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Abstract

Purpose: To establish whether axial growth and refractive error can be modulated 

in hyperopic children by imposing relative peripheral hyperopic defocus using 

multifocal soft contact lenses.

Methods: A prospective controlled study with hyperopic participants allocated to 

a control or test group. Control group participants were corrected with single vi-

sion spectacles and changes to axial length and refractive error were followed for 

3 years. For the test group, axial growth and post-cycloplegic refractive error were 

observed with participants wearing single vision spectacles for the first 6 months 

of the trial and then corrected with centre-near multifocal soft contact lenses with 

a 2.00 D add for 2 years. The central ‘near’ portion of the contact lens corrected 

distance refractive error while the ‘distance’ portion imposed hyperopic defocus. 

Participants reverted to single vision spectacles for the final 6 months of the study.

Results: Twenty-two participants, mean age 11.13 years (SD 1.72) (range 8.33–13.92), 

completed the trial. Axial length did not change during the first 6 months in either 

group (p = 1.00). Axial growth across the 2-year intervention period was 0.17 mm 

(SEM 0.04) (p < 0.0005) in the test group versus 0.06 mm (SEM 0.07) (p = 0.68) in the 

control group. Axial length was invariant during the final 6 months in either group 

(p  =  1.00). Refractive error was stable during the first 6  months in both groups 

(p = 1.00). Refractive error change across the 2-year intervention period was −0.26 

D (SEM 0.14) (p = 0.38) in the test group versus −0.01 D (SEM 0.09) (p = 1.00) in the 

control group. Neither the test (p = 1.00) nor control (p = 0.63) group demonstrated 

a change in refractive error during the final 6 months.

Conclusions: The rate of axial growth can be accelerated in children with hypero-

pia using centre-near multifocal soft contact lenses.
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INTRO DUC TIO N

Unlike myopia, and despite the known visual conse-
quences1–5 and pathological implications of hyperopia,6–9 
there has been inertia to address the modulation of refrac-
tive error in hyperopic individuals. Hyperopia occurs as a 
consequence of insufficient ocular growth and a failure to 
emmetropise in childhood, with the majority of hyperopic 
refractive errors resulting from an eye that is too short for 
its refractive power.10 The literature demonstrates the abil-
ity both to accelerate and retard axial growth in a range of 
species by imposing single vision, full-field, relative hyper-
opic and myopic defocus.11–15 In addition, several studies 
have demonstrated short-term changes in axial length and 
choroidal thickness in response to hyperopic defocus in 
humans.16–20 It seems plausible that these principles could 
be applied to children with hyperopia.

The progression of myopia and axial growth can be 
modulated in children and adolescents using soft multifo-
cal or dual-focus contact lenses.21–24 These contact lenses 
are designed to correct distance refractive error through 
the central optic zone, while simultaneously imposing my-
opic defocus through the outer optic zone. For hyperopes, 
using centre-near bifocal soft contact lenses to correct dis-
tance refractive error through the central optic zone, while 
simultaneously imposing hyperopic defocus through the 
outer optic zone, could provide a stimulus to axial growth, 
thereby increasing the rate of axial elongation and sub-
sequently reducing refractive error. Previous studies have 
also examined the effect of imposing relative peripheral 
hyperopia in animals.25–27 Hitherto, there has been no at-
tempt to impose relative peripheral hyperopic defocus to 
modulate refractive error and axial growth in children with 
hyperopia.

Based upon the evidence from animal models and short-
term laboratory studies in adult humans, the objective of 
this longitudinal clinical trial was to establish whether axial 
eye growth and refractive error could be modulated in chil-
dren and adolescents with hyperopia by imposing relative 
peripheral hyperopic defocus using soft multifocal contact 
lenses.

M ETH O DS

Prior to commencing the research, ethical approval was ob-
tained from both the National Health Service (NHS) Health 
Research Authority and the Aston University Research 
Ethics Committee, with the study designed to follow the 
tenets of the Declaration of Helsinki. Each participant, and 
their parent or guardian where appropriate, was given de-
tailed information regarding the nature of the study, both 
verbally and in written form; this allowed informed consent 
and assent to take place prior to participation. Participants 
were required to complete a short questionnaire to ensure 
that they met the inclusion criteria. The programme of re-
search was registered as a clinical trial: ClinicalTrials.gov 

NCT02686879. Suitable candidates for the study were re-
cruited by displaying notices at the research venues.

