

This thesis has been submitted in fulfilment of the requirements for a postgraduate degree

(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following

terms and conditions of use:

This work is protected by copyright and other intellectual property rights, which are

retained by the thesis author, unless otherwise stated.

A copy can be downloaded for personal non-commercial research or study, without

prior permission or charge.

This thesis cannot be reproduced or quoted extensively from without first obtaining

permission in writing from the author.

The content must not be changed in any way or sold commercially in any format or

medium without the formal permission of the author.

When referring to this work, full bibliographic details including the author, title,

awarding institution and date of the thesis must be given.

Improving Address Translation Performance

in Virtualized Multi-Tenant Systems

Artemiy Margaritov
T

H
E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Doctor of Philosophy

Institute of Computing Systems Architecture

School of Informatics

University of Edinburgh

2021

Abstract
With the explosive growth in dataset sizes, application memory footprints are com-

monly reaching hundreds of GBs. Such huge datasets pressure the TLBs, resulting

in frequent misses that must be resolved through a page walk – a long-latency pointer

chase through multiple levels of the in-memory radix-tree-based page table. Page walk

latency is particularly high under virtualization where address translation mandates tra-

versing two radix-tree page tables in a process called a nested page walk, performing

up to 24 memory accesses. Page walk latency can be also amplified by the effects

caused by the colocation of applications on the same server used in an attempt to in-

crease utilization. Under colocation, cache contention makes cache misses during a

nested page walk more frequent, piling up page walk latency. Both virtualization and

colocation are widely adopted in cloud platforms, such as Amazon Web Services and

Google Cloud Engine. As a result, in cloud environments, page walk latency can

reach hundreds of cycles, significantly reducing the overall application’s performance.

This thesis addresses the problem of the high page walk latency by 1 identifying

the sources of the high page walk latency under virtualization and/or colocation, and

2 proposing hardware and software techniques that accelerate page walks by means

of new memory allocation strategies for the page table and data which can be easily

adopted by existing systems.

Firstly, we quantify how the dataset size growth, virtualization, and colocation af-

fect page walk latency. We also study how a high page walk latency affects perform-

ance. Due to the lack of dedicated tools for evaluating address translation overhead

on modern processors, we design a methodology to vary the page walk latency experi-

enced by an application running on real hardware. To quantify the performance impact

of address translation, we measure the application’s execution time while varying the

page walk latency. We find that under virtualization, address translation considerably

limits performance: an application can waste up to 68% of execution time due to stalls

originating from page walks. In addition, we investigate which accesses from a nested

page walk are most significant for the overall page walk latency by examining from

where in the memory hierarchy these accesses are served. We find that accesses to the

deeper levels of the page table radix tree are responsible for most of the overall page

walk latency.

Based on these observations, we introduce two address translation acceleration

techniques that can be applied to any ISA that employs radix-tree page tables and

nested page walks. The first of these techniques is Prefetched Address Translation

iii

(ASAP), a new software-hardware approach for mitigating the high page walk latency

caused by virtualization and/or application colocation. At the heart of ASAP is a

lightweight technique for directly indexing individual levels of the page table radix

tree. Direct indexing enables ASAP to fetch nodes from deeper levels of the page

table without first accessing the preceding levels, thus lowering the page walk latency.

ASAP is fully compatible with the existing radix-tree-based page table and requires

only incremental and isolated changes to the memory subsystem.

The second technique is PTEMagnet, a new software-only approach for reducing

address translation latency under virtualization and application colocation. Initially,

we identify a new address translation bottleneck caused by memory fragmentation

stemming from the interaction of virtualization, application colocation, and the Linux

memory allocator. The fragmentation results in the effective cache footprint of the

host page table being larger than that of the guest page table. The bloated footprint

of the host page table leads to frequent cache misses during nested page walks, in-

creasing page walk latency. In response to these observations, we propose PTEMag-

net. PTEMagnet prevents memory fragmentation by fine-grained reservation-based

memory allocation in the guest OS. PTEMagnet is fully legacy-preserving, requiring

no modifications to either user code or mechanisms for address translation and virtu-

alization.

In summary, this thesis proposes non-disruptive upgrades to the virtual memory

subsystem for reducing page walk latency in virtualized deployments. In doing so,

this thesis evaluates the impact of page walk latency on the application’s perform-

ance, identifies the bottlenecks of the existing address translation mechanism caused

by virtualization, application colocation, and the Linux memory allocator, and pro-

poses software-hardware and software-only solutions for eliminating the bottlenecks.

iv

Lay summary

The average size of a dataset processed by modern applications is growing. However,

not all existing hardware mechanisms exploited by modern processors are designed in

a way to tolerate the dataset size growth without additional performance loss. One of

such mechanisms is virtual memory. Virtual memory is a technique that makes pro-

gramming easier by providing an abstraction for managing memory. For each memory

location, virtual memory assigns a virtual address that is translated to the actual phys-

ical address on each access to the memory location. The process of translating a virtual

address to a physical is called address translation. Modern hardware is optimized for

performing fast address translation for a small set of frequently-used memory locations

whose addresses are accumulated in a hardware buffer. For all the data addresses bey-

ond the size of that buffer, the translation is performed through a page walk – a long-

latency chain of multiple serialized accesses to memory, slowing down the application

execution. Thus, the larger the application’s dataset size, the more translations are per-

formed by time-consuming page walks, increasing the overhead of virtual memory. As

a result, the performance of virtual memory poorly scales with increasing dataset sizes.

Meanwhile, independently of the dataset size growth, page walk latency is consid-

erably increased by two techniques whose popularity is currently growing. These tech-

niques are 1 the virtualization technology allowing to partition hardware resources in

a security-preserving manner and 2 application colocation used to increase utilization

of the hardware. Both techniques are widely adopted by cloud computing platforms.

As a result, a combination of the growth in dataset size and the expansion of virtu-

alization and application colocation poses a serious challenge for low-overhead virtual

memory. In response, this thesis aims to design page walk latency reduction techniques

that can be easily incorporated into the existing systems. To that end, we analyze how a

change in page walk latency affects the overall performance and propose two new low-

effort techniques for reducing page walk latency of large-dataset applications running

under virtualization.

v

Acknowledgements
First and foremost, I would like to express my gratitude and appreciation to my

advisor, Prof. Boris Grot. Without his guidance, technical expertise, and unconditional

support, this thesis would not have been written. Being a remarkable researcher, Boris

helped me to develop skills essential for doing research. Being always available for

a brainstorming session, Boris patiently listened to all my ideas, taught me how to

critically analyze them, and helped to shape them into meaningful research. I am very

happy (and proud) that I was his student.

I am grateful to Prof. Vijay Nagarajan, Prof. Hugh Leather, Prof. Pramod Bhato-

tia, and my second advisor Prof. Nigel Topham for providing insightful feedback on

my works in the annual review panels. I thank Prof. Edouard Bugnion for thought-

provoking discussions and valuable comments on my research. I am also extremely

grateful to my viva examiners, Prof. Dan Tsafrir and Prof. Antonio Barbalace, for

their very helpful comments and suggestions.

I am fortunate to have had the opportunity to work with and learn from my fellow

students and collaborators, Dmitrii Ustiugov and Amna Shahab, who assisted me in

writing papers. Together we shared a lot of memorable moments, went through stress-

ful paper submissions, ranted about one thing and another during lunch hours, and

argued with a reviewer which claimed that our proposal is an unnecessarily complex

solution.

My sincere thanks must also go to my mentors from Arm Ltd., Rekai Gonzalez-

Alberquilla and Reiley Jeyapaul, who supervised me as part of the Arm Industrial

CASE programme.

I would be remiss if I did not thank my friend, Priyank Faldu, who went through

hard times with me, cheered me on, and celebrated each accomplishment. I will cer-

tainly remember the never-ending discussions, not necessarily technical, from the be-

ginning to the end of this laborious but pleasant path.

I thank the faculty members, staff, and students of the School of Informatics for

their help and support. I would like to especially thank Antonios Katsarakis, Siavash

Katebzadeh, and Vasilis Gavrielatos for their valuable help and support, both technical

and otherwise.

I would like to express my gratitude to Arm Ltd., the School of Informatics, EPSRC,

and Google, who funded me throughout my studies.

Finally, and most importantly, my deep and sincere gratitude goes to my family for

their continuous and unparalleled love, care, and support.

vi

Declaration

I declare that this thesis was composed by myself, that the work contained herein is

my own except where explicitly stated otherwise in the text, and that this work has not

been submitted for any other degree or professional qualification except as specified.

Some of the material used in this thesis has been published in the following papers:

• A. Margaritov, D. Ustiugov, E. Bugnion, B. Grot. ”Prefetched Address Transla-

tion”. In Proceedings of the 52nd International Symposium on Microarchitecture

(MICRO). 2019 [1]

• A. Margaritov, D. Ustiugov, S. Shahab, B. Grot. ”PTEMagnet: Fine-grained

Physical Memory Reservation for Faster Page Walks in Public Clouds”. In Pro-

ceedings the 26th International Conference on Architectural Support for Pro-

gramming Languages and Operating Systems (ASPLOS). 2021 [2]

(Artemiy Margaritov)

vii

To my mother, Margarita. Her support, encouragement, and constant love have

sustained me throughout my life.

viii

Contents

1 Introduction 1

1.1 Virtual Memory . 1

1.2 Challenges for Virtual Memory . 2

1.2.1 Cloud Computing: a Case Where the Challenges Emerge . . . 3

1.3 Previous Research . 4

1.4 Thesis Contributions . 5

1.4.1 Characterization of Page Walks 5

1.4.2 Prefetching Page Table Nodes during a Page Walk 6

1.4.3 Improving Caching Efficiency of Page Table under Virtualiza-

tion and Colocation . 8

1.5 Published Work . 9

1.6 Thesis Organization . 10

2 Background and Related Work 11

2.1 Virtual Memory Basics . 11

2.1.1 Address Translation Mechanisms 11

2.1.2 Memory Allocation Granularity: Page Sizes 14

2.1.3 Memory Allocation Mechanism 15

2.1.4 Memory Fragmentation . 15

2.1.5 Spatial Locality in the Page Table 16

2.2 Previous Research on Address Translation 17

2.2.1 Disruptive Proposals . 17

2.2.2 Incremental Approaches . 19

2.2.3 Summary . 20

3 Characterizing Page Walks 21

3.1 Introduction . 21

ix

3.2 Measuring Page Walk Latency . 21

3.3 Analyzing Sources of High Page Walk Latency 23

3.4 Measuring How Page Walks Affect Performance 25

3.4.1 Methodology for Varying Page Walk Latency 25

3.4.2 Evaluation of Performance with Various Page Walk Latencies 27

3.5 Conclusion . 28

4 Address Translation with Prefetching 31
4.1 Introduction . 31

4.2 ASAP Design . 33

4.2.1 Virtual Address Contiguity 35

4.2.2 Inducing Contiguity in the Page Table 35

4.2.3 Architectural Support for ASAP 37

4.2.4 Discussion . 40

4.3 Methodology . 42

4.4 Evaluation . 45

4.4.1 ASAP in Native Environment 46

4.4.2 ASAP under Virtualization 48

4.4.3 Comparison to Existing Techniques 52

4.4.4 Estimation of Performance Improvement 55

4.5 Related Work . 56

4.6 Conclusion . 57

5 Improving Caching Efficiency of Page Table under Virtualization and Coloca-
tion 59
5.1 Introduction . 59

5.2 Challenges for Short Page Walk Latency under

Virtualization and Colocation . 60

5.2.1 Quantifying Effects of Fragmentation in the Host Page Table . 62

5.2.2 Virtual Private Clouds: Virtualization + Colocation 63

5.3 PTEMagnet Design . 64

5.3.1 Design Overview . 65

5.3.2 Page Group Reservation . 66

5.3.3 Reserved Memory Reclamation 67

5.3.4 Discussion . 67

5.4 Methodology . 68

x

5.5 Evaluation . 69

5.5.1 PTEMagnet’s Performance Improvement 69

5.5.2 Page Walk Cycles with PTEMagnet 71

5.5.3 PTEMagnet’s Effect on Memory Allocation Latency 73

5.6 Related work . 73

5.7 Conclusion . 75

6 Conclusions and Future Work 77
6.1 Contributions . 78

6.1.1 Characterizing Page Walks 78

6.1.2 ASAP: Accelerating Page Walks by Prefetching Page Table

Nodes . 78

6.1.3 PTEMagnet: Improving Caching of Page Table Nodes 78

6.2 Future Work . 79

6.2.1 Tailoring the Page Table Page Allocation Policy

for Shortening Page Walks 79

6.2.2 Enhancing Locality in the Host Page Table by a Custom

Physical Memory Allocation Policy 79

Bibliography 81

xi

Chapter 1

Introduction

1.1 Virtual Memory

Virtual memory is a technique that simplifies programming and provides isolation and

security in modern computer systems. For each memory page, virtual memory cre-

ates a mapping between the virtual and physical addresses of each application. The

mapping is stored in a separate auxiliary data structure called page table (PT). A PT

resides in memory together with the data. On modern x86-64 and AArch64 systems,

a PT is organized as a radix-tree. The root node of such a radix-tree is called root of

the PT, leaf nodes are called page table entries (PTEs), and the rest of the nodes in the

radix-tree are called intermediate page table nodes. PTEs store the actual physical ad-

dresses while other nodes store a pointer to a node in the next radix-tree level. x86-64

processors, which currently dominate the server market, employ a 4-level radix-tree

PT organization and support a 5-level radix-tree PT [3] for large-memory setups (e.g.

enabled by emerging memory technologies such as Intel’s 3D XPoint [4]). Meanwhile,

emerging AArch64-based server processors also support a 4-level PT. Both x86-64 and

AArch64 architectures employ 4KB base pages and support several different additional

large page sizes. In this thesis, we focus on systems with 4KB pages as large pages

don’t fit the needs of all applications (see Section 2.1.2.1 for more details).

While simplifying programming, virtual memory introduces a tax on performance

due to the need for virtual-to-physical address translation on each memory access. Ad-

dress translation is performed by a page walk – a long-latency pointer chase through the

in-memory radix-tree-based PT. During a page walk, the levels of the radix-tree-based

PT must be traversed one by one, incurring high latency due to serialized accesses to

the memory hierarchy. To reduce the number of page walks, today’s processors tend

1

2 Chapter 1. Introduction

to employ several hardware features to accelerate address translation, including hard-

ware page walkers and caching translations in Translation Lookaside Buffers (TLBs)

or intermediate PT nodes in page walk caches (PWCs).

Address Translation under Virtualization. Virtualization is a technique allowing to

run the software in a virtual instance of a system in a layer abstracting from the actual

hardware, the operating system (OS) installed on that hardware, and the current state of

the execution environment. A virtual instance of a system is called a virtual machine.

An OS running in a virtual machine is called a guest OS whereas the OS installed on

the actual hardware is called a host OS. Virtualization is very useful for 1 simplifying

software deployment (e.g. by providing a snapshot of the whole system with pre-

installed software) and 2 partitioning the compute resources in a security-preserving

manner (e.g. allowing multi-tenancy among clients that cannot be trusted).

While simplifying deployment and enabling multi-tenancy in a security-preserving

manner, virtualized setups incur a particularly high overhead of address translation.

Under virtualization, resolving a TLB miss mandates traversing two guest and host PTs

in a process called a nested page walk. In a nested page walk on a CPU architecture

with 4-level PTs, resolving each access to the guest PT requires traversing the entire

host PT, resulting in up to 24 accesses to the memory hierarchy (versus up to 4 accesses

in native execution).

Hardware Acceleration of Address Translation. To reduce the number of page

walks, today’s processors tend to employ several hardware features to accelerate ad-

dress translation, including hardware page walkers and caching translations in TLBs

or intermediate PT nodes in PWCs.

1.2 Challenges for Virtual Memory

The core of the address translation mechanisms employed by modern x86-64 and

AArch64 processors has not changed for a few decades. In contrast, the software and

the execution environment have significantly evolved. Below we list the key trends

changing the software and the execution environment and affecting the requirements

for the address translation mechanism.

• Growing dataset sizes. Massive in-memory datasets are a staple feature of many

applications, including databases, key-value stores, data, and graph analytics

frameworks. Recent research article [5] has shown that large dataset sizes of

1.2. Challenges for Virtual Memory 3

modern applications make hardware caching techniques inefficient. The large

– and rapidly growing – dataset sizes, coupled with irregular access patterns,

in many of these applications result in frequent TLB misses, triggering a large

number of page walks.

• Ubiquitous use of virtualization. The benefits provided by virtualization, such

as enhancing security and simplifying deployment, have accelerated the adop-

tion of virtualization, in particular in cloud platforms. However, these benefits

come at the price of having longer page walks which is critical for applications

experiencing a large number of page walks.

• Aggressive application colocation. To increase utilization of available hard-

ware resources, virtual machines and/or applications are aggressively colocated

on the same server for better CPU and memory utilization [6], [7]. As a result

of colocation, the applications experience Last-Level Caches (LLC) contention

which lowers the chances of having a hit into LLC during a page walk and in-

creases page walk latency.

One can see that the combination of these trends significantly affects the overhead

of the address translation mechanism. While large dataset sizes increase the frequency

of page walks, the use of virtualization and workload colocation increases page walk

latency. As a result, in a system employing both virtualization and application coloca-

tion, a data-intensive application can face a large address translation overhead as the

negative effects amplify each other.

1.2.1 Cloud Computing: a Case Where the Challenges Emerge

Cloud computing is a service providing access to on-demand computing resources.

Cloud computing offers great flexibility through resource scaling, high resource util-

ization, and low operating costs. Businesses are deploying their services in the public

cloud to enjoy these benefits. The global cloud computing market is anticipated to

grow from $350 billion in 2020 to $800 billion by 2025 [8].

Cloud platforms offer a great variety of virtual server options for executing all

types of applications, including data-intensive applications such as graph analytics and

key-value stores. To ensure security, isolation, and to hide the complexity of managing

physical machines, cloud resources operate under virtualization and rent to cloud users

as virtual machines with virtual CPUs. Moreover, in cloud environments, applications

4 Chapter 1. Introduction

run inside virtual machines that are aggressively colocated on the same server for bet-

ter CPU and memory utilization [6], [7]. State-of-the-art deployments, such as those

at Google, colocate applications even on a single SMT core [9]. While enhancing

security and improving utilization, such virtualized setups with aggressive colocation

suffer from a particularly high latency of address translation on each TLB miss. As

a result, one can see that many trends adversely affecting page walk latency emerge

in the cloud environment, amplifying each other. Thus, reducing page walk latency in

virtualized systems opens up opportunities for improving performance (e.g. increasing

the throughput in cloud deployments).

1.3 Previous Research

Existing research proposals seeking to ameliorate the high cost of address translation

tend to fall into one of two categories: disruptive changes to the virtual memory system

and incremental improvements to existing designs.

Disruptive proposals advocate for a radical restructuring of the virtual memory

subsystem. For instance, replacing the radix-tree-based PT with a hash-table-based PT

can reduce the cost of a TLB miss to a single memory access in the best case [10], [11].

Problematically, such a replacement entails a complete overhaul of the entire PT data

structure and TLB miss handler logic in both software and hardware – a daunting task

involving extensive code changes in the kernel memory management module 1 which

has a lot of interdependences with other kernel modules [12] and 2 implementation

of which spans more than 68K lines of kernel code in Linux [13].

Another possibility is adding segment-based memory management to the existing

page-based memory subsystem [14]. Regrettably, such an addition significantly com-

plicates the virtual memory subsystem due to the need to develop, integrate and main-

tain a second translation mechanism in addition to the existing one. Recent work has

also suggested allowing applications to install custom page walk handlers in the OS to

enable application-specific address translation [15]. The downside of this approach is

that the burden of accelerating address translation falls on application developers.

The challenge for future virtual memory systems is to enable low-overhead address

translation for big-memory applications running in the cloud environment without dis-

rupting existing system stacks.

1.4. Thesis Contributions 5

1.4 Thesis Contributions

Aims of this thesis are:

• To characterize the performance of page walks under virtualization: quantify the

effect of a high page walk latency on the overall application’s performance, and

• To design non-disruptive mechanisms for reducing the overhead of page walks

when running a data-intensive application under virtualization.

The rest of the chapter describes a motivating characterization study of page walks

and provides a brief overview of proposals of two new mechanisms for reducing the

overhead of page walks.

1.4.1 Characterization of Page Walks

1.4.1.1 Measuring Page Walk Latency

We quantify the effect of virtualization, application colocation, and growth in dataset

size on page walk latency. We find that both virtualization and application colocation

considerably increase page walk latency. Moreover, we find that increasing the dataset

size also noticeably contributes to a growth in page walk latency.

In addition, we study what part of the nested page walk causes most of the total

page walk latency. The results show that accesses to deeper levels of the PT attribute

for a higher latency than accesses to the PT levels closer to the root of the PT. Moreover,

we observe that with application colocation, accesses to the leaf PT nodes of the host

PT on average take longer than accesses to the leaf PT nodes of the guest PT.

1.4.1.2 Quantifying Performance Cost of Page Walks

To show that long page walk latency can cause a significant reduction in overall per-

formance, we quantify the overhead of page walks on real x86-64 hardware. In par-

ticular, we conduct a study to answer a question: how much performance does an

application gain if page walks would be made shorter?

We design a methodology for varying the average page walk latency under virtu-

alization on real hardware. Using this methodology, we measure the number of exe-

cution cycles on configurations with different average page walk latencies. By eval-

uating a representative set of data-intensive applications, we find that removing page

walks can significantly reduce the overall execution time (up to 68%, 34% on average).

6 Chapter 1. Introduction

Moreover, the results show that reducing page walk latency by increasing the chances

of page walk accesses hitting in LLC can reduce the overall execution time by up to

15% (12% on average).

1.4.1.3 Key Findings

Key observations of our characterization are:

• Under virtualization, page walk latency is significantly higher than in native stan-

dalone execution,

• Page walk latency increases with increasing dataset size,

• There are low- and high-latency memory accesses during a nested page walk;

most of the latency comes from two memory accesses – accesses to the leaf

nodes of the host and guest PTs,

• Without colocation, accesses to the leaf PT nodes of the guest and the host PTs

take approximately the same time; however, with colocation, accesses to the host

leaf PT nodes are significantly longer than to the guest leaf PT nodes, and

• Overall performance is sensitive to page walk latency. As a result, reducing page

walk latency can improve performance.

1.4.2 Prefetching Page Table Nodes during a Page Walk

Based on the observation that the reason for the high page walk latency in a radix-

tree-based PT is the serialization of memory accesses during a page walk, we propose

Address Translation with Prefetching (ASAP) – a new paradigm for slashing the latency

of page walks. ASAP can be applied to any ISA that employs radix-tree-based PTs and

nested page walks (e.g. x86-64 or AArch64). ASAP breaks the dependency between

consecutive PT nodes by fetching them ahead of the page walker via direct indexing of

the PT. ASAP lowers page walk latency in a non-disruptive manner, retaining full com-

patibility with the PT and the existing address translation machinery (TLBs, page walk

caches, etc.). ASAP is also non-speculative, which means it avoids costly prediction

tables and does not introduce new security vulnerabilities.

