Zhang, S., Bengio, C. L. Y., and Courville, A.

(2017). Towards end-to-end speech recognition with deep convolutional neural net-

works. arXiv preprint arXiv:1701.02720.

Zhao, K., Matsukawa, T., and Suzuki, E. (2018). Retraining: a simple way to improve

the ensemble accuracy of deep neural networks for image classification. In IEEE

ICPR, pages 860–867.