Participants were allocated to one of two non-
randomised groups:

1.	 Natural progression group: refractive error and axial 
growth were followed over a 3-year period with re-
cruitment open to hyperopes aged between 5 and 
<20  years-of-age to gain an understanding of natural 
progression of these parameters in the specified cohort. 
This arm of the study did not involve an intervention, 
with participants wearing their habitual spectacle cor-
rection throughout, and therefore served as a control 
group for the clinical trial

2.	 Hyperopic intervention group: for the intervention arm 
of the trial, axial growth and refractive error were ob-
served without intervention for the first 6  months of 
the trial with participants wearing their habitual spec-
tacle correction during this period. Between the 6 and 
30-month timepoints of the 3-year trial, participants 
wore centre-near multifocal soft contact lenses bilater-
ally for a minimum of 10  h per day for 6  days a week. 
Monthly disposable Biofinity multifocal contact lenses 
(CooperVision, coopervision.com), with a centre-near 
design and an add power of +2.00 D, were worn through-
out the intervention period. The power of the central 
portion of the lens was selected to correct distance re-
fractive error while simultaneously exposing the retina 
to relative peripheral hyperopic defocus from the outer 
distance zone (see Figure 1). A +2.00 D add was selected 
in line with previous refractive error modulation stud-
ies21,22,28 to strike a balance between ensuring adequate 
visual performance29 while imposing peripheral defocus 
at a level sufficient to test the hypothesis.24 Participants 
aged between 8 and <16 years-of-age were recruited for 
this arm of the study. For the final 6 months of the trial, 
the intervention was withdrawn, and participants re-
verted to optimal spectacle correction, with axial growth 
and refractive error observed.

Key points

•	 The rate of eye growth can be accelerated in 
children with hyperopia by imposing relative 
peripheral hyperopic defocus using multifocal 
contact lenses.

•	 Increasing the rate of eye growth in hyperopes 
using multifocal contact lenses offers a clinically 
accessible mechanism to reduce the lifelong im-
pact of hyperopia.

•	 The ability to accelerate eye growth in hyper-
opes may reduce the burden of refractive error 
during childhood and mitigate the risks of asso-
ciated ocular comorbidities later in life.
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Allocation to the respective arms of the study was not 
randomised. Individuals who were willing and able to use 
contact lenses were given the opportunity to be included 
in the contact lens arm of the study in the first instance; 
those who did not want to wear, were unable to handle 
or considered unsuitable for contact lenses, were given 
the opportunity to participate in the natural progression 
arm of the study. Inclusion and exclusion criteria are sum-
marised in Table 1.

Measures of unaided distance vision (DV) and distance vi-
sual acuity (DVA) at 6 m along with near visual acuity (NVA) at 
0.25 m were undertaken with high contrast logMAR charts 
and determined using a by-letter scoring method (0.02 log-
MAR units per letter). Biometric assessment included mea-
sures of axial length (AL), anterior chamber depth (ACD) and 
corneal curvature (CC) and were taken using the IOLMaster 
500 (Carl Zeiss Meditec, zeiss.com). For AL, 10 measures were 
taken per eye and the composite value recorded. Subjective 

F I G U R E  1   Schematic to demonstrate the concept of relative peripheral hyperopic defocus (RPHD) imposed with a centre-near bifocal contact 
lens (CL), while full refractive error is corrected centrally

T A B L E  1   Summary of inclusion and exclusion criteria

Inclusion criteria Exclusion criteria

Between 5 and <20 years of age for the natural progression group Previous contact lens wear

Between 8 and <16 years of age for the intervention group Participating in another clinical study

For participants <16 years-of-age, parents must have read, understood 
and signed the informed consent form

Regular use of medication to treat ocular conditions

Participants must have read, understood and signed the consent or 
assent form as appropriate

Current use of systemic medication that could impact upon successful 
contact lens wear or affect focusing ability

Participants in the intervention group agreed to wear contact lenses 
for a minimum of 10 h per day, 6 days per week for the 2-year 
intervention period

Participants who were unable to provide informed consent without 
the aid of an interpreter due to lack of funding available for the 
provision of this facility

Be in good general health with no contraindications to contact lens 
wear

Findings identified during contact lens assessment that would 
preclude contact lens wear

Maximum manifest spherical refractive error of +6.00 D Known ocular or systemic disease. Participants with amblyopia/
strabismus were not excluded