To introduce direct indexing as a lightweight addition to the existing virtual memory

subsystem, we exploit the observation that a process typically operates on just a few

1.4. Thesis Contributions 7

contiguous virtual memory ranges (further referred to as VMAs). One important ex-

ample of such a range is the heap, which forms a large contiguous region in the virtual

space of a process. Each allocated virtual page inside a VMA has a PT entry at the leaf

level of the PT, reached through a chain of PT nodes, one node per PT level. Thus,

there exists a one-to-one mapping between a virtual memory page and a corresponding

PT node at each level of the PT. However, this correspondence exists only in the virtual

space, but not in the physical space, due to the buddy allocator that scatters the virtual

pages, including those of the PT, across the physical memory.

To enable direct indexing of PT nodes, there must be a function that maps a virtual

page to the physical page containing the corresponding PT node. Our insight is that if

the PT nodes for a given level of the PT in physical memory follow the same order as

the virtual pages they map to, then a direct index into the PT array is possible using

simple base-plus-offset computation.

To support direct indexing, the OS must induce the required ordering for the PT

nodes in physical memory. This requires minimal and localized changes in the Linux

kernel, in particular in the allocator for the PT (i.e., in pmd alloc() and

pte alloc() functions), and absolutely no modifications to the actual radix-tree PT

structure and the existing page walk routine.

ASAP non-disruptively extends the TLB miss-handling logic. For each VMA that

supports direct indexing, ASAP requires a VMA descriptor consisting of architecturally-

exposed range registers that contain the start and end addresses of the VMA, as well

as the base physical addresses of the contiguous regions containing PT levels mapping

the VMA. Our evaluation shows that tracking 2 VMAs is enough to provide direct

indexing for 98% of the memory footprint for the studied big-memory benchmarks.

On each TLB miss, the virtual address of the memory operation is checked against

the range registers. On a hit, the physical addresses of the target PT nodes are determ-

ined via a simple base-plus offset computation. Then, ASAP issues prefetched requests

by calculated target addresses. PT prefetches generated by ASAP travel like normal

memory traffic through the memory hierarchy. Prefetched cache blocks are placed into

the L1-D cache to serve the upcoming requests from the page walker. We highlight

that there is no modification required to the cache hierarchy or the page walker.

ASAP delivers a significant reduction in page walk latency, with an average im-

provement of 45% across the evaluated big-memory applications under virtualization

on an x86-64-based system. This is an expected result as ASAP can overlap memory

accesses during the page walk along both the host and guest dimensions of the nested

8 Chapter 1. Introduction

walk, thus exposing the latency of only one memory access. By quantifying the frac-

tion of cycles spent in page walks on a real processor, we can obtain a lower-bound of

ASAP’s performance improvement by multiplying this fraction with ASAP’s reduction

in page walk latency.

1.4.3 Improving Caching Efficiency of Page Table under Virtualiz-

ation and Colocation

Further analyzing the result of the characterization of page walks, we perform a root

cause analysis of the difference in average latencies of accesses to the leaf nodes of the

guest and host PTs under virtualization and application colocation. We find that while

guest PTEs corresponding to nearby virtual addresses reside in the same cache block,

host PTEs corresponding to these guest virtual addresses are often scattered among

multiple cache blocks.

To understand why PTEs may reside in different cache blocks, let’s consider a

simple case where applications are running natively.

A PT is indexed through virtual addresses, where the PTEs for two adjacent virtual

pages𝐴 and𝐴+1 sit in neighboring leaf nodes and within the same cache block. While

the𝐴 and𝐴+1 are adjacent in virtual address space, their virtual-to-physical mappings

are determined by the memory allocator. If the memory allocator is allocating memory

for a single application, adjacent virtual pages are likely to be mapped to adjacent

physical pages, carrying over their spatial locality to physical address space. However,

if the memory allocator is allocating memory for multiple applications, the allocations

for virtual pages𝐴 and𝐴+1 may be interleaved by memory allocation requests for co-

running application(s). In this case, 𝐴 and 𝐴+1 are unlikely to be mapped to adjacent

physical pages and their spatial locality is lost in the physical address space. In the

worst case, a set of pages that are contiguous in the virtual space may be allocated

to physical pages that are entirely non-contiguous. This results in the application’s

memory being fragmented in the physical address space.

Under virtualization, when the memory allocator in a VM is stressed by colocated

applications, each individual application’s memory is fragmented in the guest OS’s

physical address space. The host OS deals with the VM like another process and treats

the guest physical address space as the VM process’ virtual memory. Problematically,

the fragmentation in the guest physical memory carries over to the host virtual memory.

Guest virtual pages 𝐴 and 𝐴 + 1 which were mapped to non-adjacent guest physical

1.5. Published Work 9

pages will now be non-adjacent in host virtual address space. As a result, they will not

occupy neighboring PTEs in the host PT, and will not reside in the same cache block.

This increases the footprint of the host PT nodes corresponding to each application

running inside the VM.

In response to these observations, we introduce PTEMagnet, a legacy-preserving

software-only technique to reduce page walk latency in cloud environments by improv-

ing the locality of the host PTEs. Cache locality of host PTEs can be improved by lim-

iting memory fragmentation in the guest OS. We show that prohibiting memory frag-

mentation within a small contiguous region greatly increases locality for host PTEs.

PTEMagnet uses this observation and employs a custom guest OS memory allocator

which prohibits fragmentation within small memory regions by fine-grained memory

reservation. As a result, PTEMagnet improves the locality of the host PTEs and thus

accelerates nested page walks. PTEMagnet can be implemented on any system that

employs radix-tree PTs and nested page walks.

1.5 Published Work

During my PhD programme, I contributed to preparing four conference papers and one

workshop submission that are listed below. Some of the contents of this thesis have

appeared in the first two publications on the list.

• A. Margaritov, D. Ustiugov, E. Bugnion, B. Grot. ”Prefetched Address Trans-

lation”. In Proceedings of the 52nd IEEE/ACM International Symposium on

Microarchitecture (MICRO). 2019 [1]

• A. Margaritov, D. Ustiugov, S. Shahab, B. Grot. ”PTEMagnet: Fine-grained

Physical Memory Reservation for Faster Page Walks in Public Clouds”. In Pro-

ceedings the 26th International Conference on Architectural Support for Pro-

gramming Languages and Operating Systems (ASPLOS). 2021 [2]

• A. Margaritov, D. Ustiugov, E. Bugnion, B. Grot. ”Virtual Address Translation

via Learned Page Table Indexes”. In Proceedings of the 2nd Workshop on Ma-

chine Learning for Systems at the Conference on Neural Information Processing

Systems (MLSys). 2018 [16]

• A. Margaritov, S. Gupta, R. Gonzalez-Alberquilla, B. Grot. ”Stretch: Balan-

cing QoS and Throughput for Colocated Server Workloads on SMT Cores”. In

10 Chapter 1. Introduction

Proceedings of the 25th International Symposium on High-Performance Com-

puter Architecture (HPCA). 2019 [17]. Best Paper Award

• A. Shahab, M. Zhu, A. Margaritov, B. Grot. ”Farewell My Shared LLC! A

Case for Private Die-Stacked DRAM Caches for Servers”. In Proceedings of the

51st International Symposium on Microarchitecture (MICRO). 2018 [18]

1.6 Thesis Organization

The rest of the thesis is organized as follows. Chapter 2 provides the necessary back-

ground on virtual memory subsystem mechanisms. Chapter 3 presents our evaluation

of the overhead of page walks under virtualization and motivates the need for redu-

cing page walk latency. The next two chapters describe our proposals for reducing

page walk latency under virtualization. Chapter 4 presents ASAP, a new technique

for shortening page walk latency by prefetching intermediate PT nodes. In Chapter 5,

we study the effect of memory fragmentation stemming from application colocation

on page walk latency, and present PTEMagnet, a simple software-only approach to

prevent fragmentation of the PT through a fine-grained reservation-based allocation in

the guest OS. Finally, in Chapter 6, we summarize our findings and provide potential

future directions for research on accelerating page walks under virtualization.

Chapter 2

Background and Related Work

This chapter presents the background material necessary to understand the main con-

tributions of this thesis.

2.1 Virtual Memory Basics

Virtual memory provides each process with the illusion of having access to a full ad-

dress space, thus mitigating the reality of limited physical memory. The operating

system (OS), using a combination of hardware and software, maps memory addresses

used by a program (i.e., virtual addresses) into physical addresses in memory. The

OS assigns memory on a page granularity. Translation of virtual-to-physical address

happens on every memory access. In this thesis, we focus on systems having x86-

64 or AArch64 architecture and using Linux as an OS. Such systems are common in

cloud platform infrastructure. The remainder of this chapter describes Linux address

translation mechanisms and memory allocation in detail.

2.1.1 Address Translation Mechanisms

Linux keeps the mapping of the virtual address space of a running process onto phys-

ical memory in a per-process structure, called a Page Table (PT). The PT maintains

the mappings at a page granularity: for each page in the virtual space, there is a PT

entry (PTE) that contains a virtual-to-physical address translation for all virtual ad-

dresses within a single page, as well as other important metadata including page ac-

cess permissions. Before accessing any memory location in physical memory, the CPU

must look up the address translation of the virtual address and check its validity with

respect to access permissions.

11

12 Chapter 2. Background and Related Work

…

…

… …

…

…

…

…

…

…

…

…

Physical
address

Virtual address, 48 bits
9 bits 9 bits 9 bits 9 bits 12 bits

PL2
PL3

PL1

PL4

PTE

Figure 2.1: Linux x64-64/AArch64 page table organization as a four-level radix tree [1].

On x86-64 and AArch64 architectures, a PT is commonly organized as a multi-

level radix tree, where the leaf level contains the actual PTEs. Upon a memory access,

the CPU needs to perform a page walk, i.e., traverse the PT level-by-level from its root

to the appropriate leaf with the corresponding translation. On both architectures, Linux

uses a four-level PT (Linux supports a five-level PT on x86-64 [3]). In this thesis, we

focus on a four-level PT. Figure 2.1 shows the organization of a four-level PT. Due to a

large number of levels in a PT, a page walk, which is a sequence of serialized memory

accesses to the nodes of a radix-tree PT, can be a long-latency operation especially if

an application has a large memory footprint [1], [19], [20].

To reduce address translation overheads, modern CPUs deploy a wide range of ma-

chinery that includes both address-translation-specific and general-purpose caching.

First, multi-level Translation-Lookaside Buffers (TLBs) cache address translations to

recently accessed memory locations. Upon a TLB miss (if no TLBs have the required

translation), a hardware-based page walker performs a PT look-up, bringing the cor-

responding translation from memory, potentially raising a page fault if the translation

does not exist, and installing it in the TLB for future reuse. PTs are located in con-

ventional physical memory so that page walks can benefit from the regular CPU cache

hierarchy that accelerates accesses to the recently used parts of the PT. Besides the

conventional caches, CPUs deploy Page-Walk Caches (PWCs) that hold recently ac-

cessed intermediate nodes of the radix-tree PTs, allowing the page walker to skip one

or more PT levels in a page walk.

In a virtualized scenario, which is typical in a public cloud, guest and host OSs

2.1. Virtual Memory Basics 13

24

2015gCR3

EPT

1161

2

3

4

5

7

8

9

10

12

13

14

16

17

18

19

21

22

23

TLB
entry

idx 4 idx 3 idx 2 idx 1 page offset

H
o

st
 d

im
en

si
o

n
 (

P
L4

h
-P

L1
h

)

Guest dimension (PL4g-PL1g)

memory access
to the guest PT

memory access
to the host PT

-

-

memory access
to a guest PTE

memory access
to a host PTE

-

-

Guest virtual
address

Figure 2.2: Nested page walk memory accesses. Accesses are enumerated according

to their order in a nested (2D) page walk [1].

manage their PTs that together comprise so-called nested PTs [21]. Upon a TLB miss,

a virtualized process has to perform a 2D (or nested) page walk. A 2D page walk

involves a conventional 1D page walk in the guest PT where each access to the nodes

of the guest PT triggers a complete 1D page walk in the host PT. The latter is required

to find the location of the node in the next level of the guest PT in the host physical

memory. Thus, to translate a guest virtual address to a guest physical address, in

addition to the 4 memory accesses to the guest PT, the page walker needs to perform

up to 4 memory accesses to the host PT for each access to the guest PT. Moreover,

after getting a guest physical address, the page walker needs to perform one more 1D

page walk in the host PT to figure out the location of the data in the host physical

memory. Thus, to translate a guest virtual address to a guest physical address, on

top of the 4 memory accesses to the guest PT, the page walker needs to perform up

to 4 memory accesses to the host PT every time it accesses the guest PT (or up to 20

memory accesses to the host PT in total). To point to a particular memory access during

a nested page walk, we assign a unique serial number from 1 to 24 to all memory

accesses of a nested page walk. Figure 2.2 represents the mechanism of calculating

and accessing PT nodes during a nested page walk. Figure 2.2 also represents the

mapping between the assigned numbers and the nested page walk memory accesses.

For example, an access to a guest PTE is marked with the number 20.

14 Chapter 2. Background and Related Work

2.1.2 Memory Allocation Granularity: Page Sizes

The four-level PT employed by x86-64 is designed to provide a translation for a 4KB

(small) page. However, the hierarchical structure of the PT radix tree naturally al-

lows for a technique to reduce the overheads of address translation – shortening the

page walk by storing one translation for a group of pages in intermediate PT nodes.

This approach allows replacing 512 contiguous small pages with a large page of the

equivalent size. For example, in Linux/x86-64, a large page of 2MB is managed by a

single entry in the PL2 level of the PT, replacing the corresponding 512 independent

PT entries in the PL1 level. Large pages are one of the least intrusive, with respect

to the PT radix tree, innovations in memory management, requiring modest hardware

and software extensions.

The x86-64 architecture supports different page sizes: 4KB (small), 2MB and 1GB

(large). The AArch64 architecture is more flexible: it supports the same page sizes

as the x86-64 architecture along with other page sizes. In this thesis, we configure

AArch64-based systems to use only the page sizes available on the x86-64 architecture

(i.e., set the base page size to 4KB).

2.1.2.1 Problems of Large Pages

Unfortunately, even the least intrusive changes in the virtual memory mechanisms

carry numerous implications on the overall system behavior and introduce perform-

ance pathologies. On x86-64, the introduction of 2MB and 1GB large pages revealed

an ensemble of unexpected problems. Araujo et al., for example, show that the use of

large pages leads to memory fragmentation in multi-tenant cloud environments [22].

Under high memory fragmentation, Linux often has to synchronously compact the

memory before a memory chunk of the necessary size can be allocated, introducing

high average and tail latencies. Kwon et al. showcase a problem in unfair large pages

distribution among multiple applications sharing a single server, as well as point to

increasing memory footprint due to the internal fragmentation [23]. For instance, the

authors show that redis increases its memory footprint by 50% when using large

pages and may start swapping even with a carefully provisioned physical memory.

While being a simple and natural idea, the systems community has struggled with

the wide adoption of large pages. The root of the problem is the lack of memory

management flexibility (e.g., copy-on-write in OS, deduplication, and ballooning op-

timizations in hypervisor [24], [25]) with large pages as compared to fine-grain paging.

2.1. Virtual Memory Basics 15

Figure 2.3: Difference in contiguity in virtual and physical address spaces [2].

Large pages are also not used for code due to security concerns. Indeed, large

pages increase the chances of breaking address space layout randomization due to

much lower randomness among physical addresses for code. With large pages, a func-

tional dependency between physical addresses is higher as the number of large pages

needed to allocate code is much lower than the number of small pages.

Due to the combination of issues above, large pages are often disabled in produc-

tion systems [26]. As a result, in this thesis, we evaluate systems using only 4KB small

pages.

2.1.3 Memory Allocation Mechanism

In Linux, a process can request memory from Linux, by executing mmap() or brk()

system calls. After executing these calls, the process immediately (eagerly) receives

the requested virtual memory region. In contrast to the allocation of virtual space,

physical memory allocation is performed lazily: the OS assigns physical memory to

a process on-demand and on a page-by-page basis. The OS allocates memory for the

process with a page of physical memory upon the first access that triggers a page fault

and inserts the corresponding virtual-to-physical mapping, that is a PTE, into the PT.

2.1.4 Memory Fragmentation

Eager allocation of virtual address space in conjunction with lazy physical address

space allocation can create a drastic difference in the spatial locality of the two address

spaces. In Linux, both mmap() and brk() system calls are implemented to return con-

tiguous virtual memory regions (e.g., two consecutive mmap calls from one application

return contiguous virtual addresses) whereas physical memory pages are allocated ad

16 Chapter 2. Background and Related Work

Figure 2.4: Packing of PTEs of neighbouring virtual pages in one cache block [2].

hoc, as the Linux buddy allocator is optimized for fast physical memory allocation

instead of contiguity. In a multi-tenant system, due to the fact that page faults from

different applications are coming asynchronously, the buddy allocator fragments the

physical memory space. As a result, addresses that are contiguous in the virtual ad-

dress space often correspond to pages arbitrarily placed in physical memory [1], [27],

[28]. Thus, under aggressive colocation, which is typical in the public cloud, buddy al-

locator interspersedly allocates physical memory to different applications, destroying

the contiguity present in the virtual space. Figure 2.3 demonstrates the difference in

contiguity between virtual and physical address spaces.

2.1.5 Spatial Locality in the Page Table

Prior work has demonstrated that abundant spatial locality exists in access patterns

of many cloud applications [29]. Spatial locality means that nearby virtual addresses

are likely to be accessed together. In native execution, PT accesses also inherit the

spatial locality of accesses to data. Indeed, being indexed by virtual addresses, PTEs

corresponding to adjacent pages are tightly packed in page-sized chunks of memory.

As a result, TLB misses to adjacent pages in the virtual space result in page walks that

traverse the PT radix-tree to adjacent PTEs. Dense packing of such PTEs amplifies

the efficiency of CPU caches that manage memory at the granularity of cache blocks:

up to eight adjacent 8-byte PTEs (which are likely to be accessed together due to

applications’ spatial locality) may reside in a single cache block. Figure 2.4 represents

the layout of the PT, highlighting the tight packing of PTEs of neighbouring pages in

a cache block.

Figure 2.5 shows trajectories of consecutive page walks for a contiguous pages

and b non-contiguous pages. One can see that page walks for contiguous virtual

2.2. Previous Research on Address Translation 17

Figure 2.5: Page walk trajectories in physical memory when accessing a – non-

contiguous and b – contiguous virtual pages [2].

pages experience spatial locality as page walks for all pages access the same cache

blocks. In contrast, page walks for non-contiguous pages go through different cache

blocks, which necessarily increases the cache footprint of the PT and increases the page

walk latency. As a result, the locality in access patterns and contiguity in the virtual

space can make page walks faster. Thus, in the absence of virtualization, by creating

contiguity in the virtual space, the memory allocation mechanism naturally helps to

make address translation faster. Note that fragmentation in the physical space has no

effect on page walk latency because the locality in the PT stems only from contiguity

in the virtual space and not physical.

2.2 Previous Research on Address Translation

Prior attempts at accelerating address translation are either disruptive – requiring a

radical re-engineering of the virtual memory subsystem – or incremental to the existing

mechanisms. The following subsections discuss both types of proposals in detail.

2.2.1 Disruptive Proposals

With rapidly increasing application dataset sizes and the associated growth in transla-

tion overheads [30], some of the recent work argues for a complete replacement of the

PT radix tree and the address translation mechanisms that are designed around it. One

set of proposals has suggested using large contiguous segments of memory instead of

fine-grained paging for big-data server applications [14], [31], [32]. These proposals

18 Chapter 2. Background and Related Work

are based on observations that server applications tend to allocate all of their memory at

start-up and make little use of page-based virtual memory mechanisms, such as swap-

ping and copy-on-write [14], [31], [32]. Hence, the authors suggested using segments

of contiguous memory for these applications instead of pages. Managing memory in

segments of an arbitrary size allows to considerably reduce translation overheads that

arise due to the increasing number of fixed-size pages required to cover growing data-

sets.

While tempting from a performance perspective, there are several major issues with

the segment-based approach that prevent its adoption. First, segment-based memory

relies on specific characteristics of a single class of applications, whereas an OS has to

be general-purpose. Hence, the OS needs to efficiently support both the conventional

page-based approach and the segment-based one. Supporting two separate translation

mechanisms makes the memory subsystem heterogeneous and more complicated to

manage. Second, not all big-memory applications can operate on a small number of

segments, as noted by [33], while supporting a large number of segments is impractical

in hardware, as noted in the original paper [31].

Another challenge with segment-based memory management is that, in practice,

finding large contiguous physical memory regions can be challenging in the presence

of memory cell failures. Such failures are exposed to the OS, which monitors the health

of the available physical memory, detects the faulty cells, and retires the affected phys-

ical memory at granularity of small pages [34], [35]. While a recent study at Facebook

already reports increasing memory error rates due to DRAM technology scaling to

smaller feature sizes [36], emerging memory technologies, such as 3D XPoint, are

likely to have a higher incidence of memory cell failures due to lower endurance as

compared to DRAM [37], [38]. Hard memory faults dramatically complicate memory

management not only with segments but also with large pages; e.g., by introducing an

extra level of abstraction [39] and new software and hardware machinery (e.g., per-

segment Bloom filters for pages with hard faults [32]).

To reduce PT access latency, prior work proposes replacing the PT radix tree with

lookup-latency optimized data structures, such as hash tables [10], [11], [40] and

hashed inverted PTs as in IBM PowerPC [41]. While promising, such designs re-

quire a complete overhaul of address translation and memory allocation mechanisms

in both software and hardware. Making a lot of changes in both software and hardware

components of a system at the same time is a complex task. Therefore, adopting any

of these designs for conventional usage is a daunting prospect. In addition, traditional-

2.2. Previous Research on Address Translation 19

hash-table-based designs may suffer from performance pathologies including long-

chain traversals due to hash collisions [10], [20]. SPARC architecture handles TLB

misses in software while accelerating TLB miss handling by introducing a software-

managed direct-mapped cache of translations, called TSB [42]. However, prior work

shows that larger TSB entries exhibit poorer cache locality making TSB less efficient

than the conventional PT radix tree [20].

Other prior work investigated application-specific address translation, allowing

the developers to choose address translation methods appropriate for their applica-

tions [15], e.g., using segment- [14] or a hashtable-based PT organization [10]. How-

ever, these approaches expose the complexity of virtual memory programming to the

application developers or, if implemented at the system level, lead to an increase in OS

memory management complexity. Both greatly impede the adoption of these ideas in

the wild.

2.2.2 Incremental Approaches

To avoid the disruption to existing system stacks, some researchers have proposed

microarchitectural and OS-based techniques to accelerate address translation while re-

taining compatibility with the conventional PT and radix tree mechanisms. One such

group of mechanisms seeks to leverage existing contiguity in both virtual and phys-

ical space to coalesce multiple PTEs into a single TLB entry so as to increase TLB

reach [43], [44]. Indeed, thanks to the ease of their integration into existing system

stacks, the industry has recently adopted this idea [45].