Maximum manifest cylindrical refractive error of −1.00 D

Maximum manifest anisometropia of 1.00 D (mean spherical error)

Minimum manifest mean spherical refractive error of +2.00D in the 
more hyperopic eye for inclusion in the intervention group

Be competent at handling contact lenses and understand the 
instructions given to ensure safe wear
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refraction was recorded prior to instillation of cyclopentolate 
hydrochloride 1% using standard optometric techniques. 
Measures of accommodative lag were also obtained using 
the Grand Seiko WAM-5500 autorefractor (Shin-Nippon, 
Rexxam, shin-nippon.jp). The participant was asked to view 
a high-contrast Maltese cross, 25 mm in size, at 0.33 m binoc-
ularly while wearing their distance correction, with measures 
of accommodative lag taken in the dominant eye only,30 
established using the hole-in-the-card test.31 Amplitude of 
accommodation was assessed using a Royal Air Force (RAF) 
rule with the mean of 3 push-up and 3 pull-down measures 
reported.32,33 Objective central refraction was measured 
30  minutes after instillation of the cycloplegic agent using 
the Grand Seiko WAM-5500 autorefractor while viewing a 
diffuse target at 6  m equivalent distance. Post-cycloplegic 
peripheral refraction measures were undertaken using the 
same instrument 30° temporally, 30° nasally, 20° superiorly 
and 20° inferiorly. Here, participants were asked to fixate on 
high-contrast Maltese crosses, 25  mm in size, in photopic 
conditions (440 lux) which were placed on a wall at 1.64 m 
to achieve the desired eccentricity points for each of the 
four peripheral measures. Central contrast sensitivity was 
recorded with spectacle and contact lens correction using 
a computerised version of the Pelli-Robson chart (Thomson 
Software Solutions, thomson-software-solutions.com) at a 
distance of 1 m. Stereoacuity was measured using the TNO 
Randot Stereotest (Edition 15, Laméris, lameris-group.nl) at a 
distance of 0.4 m with spectacle and contact lens correction.

Statistical analyses

All data were analysed using the commercially available soft-
ware SPSS (version 25, IBM, ibm.com). Sample size calculation 
indicated that 22 participants would be required to achieve 
80% power for an effect size of 0.25 at a significance level of 
5% using a mixed factor repeated measures analysis of vari-
ance (ANOVA) design (G*Power 3.1, Heinrich Heine Universitat, 
psychologie.hhu.de). Data were examined with Bonferroni 
correction applied throughout.34–36  The aim was to recruit 
28 participants to allow for an attrition rate of 20%. For the 
primary outcome measures, the mean longitudinal change 
in AL was the same for the right and left eyes (F1,10 = 0.678, 
p = 0.43); this was also the case for post-cycloplegic refractive 
error (F1,10 = 0.281, p = 0.61). As such data are presented for the 
right eye only, which was selected at random.37

R ESULTS

Twenty-eight participants were recruited in total, with 16 in 
the intervention group and 12 in the control group. Due to at-
trition, 5 participants in the intervention group and 2 partici-
pants in the control group did not complete the study, with 
1 participant transferring from the intervention group to the 
control group at the second visit (prior to intervention). There 
were no adverse events relating to contact lens wear. In total, 

22 participants completed the trial with 11 in the intervention 
group (8 females and 3 males) with an age range at baseline 
of 8.42–13.5 years, mean 11.13 years (SD 1.72); these data were 
normally distributed (Z = 0.17, p = 0.20). The control group 
consisted of 11 participants (9 females and 2 males) with an 
age range of 8.33–13.92  years, mean 11.42  years (SD 2.23); 
these data were normally distributed (Z = 0.19, p = 0.20). The 
groups were age-matched (unpaired t-test: t = 0.35, df = 20, 
p = 0.73). The data presented here are for participants that 
completed the full trial. Primary outcome measures are de-
tailed in Tables 2 and 3 and Figures 2 and 3. Secondary out-
come measures are summarised in Tables 4 and 5.

The primary outcome measures were changes to AL and 
post-cycloplegic central refractive error.

Overall, AL increased over time (F(6, 120)  =  27.09, 
p  <  0.0001), although an interaction between factors 
demonstrated this occurred in the intervention group only 
(F(6, 120) = 4.66, p < 0.0001). For the intervention group, AL 
did not change during the first 6 months prior to contact 
lens wear (p = 1.00). Axial growth accelerated throughout 
the 2 years of intervention (P = <0.0001) but did not change 
once the intervention was withdrawn for the final 6 months 
of the trial. For the control group, AL did not change across 
the 3-year period (p = 0.47). Observed power was 0.99. AL 
data from baseline to the end point of the trial is detailed 
in Table 2, with changes over time illustrated in Figure 2.