Problematically, the effectiveness of coalescing-based approaches is fundament-

ally constrained by the size of a TLB structure. Another limitation is that coalescing

relies on having contiguity in the physical memory space of an application; however,

ensuring such contiguity is not an objective of existing Linux memory allocators [33].

As a result, generating physical memory allocation contiguity is not the purpose of

the existing mechanisms, such as Linux buddy allocator, but rather a side-effect. As

a result, on a default OS, application contiguity characteristics can vary greatly across

different runs of the same application, especially under application colocation, mak-

ing solutions that rely on PTE coalescing unreliable from a performance perspective.

(One of our contributions is an analysis of the sources of the variability in application

contiguity characteristics which is discussed in Chapter 5.)

Another set of techniques focus on improving TLB efficiency in the presence of

multiple page sizes. A straight-forward TLB design that statically partitions capacity

20 Chapter 2. Background and Related Work

across a set of supported page sizes will suffer from poor utilization when one-page

size dominates. Moreover, because the size of the page that belongs to a particular

memory access is unknown before a TLB look-up, all of the TLB structures need to

be checked, increasing TLB hit latency and energy consumption. While recent works

have attacked these problems [46]–[48], their effectiveness is fundamentally limited by

the capacity of the TLB structure. To combat these issues, Misel-Myrto et al. propose

page size prediction to reduce TLB look-up latency and energy consumption [46].

Other researchers explored using a unified indexing function for all the page sizes

while keeping a single hardware structure for all the translations [47], [48]. While

effective, these techniques are all fundamentally limited by the capacity of the TLB

structure. The advent of variable page sizes significantly increased the complexity

of the TLB machinery, often introducing multiple hardware structures and concurrent

indexes that increase the look-up time and waste energy.

Thanks to the backward compatibility of these approaches, the industry has already

started their adoption [45]. However, none of these approaches (to the best of our

knowledge) offer much-desired scalability: while datasets continue to increase, the

efficiency of these techniques would inevitably decrease due to limited capacity of the

physical TLB structures as well as coalescing opportunities exposed by the software.

2.2.3 Summary

Improving the performance of virtual memory has been a focus of much recent work.

While some prior work seeks for radical re-design of conventional PTs and repla-

cing them with a scalable segment-based or hash-table approach, such solutions are

not general enough and introduce additional complexity into the already sophisticated

virtual memory subsystem. Other researchers take a pragmatic side focusing on in-

cremental and evolutionary techniques. However, none of these techniques offer the

much-desired scalability required due to the unrelenting growth in application dataset

sizes.

Chapter 3

Characterizing Page Walks

3.1 Introduction

In this chapter, we characterize page walk latency and its effect on performance. We

start the characterization by evaluating how the dataset growth, virtualization, and

colocation affect the average page walk latency. Next, we analyze the sources of high

page walk latency under virtualization. We measure the latency of each memory access

during a nested page walk with and without colocation. To understand what increases

page walk’s latency under colocation, we study which accesses to the main memory

during a nested page walk cause most of the latency. Lastly, we study how page walk

latency affects the overall performance under virtualization. To measure the effect of

page walk latency on performance, we design a methodology for varying the average

page walk latency of an application executed on real hardware under virtualization. By

measuring execution time with different page walk latencies, we identify a perform-

ance drop attributed to page walks. Moreover, we show that shortening nested page

walks by bringing PT nodes close to a CPU in the memory hierarchy can considerably

lower execution time.

3.2 Measuring Page Walk Latency

In this study, we measure the average page walk latency. We study four configurations:

native and virtualized executions both with and without application colocation. As

modern hardware does not provide a performance counter reporting the average page

walk latency, we conduct a simulation study. We simulate the memory hierarchy of

an Intel-Broadwell-like processor using DinamoRIO [49] (details on the simulation

21

22 Chapter 3. Characterizing Page Walks

Name Description

mcf SPEC’06 benchmark (ref input)

canneal PARSEC 3.0 benchmark (native input set)

bfs Breadth-first search, 60GB dataset (scaled from Twitter)

pagerank PageRank, 60GB dataset (scaled from Twitter)

mc{80,400} Memcached, in memory key-value cache, 80GB and 400GB datasets

redis In-memory key-value store (50GB YCSB dataset)

Table 3.1: Workloads used in the characterization.

Parameter Value/Description

Processor Dual socket Intel(R) Xeon(R) E5-2630v4 (BDW)

2.40GHz 20 cores/socket, SMT

Memory size 160GB/socket (768GB/socket for mc400)

Hypervisor QEMU 2.0.0, 128GB RAM guest

Guest/host operating system Ubuntu 14.04.5, Linux kernel v4.4

Table 3.2: Parameters of the hardware platform used for characterization studies.

5× larger

dataset

SMT

colocation
Virtualization

Virtualization +

SMT colocation

Virtualization +

SMT colocation +

5× larger dataset

1.2× 2.7× 5.3× 12.0× 15.8×

Table 3.3: Increase in mc page walk latency under various scenarios. The data is

normalized to native execution in isolation with a 80GB dataset.

methodology are described in Section 4.3). We measure the average page walk latency

for applications listed in Table 3.1. Table 3.2 lists the parameters of the simulated

system and processor.

Figure 3.1 demonstrates that, despite all existing hardware support, page walk

latency may climb to hundreds of cycles. Table 3.3 summarizes the trend by focus-

ing on the mc workload. Various factors can affect the page walk latency, including

the size of the dataset, interference caused by a co-running application, and virtualiz-

ation. If running on a core in isolation and in native mode, mc has average page walk

latency of 44 cycles. Increasing the dataset size of mc from 80GB to 400GB causes

the average page walk latency of mc to climb by 1.2×. Despite the fact that this value

3.3. Analyzing Sources of High Page Walk Latency 23

0

200

400

600

800

mcf canneal bfs pagerank mc80 mc400 redis Average

A
ve

ra
ge

 p
ag

e
w

al
k

la
te

n
cy

native native + colocation virtualized virtualized + colocation

Figure 3.1: Average page walk latency in various scenarios [1].

might look modest, if projected to multiple-terabyte datasets, the dataset size will im-

pact page walk latency much more. Colocation with another application on the same

core increases the page walk latency by 2.7× (to 120 cycles). Virtualization (without

colocation) increases the page walk latency of mc by 5.3×. Virtualization with coloca-

tion propels the page walk latency of mc to 527 cycles that comprises a 12× increase.

Finally, virtualization, colocation, and the 5× dataset size growth increase the page

walk latency to 697 cycles, a whopping 15.8× increase.

3.3 Analyzing Sources of High Page Walk Latency

In this section, we analyze the sources of high page walk latency in virtualized systems

with and without colocation. To that end, we study which memory accesses during a

page walk incurs the longest latency.

Under virtualization, a nested page walk consists of up to 24 memory accesses.

Figure 2.2 represents all memory accesses of a nested page walk and assigns a number

to each memory access. During a simulation, for each memory access during a nested

page walk, we measure its average latency. We perform this study for mcf running

under virtualization alone and in colocation with a data-intensive benchmark.

Figure 3.2 represents the results of the study. The legend lists the numbers of indi-

vidual memory accesses during a nested page walk. To simplify the result presentation,

we show the latency of the first 19 memory accesses as one aggregated value. One can

see that for standalone execution, memory accesses with serial numbers 20 and 24,

which correspond to accesses to PTEs of the guest PT and the host PT respectively, ac-

count for the largest part of the total page walk latency if running alone. High latency

of accesses to PTEs of both PTs can be explained by the fact that the PT level con-

24 Chapter 3. Characterizing Page Walks

Figure 3.2: mcf’s average page walk latency breakdown by page walk memory ac-

cesses. The legend lists the serial numbers of individual memory accesses according

to their order in a nested page walk (see Figure 2.2 for more details). Accesses with

numbers 20 and 24 correspond to accesses to guest and host PTEs, respectively.

taining PTEs has the largest footprint among all PT levels. As a result, accesses to

PTEs are more likely to result in a miss in the cache hierarchy and trigger a read from

the main memory, increasing the average latency of the accesses to PTEs. One can

see that the average latencies of accesses to guest and host PTEs are equal if running

alone. The parity can be explained by the fact that each page walk accesses both cache

lines holding guest and host PTEs. Thus, on average, cache lines holding guest and

host PTEs have the same reuse distance, and, as a result, the same probability to be

found in the cache hierarchy.

In theory, with application colocation, the parity between average latencies of ac-

cesses to guest and host PTEs should remain unchanged as the co-runner affects the

reuse distance of all cache blocks similarly. However, the results show that with ap-

plication colocation, mcf’s average latency of the access to the guest PTE is not equal

to the average latency of the access to the host PTE. Indeed, Figure 3.3 shows the com-

parison of these latencies among both configurations. One can see that in colocation,

the average latency of the access to the host PTE (serial number 24) is almost twice

higher than the latency of the access to the guest PTE (serial number 20).

As a result of this study, we conclude that in colocation, there is an unknown effect

that causes the discrepancy between the average latencies of accesses to the guest and

host PTEs. We study this effect in detail in Chapter 5 where we discover its root cause

3.4. Measuring How Page Walks Affect Performance 25

Figure 3.3: Comparison of average latencies of memory accesses to the guest and host

PTEs during a nested page walk.

and propose a method to remove the discrepancy, reducing the average page walk

latency.

3.4 Measuring How Page Walks Affect Performance

In this section, we quantify what part of the overall performance is wasted due to the

high page walk latency under virtualization. To that end, we design a methodology

that allows quantifying the effect of reduction in the average page walk latency on an

application running on real hardware. By applying the methodology, we estimate how

changing the average page walk latency affects the application’s performance. Note

that while our methodology helps to quantify the performance change, it won’t be effi-

cient if applied to production systems as it involves locking some hardware resources,

namely LLC capacity.

3.4.1 Methodology for Varying Page Walk Latency

We design a methodology allowing to vary the average page walk latency experienced

by an application running under virtualization. We change the base page walk latency

by two approaches.

Elimination of page walks. The first approach is to remove TLB misses by forcing

an application to allocate only large pages using libhugetlbfs [50]. Using large pages

allows increasing the TLB reach – the size of a dataset for which address translation

26 Chapter 3. Characterizing Page Walks

can take place without performing page walks. In this study, we use an Intel Broad-

well processor. As the capacity of the second-level TLB is considerably (more than

24×) larger than that of the first-level TLB on the evaluated processor, we approxim-

ate the TLB reach as a size of the dataset whose translations can be accommodated

in full by the second-level TLB. The second-level TLB of the evaluated processor has

1536 entries where each entry can store a translation for one page. With 4KB pages,

the TLB reach is 4𝐾𝐵 ∗ 1536 = 6𝑀𝐵. In contrast, with large pages, the TLB reach

is 2𝑀𝐵 ∗ 1536 = 3𝐺𝐵. As a result, with 4KB pages, an application with an irregular

memory access pattern experiences a significant number of TLB misses if an applic-

ation’s dataset size is considerably larger than 6MB. In contrast, with large pages, an

application can run with a dataset of up to 3GB in size while experiencing a consid-

erably lower (≈100×) number of TLB misses than with 4KB pages. Consecutively,

one can say that forcing using large pages effectively eliminates TLB misses of an ap-

plication with a dataset size of up to 3GB. The absence of TLB misses means no page

walks. Elimination of a page walk can be considered keeping a page walk but zeroing

out its latency. Thus, one can say that using large pages effectively turns all page walks

observed with 4KB pages to zero-latency page walks.

Neglecting the difference in overheads of memory allocation between 4KB and

large pages, execution with large pages corresponds to execution with 4KB but with

zeroed out average page walk latency.

To conclude, by forcing using large pages on an Intel Broadwell processor with an

application using a dataset smaller than 3GB, one can achieve the effect of zeroing out

the average page walk latency.

Improving the page walk’s hit rate to caches. The second approach to lower the

average page walk latency is to force PT nodes to remain on-chip. If PT nodes stay

on-chip, a page walk never reads PT nodes from the main memory, which is expected

to reduce the average page walk’s latency. We force PT nodes to stay on-chip by

guaranteeing that PT nodes are in the last level cache (LLC). We place PT nodes in

LLC by constantly accessing them in a loop by a custom kernel module running in

parallel with the application on the same processor. To increase the chances of a PT

node staying on-chip, we guarantee no evictions of PT cache blocks from LLC using

LLC partitioning. We partition LLC between the application and the kernel module

using Intel’s Cache Allocation Technology [51]. We create two LLC partitions and

assign the first partition to an application and the second partition to the PT-fetching

kernel module. We allocate LLC partitions in a way that the kernel module’s LLC

3.4. Measuring How Page Walks Affect Performance 27

Figure 3.4: Reduction in the number of execution cycles achieved by 1 zeroing out the

average page walk latency and 2 reducing the average page walk latency by forcing

PT nodes to remain in LLC.

partition is capable to accommodate the whole application’s PT while the rest of the

LLC capacity goes to the application. To conclude, we can reduce the average page

walk latency by forcing PT nodes to remain in LLC by a combination of 1 fetching

PT nodes with a custom kernel module and 2 partitioning LLC to reduce the chances

of PT nodes being evicted from LLC.

3.4.2 Evaluation of Performance with Various Page Walk Latencies

Firstly, we study how eliminating page walks affects the application’s performance un-

der virtualization. We use the number of execution cycles reported by a corresponding

performance counter as a metric of performance. We study two configurations: 1

4KB pages, and 2 with large pages forced by the libhugetlbfs. The configuration with

4KB pages has the base average page walk latency while the configuration with large

pages has no page walks (that is equivalent to zeroed out latency).

Secondly, we analyze how reducing page walk latency by keeping PT nodes on-

chip affects the application’s performance under virtualization. In this part of the study,

we use 4KB pages for all configurations. We study two configurations: 1 normal exe-

cution and 2 execution with the PT nodes forced to be on-chip. The first configuration

features the base average page walk latency. In comparison to the first configuration,

the configuration with PT nodes in LLC is expected to have a lower average page walk

latency. On both configurations, we limit LLC capacity available to an application in a

28 Chapter 3. Characterizing Page Walks

way that the remaining part of the LLC can accommodate the whole application’s PT.

We evaluate all applications listed in Table 3.1 except mc, which is unaffected by

libhugetlbfs. We run all applications with datasets of 3GB or smaller. We report the

number of execution cycles saved thanks to a reduction in the average page walk

latency. We normalize the results to the number of execution cycles on the config-

uration with normal execution (and 4KB pages). Figure 3.4 shows the results of the

study. Zeroing out the average page walk latency reduces the number of execution

cycles by 18-68% (34% on average) compared to a configuration with the base page

walk latency. The largest reduction is observed on graph applications – 68% on bfs

and 50% on pagerank that corresponds to whopping speedups of 3.1× and 2.0×, re-

spectively.

Reducing the average page walk latency by forcing PT to remain on-chip results in

smaller savings in the number of execution cycles than zeroing out the average page

walk latency. Keeping PT nodes in LLC results in saving 10-15% (12% on average) of

execution cycles in comparison to execution without the guarantee that PT nodes are

always in LLC. Forcing PT nodes to remain on-chip delivers the largest saving in the

number of execution cycles of 15% on mcf whereas bfs and redis demonstrate the

second-largest reduction in in the number of execution cycles of 12%.

3.5 Conclusion

In this chapter, we characterize page walks. We measure how various factors – 1

the dataset growth, 2 virtualization, and 3 application colocation – affect the aver-

age page walk latency. The results show that virtualization significantly increases the

average page walk latency, especially when an application has a large dataset and its

memory accesses are irregular. Moreover, we find that under virtualization, a high

page walk latency results in a significant performance overhead of 34% on average.

Thus, we conclude that reducing page walk latency under virtualization can boost per-

formance considerably.

To find opportunities for page walk latency reduction under virtualization, we ana-

lyze the average latencies of accesses to each PT node during a nested page walk.

The results of our analysis show that accesses to PTEs have higher latency than ac-

cesses to other PT nodes. Moreover, under virtualization and colocation, we discover

a discrepancy between average latencies of accesses to the PTEs of the guest and host

PTs: accesses to the host PTEs on average take much longer than accesses to the guest

3.5. Conclusion 29

PTEs. To the best of our knowledge, we are the first to report such a discrepancy.

We show that under virtualization, page walks account for a significant performance

overhead: eliminating page walks would result in 34% performance improvement on

average (68% max). Finally, we find that bringing PT nodes closer to a CPU can result

in a considerable performance improvement (12% on average if PT nodes are kept in

LLC).

Our findings discussed in the previous paragraph show opportunities to reduce

page walk latency under virtualization and improve performance. In the following

two chapters, we present two techniques for reducing page walk latency based on our

characterization findings.

Chapter 4

Address Translation with Prefetching

4.1 Introduction

The challenge for future virtual memory systems is to enable high-performance address

translation for terabyte-scale datasets without disrupting existing system stacks. As a

step in that direction, in this chapter, we introduce Address Translation with Prefetch-

ing (ASAP) – a new paradigm for reducing the latency of the iterative pointer chase

inherent in PT walks through a direct access to a given level of the PT. With ASAP,

under virtualization, a TLB miss typically exposes the latency of just two accesses to

the memory hierarchy regardless of the depth of the PT.

To introduce ASAP as a minimally-invasive addition to the system stack, we ex-

ploit the observation that applications tend to have their virtual memory footprint dis-

tributed among only a handful of contiguous virtual address ranges, referred to as

Virtual Memory Areas (VMAs). Each allocated virtual page has a PTE, sitting at the

leaf level of the PT, and a set of intermediate PT nodes that form a pointer chain from

the root of the PT to that PTE. Due to lazy memory allocation, PTEs associated with

a given VMA tend to be scattered in machine memory, with no correlation between

their physical addresses and that of the associated virtual pages. Our insight is that if

the PTEs were to reside in contiguous physical memory and follow the same relative

order as the virtual pages that map to them, then there would exist a direct mapping

between the virtual page numbers in a VMA and the physical addresses of their cor-

responding PTEs. Given such a mapping, finding a PTE can be done through simple

base-plus-offset addressing into the PTE array, avoiding the need to access preceding

levels to find the PTE location. Similar logic applies to intermediate levels of the radix

tree, which also can be directly indexed using base-plus-offset addressing provided the

31

32 Chapter 4. Address Translation with Prefetching

entries are in contiguous memory and in sorted order with respect to virtual addresses

they map. Sorted order means that if a virtual page number 𝑋 comes before virtual

page number 𝑌 , then the radix tree entry for 𝑋 resides at a physical address less than

that of the radix tree entry for 𝑌 .

Realizing this idea requires few changes to an existing system stack. Indeed, VMAs

are already explicitly maintained by modern operating systems. The key missing OS

functionality is ensuring that the level(s) of the radix tree that are prefetch targets are

allocated in contiguous physical memory and the entries are in sorted order. One way

to achieve this is by directing the OS memory allocator to reserve, at VMA creation

time, a contiguous region of physical memory for the PT entries. The required memory

amounts to under 0.2% from the total memory size used by an application. On the

hardware side, a set of architecturally-exposed range registers are needed to encode

the boundaries of prefetchable VMAs. Any virtual address that misses in the TLB is

checked against the range registers; on a hit, the target physical address is computed

using a base-plus-offset arithmetic, and a ASAP prefetch is issued for the computed

address. Multiple prefetches, to different levels of the radix tree, can be launched in

parallel.

Crucially, regardless of whether a prefetch is generated or not, the PT radix tree

is walked as usual. The full traversal of the radix tree guarantees that only correct

prefetched entries are consumed. Thus, ASAP does not enable a CPU to speculative

on the value of the address being translated as no execution will be performed until

prefetched entries are validated by the existing page walk mechanism. As a result,

such ASAP design minimizes the risk of introducing a new speculation-based security

vulnerability into the existing architecture.

While ASAP falls short of completely eliminating page walk latencies, since under

virtualization it exposes typically two accesses to the memory hierarchy (other ac-

cesses can be overlapped, hence hiding their latency), it has one major advantage: its

minimally-invasive nature with respect to the existing address translation machinery.

Thus, with ASAP, TLB misses trigger normal PT walks, which are accelerated thanks

to ASAP prefetches. Meanwhile, TLBs, hardware PT walkers, the PT itself and the

nested address translation mechanism used for virtualization require absolutely no

modifications in the presence of ASAP. Thus, ASAP can be seamlessly and gradually

introduced into existing systems with no disruption to either the hardware or software

ecosystem.

4.2. ASAP Design 33

Resident in
private caches

PL2
PL3

PL1

PL4

Timeline
PL4 PL3 PL2 PL1

Resident in shared last-level cache or memory

VMA-0

Access to virtual address

TLB miss,
start page walk To data

(a) Conventional page walk and its timeline.

PL4 PL3

PL1_base

Prefetch by PL2_base+{offset>>s2}

Prefetch by PL1_base+{offset>>s1}

Timeline

L1-D hit!

VMA-0

Access to virtual address

TLB miss, start page walk

PL2_base

PL2 (prefetch)
PL1 (prefetch)

PL2 PL1

L1-D cache hits

offset

VMA-0 base

To data

(b) ASAP: Page walk accelerated with prefetching PT nodes from the bot-

tom PT levels, pre-sorted by virtual address.

Figure 4.1: Conventional and ASAP-accelerated page table walks. Darker (lighter) PT

node colors are associated with higher (lower) virtual addresses of the corresponding

data pages [1].

4.2 ASAP Design

Address Translation with Prefetching – a mechanism to prefetch PT nodes ahead of the

page walker. We focus on the deeper levels of the PT (PL1 and PL2) as the most valu-

able prefetch targets, because the fourth (PL4) and third (PL3) PT levels are small and

efficiently covered by the Page Walk Caches and the regular cache hierarchy. Mean-

while, the second (PL2) and the first (PL1) levels are much larger and often beyond

reach for on-chip caching structures for big datasets. For instance, for a 100GB data-

set, the footprint of the PT levels is 8B, 800B, 400KB and 200MB for PL4, PL3, PL2

and PL1, respectively.

34 Chapter 4. Address Translation with Prefetching

To reduce the page walk latency, we propose issuing prefetches for the PL1 and PL2

levels concurrently with the page walker initiating its first access (i.e., to PL4, which

is the root of the PT), as demonstrated in Figure 4.1b. Triggered on a TLB miss, the

prefetcher needs to determine the physical addresses of the target PT nodes in both PL1

and PL2 levels of the PT. This is accomplished via a simple base-plus-offset compu-

tation, enabled through an ordering of memory pages occupied by the PT as discussed

below. Prefetches travel like normal memory requests through the memory hierarchy

and are placed into the L1-D, thus maximally repurposing the existing machinery.

Critically, with ASAP, the page walker performs the full walk as usual, consuming

the prefetched entries. By executing the page walk, ASAP guarantees that only correct

entries are consumed, which enables proper handling of page faults and reduces the

risk of introducing a new security vulnerability into an existing architecture. Security

concerns also prohibit allocating prefetches to PWCs speculatively (i.e. before valid-

ating them by the full conventional page walk) because PWCs are indexed by virtual

addresses. Indeed, if prefetches were allocated to PWCs, capacity conflicts could be

used as a side-channel and reveal information about the virtual-to-physical mapping.

To introduce ASAP as a natural addition to the existing system stack, we exploit

the observation that a process operates on few contiguous virtual address ranges. One

important example of such a range is the heap, which forms a large contiguous region

in the virtual space of a process. Each allocated virtual page inside a virtual address

range has a PTE at the leaf level of the PT, reached through a chain of PT nodes, one

per PT level (Figure 4.1a). Thus, there exists a one-to-one mapping between a virtual

memory page and a corresponding PT node at each level of the PT radix tree. However,

this correspondence exists only in the virtual space, but not in the physical space, due

to the buddy allocator that scatters the virtual pages, including those of the PT, across

physical memory.

To enable ASAP, there needs to be a direct mapping from a virtual page to a cor-

responding PT node in physical memory (shown by the grey Prefetch arrows in Fig-

ure 4.1b). Our insight is that if the PT nodes for a given level of the PT in physical

memory follow the same order as the virtual pages they map to, then a direct index into

the PT array is possible using simple base-plus-offset computation. The solution is to

have the OS induce the required ordering for the PT nodes in physical memory. As

discussed below, this requires straightforward extensions in the kernel and absolutely

no modifications to the actual PT structure.

In the remainder of the section, we discuss key aspects of ASAP including existing

4.2. ASAP Design 35

Application Total VMAs
VMAs for 99%

footprint coverage

Contig.

phys. regions
PT page count

canneal 18 4 487 2842

mcf 16 1 626 3189

pagerank 18 1 2076 38504

bfs 14 1 4285 66015

mc80 26 6 1976 45878

mc400 33 13 5376 213097

redis 7 1 3555 44171

Table 4.1: Total number of VMAs, number of VMAs that cover 99% of footprint, number

of contiguous regions in physical memory, and total number of PT pages per application.

contiguity in the virtual address space, how contiguity can be induced in the radix

tree-based PT, architectural support for ASAP, and virtualization extensions.

4.2.1 Virtual Address Contiguity

Virtual addresses in PTs appear as a set of contiguous virtual ranges that are defined

by the way the applications create and use virtual address spaces, such as heap and

stack. In Linux, the OS manages these ranges using a virtual memory area (VMA) tree

that contains the information about all non-overlapping virtual address ranges (further

referred to as VMAs) allocated to a process. Other OSes have data structures analogous

to Linux VMA tree, e.g., Virtual Address Descriptor (VAD) tree in Windows [52].

The applications we studied allocate few VMAs that stay stable during their ex-

ecution. Our results (Table 4.1) show that a small number of VMAs cover 99% of

the application footprint. These few large VMAs are attributed to heap and memory-

mapped regions that contain the application data structures that are the primary causes

of page walks. Meanwhile, small VMA mostly represent dynamically-linked libraries

and the stack, which are frequently accessed and rarely cause TLB misses due to high

temporal reuse.

4.2.2 Inducing Contiguity in the Page Table

As explained in the previous section, the virtual address space enjoys high contiguity.

However, when it comes to physical memory, the pages of the PT are often scattered.

For the applications we studied, the number of contiguous physical memory regions

36 Chapter 4. Address Translation with Prefetching

PL4

Sorted PT levels allow prefetch
via base+offset computation

PL3 PL2 PL1

Data pages scattered in physical memory;
OS memory allocator enjoys full flexibility

Virtual address space

… …
VMA 0 VMA 1

Physical address space

offset>>s2

PL2_base PL1_base

offset>>s1

Figure 4.2: Virtual and physical memory layout with ASAP. The pages that contain the

PT are color-coded according to their corresponding VMAs [1].

that store the PT nodes can reach into thousands (Table 4.1). The reason for such

lack of locality in the PT is that PT nodes, just as any other data in Linux, are lazily

allocated in pages whose position in physical memory is determined by the Linux

buddy allocator. The buddy allocator optimizes for allocation speed, allocating pages

on demand in first available slots in physical memory. The result is a complete lack

of correspondence between the order of virtual pages within a VMA and the physical

pages containing PT nodes.

To enable ASAP, the OS needs to guarantee that PT nodes within each PT level are

located in contiguous physical memory according to their corresponding virtual page

numbers within a VMA of the process, conceptually shown in Figure 4.1b. There are

two ways to achieve such placement of PT nodes in physical memory: first is to deploy

a custom allocator to enforce page ordering and contiguity in physical memory for the

PT, and second is to sort the already allocated PT nodes in the background. While both

approaches are plausible, we focus on the former as a concrete case study.

In Linux, a VMA tree contains all ranges of virtual addresses (further referred to as

VMAs) that the OS provides to the process per its request. According to the demand

paging and lazy allocation principle, which is employed in most operating systems,

including Linux, the VMAs are created immediately, e.g., upon an mmap system call,

whereas PT nodes are created and populated only upon a first access to the correspond-

ing virtual addresses, which cause page faults that lead to creation of the corresponding

4.2. ASAP Design 37

virtual-to-physical mappings in the PT. Hence, each VMA defines how many mappings

will eventually appear for it in the PT, and what portion of the PT the VMA will occupy

in physical memory.

Since the OS knows the beginning of each VMA in the virtual space and its size,

the OS can reserve contiguous physical memory regions for PT nodes at each level

of the PT ahead of the eventual demand allocation of PTEs. When these are (lazily)

populated, the OS can further enforce the ordering of PT nodes within each PT level to

guarantee that it matches the ordering of the virtual pages mapping to them. Doing so

ensures both contiguity and ordering of PT pages in machine memory, which enables

indexing into a given level of the PT.

Figure 4.2 shows the layout of virtual and physical address spaces with ASAP.

The virtual space layout and the layout of data pages in physical memory remains the

same as in vanilla Linux; the only change required by ASAP is the introduction of

contiguous physical memory regions for pages containing PT nodes.

Cost. Unlike prior work on direct segment addressing [14], [31], [32], which requires

allocating the entire dataset of an application within large contiguous physical regions

(see Section 2.2.1 for a discussion of the drawbacks), ASAP requires contiguity in only

a tiny portion of the physical memory thanks to the compact nature of the PT radix tree.

As discussed in Section 4.2, for an application with a 100GB dataset, PL4 and PL3

footprints together fit in a single 4KB page, the PL2 footprint requires 400KB, and the

leaf PL1 – necessitates around 200MB. This example shows that the physical memory

footprint that must be guaranteed contiguous by the OS to hold the sorted PT nodes

amounts to a mere 0.2% of an application’s dataset size.

4.2.3 Architectural Support for ASAP
Figure 4.3 shows the microarchitecture of ASAP. As the figure shows, ASAP non-

disruptively extends the TLB miss-handling logic. For each VMA that is a prefetch

target, ASAP requires a VMA descriptor consisting of architecturally-exposed range

registers that contain the start and end addresses of the VMA, as well as the base

physical addresses of the contiguous regions containing the 1st (PL1) and 2nd (PL2)

PT levels mapping the VMA. ASAP’s VMA descriptors are part of the architectural

state of the hardware thread and are managed by the OS in the presence of the events

like a context switch or interrupt handling. According to the results from Section 4.2.1,

tracking 8–16 VMAs is enough to cover 99% of the memory footprint for the studied

benchmarks.

38 Chapter 4. Address Translation with Prefetching

PT node access

TLB

Range
RegistersPT walker

Page walk cache

Cache hierarchy

TLB miss

Prefetch
PT nodes

PL2_base PL1_base

PL2_base PL1_base

…

base + offset

PL2 node
physical address

Next PT node pointer

Start 0
End 0

Start N
End N

V
M

A
 0

V
M

A
 N

…

Per-VMA tags

base + offset

PL1 node
physical address

H
it

?

PWC hit PWC miss

V
M

A
 0

V
M

A
 N

Unmodified hardware ASAP hardware extension

Figure 4.3: Architectural support for ASAP [1].

With ASAP, each TLB miss triggers a lookup into the range registers, which hap-

pens in parallel with the activation of the page walker. The lookup checks the virtual

address of the memory operation against the tracked VMA ranges; on a hit, target

prefetch addresses in PL1 and PL2 are calculated with a base-plus-offset computation

using each level’s respective base physical addresses and the offset bits from the trig-

gering virtual address. Note that the actual offset differs between PL1 and PL2, and

is derived for each of these PT levels by simply shifting the incoming offset bits by a

fixed amount (labeled s1 and s2 in Figure 4.1b). The prefetch requests to the two target

PT nodes are then issued to L1-D if it has a port available. As a result, the cache lines

containing PT nodes are loaded into the L1-D, from which they will be subsequently

accessed by the page walker.

An important aspect of ASAP is that it requires no modifications either to the cache

hierarchy or to the page walker. ASAP leverages existing machinery for buffering

the outstanding prefetch requests in caches’ MSHRs and allocating the data brought

in by ASAP in caches themselves. If L1-D is physically indexed, data brought by

prefetches placed to L1-D, whereas if L1-D is virtually indexed – to L2. Prefetches are

thus best-effort (e.g., not issued if an MSHR is not available). In contrast to data

prefetchers, ASAP does not noticeably increase memory bandwidth pressure since

ASAP prefetches are nearly always correct (except in the special cases of ”holes” in

a PT range, as discussed in Section 4.2.4.2), effectively converting the page walker’s

demand misses into prefetches.

4.2. ASAP Design 39

2015gCR3

EPT

1161

2

3

4

5

7

8

9

10

12

13

14

16

17

18

19

21

22

23

24

TLB
entry

idx 4 idx 3 idx 2 idx 1 offset

guest VMA

host VMA1

host VMA2

gPT

hPT

host ASAP

gVA guest ASAP

H
o

st
 d

im
en

si
o

n
 (

P
L4

h
-P

L1
h

)

Guest dimension (PL4g-PL1g)

Figure 4.4: Nested prefetched address translation with ASAP. Accesses are enumer-

ated according to their order in a 2D page walk [1].

4.2.3.1 ASAP for Large Pages and Five-Level PT

Thanks to the recursive structure of the PT radix tree, no modifications are required to

support large pages of any size. Translations that correspond to large pages are stored

one or two levels above from the leaf (PL1) PT level. For example, PTEs for 2MB

pages are stored in the 2nd (PL2) level of the PT radix tree. Since the size of the page

is unknown before the page walker inspects the ultimate PT node (e.g., the PT node

at PL2 contains a dedicated bit that distinguishes a 2MB page PTE from a pointer to

the PL1 node that contains a 4KB page entry), some of the prefetch requests may be

redundant (e.g., a request to the PL1 node if 2MB pages are used).

With the advent of five-level PTs, ASAP can be naturally extended to issue an

additional prefetch request to the added PT level.

4.2.3.2 ASAP for Nested Walks

In virtualized environment, ASAP can be applied in both guest and host dimensions,

which presents a significant acceleration opportunity due to the high latency of nested

page walks. Under virtualization, the radix tree levels of both guest PT (gPT) and

host PT (hPT) targeted by ASAP must be contiguous and ordered in the host physical

memory. Similar to the native setup, this must be ensured by the hypervisor and guest

OS.

In the general case, 2D walk starts by reading the guest’s value of the CR3 register

that stores the location of the gPT root, followed by consecutive 1D walks in the host to

access each of the gPT entries. Figure 4.4 shows the 2D walk with ASAP prefetching,

40 Chapter 4. Address Translation with Prefetching

assuming ASAP is configured to prefetch the 2nd (PL2) and 1st (PL1) levels of gPT

and hPT. Immediately at the 2D walk start, ASAP issues prefetch requests to the gPT

nodes in the PL2 and the PL1 levels to overlap accesses 15 and 20 with the previous

ones. Then, just as the page walker starts the 1D walk in the host (steps 1–4), ASAP

issues prefetch requests to the PL2 and PL1 levels of the hPT using the guest physical

address of the gPT root. The process repeats for each 1D walk in host, namely steps

6–9, 11–14, 16–19, 21–24.

From the software perspective, to enable ASAP-accelerated 2D walks, the guest

OS requires minimal modifications. Similar to the native case, the guest OS needs to

ensure contiguity in the physical memory regions storing PL1 and PL2 levels of the PT.

Under virtualization, the guest must make these requests to the hypervisor, and notify

the hypervisor when any of these regions need to be extended. Thus, if the PT memory

region requires an extension, the guest OS’ system calls that change the contents of the

(guest) VMA tree must execute vmcall instructions to trigger the transition into the

hypervisor so that it can invoke the host OS’s PT allocator to guarantee the region’s

contiguity in both host and guest physical spaces.

From the hardware perspective, accelerating address translation in the host with

ASAP requires additional range registers. Crucially, we observe that in Linux/KVM

virtualization, from the perspective of the host OS, an entire guest VM is a process

that has a single virtual address region [21]. Hence, a single set of range registers

is sufficient to map the guest VM (including the target PT) as a host VMA, allowing

acceleration of walks in the host dimension (e.g., steps 1–4 or 21–24 in Figure 4.4).

Meanwhile, the number of VMAs in the guest OS is unaffected by virtualization, re-

quiring the same number of range registers for ASAP acceleration as in the native

environment.

4.2.4 Discussion

4.2.4.1 Page Fault Handling

Since most OS’es follow the lazy allocation principle, the PT is populated with map-

pings on demand, i.e., the first access to a non-allocated page causes a page fault,

leading to the mapping being created in the PT. Thus, both with and without ASAP,

some of the PT nodes corresponding to a VMA region will stay uninitialized until the

first access happens.

In this presence of ASAP, this behavior does not impact correct page fault handling.

4.2. ASAP Design 41

Thus, when the page walker performs a page walk that eventually triggers a page fault,

ASAP still issues prefetch requests to PT nodes in PL1 and PL2. These prefetches

accelerate page fault detection by the hardware walker.

4.2.4.2 VMAs Evolution

Most VMAs in the VMA tree belong to well-defined process segments, such as heap,

stack, memory-mapped files and dynamic libraries. The largest data segments – the

ones that hold the application dataset, such as heap and the memory-mapped segments

– can grow or shrink in a pre-determined direction as the process continues its exe-

cution. For instance, upon a malloc call, the allocator may grow the heap segment

by invoking brk/sbrk system calls to extend the segment towards higher virtual ad-

dresses.

To extend the contiguous reserved PT regions in the event of a VMA extension,

the OS needs to request memory from the buddy allocator next to the boundary of the

existing region. Unfortunately, the buddy allocator does not optimize for contiguous

region allocations, usually providing the first best fit chunk of physical memory. Fur-

thermore, the physical memory next to the border of the region can be already allocated

(e.g., for regular data pages). To avoid changing the buddy allocator mechanisms, we

argue for asynchronous regions extension in the background, triggered by a system call

that extends the corresponding VMA. A similar mechanism for asynchronous regions

extension in the background is employed by Transparent HugePages [53] daemon that

can compact pages per a request/hint communicated by the application via madvise

system call (e.g., MADV MERGEABLE advice value).

In the unlikely event that the OS cannot free some of the pages in the region ex-

tension area (e.g., if the pages are pinned), it can allocate some of the PT pages apart

from the reserved region in the VMA. Thanks to the pointer-based structure of the PT

radix tree, the page walker will be able to correctly walk the PT as usual. The only

consequence of such “holes” in the reserved PT regions is that the page walks that

target the PT entries located in the “holes” would not be accelerated by ASAP.

We acknowledge that PT page migration could result in locking of PTs pages and

potentially slow down page fault handling. As a result, this design is effective for ap-

plications that experience VMA changes during a short initialization phase (e.g load-

ing a dataset from disk to memory) and have a long execution phase without VMA

changes. For such applications, the potential drop in performance stemming from re-

arranging the PT pages during the initialization phase could be amortized by faster

42 Chapter 4. Address Translation with Prefetching

Parameter
Value/Description

x86-64 platform AArch64 platform

Processor

Dual socket Intel® Xeon®

E5-2630v4 (BDW) 2.4GHz

20 cores/socket, SMT

Dual socket Huawei Kunpeng

920-6426 2.6GHz

64 cores/socket, no SMT

Memory size
160GB/socket

(768GB/socket for mc400)

128GB/socket

(mc400 is not studied)

Table 4.2: Parameters of hardware platforms used for memory trace generation.

page walks accelerated by ASAP during the main execution phase.

An alternative design for arranging the PT for ASAP is reserving a part of the re-

gion created by the Linux Contiguous Memory Allocator for PTs by the OS when an

application starts. This approach eliminates the potential performance losses from mi-

grating PTs but comes at the cost of slightly increased memory consumption (less than

0.5%). However, this cost can be removed in scenarios when the amount of memory

that would be used by an application is known in advance.

4.3 Methodology

To evaluate ASAP, we employ a methodology similar to prior work in this space,

which reports TLB-miss induced overheads and page walk latencies [10], [14], [15],

[31]. Given our focus on long-running big-memory workloads, we find full-system

simulations intractable for projecting end-to-end performance. Instead, we report av-

erage page walk latency obtained from a detailed memory hierarchy simulator that

models processor caches, page walk caches and TLBs.

Our evaluation primarily focuses on small (4KB) pages, since fine-grain memory

management delivers greater flexibility, better memory utilization and better perform-

ance predictability (Section 2.1.2.1). We explore the effect of large pages in Sec-

tion 4.4.2.

Measuring page walk latency. As a primary evaluation metric for ASAP, we use

page walk latency. We evaluate ASAP on x86-64 and AArch64 platforms. To that end,

we functionally model the memory hierarchy of an Intel Broadwell-like or a Huawei

Kunpeng-like processors, respectively, using a simulator based on DynamoRIO [49].

We extend the DynamoRIO’s default memory hierarchy simulator and add support of

TLBs, PWCs, and nested page walks.

4.3. Methodology 43

Parameter
Value/Description

x86-64 CPU AArch64 CPU

L1 I-TLB 64 entries, 8-way associative 48 entries, 12-way associative

L1 D-TLB 64 entries, 8-way associative 32 entries, 8-way associative

L2 S-TLB 1536 entries, 6-way associative 1024 entries, 4-way associative

Page walk

caches

3-level Split PWC: 2 cycles, PL4 - 2 entries, fully assoc.;

PL3 - 4 entries, fully assoc.;

PL2 - 32 entries, 4-way assoc. (similar to Intel Core i7 [54])

Virtualization: one dedicated PWC for guest PT, one for host PT

L1 I/D cache
32KB, 8-way associative,

4 cycles round trip

64KB, 4-way associative,

3 cycles round trip

L2 cache
256KB, 8-way associative,

12 cycles round trip

512KB, 8-way associative,

9 cycles round trip

L3 cache
20MB, 20-way associative,

40 cycles round trip

48MB, 12-way associative,

62 cycles round trip

Main memory

access latency
191 cycles round trip 240 cycles round trip

Table 4.3: Parameters used in simulations.

As part of the simulation, we record a trace of the application’s memory accesses

and the content of its PT on a real system, whose parameters are listed in Table 4.2.

For experiments with virtualized The parameters of simulated CPUs are shown in

Table 4.3.

During simulation, using the recorded trace of memory accesses, we model updates

to the memory hierarchy state, including states of caches, TLBs, and PWCs. On every

TLB miss, we simulate a page walk using the application’s PT dump. Thus, memory

accesses triggered by a page walker also update the state of the memory hierarchy. A

PT dump includes the whole kernel and user PTs of a studied process. A PT dump is

captured through an in-house kernel module. On the x86-64 platform, we use a kernel

module derived from the Linux kernel debug helper for dumping PTs [55]). On the

AArch64 platform, we use PTEditor library [56] designed for dumping a PT. During

simulation, a PT dump is used to determine physical addresses that should be read

during a page walk. For each access to the memory hierarchy during a page walk, we

trace and record the levels of the memory hierarchy involved in serving the access.

Thus, for each page walk, we get a trace of memory hierarchy levels involved during

44 Chapter 4. Address Translation with Prefetching

Name Description

mcf SPEC’06 benchmark (ref input)

canneal PARSEC 3.0 benchmark (native input set)

bfs Breadth-first search, 60GB dataset (scaled from Twitter)

pagerank PageRank, 60GB dataset (scaled from Twitter)

mc{80,400} Memcached, in memory key-value cache, 80GB and 400GB datasets

redis In-memory key-value store (50GB YCSB dataset)

Table 4.4: Workloads used for evaluation.

the walk. Since a page walk is a serial pointer chasing operation, we calculate the page

walk latency by adding up access latencies of all memory hierarchy levels involved in

each page walk trace record.

Page walk caches configuration. We simulate PWCs configuration similar to Intel

Core i7 [54] (see Table 4.3). Despite the fact that the considerable number of page

walks hit to PWCs (see Figure 4.6), increasing PWCs capacity does not substantially

reduce page walk latency. We observe that when running in isolation, doubling the

capacity of each PWC with respect to the default configuration provides negligible

average page walk latency reduction – 2% and 3% in native and virtualized scenarios,

respectively. These results corroborate industry trends: PWCs capacity did not grow

beyond 32 entries per level in several recent Intel processor generations from Westmere

to Skylake [57].

Benchmarks. We select a set of 6 diverse applications that exhibit significant TLB

pressure (6-85% L2 TLB miss ratio) from SPEC’06, PARSEC 3.0, graph analytics

(atop of Galois framework [58]) and in-memory key-value stores. For the graph ap-

plications (bfs and pagerank), we used a 60GB synthetic dataset with edge distribu-

tion modeled after a (smaller) publically-available Twitter dataset. The applications

and datasets are listed in Table 4.4. Unfortunately, due to an internal bug in the Dy-

namoRIO on AArch64, we were unable to evaluate ASAPon mc running an AArch64

CPU.

Workload colocation. In modern datacenter and cloud environments, applications are

aggressively colocated for better CPU and memory utilization [59]. Indeed, Google re-

ports that they aggressively colocate different applications on SMT cores as a routine

practice [9]. Intel offers a lot of server-grade processors supporting SMT while Hua-

wei announced that its SMT-supporting server-grade processor, Kunpeng 930, will be

released in 2021 [60].

4.4. Evaluation 45

We simulate a colocation scenario on a dual-threaded SMT core by placing a

memory-intensive corunner thread alongside the studied application thread.

To show the full potential of ASAP, we use a synthetic corunner that issues one

request to a random address for each memory access by the application thread. On both

x86-64 and AArch64 platforms, colocation pressures the cache hierarchy, which is

used to cache PTEs (from both intermediate and leaf nodes of the PT), hence increasing

the average walk duration. By design, our microbenchmark considerably hampers the

performance of the caches. To validate our methodology and show that such hampering

effect is realistic and representative, we also evaluate ASAP in a colocation setup when

a corunner is mcf. We find that, in colocation with mcf, ASAP’s ability to accelerate

page walks under virtualization is approximately the same as in colocation with our

microbenchmark: 40% and 45% page walk latency reduction on average, respectively

(see Section 4.4.2.1 for more detail).

We do not model contention in the TLBs and PWCs stemming from SMT coloca-

tion. This is because there is only limited and/or contradicting information regarding

what partitioning schema is used for partitioning TLBs and PWCs in modern pro-

cessors. Indeed, the Intel optimization manual [61] states that Intel Broadwell pro-

cessors employ fixed partitioning of data TLBs. However, the term fixed is not defined

in the document and no further details are given. On the other hand, the recent secur-

ity research [62] reveals that data TLBs on a Broadwell processor are competitively

shared. We argue that contention in TLBs and PWCs would result in a larger number

of page walks and/or make them longer, thus increasing the opportunity for ASAP.

Thus, our speed-up estimates for ASAP under colocation are conservative.

Virtualization. To assess ASAP in a virtualized environment, we record the guest

PT contents using an in-house kernel module as described above. On the host side,

we model the layout of the PT in a system without ASAP by mimicking the Linux

buddy allocator’s behavior by randomly scattering the PT pages across the host phys-

ical memory. To model ASAP, we maintain PL1 and PL2 pages in contiguous regions

in the host.

4.4 Evaluation

In this section, we quantify the efficacy of ASAP in native and virtualized settings

on x86-64 and in virtualized settings on AArch64, all with and without colocation.

We also compare ASAP to state-of-the-art hardware and software techniques aimed

46 Chapter 4. Address Translation with Prefetching

0

25

50

75

100

mcf canneal bfs pagerank mc80 mc400 redis Average

A
ve

ra
ge

 p
ag

e

w
al

k
la

te
n

cy Baseline P1 P1 + P2

101

(a) In isolation.

0

40

80

120

160

mcf canneal bfs pagerank mc80 mc400 redis Average

A
ve

ra
ge

 p
ag

e
w

al
k

la
te

n
cy Baseline P1 P1 + P2

216

(b) Under SMT colocation.

Figure 4.5: Average page walk latency in native execution (a) in isolation, (b) under

SMT colocation [1]. Lower is better.

at reducing the cost of address translation, and show that ASAP is complementary to

them.

4.4.1 ASAP in Native Environment

We first evaluate ASAP under native execution on x86-64, first without then with

colocation. We evaluate several configurations. The first is the baseline, which does

not employ ASAP and corresponds to a design representative of existing processors.

We study two ASAP configurations: the first of these (referred to as P1) prefetches

only from PL1 level of the PT; the second (referred to as P1+P2) prefetches from both

PL1 and PL2 levels.

4.4.1.1 ASAP in Isolation

Figure 4.5a shows the average page walk latency for the baseline and both ASAP

configurations when the application executes without a corunner. In the baseline, page

walk latency varies from 34 to 101 cycles, with an average of 51 cycles. The largest

latency is experienced by redis.

4.4. Evaluation 47

0% 25% 50% 75% 100%

PL4

PL3

PL2

PL1

(a) mcf in isolation (b) redis in isolation

(d) redis under SMT colocation(c) mcf under SMT colocation

0% 25% 50% 75% 100%

0% 25% 50% 75% 100%

PL4

PL3

PL2

PL1

0% 25% 50% 75% 100%

Figure 4.6: Fraction of page walk requests served by each level of the memory hierarchy

for a given PT level [1].

Prefetching only PL1 reduces average page walk latency by 12% over the baseline

(to 45 cycles). In absolute terms, the largest observed latency reduction is on redis,

whose page walk latency drops by 15 cycles (or 20% compared to the baseline). In

contrast, mcf experiences only 1 cycle reduction in average page walk latency. The

difference in efficacy of ASAP for these applications can be explained by understand-

ing from which level of the memory hierarchy page walk requests are served.

Figure 4.6 shows the fraction of requests satisfied by a given level of the memory

hierarchy for each level of the PT traversed in a walk. In the case of mcf running in

isolation (Figure 4.6a), requests to all levels except PL1 mostly hit in PWC and are sat-

isfied within a few cycles; meanwhile, requests to PL1 take considerably longer, with

nearly a third of requests hitting in L2, LLC or main memory. Because the page walker

traverses PL1 through PL3 so quickly thanks to PWC hit, ASAP has little opportunity

to hide latency on this workload. Meanwhile, redis hits in PWC much less frequently

as shown in Figure 4.6b; in particular, a significant fraction of page walker’s requests

to PL2 reaches the L2 or LLC, which provides ASAP with an opportunity to overlap

its prefetch to PL1 with the page walk to previous levels.

Despite the fact that a considerable number of page walks can hit in PWC, increas-

ing PWC capacity does not substantially reduce page walk latency. We observe that

when running in isolation, doubling the capacity of each PWC with respect to the de-

fault configuration provides a negligible page walk latency reduction – 2% and 3%

in native and virtualized scenarios, respectively. These results corroborate industry

48 Chapter 4. Address Translation with Prefetching

trends: PWC capacity has not grown beyond 32 entries per level in several recent Intel

processor generations from Westmere to Skylake [57].

Prefetching PL2, in addition to PL1, reduces the average page walk latency by 14%

over the baseline – a small improvement over prefetching just PL1. The reason for such

limited benefit of prefetching from an additional level of the PT can be understood by

examining Figures 4.6a and 4.6c). Because the vast majority of requests to PL3 and

PL4 hit in PWC or the L1-D, there is little opportunity for ASAP to overlap these

accesses with prefetches to PL2.

4.4.1.2 ASAP under Colocation

Figure 4.5b shows page walk latency for native execution under colocation. When the

memory hierarchy experiences additional pressure due to the presence of a memory

intensive corunner, page walk latency increases as compared to execution in isolation

as PT nodes are more likely to be evicted from the caches. Comparing Figure 4.6b

to Figure 4.6d, one can see that under colocation, there are considerably fewer page

walk requests served by the L1-D cache than when running in isolation. As a result,

the average page walk latency on the baseline with colocation ranges from 74 to 216

cycles, with an average of 131 cycles. This corresponds to an increase of 2.1-3.2×
(average of 2.6×) over the execution in isolation.

With prefetching only to PL1, ASAP achieves a page walk latency reduction of

20%, on average, and 31% in the best case (on redis, whose average page walk latency

drops by 66 cycles). When page walks frequently contain more than one long-latency

request – such as when requests to PL1 and PL2 are both served by the main memory,

as in Figure 4.6d – ASAP’s ability to shorten the page walks latency significantly

improves by overlapping the latency of these requests.

Prefetching PL2, in addition to PL1, is also more beneficial in the presence of a

corunner. Prefetching both levels reduces the page walk latency by 25% on average

and up to 42% (on mc with 400GB dataset), over the baseline.

4.4.2 ASAP under Virtualization

To understand ASAP’s efficacy in a virtualized setting, we study several ASAP con-

figurations that prefetch from PL1 only or from both PL1 and PL2 in the guest and/or

host. In this scenario, we evaluate ASAP x86-64- and AArch64-based systems. The

baseline corresponds to a system without ASAP.

4.4. Evaluation 49

0

50

100

150

200

250

300

350

mcf canneal bfs pagerank mc80 mc400 redis Average

A
ve

ra
ge

 p
ag

e

w
al

k
la

te
n

cy

P1g + P1h P1g + P1h + P2g

Baseline P1g P1g + P2g P1h P1h + P2h

P1g + P1h + P2g + P2h

(a) In isolation.

P1g + P1h P1g + P1h + P2g

Baseline P1g P1g + P2g P1h P1h + P2h

P1g + P1h + P2g + P2h

0

100

200

300

400

500

600

700

mcf canneal bfs pagerank mc80 mc400 redis Average

A
ve

ra
ge

 p
ag

e

w
al

k
la

te
n

cy

(b) Under SMT colocation.

Figure 4.7: Average page walk latency on the x86-64 CPU with virtualization (a) in

isolation, (b) under SMT colocation [1]. Lower is better. Note the different scaling of

y-axis between the subfigures.

4.4.2.1 On x86-64

Results for execution in isolation on x86-64 are shown in Figure 4.7a. Under virtual-

ization, the baseline page walk latency ranges from 83 to 320 cycles, with an average

of 227, a 4.4× increase in comparison to native execution due to the high cost of 2D

walks. We observe that prefetching from PL1 of only the guest (P1g in the figure)

reduces the average page walk latency by 13% on average.

Prefetching from both PL1 and PL2 (P1g+P2g) in the guest shortens the page

walk latency by another 2%, totaling a 15% average reduction over the baseline. Such

modest results can be explained by the fact that the nested page walk spends most of

its time traversing the hPT (Section 4.2.3.2), which is not accelerated by ASAP that

50 Chapter 4. Address Translation with Prefetching

mcf canneal bfs pagerank mc80 redis Average

26% 38% 39% 37% 46% 42% 40%

Table 4.5: Average page walk latency reduction by the ASAP configuration prefetching

PL1 and PL2 in both guest and host PTs in colocation with mcf on x86-64.

prefetches only from the gPT.

When ASAP prefetches from PL1 of the guest and from PL1 of the host together

(P1g+P1h), walk latency decreases by 35% on average. Not surprisingly, the highest

performance is attained if both PL1 and PL2 are prefetched in both guest and host

(P1g+P1h+P2g+P2h). In that case, page walk latency decreases by 39% on average,

and 43% (on pagerank) in the best case. In absolute terms, this configuration reduces

page walk cycles by 88 on average and 137 max (on pagerank).

In a virtualized setting with workload colocation, there exists a larger opportunity

for ASAP to capitalize on. Figure 4.7b shows that the baseline page walk latency

under colocation increases considerably (on average, 493 cycles with colocation versus

227 cycles without), which indicates that there are more long memory accesses which

can be overlapped with ASAP. Prefetching from PL1 in both guest and host reduces

average page walk latency by 37% under colocation. Meanwhile, prefetching from

PL1 together with PL2 in both guest and host under workload colocation reduces page

walk latency by an average of 45%. The best-case improvement of 55% is registered

on mc with 400GB dataset, whose average page walk latency drops by 378 cycles.

Colocation with mcf. To validate our evaluation methodology and show that our

microbenchmark, which is used as a corunner, causes a realistic hampering effect on

the performance of caches, we evaluate ASAP in a colocation setup when a corunner

is mcf. The results of this study for the ASAP configuration prefetching PL1 and PL2

in both guest and host PTs are shown in Table 4.5. We find that in colocation with mcf,

ASAP is capable to deliver a 40% page walk latency reduction on average. This result

is close to ASAP’s page walk latency reduction in colocation with our microbenchmark

where on average, ASAP shortens page walks by 45%. As a result, we conclude that

our studies with the microbenchmark produce representative results.

4.4.2.2 On AArch64

Figure 4.8 shows the results of ASAP’s evaluation under virtualization on the modeled

AArch64 CPU. Despite having larger caches than the modeled x86-64 CPU, the AArch64

4.4. Evaluation 51

P1g + P1h P1g + P1h + P2g

Baseline P1g P1g + P2g P1h P1h + P2h

P1g + P1h + P2g + P2h

0

100

200

300

400

500

mcf canneal bfs pagerank redis Average

A
ve

ra
ge

 p
ag

e

w
al

k
la

te
n

cy

(a) In isolation.

P1g + P1h P1g + P1h + P2g

Baseline P1g P1g + P2g P1h P1h + P2h

P1g + P1h + P2g + P2h

0

200

400

600

800

mcf canneal bfs pagerank redis Average

A
ve

ra
ge

 p
ag

e

w
al

k
la

te
n

cy

(b) Under SMT colocation.

Figure 4.8: Average page walk latency on the AArch64 CPU with virtualization (a) in

isolation, (b) under SMT colocation. Lower is better. Note the different scaling of y-axis

between the subfigures.

CPU experiences a higher overhead of page walks: on AArch64, the average page walk

latency is 1.7× higher in isolation and 1.4× under SMT colocation compared to that on

x86-64. Such a result can be explained by the fact that the AArch64 CPU has longer

round trips to LLC and the main memory, considerably increasing page walk latency.

An important difference of ASAP’s results on the AArch64 CPU from that on the

x86-64 CPU is a higher page walk latency reduction delivered by prefetching PT nodes

of the guest OS than of the host OS. For example, under SMT colocation, prefetching

from PL1 in the guest OS reduces page walk latency by 30% on AArch64 versus just

14% on x86-64. The high effectiveness of prefetching PL1 in the guest on AArch64

can be explained by the fact that prefetching guest PT nodes not only hides the latency

52 Chapter 4. Address Translation with Prefetching

0%

10%

20%

30%

40%

50%

mcf canneal bfs pagerank mc80 mc400 redis Average

R
ed

u
ct

io
n

 in
 p

ag
e

w
al

k
cy

cl
es

Clustered TLB ASAP Clustered TLB + ASAP

Figure 4.9: Reduction in the number of CPU cycles spent in page walks for Clustered

TLB, ASAP, and the two together [1]. Native execution in isolation (higher is better).

of the corresponding memory access but also allows to start translating guest PT node’s

value in the host OS earlier. As a result, prefetching PL1 allows to hide the latency of

accesses to a guest PT node and following accesses to the host PT. Indeed, the access

to the guest PTE and the following accesses to the host PT (accesses with numbers

20-24 as shown on Figure 4.4) can be completely overlapped with translating values

of guest PT nodes through the host PT (accesses with numbers 1-19). Long round trip

latencies of LLC and the main memory on the AArch64 result in increasing the weight

of translating values of guest PT nodes through the host PT in a page walk, increasing

the opportunity for overlapping memory requests.

Similarly to results on x86-64, on AArch64, the highest performance is delivered

by the ASAP configuration prefetching from PL1 and PL2 in both guest and host

(P1g+P1h+P2g+P2h). On average, this ASAP configuration reduces page walk latency

by 35% (44% max on bfs) in isolation and by 45% (50% max on pagerank) in coloca-

tion.

4.4.3 Comparison to Existing Techniques

In this section, on x64-64, we compare ASAP with state-of-the-art microarchitectural

and software techniques and demonstrate their synergy with ASAP.

4.4.3.1 TLB Coalescing

TLB coalescing techniques [43], [44] detect and exploit available contiguity in virtual-

to-physical mappings by coalescing TLB entries for adjacent pages into a single entry.

Doing so increases effective TLB capacity and reduces TLB MPKI.

4.4. Evaluation 53

mcf canneal bfs pagerank mc80 mc400 redis Average

58% 48% 10% 16% 4% 9% 12% 15%

Table 4.6: Reduction in TLB MPKI with clustered TLB. The data is normalized to native

execution in isolation.

We evaluate Clustered TLB [44], a state-of-the-art TLB coalescing technique that

coalesces up to 8 PTEs into 1 TLB entry. Table 4.6 shows the TLB MPKI reduction

thanks to Clustered TLB. We find that Clustered TLB is highly effective for applic-

ations with smaller datasets, specifically mcf and canneal, reducing TLB MPKI by

58% and 48%, respectively. However, on the rest of the applications, which have

much larger datasets (see Table 4.4), Clustered TLB is less effective, and TLB MPKI

reduction varies from just 4% to 16%.

Figure 4.9 shows the reduction in page walk cycles with Clustered TLB, ASAP,

and the two combined. Results are normalized to a baseline without either Clustered

TLB or ASAP. On average, Clustered TLB reduces cycles spent in page walks by 5%,

with largest improvement coming from workloads with small datasets. The reduction

in the number of page walk cycles is smaller than reduction in TLB MPKI because

the PT nodes accessed by page walks that are eliminated by Clustered TLB are the

ones highly likely to be in higher-level caches due to spatio-temporal locality. Thus,

clustered TLB eliminates mostly short page walks, leaving uncovered long page walks

that access LLC and memory.

In contrast, ASAP is particularly effective in accelerating long page walks, partic-

ularly when both PL1 and PL2 nodes miss in higher-level caches. As a result, ASAP

and clustered TLB naturally compliment each other and, when combined, can deliver

additive performance gains. As shown in Figure 4.9, ASAP alone decreases the num-

ber of cycles spent in page walks by 14%, on average. Combining clustered TLB with

ASAP increases TLB reach and reduces the walk latency, eliminating 22% of page

walk cycles, on average, and 41% in the best case (on canneal).

4.4.3.2 ASAP with Large Pages

Under native execution, large pages can effectively tackle the high overhead of address

translation as large pages 1 reduce TLB miss ratio and 2 shorten page walks (from 4

to 3 memory accesses). Thus, in native execution, while ASAP can be enabled for an

application that uses large pages, ASAP is not expected to deliver a considerable per-

54 Chapter 4. Address Translation with Prefetching

0

100

200

300

400

500

mcf canneal bfs pagerank mc80 mc400 redis Average

A
ve

ra
ge

 p
ag

e
w

al
k

la
te

n
cy Baseline ASAP Baseline + colocation ASAP + colocation

Figure 4.10: Average page walk latency with virtualization when hypervisor uses 2MB

pages (lower is better). Baseline corresponds to execution in isolation.

formance improvement. Thus, we do not recommend enabling ASAP for applications

that are exclusively backed by larger pages. With that being said, we note that there are

numerous scenarios when large pages can not be used (see Section 2.1.2.1) and ASAP

is effective under native execution.

There is a special scenario of using large pages under virtualization that deserves a

separate discussion. A common optimization employed by modern hypervisors under

low to moderate memory pressure is allocating guest physical memory as a collection

of large pages [21]. Doing so eliminates up to five long-latency accesses to the memory

hierarchy on each walk (i.e., accesses 4, 9, 14, 19, 24 in Figure 4.4).

We evaluate ASAP with 2MB host pages, with prefetching from both PL1 and PL2

in the guest and PL2-only in the host. Figure 4.10 depicts the results for this study.

The baseline corresponds to execution in isolation with host using 2MB pages. ASAP

reduces page walk latency by 25%, on average, over the baseline, and by up to 31% in

the best case (on mc with 400GB dataset).

Under colocation, the average page walk latency increases by 2.6× as compared to

execution in isolation. In this scenario, ASAP reduces page walk latency by 30%, on

average, and by 44% in the best case on mc with 400GB dataset, whose average page

walk latency reduces by 171 cycles). Overall, we conclude that even with shortened

page walks enabled by 2MB pages, ASAP delivers a considerable reduction in page

walk latency.

4.4. Evaluation 55

mcf canneal bfs pagerank redis Average

Fraction of cycles

spent in page walks

on the critical path

31% 24% 68% 50% 18% 34%

ASAP’s reduction in

average page walk latency
25% 32% 41% 43% 33% 39%

ASAP’s minimum

performance improvement
8% 8% 28% 22% 6% 12%

Table 4.7: Conservative projection of ASAP’s performance improvement.

4.4.4 Estimation of Performance Improvement

In this section, we estimate performance improvement of ASAP which prefetches PL1

and PL2 in both guest and host when running in isolation under virtualization. We

1 quantify the fraction of cycles spent in page walks on the critical path, and 2

obtain a conservative estimate of ASAP’s performance improvement by multiplying

this fraction with ASAP’s average reduction in page walk latency (see Figure 4.7a).

To quantify the fraction of cycles in page walks on the critical path, we use the

methodology similar to the one used in Section 3.4.1. We measure execution time

in the absence of TLB misses (hence, no page walks) and compare that to normal

execution with TLB misses. To eliminate TLB misses, we run the applications using

a small (3GB or smaller) dataset while forcing an application to use large pages with

libhugetlbfs [50]. With such a small dataset and large pages enabled, the capacity of

L2 S-TLB (1536 entries) is enough to capture the whole PT. As a result, we achieve a

significant (∼100×) reduction in the number of page walks. The reduction in execution

time due to page walks elimination corresponds to page walk cycles on the critical path.

Note that using large pages can significantly reduce the number of page walks only for

datasets smaller than 3GB (reach of the TLB). This and other limitations of large pages

(see Section 2.1.2.1) make their use in a datacenter problematic.

We study all the applications except memcached, which is unaffected by libhugetl-

bfs. The results of the study are shown in Table 4.7. With page walks eliminated, the

largest reduction in total execution time compared to a configuration where page walks

are present is observed on graph workloads – 68% on bfs and 50% on pagerank. Pro-

56 Chapter 4. Address Translation with Prefetching

jecting these results on ASAP, which in isolation under virtualization reduces average

page walk latency by 41% on bfs (43% pagerank), ASAP improves performance by

28% (22% on pagerank). On average, on the x86-64 platform, ASAP is estimated to

improve performance by 12%.

4.5 Related Work

Virtual memory and address translation have been a hot research domain, with prior

work explore the following ideas.

Improving TLB reach. Prior art suggests a number of mechanisms to boost TLB’s

effective capacity by coalescing adjacent PT entries [33], [43], [44] or by sharing TLB

capacity among CPU cores [63], [64] including the die-stacked L3 TLB design [19].

ASAP’s advantage over the die-stacked L3 TLB is its microarchitectural simplicity and

ability to work well under colocation. ASAP requires just a set of registers and simple

comparison logic, whereas L3 TLB requires more than 16MB of die-stacked DRAM.

Moreover, by heavily relying on the cache hierarchy, under colocation, L3 TLB is

likely to suffer from thrashing and can experience increased miss rates. Thus, even L3

TLB would benefit from ASAP. Ultimately, TLB enhancements are constrained by a

combination of area, power and latency. Given the continuing growth in dataset sizes,

it is imperative to accelerate the latency of TLB misses, which is precisely the target

of ASAP. As shown in Section 4.4.3.1, ASAP is complementary to techniques that

coalesce adjacent PT entries.

TLB entries prefetching. Prior work explores a number of prefetch techniques to

decrease the number of TLB misses. Kandiraju et al. study stride and markov TLB

prefetchers that rely on available spatial and temporal locality of consecutive TLB

misses [65]. Lustig et al. exploit inter-core prefetching that is efficient for the work-

loads that exhibit sufficient dataset sharing [64]. While these techniques mitigate the

translation overheads for the workloads with regular memory access patterns, ASAP

is oblivious to the TLB misses origin, decreasing the penalty of all the TLB misses

including those induced by the irregular access patterns that are beyond the reach of

TLB prefetchers.

Speculative address translation. SpecTLB [66] interpolates on existing TLB entries

to predict translations when a reservation-based memory manager is used,

as in FreeBSD [67], [68]. Thus, SpecTLB allows speculative execution of memory

4.6. Conclusion 57

operations before their correctness is verified. This approach may pose security threats

inherent to speculative execution of memory operations, as demonstrated by recent at-

tacks such as Spectre [69], Meltdown [70], and Foreshadow [71]. In contrast, ASAP

never consumes prefetched entries unless validated by a full page walk.

Translation-triggered prefetch. Bhattacharjee observes that if a page walker accesses

main memory when servicing a TLB miss, the corresponding data is also likely to be

memory-resident [72]. Hence, the author suggests enabling the memory controller to

complete the translation in-place, so as to immediately prefetch the data for which the

address translation is being carried out. This optimization can be seamlessly combined

with ASAP, whose prefetches would reduce the latency of both the page walk and the

data access.

Virtualization and nested page walks. Nested PTs introduce a significant perform-

ance overhead due to the elevated number of memory accesses in a page walk. Some

researchers seek to limit the number of accesses by flattening the host PT [73], while

the others use a unified PT structure, called shadow PT, managed by hypervisor [74].

Finally, Gandhi et al. combines nested and shadow PTs with a mechanism that dy-

namically switches between the two [75]. All of these techniques would benefit from

ASAP, which would further reduce page walk latencies.

4.6 Conclusion

Existing techniques for lowering the latency of address translation without disrupting

the established virtual memory abstraction all rely on caching – in TLBs, page walk

caches and in the processor’s memory hierarchy. Problematically, the trend toward

larger application datasets, bigger machine memory capacities and workload consol-

idation means that these caching structures will be increasingly pressured by the need

to keep an ever-larger number of translations. Thus, high page walk latencies due to

frequent memory accesses are bound to become a ”feature” of big-memory workloads.

This work takes a step toward lowering page walk latencies by prefetching PTEs in

advance of demand accesses by the page walker, effectively uncovering memory level

parallelism within a single page walk. This idea, which we call Address Translation

with Prefetching (ASAP), is powered by an insight that the inherently serial radix tree

traversal performed on a page walk can be accelerated through direct indexing into

a given level of the PT. Such indexing can be achieved through a simple ordering of

58 Chapter 4. Address Translation with Prefetching

PTEs by the OS without modifications to the underlying PT structure. While ASAP

does expose the latency of at least two accesses to the memory hierarchy under vir-

tualization, it is nonetheless highly effective, especially for virtualized and co-located

workloads, reducing page walk latency by up to 55%. A strength of ASAP lies in

the fact that it is a plug-and-play solution that works with the existing virtual memory

abstraction and the full ensemble of today’s address translation machinery.

Chapter 5

Improving Caching Efficiency of Page

Table under Virtualization and

Colocation

5.1 Introduction

Public cloud customers tend to execute their tasks in virtual machines, aggressively

colocating the tasks to increase virtual machines’ resource utilization. In Section 3.3,

we find that the combination of virtualization and colocation result in the difference in

average latencies of accesses to the leaf nodes of the guest and host PTs. In this chapter,

we perform a root cause analysis of the difference. We demonstrate that the combin-

ation of virtualization and application colocation causes fragmentation of the guest

physical memory space, which diminishes the efficiency of caching of host PTEs and

leads to elevated page walk latencies. Based on this observation, we propose PTEMag-

net, a new software-only technique that prohibits memory fragmentation within small

regions of the guest physical memory, improves locality of accesses to host PTEs, and

reduces page walk latency under virtualization and application colocation. As a result,

PTEMagnet is especially beneficial for applications that 1 frequently miss in TLBs

and/or PWCs (e.g. have a large dataset size) and 2 exhibit locality in memory access

patterns on the granularity of pages (for example, they are likely to access a page 𝐴+1
if a page 𝐴 was accessed). We evaluate PTEMagnet and show that that PTEMagnet is

free of performance over-heads and on x86-64 and AArch64 platforms, it can improve

performance by up to 9% and 10% (4% and 6% on average), respectively.

59

60Chapter 5. Improving Caching Efficiency of Page Table under Virtualization and Colocation

Figure 5.1: Contiguity (or lack of it) in virtual and physical address spaces under virtu-

alization [2].

5.2 Challenges for Short Page Walk Latency under

Virtualization and Colocation

Virtualization blurs the clear separation between virtual and physical address spaces.

Modern virtualization solutions, e.g., Linux KVM hypervisor, are integrated with the

host OS kernel allowing the host OS to reuse the bulk of existing kernel functionality,

including memory allocation, for virtual machines. Hence, a virtual machine appears

as a mere process for the host OS that treats the virtual machine’s (guest) physical

memory as a single contiguous virtual memory region [21]. As a result, one can think

of the guest physical memory as the virtual memory for the host. Just like physical

memory for any other virtual memory regions in the host OS, the physical memory

for the guest OS is allocated on-demand and page-by-page when the guest actually

accesses its physical pages.

As described in Section 2.1.3, while virtual address space features high contiguity,

physical address space is highly fragmented, especially when under aggressive work-

load colocation. As a result, with virtualization and workload colocation, host virtual

address space, being similar to guest physical address space, is highly fragmented too.

In other words, virtualization does not propagate contiguity existing in the guest vir-

tual space to the host virtual address space. Thus, the combination of virtualization and

workload colocation breaks contiguity in the host virtual address space while keeping

the guest virtual address space contiguous. Figure 5.1 represents contiguity (or lack of

it) in virtual and physical address spaces under virtualization.

5.2. Challenges for Short Page Walk Latency under Virtualization and Colocation 61

Lack of contiguity in the host virtual address space impairs spatial locality in the

host PT. To understand this effect, consider a scenario when several applications run

in the same virtual machine. Further, assume that each application allocates a region

of guest-virtual memory that spans eight or more pages. Although pages in each of

these regions are adjacent in guest-virtual memory, they are scattered across guest-

physical memory. This is attributable to the fact that, after allocation of the regions,

the applications start to access them concurrently, resulting in the interleaving of page

faults to these regions. As a result, the Linux memory allocator in the guest OS fails

to preserve guest-physical memory contiguity, assigning arbitrary guest-physical ad-

dresses to each of these pages so that these pages are distant from each other in the

guest physical address space. As explained above, if the guest physical address space

is fragmented, the host virtual address space is fragmented too.

Let’s consider page walks performing address translation for a memory region al-

located by an application in the scenario described in the previous paragraph. Page

walks involve accessing guest and host PTEs (termed gPTE and hPTE, respectively).

As discussed in Section 2.1.5, a single cache block with PTEs contains PTEs of eight

pages neighbouring in a virtual address space. Due to spatial locality of the applic-

ation’s access patterns, the pages accessed by the application are likely to be close

to each other in the guest virtual address space. Thanks to spatial locality, within a

short period of time, a cache block holding gPTEs is likely to be accessed by multiple

page walks that perform address translation for neighboring pages. In contrast, due

to fragmentation in the host virtual address space, the hPTEs corresponding to pages

neighbouring in the guest virtual address space are not located close to each other but

scattered over different cache blocks. As a result, while accesses to gPTEs can benefit

from spatial locality of application’s access patterns, accesses to hPTEs cannot since

fragmentation in the host virtual address space prohibits propagation of the spatial loc-

ality from guest virtual to host virtual address space.

The difference in the ability of accesses to gPTEs and hPTEs of exploiting spatial

locality results in two consequences. Firstly, during a page walk, hPTEs are more

likely to be fetched from the main memory than gPTEs. Secondly, such a difference

makes the footprint of hPTEs larger than the footprint of gPTEs. In the extreme case,

page walks of a group of eight pages would touch one cache block with gPTEs and

eight cache blocks with hPTEs. Hereafter, we take the average number of hPTEs that

correspond to a single cache block with tightly packed gPTEs as a metric of the host

PT fragmentation.

62Chapter 5. Improving Caching Efficiency of Page Table under Virtualization and Colocation

5.2.1 Quantifying Effects of Fragmentation in the Host Page Table

Fragmentation of the host PT significantly increases its footprint in the CPU cache

hierarchy (i.e., the number of cache blocks containing PTEs). A large PT cache foot-

print is obviously undesirable, since it presents a capacity challenge that is further

amplified by cache contention (by application’s code and data, as well as by corunning

applications). Misses for PTEs in the CPU cache hierarchy necessarily go to memory,

thus increasing page walk latency and hurting performance.

To showcase the effect of fragmentation in the host PT on performance, we con-

struct an experiment where we run a representative pagerank benchmark from the

GPOP graph workload suite [76] inside a virtual machine in isolation and in colocation

with a memory-intensive corunner. As a corunner, we use stress-ng [77], configured

to run 12 threads which continuously allocate and deallocate physical memory. As a

consequence of colocation, host virtual memory space gets fragmented, which results

in fragmentation in the host PT, thus increasing page walk latency. As a metric of per-

formance, we measure execution time. Using perf, we also measure different hardware

metrics to validate the fact that the change in performance stems from fragmentation in

the host PT (see Section 5.4 for details of the complete setup). We analyze the source

code of pagerank to identify a moment of execution by which pagerank finishes al-

location of physical memory (namely, when it completes initializing all allocated data

structures). Before collecting measurements, we stop the corunner after pagerank

finishes allocation of physical memory, because by that moment the corunner already

caused fragmentation in the host PT, which is the intended effect. As a result, when

measuring pagerank’s performance, there is no contention for shared resources, such

as LLC capacity, between pagerank and the corunner.

Table 5.1 represents changes in values of the measured metrics caused by frag-

mentation in the host PT. We observe that fragmentation in the host PT, caused by

colocation with the memory-intensive corunner, increases execution time by 11%. We

find that while not affecting the number of cache and TLB misses, fragmentation in

the host PT increases the number of page walk cycles by 61%. Therefore, we conclude

that the performance degradation is attributed to the change in the overhead of address

translation.

We observe that colocation affects 63% of pagerank’s contiguous memory regions,

scattering their hPTEs to 8 distinct cache blocks. Overall, colocation raises the host

PT fragmentation metric to 6.8, a significant increase from 2.8 observed in isolation.

5.2. Challenges for Short Page Walk Latency under Virtualization and Colocation 63

Metric Change

Execution time +11%

Cache misses <1%

TLB misses <1%

Page walk cycles + 61%

Cycles spent traversing the host page table +117%

Guest page table accesses served by main memory +3%

Host page table accesses served by main memory +283%

Host page table fragmentation (defined in Sec 5.2) +242%

Table 5.1: Changes in metrics of pagerank in colocation with stress-ng as compared

to standalone execution.

We find that fragmentation in the host PT has a nominal effect on the number of guest

PT accesses served from memory. In contrast, the number of accesses to the host PT

served from memory increases by 283%. As a result, in colocation, page walk incurs

misses to host page table 4.4× more frequently than to the guest PT. Since a main

memory access has higher latency than a cache access, with memory fragmentation,

traversing the host PT takes more time, which increases page walk latency. Indeed, we

observe a 117% increase in the number of cycles spent while traversing the host PT.

Our experiment shows that memory fragmentation under virtualization and coloca-

tion inside the same virtual machine can significantly increase page walk latency and

degrade application performance.

5.2.2 Virtual Private Clouds: Virtualization + Colocation

While it is common knowledge that virtualization is a foundational technology in

cloud computing, an astute reader might ask how likely are multiple applications to

be colocated inside a single virtual machine. This section addresses this question.

Colocation in the same virtual machine is common-place in public clouds due

to prevalence of services known as virtual private cloud (VPC), inlcuding Amazon

VPC [78] and Google VPC [79]. These services allow internal and external users to

run their applications on a cluster of virtual machines using an orchestration frame-

work.

In a VPC, colocation of different applications in the same virtual machine occurs

as a result of a combination of three factors. Firstly, a VPC typically includes a vir-

tual machine that has a large number of virtual CPUs (vCPUs) and thus is capable of

64Chapter 5. Improving Caching Efficiency of Page Table under Virtualization and Colocation

colocation. Such large virtual machines are needed to run large-memory applications

as cloud providers tend to offer virtual machines with a fixed RAM-to-CPU ratio [80].

However, that is not the only scenario when a VPC includes a large virtual machine.

Another case for including a large virtual machine in a VPC is reducing the costs

by constructing a VPC from lower-cost available transient virtual machine instances.

Such a policy selects the cheapest configuration of a virtual machine that can happen

to be a large virtual machine [81]. Secondly, to increase utilization and reduce costs,

cloud customers tend to run multiple different applications on a cluster at the same

time [82]. Thirdly, cluster orchestration frameworks, such as Kubernetes [83]–[85],

manage resources by a small unit of compute, typically one vCPU [86]. As a result of

these factors, a machine with many vCPUs can receive a command to execute multiple

different applications at the same time.

Colocation in the same VM is widely employed in Amazon Elastic Container Ser-

vice (Amazon ECS) [87]. The bin packing task placement strategy that aims to fit

Kubernetes tasks in as few EC2 instances as possible can easily cause a colocation

of multiple applications in the same VM [88]. As a result, any applications can be

colocated together in the same VM. Amazon ECS powers a growing number of pop-

ular AWS services including Amazon SageMaker, Amazon Polly, Amazon Lex, and

AWS Batch, and is used by hundreds of thousands of customers including Samsung,

GE, Expedia, and Duolingo [89].

Summary. Public clouds ubiquitously employ both virtualization and colocation in-

side the same virtual machine. Our analysis of the virtual memory subsystem in

such an environment reveals that a lack of coordination between different parts of

the memory subsystem – namely, the OS physical memory allocator and the address

translation mechanism – leads to memory fragmentation in the host PT. This frag-

mentation increases the cache footprint of host PTEs, which results in elevated cache

misses during page walks, thus increasing page walk latency and hurting application

performance. Preventing fragmentation of the host PT in such an environment can thus

improve cache locality for PTEs and increase performance.

5.3 PTEMagnet Design

Our goal is to prevent fragmentation of the host PT and reduce the latency of page

walks under virtualization and colocation. We aim to achieve the latency reduction by

leveraging existing CPU capabilities and without disrupting the existing software stack.

5.3. PTEMagnet Design 65

5.3.1 Design Overview

As shown in Section 5.2, the page walk overhead comes from the lengthy pointer chase

through the fragmented host PT (hPT) due to its poor utilization of caches. Our key in-

sight is that it is possible to reduce the page walk latency by increasing the efficiency of

hPTE caching, namely grouping hPTEs corresponding to neighbouring application’s

pages in one cache block. Such placement can be achieved by propagating the conti-

guity that is naturally present in the guest PT (gPT) to the hPT.

To exploit the contiguity potential presented inside the guest-virtual address space

for compacting hPTEs inside one cache block, one needs to guarantee that adjacent

guest-virtual addresses are mapped contiguously onto adjacent host-virtual addresses

or, equivalently, onto guest-physical addresses. This mapping criterion requires pro-

hibiting fragmentation and introducing contiguity within small regions in the guest

physical space. Since a CPU cache block contains eight 8-byte PTEs, to achieve the

maximum locality for hPTEs, the contiguity degree in the guest physical space should

be at least eight pages (see Figure 2.4). This means that, with 4KB pages, the size of

the region contiguously allocated in the guest physical space should be 32KB. Mean-

while, the Linux/x86 page fault handler requests a single page from the buddy allocator

on each page fault.

To eliminate fragmentation of the hPT, we introduce PTEMagnet – a new Linux

memory allocator. PTEMagnet increases the current memory allocation granularity

in the guest OS to the degree that maximizes cache block utility in the existing CPU

hierarchy – that is, eight adjacent pages that correspond to eight adjacent hPTEs packed

into a single cache block.

To support a different memory allocation granularity, we draw inspiration from the

superpage (i.e., as in large page) promotion/demotion mechanism in FreeBSD [67] that

relies on allocation-time physical memory reservations. Upon the first page fault to an

eight-page virtual memory range, PTEMagnet reserves an eight-page long contiguous

physical memory range inside the kernel so that future accesses to this page group

get allocated to their corresponding pages inside the reserved range. This approach

guarantees zero fragmentation for allocated hPTEs inside a cache block and minimizes

the hPTEs footprint in the CPU memory cache hierarchy.

The allocation-time reservation approach adopted by PTEMagnet avoids costly

memory fragmentation that is associated with using large pages because the OS keeps

track of reserved pages and can reclaim them in case of high memory pressure.

66Chapter 5. Improving Caching Efficiency of Page Table under Virtualization and Colocation

In the remainder of this section, we discuss the key aspects of PTEMagnet design

that includes the reservation mechanism and its key data structures, and the pages

reclamation mechanism.

5.3.2 Page Group Reservation

PTEMagnet attempts to reserve physical memory for adjacent virtual page groups

eagerly, upon the first page fault to any of the pages within that group. Upon such a

page fault, a contiguous eight-page group is requested from the buddy allocator while

only one virtual page (corresponding to the faulting page) is mapped to a physical

memory page, creating a normal mapping in the guest and host PTs. The other seven

physical pages inside that reservation are not mapped until the application accesses

them. Although these physical pages are taken from the buddy allocator’s lists, these

pages are still owned by the OS and can be quickly reclaimed in case of high memory

pressure.

To track the existing reservations, PTEMagnet relies on an auxiliary data structure,

called Page Reservation Table (PaRT). PaRT is queried on every page fault. A look-up

to PaRT succeeds if there already exists a reservation for a group of eight virtual pages

that includes the faulting page. If not found in PaRT, the page fault handler takes a

contiguous chunk of eight pages from the buddy allocator and stores the pointer to

the base of the chunk in a newly created PaRT entry. In addition to the pointer, the

entry includes an 8-bit mask that defines which pages in the group are used by the

application.

Upon a page fault, the faulting virtual address is rounded to 32KB (i.e., eight 4KB

pages) before performing a PaRT lookup. If the reservation exists, then a page fault

can be served immediately, without a call into the buddy allocator, by creating a PTE

that maps to one of the reserved pages. Thus, the extra work upon the first page fault

to reserve eight pages can be largely amortized with faster page faults to the rest of the

pages in a reservation. Once all the reserved pages inside a reservation are mapped,

their PaRT entry can be safely deleted.

PaRT is implemented as a per-process 4-level radix tree that is indexed with a

virtual address of the page fault. A leaf PaRT node corresponds to one reservation

and holds a pointer to the base of a chunk of physical memory, an 8-bit mask for

tracking mapped pages, and a lock. This results in a memory overhead of 17 bytes per

a 32KB region which is less than 0.003%. To guarantee safety and avoid a scalability

5.3. PTEMagnet Design 67

bottleneck that may appear when a large number of threads spawned by one process

concurrently allocate memory, the radix tree must support fast concurrent access. Thus,

to reduce lock contention and maximize inter-thread concurrency, we implement fine-

grain locking with one lock per node of the PaRT radix tree.

5.3.3 Reserved Memory Reclamation

Reservations can be reclaimed in one of two ways: 1 by the application, once it

freed all eight pages in a reservation, by calling free(); or 2 by the OS, when the

system is under memory pressure. To avoid unnecessary complexity, the OS reclaims

a reservation entirely and returns all the physical pages in the group back to the buddy

allocator’s free list. If an application explicitly frees all pages in the group, the last

call results in the deletion of the reservation. If a PaRT entry was removed because

all reserved pages had been mapped, freeing of the associated memory (if and when it

happens) is performed as in the default kernel, without involving PTEMagnet.

Under memory pressure, the OS must be able to reclaim the reserved physical

memory pages. Similar to the swappiness kernel parameter [90], we introduce a con-

figurable threshold that, when reached, triggers a daemon process that walks through

all reservations in PaRT of a randomly selected application, returning all reserved

pages to the buddy allocator. The demon keeps releasing reservations until the overall

memory consumption goes below the threshold. Note that when the OS has to free

the reserved pages, the affected application(s) still continue to benefit from the shorter

page walks to pages that have previously been allocated via PTEMagnet.

We expect no noticeable performance degradation from the PTEMagnet’s reclam-

ation mechanism, as the reclamation is a mere free() call to the buddy allocator. In

contrast, other similar reclamation mechanisms, such as in Transparent Huge Pages

or in FreeBSD, are associated with the demotion of large pages into collections of

small pages. Such a demotion requires PT updates and TLB flushes, which can delay

application’s access to its memory and lead to performance anomalies [23], [67]. PTE-

Magnet’s reclamation mechanism does not change the PT content and does not lock

memory pages used by the application.

5.3.4 Discussion

Fork and copy-on-write. Reservations are not copied, only individual pages. On a

page fault in a child process, the reservation map of a parent can be checked to see if

68Chapter 5. Improving Caching Efficiency of Page Table under Virtualization and Colocation

this page was allocated or not. If the requested page is not allocated by a parent (or

other children), a page from a parent’s reservation is returned to the child. This works

well as the majority of pages shared between a parent and a child processes are read-

only pages. Shared read-only pages don’t invoke copy-on-write, stay contiguous and

benefit from faster page walks, accelerated by PTEMagnet. Children processes cannot

create new reservations in the parent’s reservation map.

Swap and THP. If the OS chooses a reserved page for swapping or THP compaction,

it triggers a reclamation of the reservation.

Security implications. PTEMagnet does not violate existing security barriers. Simil-

arly to accesses to the guest PT, accesses to the data structure holding reservations are

performed within the kernel code on behalf of the memory owner process only.

System interface for enabling PTEMagnet. It is possible to limit the set of ap-

plications for which PTEMagnet is used. By design, PTEMagnet improves the per-

formance of big-memory applications – applications experiencing a large number of

TLB misses. To conditionally enable PTEMagnet, a mechanism can be implemented

through cgroups as follows. In a public cloud, the orchestrator (e.g., Kubernetes)

usually specifies the maximum memory usage for each deployed container, by set-

ting memory.limit in bytes. If this parameter is set, and it is above a predefined

threshold, the OS can enable PTEMagnet for the target process. While evaluating

PTEMagnet, we find that PTEMagnet does not cause a slow down even for applic-

ations that exhibit infrequent TLB misses and hence limited benefits of faster page

walks (see Section 5.5.1). Consecutively, limiting the set of applications for which

PTEMagnet is optional.

5.4 Methodology

System setup. We prototype PTEMagnet in Linux kernel v4.19 for x86-64 and AArch64

platforms. We assume public cloud deployment (as with Amazon VPC [78] or Google

VPC [79]) where multiple jobs are scheduled on top of a fleet of virtual machines. We

model the cloud environment by using QEMU/KVM for virtualized execution and by

running multiple applications inside one virtual machine at the same time. As a met-

ric of performance, we evaluate the execution time of an application in the presence

of corunners. Table 5.2 summarizes the configuration details of our experimentation

systems.

5.5. Evaluation 69

Parameter
Value/Description

x86-64 platform AArch64 platform

Processor

Dual socket Intel® Xeon®

E5-2630v4 (BDW) 2.4GHz

20 cores/socket, SMT

Dual socket Huawei Kunpeng

920-4826 2.6GHz

48 cores/socket, no SMT

Memory size 128GB/socket 32GB/socket

Hypervisor QEMU 2.11.1 QEMU 5.2.50

Host OS
Ubuntu 18.04.3,

Linux Kernel v4.15

Ubuntu 20.04.1,

Linux Kernel v5.4

Guest OS Ubuntu 16.04.6, Linux Kernel v4.19

Guest

configuration
20 vCPUs and 64GB RAM 32 vCPUs and 32GB RAM

Table 5.2: Parameters of x86-64 and AArch64 platforms used for the evaluation.

Our evaluation primarily focuses on small (4KB) pages, since fine-grain memory

management delivers greater flexibility, better memory utilization, and better perform-

ance predictability (Section 2.1.2).

Benchmarks. We select a set of diverse applications that are representative of those

run in the cloud and that exhibit significant TLB pressure. Our set of applications in-

cludes benchmarks from SPEC’17 and GPOP graph analytics framework [76]). Table 5.3

lists the benchmarks.

Corunners. We select a set of diverse applications from domains that are typically run

in a public cloud such as data compression, machine learning, compilation, and others.

The full list of corunners is shown in Table 5.3. The list includes benchmarks from

SPEC’17, graph analytics, MLPerf and other benchmarks.

5.5 Evaluation

5.5.1 PTEMagnet’s Performance Improvement

We evaluate PTEMagnet in two colocation scenarios. In the first scenario, we study a

colocation with a corunner which has the highest page fault rate among all the corun-

ners listed in Table 5.3, which is the 8-threaded objdet from MLPerf. We evaluate

the first scenario on x86-64 and AArch64 architectures. In the second scenario, we

colocate an application with a combination of all corunners listed in Table 5.3. In both

70Chapter 5. Improving Caching Efficiency of Page Table under Virtualization and Colocation

Name Description

Benchmarks

mcf, gcc, xz, omnetpp SPEC’17 benchmarks (ref input)

cc, bfs, nibble, pagerank
GPOP graph analytics benchmarks [76],

16GB dataset (scaled from Twitter)

Co-runners

objdet
MLPerf [91] object detection benchmark,

SSD-MobileNet [92], COCO dataset [93]

chameleon HTML table rendering

pyaes Text encryption with an AES block-cipher

json serdes JSON serialization and de-serialization

rnn serving Names sequence generation (RNN, PyTorch)

gcc, xz SPEC’17 benchmarks (ref input)

Table 5.3: Evaluated benchmarks and co-runners.

scenarios, we evaluate 8-threaded applications. To minimize performance variability

in the system stemming from contention for hardware resources, in both scenarios, we

pin applications’ and corunners’ threads to different CPU cores.

PTEMagnet in colocation with objdet. Figure 5.2 represents fragmentation in

the host PT measured in colocation with objdet with and without PTEMagnet on

x86-64-based system. We observe that PTEMagnet reduces fragmentation in the host

PT to almost 1 for all evaluated benchmarks. The host fragmentation metric shows

how many cache blocks on average hold hPTEs corresponding to gPTEs stored in one

cache block. The results show that PTEMagnet prevents fragmentation in the host PT,

reducing the footprint of the host PT, and enhances spatial locality across page walks,

reducing their latency.

We evaluate performance improvement stemming from accelerated page walks.

Figure 5.3 shows performance improvement delivered by PTEMagnet in comparison

to the default Linux kernel on x86-64 and AArch64 systems. The baseline corresponds

to execution in colocation with objdet without PTEMagnet. On x86-64, PTEMagnet

increases performance by 4% on average (up to 9% in the best case on xz) whereas on

AArch64 PTEMagnet delivers a speedup of 6% on average (10% max on omnetpp).

To highlight the fact that PTEMagnet is an overhead-free technique, we measure

how PTEMagnet affects the performance of applications that do not experience high

5.5. Evaluation 71

Figure 5.2: Host PT fragmentation in colocation with objdet on x86-64 (lower is bet-

ter) [2].

TLB pressure. We evaluate PTEMagnet on all SPEC’17 Integer benchmarks. We find

that on these benchmarks PTEMagnet delivers performance improvement in the range

of 0-1% (not shown in Figure 5.3).

Crucially, we find that none of the applications experience any performance de-

gradation, underscoring that PTEMagnet can be widely deployed without concern for

specifics of the application or the colocation setup.

PTEMagnet in colocation with a combination of different corunners. Figure 5.4

represents improvement delivered by PTEMagnet in comparison to the default Linux

kernel. On average, PTEMagnet improves performance by 3%, with a maximum gain

of 5% achieved with mcf. A large number of corunners increases contention for the

capacity of shared caches. Due to increased contention, the application’s cache blocks

with hPTEs have higher chances to be evicted and reduced opportunity to experience

locality. Our results show that even under high cache contention, PTEMagnet is cap-

able to speed up execution, losing just 1% of performance improvement on average, in

comparison to colocation with lower cache pressure – with objdet only.

5.5.2 Page Walk Cycles with PTEMagnet

In this section, we evaluate a reduction in page walk cycles caused by PTEMagnet

by collecting hardware performance counters data with perf. We also measure other

hardware metrics previously studied in Section 5.2.1. We measure the metrics for

pagerank application running in colocation with objdet with and without PTEMag-

net. Note that in contrast to the study in Section 5.2.1, in this study, the corunner was

72Chapter 5. Improving Caching Efficiency of Page Table under Virtualization and Colocation

Figure 5.3: Performance improvement delivered by PTEMagnet under colocation with

objdet.

Figure 5.4: Performance improvement delivered by PTEMagnet under colocation with

a combination of co-runners on x86-64 [2].

present during the entire execution of pagerank in both scenarios: with and without

PTEMagnet. Table 5.4 lists the evaluated metrics and changes in their value delivered

by PTEMagnet.

We find that PTEMagnet reduces the host page table fragmentation from 3.4 to 1.2,

shortening execution time by 7%. Performance counters report that with PTEMagnet

the CPU spends by 26% fewer cycles traversing the host page table, resulting in by

17% fewer cycles in page walks in total. This result is confirmed by a 13% reduction

in the number of host page table accesses served by the main memory.

5.6. Related work 73

Metric Change

Host page table fragmentation (defined in Sec 5.2) -66%

Execution time -7%

Page walk cycles -17%

Cycles spent traversing the host page table -26%

Guest page table accesses served by main memory -1%

Host page table accesses served by main memory -13%

Table 5.4: Changes in metrics of pagerank in colocation with objdet with PTEMagnet

compared to the default kernel.

5.5.3 PTEMagnet’s Effect on Memory Allocation Latency

In this section, we show that the reservation mechanism itself employed by PTEMagnet

is overhead-free. As explained in Section 5.3, on a first page fault to a 32KB region,

PTEMagnet requests 32KB from the buddy allocator, replacing subsequent page faults

to the reservation group by quick accesses to PaRT. To show that the reservation-based

mechanism does not cause performance degradation, we study if PTEMagnet slows

down physical memory allocation.

We construct a microbenchmark that allocates a 60GB array and accesses each of

its pages once to invoke the physical memory allocator. We measure the execution time

of the microbenchmark with and without PTEMagnet. We observe that PTEMagnet

negligibly – by 0.5% – reduces the execution time of the microbenchmark. This result

can be explained by the fact that PTEMagnet makes fewer calls to the buddy allocator,

replacing 7 out of 8 calls to it with quick accesses to PaRT. As a result, we conclude

that PTEMagnet does not increase memory allocation latency.

5.6 Related work

Disruptive vs incremental proposals on accelerating address translation. Prior at-

tempts at accelerating address translation take one of two directions. One calls for a

disruptive overhaul of the existing radix-tree based mechanisms in both hardware and

software [10], [11], [14], [15]. The other direction focuses on incremental changes to

existing mechanisms [43], [48], [53]. While disruptive proposals are potentially more

attractive from a performance perspective than incremental ones, disruptive approaches

entail a radical re-engineering of the whole virtual memory subsystem, which presents

74Chapter 5. Improving Caching Efficiency of Page Table under Virtualization and Colocation

an onerous path to adoption. In contrast, incremental techniques, requiring fewer ef-

forts to be incorporated into existing systems, are favoured by practitioners from OS

and hardware communities. Requiring only small modifications in the Linux kernel

of the guest OS, PTEMagnet falls within the incremental technique category as it can

be easily added to the existing systems. Moreover, in the cloud computing platforms,

e.g. at AWS or Google Cloud Platform, PTEMagnet can be enabled just by cloud

customers, without the involvement of cloud providers.

Incremental techniques inducing contiguity by software means. Other researches

have studied incremental techniques on enforcing contiguous mappings for reducing

the overhead of address translation [1], [27], [28]. Contiguity-aware (CA) paging [28]

introduces a change to the OS memory allocator to promote contiguity in the phys-

ical address space. CA paging leverages contiguity to improve the performance of any

hardware technique that relies on contiguous mappings, including a speculative ad-

dress translation mechanism introduced by themselves. PTEMagnet is different from

CA paging in two important dimensions. Firstly, CA paging, being a no pre-allocation

technique, is a best-effort approach to achieve contiguity: it does not guarantee con-

tiguity since contiguous mapping can be impossible due to allocations of other ap-

plications running on the machine. As a result, improvements of CA paging can be

significantly reduced under aggressive colocation – when there are multiple memory

consumers running on the same system. In contrast, PTEMagnet guarantees contiguity

by eager reservation and it is insensitive to colocation. Secondly, to deliver perform-

ance improvement, CA paging requires an advanced TLB design currently not em-

ployed by modern processors, whereas PTEMagnet reduces the overhead of address

translation without a need to change hardware.

Translation Ranger [27] is another incremental technique enforcing translation con-

tiguity by software means. Translation Ranger is designed as a software helper to

increase the benefits of emerging TLB designs coalescing multiple TLB entries into

a single TLB entry [43], [44]. Translation Ranger creates contiguity by employing a

THP-like daemon which places pages together by copying them to a contiguous region.

As a consequence, Translation Ranger has disadvantages, such as high tail latency and

various performance anomalies, inherent to THP-based large-page construction meth-

ods (see Section 2.1.2 for more details). In contrast to Translation Ranger, PTEMag-

net creates contiguity at the moment of memory allocation and doesn’t involve page

copying, harmful for performance predictability. Moreover, in comparison to Transla-

tion Ranger, PTEMagnet can be straightforwardly incorporated into existing systems:

5.7. Conclusion 75

Translation Ranger relies on hardware which is non-existed in the current systems,

whereas PTEMagnet does not have such a requirement.

ASAP [1] presented in Chapter 4 is another incremental proposal aiming at re-

ducing the overhead of address translation by enforcing contiguity through software.

ASAP [1] is different from CA paging and Translation Ranger in that it calls only for

contiguity in the page table rather than contiguity in the whole memory. With ASAP,

contiguity in the page table enables page table node prefetching which reduces page

walk latency, accelerating address translation. Compared to PTEMagnet, ASAP [1]

has a disadvantage of requiring a change in hardware, namely the addition of the

prefetching mechanism, whereas PTEMagnet can be straightforwardly used on ex-

isting machines.

Other prior incremental techniques. There is a large amount of work addressing

the overhead of address translation by reducing the number of TLB misses, including

such techniques as increasing TLB reach [19], [43], [63], [64], TLB prefetch [72], and

speculative translation [66]. PTEMagnet is complimentary to these techniques and can

be used to reduce page walk latency on a TLB miss under virtualization.

5.7 Conclusion

In this chapter, we identified a new address translation bottleneck specific to cloud

environments, where the combination of virtualization and workload colocation res-

ults in heavy memory fragmentation in the guest OS. This fragmentation increases the

effective cache footprint of the host PT relative to that of the guest PT. The bloated

footprint of the host PT leads to frequent caches misses during nested page walks,

increasing page walk latency. We introduced PTEMagnet, which addresses this prob-

lem with a legacy-preserving software-only technique to reduce page walk latency in

the cloud environments. PTEMagnet is powered by an insight that grouping hPTEs

of nearby application’s pages in one cache block can reduce the footprint of the host

PT. Such grouping can be achieved by enhancing contiguity in guest physical memory

space via a light-weight memory reservation approach. PTEMagnet requires minimal

changes in the Linux memory allocator and no modifications to either user code or

virtual address translation mechanisms. PTEMagnet enables a significant reduction in

page walk latency, improving application performance by up to 10%.

Chapter 6

Conclusions and Future Work

As the end of Moore’s law is approaching, the TLB reach fails to keep up with the

dataset size growth, making TLB misses, and hence page walks, the common case and

one of the main performance bottlenecks. The ubiquitous use of virtualization and

application colocation increases page walk latency, amplifying the performance tax of

virtual memory. In pursuit of a virtual memory solution that would address the problem

of the high overhead of virtual memory under virtualization, we find that accelerating

page walks should be a prime target.

We aim to reduce page walk latency by upgrading the address translation mech-

anism. The address translation mechanism is deeply rooted in the memory subsystem

which is operated by dedicated hardware and complex software that has a lot of in-

terdependencies with other system components. As a result, a disruptive change in

the address translation mechanism would require a lot of effort for updating numerous

components in a system in both software and hardware. In contrast, improving the ad-

dress translation mechanism by incremental changes in a fully backward-compatible

manner is a low-effort approach. Indeed, the wide adoption of the fully backward-

compatible 2D page walk mechanism – even at the cost of tens of architecturally ex-

posed memory accesses – is a great example of the vital need for full compatibility

with the existing virtual memory mechanisms, and specifically with the radix-tree-

based organization of the PT. Therefore, in this thesis, we aim to reduce page walk

latency under virtualization without disruptive changes to the memory subsystem.

The rest of this section briefly summarizes our proposals for reducing page walk

latency under virtualization and lists directions for future research in this area.

77

78 Chapter 6. Conclusions and Future Work

6.1 Contributions

6.1.1 Characterizing Page Walks

In Chapter 3, we characterize page walks. We find that virtualization considerably

increases page walk latency, causing a significant performance overhead. We analyze

sources of the high page walk latency under virtualization. We find that accesses to

the deeper levels of the guest and host PTs are responsible for most of the page walk

latency. Moreover, we discover that under application colocation, accesses to the host

PTEs on average take much longer than accesses to the guest PTEs.

6.1.2 ASAP: Accelerating Page Walks by Prefetching Page Table

Nodes

In Chapter 4 we introduce ASAP, a new approach for mitigating the high latency of ad-

dress translation under virtualization. At the heart of ASAP is a lightweight technique

for directly indexing individual levels of the page table radix tree. Direct indexing en-

ables ASAP to fetch nodes from deeper levels of the page table without first accessing

the preceding levels, thus lowering the page walk latency in virtualized deployments.

ASAP is non-speculative and fully legacy-preserving, requiring no modifications to

the existing radix-tree-based page table and TLBs.

6.1.3 PTEMagnet: Improving Caching of Page Table Nodes

In Chapter 5, we study why under application colocation, accesses to the host PTEs

on average take much longer than accesses to the guest PTEs. By analyzing latencies

of individual accesses during a nested page walk under virtualization and application

colocation, we find that cache misses to the host PTEs are more frequent than to the

guest PTEs under virtualization and application colocation. We discover that such

a difference is created by the guest OS memory allocator which under application

colocation causes memory fragmentation and reduces the locality of cache blocks with

the host PT. We propose PTEMagnet, a new approach for reducing the high latency of

address translation in cloud environments. PTEMagnet prevents memory fragmenta-

tion by using fine-grained reservation-based allocation in the guest OS. PTEMagnet is

a software-only, overhead-free, and lightweight technique, that can be easily incorpor-

ated into the existing systems.

6.2. Future Work 79

6.2 Future Work

In this section, we highlight the limitations of our proposals and describe potential fu-

ture directions for the research in accelerating address translation under virtualization.

6.2.1 Tailoring the Page Table Page Allocation Policy

for Shortening Page Walks

As explained in Chapter 4, ASAP reduces page walk latency under virtualization by

prefetching intermediate PT nodes during a nested page walk. The key idea behind

ASAP is a custom PT page allocation policy that enables direct intermediate PT node

indexing that is required for prefetching. The great advantage of ASAP is that ASAP

is fully compatible with the radix-tree-based PT organization. However, even though

the ASAP-enabling changes to the memory subsystem are small and isolated, the PT

nodes prefetching mechanism requires additional hardware that can only be added to

processors of future generations. Thus, the requirement for additional hardware does

not allow to use ASAP on a large fleet of already manufactured processors.

To reduce page walk latency on already manufactured processors, the ASAP’s

concept can be restricted to leverage hardware feature already available on the manu-

factured processors. For example, a partial effect of ASAP can be achieved by reducing

the number of memory accesses during a nested page walk by allocating the guest PT

in large pages (and notifying the host OS about it). In comparison to the default Linux

policy of allocating PT pages as small pages only, allocating guest PT in large pages

would result in skipping the accesses to host PTEs when translating addresses of the

guest PT. A potential future work can study an ASAP-inspired policy of allocating

guest PT pages in large pages and measure its effect on page walk latency and the

overall performance.

6.2.2 Enhancing Locality in the Host Page Table by a Custom

Physical Memory Allocation Policy

As explained in Chapter 5, PTEMagnet is designed to restore the locality of accesses to

the host PTEs destroyed by the Linux memory allocator under application colocation.

Without application colocation, the locality of accesses to the host PTEs is the same as

the locality of accesses to the guest PTEs. PTEMagnet guarantees that the locality of

accesses to the host PTEs is the same as the locality of accesses to the guest PTEs, re-

80 Chapter 6. Conclusions and Future Work

gardless of application colocation. The locality of accesses to the guest PTEs emerges

from the natural locality of the application’s memory accesses: locality of accesses to

the guest PTEs is high if an application accesses data from pages located nearby in

the virtual address space within a short period of time. As a result, the PTEMagnet’s

ability to improve locality in the host PT is limited by the natural locality of the applic-

ation’s memory accesses, and only applications with high locality of accesses to the

guest PTEs can benefit from PTEMagnet.

However, it is possible to extend PTEMagnet’s approach and improve the locality

of accesses to the host PTEs beyond the level of the application’s locality of accesses

to the guest PTEs. Such an extension of PTEMagnet is possible under the assumption

that an application experiences repeatable access patterns during which it accesses dis-

tant pages in the virtual address space. In such a case, since the pages are distant in

the virtual address space, their PTEs are located in different cache blocks, and hence

there is no locality of accesses to PTEs (of both guest and host PTs) during the pattern

execution. We assume that by knowing repeatable access patterns to distant pages, it

is possible to improve the locality of accesses to host PTEs during a pattern execution.

To achieve the improvement, a potential technique would require 1 finding repeatable

access patterns to distant pages in the virtual address space and 2 placing these pages

nearby in the guest physical space either by a custom memory allocator or by a page

migration kernel daemon. Similar to the effect of PTEMagnet, the improvement in the

locality of accesses to the host PT would reduce page walk latency and improve the ap-

plication’s performance under virtualization. A potential future work can evaluate the

opportunity of extending PTEMagnet and analyze if modern applications experience

repeatable memory access patterns to distant pages in the virtual address space.

Bibliography

[1] A. Margaritov, D. Ustiugov, E. Bugnion and B. Grot, “Prefetched address trans-
lation.,” in Proceedings of the 52nd International Symposium on Microarchitec-
ture (MICRO), 2019, pp. 1023–1036.

[2] A. Margaritov, D. Ustiugov, A. Shahab and B. Grot, “PTEMagnet: Fine-grained
physical memory reservation for faster page walks in public clouds,” in Pro-
ceedings of the 26th International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS), 2021, pp. 211–223.

[3] Intel, “5-level paging and 5-level EPT,” Intel, White Paper 335252-002, 2017.

[4] Linley Group, “3D XPoint fetches data in a flash,” Microprocessor Report,
2015.

[5] A. Bhattacharjee, “Preserving virtual memory by mitigating the address trans-
lation wall,” IEEE Micro, vol. 37, no. 5, pp. 6–10, 2017.

[6] X. Zhang, E. Tune, R. Hagmann, R. Jnagal, V. Gokhale and J. Wilkes, “CPI2:
CPU performance isolation for shared compute clusters,” in Proceedings of the
8th European Conference on Computer Systems (EuroSys), 2013, pp. 379–391.

[7] I. Paul, S. Yalamanchili and L. K. John, “Performance impact of virtual machine
placement in a datacenter,” in Proceedings of the 31st International Perform-
ance Computing and Communications Conference (IPCCC), 2012, pp. 424–
431.

[8] MarketsandMarkets. “Cloud computing market report.” (2020), [Online]. Avail-
able: www.marketsandmarkets.com/Market-Reports/cloud-computing-market
-234.html.

[9] S. Kanev, J. P. Darago, K. Hazelwood et al., “Profiling a warehouse-scale com-
puter,” in Proceedings of the 42nd International Symposium on Computer Ar-
chitecture (ISCA), 2015, pp. 158–169.

[10] I. Yaniv and D. Tsafrir, “Hash, don’t cache (the page table),” ACM SIGMET-
RICS Performance Evaluation Review, vol. 44, no. 1, pp. 337–350, 2016.

[11] D. Skarlatos, A. Kokolis, T. Xu and J. Torrellas, “Elastic cuckoo page tables:
Rethinking virtual memory translation for parallelism,” in Proceedings of the
25th International Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS), 2020, pp. 1093–1108.

[12] J. Shi, W. Ji, J. Zhang, Z. Gao, Y. Wang and F. Shi, “KernelGraph: Understand-
ing the kernel in a graph,” Information Visualization, vol. 18, no. 3, pp. 283–
296, 2019.

81

www.marketsandmarkets.com/Market-Reports/cloud-computing-market-234.html
www.marketsandmarkets.com/Market-Reports/cloud-computing-market-234.html

82 BIBLIOGRAPHY

[13] J. Huang, M. K. Qureshi and K. Schwan, “An evolutionary study of Linux
memory management for fun and profit,” in Proceedings of the USENIX An-
nual Technical Conference (ATC), 2016.

[14] A. Basu, J. Gandhi, J. Chang, M. D. Hill and M. M. Swift, “Efficient vir-
tual memory for big memory servers,” ACM SIGARCH Computer Architecture
News, vol. 41, no. 3, pp. 237–248, 2013.

[15] H. Alam, T. Zhang, M. Erez and Y. Etsion, “Do-it-yourself virtual memory
translation,” in Proceedings of the 44th International Symposium on Computer
Architecture (MICRO), 2017, pp. 457–468.

[16] A. Margaritov, D. Ustiugov, E. Bugnion and B. Grot, “Virtual address transla-
tion via learned page table indexes,” in Proceedings of the Workshop on Machine
Learning for Systems at NeurIPS, 2018.

[17] A. Margaritov, S. Gupta, R. Gonzalez-Alberquilla and B. Grot, “Stretch: Bal-
ancing QoS and throughput for colocated server workloads on SMT cores,” in
Proceedings of the 25th International Symposium on High-Performance Com-
puter Architecture (HPCA), 2019, pp. 15–27.

[18] A. Shahab, M. Zhu, A. Margaritov and B. Grot, “Farewell my shared LLC! A
case for private die-stacked DRAM caches for servers,” in Proceedeings of the
51st International Symposium on Microarchitecture (MICRO), 2018, pp. 559–
572.

[19] J. H. Ryoo, N. Gulur, S. Song and L. K. John, “Rethinking TLB designs in
virtualized environments: A very large part-of-memory TLB,” in Proceedings
of the 44th International Symposium on Computer Architecture (ISCA), ACM
New York, NY, USA, 2017, pp. 469–480.

[20] T. W. Barr, A. L. Cox and S. Rixner, “Translation caching: Skip, don’t walk (the
page table).,” in Proceedings of the 37th International Symposium on Computer
Architecture (ISCA), 2010, pp. 48–59.

[21] E. Bugnion, J. Nieh and D. Tsafrir, Hardware and Software Support for Virtual-
ization, ser. Synthesis Lectures on Computer Architecture. Morgan & Claypool
Publishers, 2017.

[22] J. Araujo, R. Matos, P. Maciel, R. Matias and I. Beicker, “Experimental eval-
uation of software aging effects on the eucalyptus cloud computing infrastruc-
ture,” in Proceedings of the Middleware Industry Track Workshop, 2011, pp. 1–
7.

[23] Y. Kwon, H. Yu, S. Peter, C. J. Rossbach and E. Witchel, “Coordinated and effi-
cient huge page management with Ingens,” in Proceedings of the 12th USENIX
Symposium on Operating Systems Design and Implementation (OSDI), 2016,
pp. 705–721.

[24] B. Pham, J. Veselỳ, G. H. Loh and A. Bhattacharjee, “Large pages and light-
weight memory management in virtualized environments: Can you have it both
ways?” In Proceedings of the 48th International Symposium on Microarchitec-
ture (MICRO), 2015, pp. 1–12.

BIBLIOGRAPHY 83

[25] J. Hu, X. Bai, S. Sha, Y. Luo, X. Wang and Z. Wang, “HUB: Hugepage balloon-
ing in kernel-based virtual machines,” in Proceedings of the 4th International
Symposium on Memory Systems (MEMSYS), 2018.

[26] K. Kirkconnell. “Often Overlooked Linux OS Tweaks.” (2016), [Online]. Avail-
able: http://blog.couchbase.com/of ten-overlooked-linux-os-tweaks.

[27] Z. Yan, D. Lustig, D. Nellans and A. Bhattacharjee, “Translation ranger: Op-
erating system support for contiguity-aware TLBs,” in Proceedings of the 46th
International Symposium on Computer Architecture (ISCA), 2019, pp. 698–710.

[28] C. Alverti, S. Psomadakis, V. Karakostas et al., “Enhancing and exploiting con-
tiguity for fast memory virtualization,” in Proceedings of the 47th International
Symposium on Computer Architecture (ISCA), 2020, pp. 515–528.

[29] D. Ustiugov, A. Daglis, J. Picorel et al., “Design guidelines for high-perfor-
mance SCM hierarchies,” in Proceedings of the 4th International Symposium
on Memory Systems (MEMSYS), 2018, pp. 3–16.

[30] K. Keeton, “Memory-driven computing,” in Proceedings of 15th USENIX Con-
ference on File and Storage Technologies (FAST), 2017.

[31] V. Karakostas, J. Gandhi, F. Ayar et al., “Redundant memory mappings for fast
access to large memories,” in Proceedings of the 42nd International Symposium
on Computer Architecture (ISCA), 2015, pp. 66–78.

[32] J. Gandhi, A. Basu, M. D. Hill and M. M. Swift, “Efficient memory virtualiza-
tion: Reducing dimensionality of nested page walks,” in Proceedings of the 47th
International Symposium on Microarchitecture (MICRO), 2014, pp. 178–189.

[33] C. H. Park, T. Heo, J. Jeong and J. Huh, “Hybrid TLB coalescing: Improv-
ing TLB translation coverage under diverse fragmented memory allocations,” in
In Proceedings of the 44th International Symposium on Computer Architecture
(ISCA), 2017, pp. 444–456.

[34] D. Tang, P. Carruthers, Z. Totari and M. W. Shapiro, “Assessment of the effect
of memory page retirement on system RAS against hardware faults,” in Pro-
ceedings of the International Conference on Dependable Systems and Networks
(DNS), 2006, pp. 365–370.

[35] Bad page offlining, 2009. [Online]. Available: www.mcelog.org/badpageof f lin
ing.html.

[36] J. Meza, Q. Wu, S. Kumar and O. Mutlu, “Revisiting memory errors in large-
scale production data centers: Analysis and modeling of new trends from the
field,” in Proceedings of the 45th International Conference on Dependable Sys-
tems and Networks (DSN), 2015, pp. 415–426.

[37] L. Zhang, B. Neely, D. Franklin, D. B. Strukov, Y. Xie and F. T. Chong, “Mellow
writes: Extending lifetime in resistive memories through selective slow write
backs,” in Proceedings of the 43rd International Symposium on Computer Ar-
chitecture (ISCA), 2016, pp. 519–531.

http://blog.couchbase.com/often-overlooked-linux-os-tweaks
www.mcelog.org/badpageofflining.html
www.mcelog.org/badpageofflining.html

84 BIBLIOGRAPHY

[38] M. Zhang, L. Zhang, L. Jiang, Z. Liu and F. T. Chong, “Balancing performance
and lifetime of MLC PCM by using a region retention monitor,” in Proceedings
of the 23rd Symposium on High-Performance Computer Architecture (HPCA),
2017, pp. 385–396.

[39] Y. Du, M. Zhou, B. R. Childers, D. Mossé and R. G. Melhem, “Supporting su-
perpages in non-contiguous physical memory,” in Proceedings of the 21st Sym-
posium on High-Performance Computer Architecture, 2015, pp. 223–234.

[40] Intel, Intel Itanium© architecture software developer’s manual, Volume 2, 2010.
[Online]. Available: www.intel.com/content/www/us/en/processors/ itanium/ it
anium-architecture-sof tware-developer-rev-2-3-vol-2-manual.html.

[41] IBM, Power ISA version 2.07 B, 2018. [Online]. Available: http://openpowerf o
undation.org/?resource lib=ibm-power-isa-version-2-07-b.

[42] Sun Microsystems, UltraSPARC T2 supplement to the UltraSPARC architecture,
2007. [Online]. Available: http://www.oracle.com/ technetwork/ systems/opens
parc/ t2-13-ust2-uasuppl-draf t-p-ext-1537760.html.

[43] B. Pham, V. Vaidyanathan, A. Jaleel and A. Bhattacharjee, “CoLT: Coalesced
large-reach TLBs,” in Proceedings of the 45th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), 2012, pp. 258–269.

[44] B. Pham, A. Bhattacharjee, Y. Eckert and G. H. Loh, “Increasing TLB reach by
exploiting clustering in page translations,” in Proceedings of the 20th Interna-
tional Symposium on High-Performance Computer Architecture (HPCA), 2014,
pp. 558–567.

[45] I. Cutress. “The AMD Zen and Ryzen 7 Review: A deep dive on 1800X, 1700X
and 1700.” (2017), [Online]. Available: www.anandtech.com/show/11170/ the-
amd-zen-and-ryzen-7-review-a-deep-dive-on-1800x-1700x-and-1700.

[46] M.-M. Papadopoulou, X. Tong, A. Seznec and A. Moshovos, “Prediction-based
superpage-friendly TLB designs.,” in Proceedings of the 21st International Sym-
posium on High-Performance Computer Architecture, 2015, pp. 210–222.

[47] A. Seznec, “Concurrent support of multiple page sizes on a skewed associative
TLB,” IEEE Trans. Computers, vol. 53, no. 7, pp. 924–927, 2004.

[48] G. Cox and A. Bhattacharjee, “Efficient address translation for architectures
with multiple page sizes.,” in Proceedings of the 22nd International Conference
on Architectural Support for Programming Languages and Operating Systems
(ASPLOS), 2017, pp. 435–448.

[49] D. Bruening and S. Amarasinghe, “Efficient, transparent, and comprehensive
runtime code manipulation,” Ph.D. dissertation, MIT, 2004.

[50] “libhugetlbfs(7) - Linux man page.” (2006), [Online]. Available: http:// linux.di
e.net/man/7/ libhugetlbf s.

[51] Khang T Nguyen. “Introduction to Cache Allocation Technology in the Intel
Xeon Processor E5 v4 Family.” (2016), [Online]. Available: sof tware.intel.co
m/ content/ www/ us/ en/ develop/ articles/ introduction-to-cache-allocation-tec
hnology.html.

www.intel.com/content/www/us/en/processors/itanium/itanium-architecture-software-developer-rev-2-3-vol-2-manual.html
www.intel.com/content/www/us/en/processors/itanium/itanium-architecture-software-developer-rev-2-3-vol-2-manual.html
http://openpowerfoundation.org/?resource_lib=ibm-power-isa-version-2-07-b
http://openpowerfoundation.org/?resource_lib=ibm-power-isa-version-2-07-b
http://www.oracle.com/technetwork/systems/opensparc/t2-13-ust2-uasuppl-draft-p-ext-1537760.html
http://www.oracle.com/technetwork/systems/opensparc/t2-13-ust2-uasuppl-draft-p-ext-1537760.html
www.anandtech.com/show/11170/the-amd-zen-and-ryzen-7-review-a-deep-dive-on-1800x-1700x-and-1700
www.anandtech.com/show/11170/the-amd-zen-and-ryzen-7-review-a-deep-dive-on-1800x-1700x-and-1700
http://linux.die.net/man/7/libhugetlbfs
http://linux.die.net/man/7/libhugetlbfs
software.intel.com/content/www/us/en/develop/articles/introduction-to-cache-allocation-technology.html
software.intel.com/content/www/us/en/develop/articles/introduction-to-cache-allocation-technology.html
software.intel.com/content/www/us/en/develop/articles/introduction-to-cache-allocation-technology.html

BIBLIOGRAPHY 85

[52] R. Kath. “Managing virtual memory.” (1993), [Online]. Available: http://msdn
.microsof t.com/en-us/ library/ms810627.aspx.

[53] A. Arcangeli, “Transparent hugepage support,” KVMForum, 2010.

[54] A. Bhattacharjee, “Large-reach memory management unit caches,” in Proceed-
ings of the 46th International Symposium on Microarchitecture (MICRO), 2013,
pp. 383–394.

[55] Arjan van de Ven, Linux kernel debug helper for dumping kernel page tables,
2008. [Online]. Available: http://github.com/ torvalds/ linux/blob/v4.4/arch/x8
6/mm/dump pagetables.c.

[56] M. Schwarz, PTEditor library, 2021. [Online]. Available: http://github.com/mi
sc0110/PTEditor.

[57] S. Van Schaik, K. Razavi, B. Gras, H. Bos and C. Giuffrida, “RevAnC: A frame-
work for reverse engineering hardware page table caches,” in Proceedings of the
10th European Workshop on Systems Security (EuroSec), 2017, p. 3.

[58] Galois, 2018. [Online]. Available: http:// iss.oden.utexas.edu/?p=projects/galo
is.

[59] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune and J. Wilkes,
“Large-scale cluster management at Google with Borg,” in Proceedings of the
10th European Conference on Computer Systems (EuroSys), 2015, pp. 1–17.

[60] D. Schor. “Huawei expands kunpeng server CPUs, plans SMT, SVE for next
gen.” (2019), [Online]. Available: http:// f use.wikichip.org/news/2274/huawei
-expands-kunpeng-server-cpus-plans-smt-sve-f or-next-gen/ .

[61] Intel 64 and IA-32 Architectures Optimization Reference Manual, 2021. [On-
line]. Available: http:// sof tware.intel.com/content/www/us/en/develop/downl
oad/ intel-64-and-ia-32-architectures-optimization-ref erence-manual.html.

[62] B. Gras, K. Razavi, H. Bos and C. Giuffrida, “Translation leak-aside buffer:
Defeating cache side-channel protections with TLB attacks,” in Proceedings of
the 27th USENIX Security Symposium, 2018, pp. 955–972.

[63] A. Bhattacharjee, D. Lustig and M. Martonosi, “Shared last-level TLBs for chip
multiprocessors,” in Proceedings of the 17th International Conference on High-
Performance Computer Architecture (HPCA), 2011, pp. 62–63.

[64] D. Lustig, A. Bhattacharjee and M. Martonosi, “TLB improvements for chip
multiprocessors: Inter-core cooperative prefetchers and shared last-level TLBs,”
ACM Transactions on Architecture and Code Optimization (TACO), vol. 10,
no. 1, pp. 1–38, 2013.

[65] G. B. Kandiraju and A. Sivasubramaniam, “Going the distance for TLB prefetch-
ing: An application-driven study,” in Proceedings of the 29th International Sym-
posium on Computer Architecture (ISCA), 2002, pp. 195–206.

[66] T. W. Barr, A. L. Cox and S. Rixner, “SpecTLB: A mechanism for speculative
address translation,” in Proceedings of the 38th International Symposium on
Computer Architecture (ISCA), 2011, pp. 307–318.

http://msdn.microsoft.com/en-us/library/ms810627.aspx
http://msdn.microsoft.com/en-us/library/ms810627.aspx
http://github.com/torvalds/linux/blob/v4.4/arch/x86/mm/dump_pagetables.c
http://github.com/torvalds/linux/blob/v4.4/arch/x86/mm/dump_pagetables.c
http://github.com/misc0110/PTEditor
http://github.com/misc0110/PTEditor
http://iss.oden.utexas.edu/?p=projects/galois
http://iss.oden.utexas.edu/?p=projects/galois
http://fuse.wikichip.org/news/2274/huawei-expands-kunpeng-server-cpus-plans-smt-sve-for-next-gen/
http://fuse.wikichip.org/news/2274/huawei-expands-kunpeng-server-cpus-plans-smt-sve-for-next-gen/
http://software.intel.com/content/www/us/en/develop/download/intel-64-and-ia-32-architectures-optimization-reference-manual.html
http://software.intel.com/content/www/us/en/develop/download/intel-64-and-ia-32-architectures-optimization-reference-manual.html

86 BIBLIOGRAPHY

[67] J. Navarro, S. Iyer, P. Druschel and A. Cox, “Practical, transparent operating sys-
tem support for superpages,” ACM SIGOPS Operating Systems Review, vol. 36,
no. SI, pp. 89–104, 2002.

[68] M. Talluri and M. D. Hill, “Surpassing the TLB performance of superpages with
less operating system support,” in Proceedings of the 6th Conference on Archi-
tectural Support of Programming Languages and Operating Systems (ASPLOS),
1994, pp. 171–182.

[69] P. Kocher, J. Horn, A. Fogh et al., “Spectre attacks: Exploiting speculative ex-
ecution,” in Proceedings of the 40th Symposium on Security and Privacy (SP),
2019, pp. 19–37.

[70] M. Lipp, M. Schwarz, D. Gruss et al., “Meltdown: Reading kernel memory from
user space,” in Proceedings of the 27th USENIX Security Symposium, 2018,
pp. 973–990.

[71] J. V. Bulck, M. Minkin, O. Weisse et al., “Foreshadow: Extracting the keys to
the Intel SGX kingdom with transient out-of-order execution,” in Proceedings
of the 27th USENIX Security Symposium, 2018, pp. 991–1008.

[72] A. Bhattacharjee, “Translation-triggered prefetching,” in Proceedings of the 22nd
International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), 2017, pp. 63–76.

[73] J. Ahn, S. Jin and J. Huh, “Revisiting hardware-assisted page walks for virtual-
ized systems,” in Proceedings of the 39th International Symposium on Computer
Architecture (ISCA), 2012, pp. 476–487.

[74] C. A. Waldspurger, “Memory resource management in VMware ESX server,”
in Proceedings of the 5th Symposium on Operating Systems Design and Imple-
mentation (OSDI), 2002, pp. 181–194.

[75] J. Gandhi, M. D. Hill and M. M. Swift, “Agile paging: Exceeding the best of nes-
ted and shadow paging,” in Proceedings of the 42nd International Symposium
on Computer Architecture (ISCA), 2016, pp. 707–718.

[76] K. Lakhotia, R. Kannan, S. Pati and V. Prasanna, “GPOP: A cache and memory-
efficient framework for graph processing over partitions,” in Proceedings of the
24th Symposium on Principles and Practice of Parallel Programming, 2019,
pp. 393–394.

[77] C. I. King. “Stress-ng.” (2020), [Online]. Available: http:// kernel.ubuntu.com
/∼cking/stress-ng.

[78] Amazon. “AWS virtual private cloud.” (2021), [Online]. Available: http:// aws
.amazon.com/vp.

[79] Google Cloud. “Virtual private cloud.” (2021), [Online]. Available: http:// clou
d.google.com/vpc.

[80] J. Barr. “Choosing the right EC2 instance type for your application.” (2013),
[Online]. Available: http:// aws.amazon.com/blogs/ aws/ choosing-the-right-ec
2-instance-type-f or-your-application.

http://kernel.ubuntu.com/~cking/stress-ng
http://kernel.ubuntu.com/~cking/stress-ng
http://aws.amazon.com/vp
http://aws.amazon.com/vp
http://cloud.google.com/vpc
http://cloud.google.com/vpc
http://aws.amazon.com/blogs/aws/choosing-the-right-ec2-instance-type-for-your-application
http://aws.amazon.com/blogs/aws/choosing-the-right-ec2-instance-type-for-your-application

BIBLIOGRAPHY 87

[81] ——, “Capacity-optimized spot instance allocation in action at Mobileye and
Skyscanner.” (2020), [Online]. Available: http://aws.amazon.com/blogs/aws/c
apacity-optimized-spot-instance-allocation-in-action-at-mobileye-and-skysca
nner.

[82] AWS Editorial Team. “Multi-tenant design considerations for Amazon EKS
clusters.” (2020), [Online]. Available: http:/ / aws.amazon.com/ blogs/ contai
ners/multi-tenant-design-considerations-f or-amazon-eks-clusters.

[83] Kubernetes. “Turnkey cloud solutions.” (2021), [Online]. Available: http:// kub
ernetes.io/docs/setup/production-environment/ turnkey.

[84] AWS. “Amazon Elastic Kubernetes Service.” (2021), [Online]. Available: http:
//aws.amazon.com/ek.

[85] Google Cloud. “Google Kubernetes Engine.” (2021), [Online]. Available: http:
//cloud.google.com/kubernetes-engine.

[86] R. Pary. “Run your Kubernetes workloads on Amazon EC2 spot instances with
Amazon EKS.” (2018), [Online]. Available: http:// aws.amazon.com/ blogs/ co
mpute/ run-your-kubernetes-workloads-on-amazon-ec2-spot-instances-with-a
mazon-eks.

[87] Amazon. “Amazon Elastic Container Service features.” (2021), [Online]. Avail-
able: http://aws.amazon.com/ecs/ f eatures.

[88] T. Jernigan, Amazon ECS task placement, 2019. [Online]. Available: http://aws
.amazon.com/blogs/compute/amazon-ecs-task-placement.

[89] D. Singh. “Amazon ECS vs Amazon EKS: Making sense of AWS container
services.” (2020), [Online]. Available: http://aws.amazon.com/blogs/container
s/amazon-ecs-vs-amazon-eks-making-sense-of -aws-container-services.

[90] R. van Riel and P. Morreale. “Linux kernel documentation for the Sysctl files.”
(2018), [Online]. Available: http://www.kernel.org/doc/Documentation/ sysctl
/vm.txt.

[91] V. J. Reddi, C. Cheng, D. Kanter et al., “MLPerf inference benchmark,” in Pro-
ceedings of the 47th Annual International Symposium on Computer Architecture
(ISCA), 2020, pp. 446–459.

[92] A. G. Howard, M. Zhu, B. Chen et al., “Mobilenets: Efficient convolutional
neural networks for mobile vision applications,” arXiv preprint
arXiv:1704.04861, 2017.

[93] T.-Y. Lin, M. Maire, S. Belongie et al., “Microsoft COCO: Common objects in
context,” in Proceedings of the 13th European conference on computer vision
(ECCV), 2014, pp. 740–755.

http://aws.amazon.com/blogs/aws/capacity-optimized-spot-instance-allocation-in-action-at-mobileye-and-skyscanner
http://aws.amazon.com/blogs/aws/capacity-optimized-spot-instance-allocation-in-action-at-mobileye-and-skyscanner
http://aws.amazon.com/blogs/aws/capacity-optimized-spot-instance-allocation-in-action-at-mobileye-and-skyscanner
http://aws.amazon.com/blogs/containers/multi-tenant-design-considerations-for-amazon-eks-clusters
http://aws.amazon.com/blogs/containers/multi-tenant-design-considerations-for-amazon-eks-clusters
http://kubernetes.io/docs/setup/production-environment/turnkey
http://kubernetes.io/docs/setup/production-environment/turnkey
http://aws.amazon.com/ek
http://aws.amazon.com/ek
http://cloud.google.com/kubernetes-engine
http://cloud.google.com/kubernetes-engine
http://aws.amazon.com/blogs/compute/run-your-kubernetes-workloads-on-amazon-ec2-spot-instances-with-amazon-eks
http://aws.amazon.com/blogs/compute/run-your-kubernetes-workloads-on-amazon-ec2-spot-instances-with-amazon-eks
http://aws.amazon.com/blogs/compute/run-your-kubernetes-workloads-on-amazon-ec2-spot-instances-with-amazon-eks
http://aws.amazon.com/ecs/features
http://aws.amazon.com/blogs/compute/amazon-ecs-task-placement
http://aws.amazon.com/blogs/compute/amazon-ecs-task-placement
http://aws.amazon.com/blogs/containers/amazon-ecs-vs-amazon-eks-making-sense-of-aws-container-services
http://aws.amazon.com/blogs/containers/amazon-ecs-vs-amazon-eks-making-sense-of-aws-container-services
http://www.kernel.org/doc/Documentation/sysctl/vm.txt
http://www.kernel.org/doc/Documentation/sysctl/vm.txt

	Introduction
	Virtual Memory
	Challenges for Virtual Memory
	Cloud Computing: a Case Where the Challenges Emerge

	Previous Research
	Thesis Contributions
	Characterization of Page Walks
	Prefetching Page Table Nodes during a Page Walk
	Improving Caching Efficiency of Page Table under Virtualization and Colocation

	Published Work
	Thesis Organization

	Background and Related Work
	Virtual Memory Basics
	Address Translation Mechanisms
	Memory Allocation Granularity: Page Sizes
	Memory Allocation Mechanism
	Memory Fragmentation
	Spatial Locality in the Page Table

	Previous Research on Address Translation
	Disruptive Proposals
	Incremental Approaches
	Summary

	Characterizing Page Walks
	Introduction
	Measuring Page Walk Latency
	Analyzing Sources of High Page Walk Latency
	Measuring How Page Walks Affect Performance
	Methodology for Varying Page Walk Latency
	Evaluation of Performance with Various Page Walk Latencies

	Conclusion

	Address Translation with Prefetching
	Introduction
	ASAP Design
	Virtual Address Contiguity
	Inducing Contiguity in the Page Table
	Architectural Support for ASAP
	Discussion

	Methodology
	Evaluation
	ASAP in Native Environment
	ASAP under Virtualization
	Comparison to Existing Techniques
	Estimation of Performance Improvement

	Related Work
	Conclusion

	Improving Caching Efficiency of Page Table under Virtualization and Colocation
	Introduction
	Challenges for Short Page Walk Latency under Virtualization and Colocation
	Quantifying Effects of Fragmentation in the Host Page Table
	Virtual Private Clouds: Virtualization + Colocation

	PTEMagnet Design
	Design Overview
	Page Group Reservation
	Reserved Memory Reclamation
	Discussion

	Methodology
	Evaluation
	PTEMagnet's Performance Improvement
	Page Walk Cycles with PTEMagnet
	PTEMagnet's Effect on Memory Allocation Latency

	Related work
	Conclusion

	Conclusions and Future Work
	Contributions
	Characterizing Page Walks
	ASAP: Accelerating Page Walks by Prefetching Page Table Nodes
	PTEMagnet: Improving Caching of Page Table Nodes

	Future Work
	Tailoring the Page Table Page Allocation Policy for Shortening Page Walks
	Enhancing Locality in the Host Page Table by a Custom Physical Memory Allocation Policy

	Bibliography