Post-cycloplegic mean spherical equivalent (MSE) cen-
tral refractive error decreased over time (F(4, 80)  =  6.57, 
p  <  0.0001) by a similar amount in both the intervention 
and control groups (F(4, 80)  =  1.46, p  =  0.22) and the ob-
served power was 0.44. Refractive error data from baseline 
to the end point of the trial is given in Table 3, with changes 
over time provided in Figure 3.

D ISCUSSIO N

This clinical trial has shown for the first time that the im-
position of relative peripheral hyperopic defocus, using 
multifocal contact lenses, can accelerate axial growth in 
children with hyperopia. Participants in the control arm 
of the study demonstrated axial growth rates that were 

T A B L E  2   Axial length (AL) at each visit

Timepoint (months) AL (mm)

Baseline 21.45 (SEM 0.27) 21.81 (SEM 0.27)

6 21.46 (SEM 0.27) 21.83 (SEM 0.27)

12 21.50 (SEM 0.27) 21.85 (SEM 0.28)

18 21.54 (SEM 0.27) 21.86 (SEM 0.27)

24 21.60 (SEM 0.28) 21.88 (SEM 0.28)

30 21.63 (SEM 0.29) 21.89 (SEM 0.28)

36 21.65 (SEM 0.30) 21.91 (SEM 0.28)

(n = 11) (n = 11)

Note: Intervention period shaded orange.

SEM, standard error of the mean.
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similar to other longitudinal observations in UK children 
with hyperopia.38 Importantly, the axial growth rates 
seen in controls were significantly outpaced by partici-
pants receiving the intervention over the 2-year period 
of wearing multifocal contact lenses. In the 6  months 

prior to receiving the intervention, axial growth rates 
for the control and intervention groups were the same. 
Similarly, once contact lens wear ceased during the final 
6 months of the trial, the faster growth rates experienced 
by the intervention group during the 2-year period of 
wearing contact lenses reverted to a pace that matched 
the control group.

As participants in the intervention arm of the trial expe-
rienced a faster rate of axial growth than controls, it would 
be expected that a decrease in hyperopia would also occur. 
However, although the mean values showed a greater re-
duction in post-cycloplegic refractive error in those receiv-
ing the intervention compared to the control group, this 
did not reach a level of significance nor achieve adequate 
statistical power. Nevertheless, the mean reduction in re-
fractive error for participants receiving the intervention 
was almost double the decrease in the control group at 
0.47 D and 0.24 D, respectively, which offers optimism for 
further research in this area. Furthermore, the variability 

T A B L E  3   Mean spherical equivalent (MSE) post-cycloplegic, 
objective, central refractive error at each visit

Timepoint (months) Refractive error (D)

Baseline +5.23 (SEM 0.68) +3.78 (SEM 0.57)

6 +5.19 (SEM 0.67) +3.75 (SEM 0.56)

18 +5.04 (SEM 0.72) +3.80 (SEM 0.56)

30 +4.93 (SEM 0.72) +3.76 (SEM 0.60)

36 +4.76 (SEM 0.69) +3.54 (SEM 0.59)

(n = 11) (n = 11)

Note: Intervention period shaded orange.

Abbreviation: SEM, standard error of the mean.

F I G U R E  2   Change in axial length (AL) (mean ± SEM). SEM, standard error of the mean
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observed with the measurement of refraction39 may be a 
factor that compounds the lack of significance.

Although stereoacuity with spectacles was similar for 
both groups and did not change over time, in the inter-
vention group it was significantly poorer with contact lens 
correction compared to spectacles, and failed to improve 
during the 2-year period of contact lens wear; this is in 
contrast to findings from earlier work demonstrating that 
stereoacuity appears to be preserved in multifocal contact 
lens wear compared to single vision correction, albeit in a 
presbyopic cohort.40 At baseline, contrast sensitivity was 
better in the control group than the intervention group 
and did not change over time. Encouragingly, contrast sen-
sitivity was similar with both spectacle and contact lens 
correction. Overall, participants appeared to adapt well to 
the novel form of visual correction; in future work it would 
be worthwhile considering a qualitative evaluation of this 
outcome.

For measures of anterior eye parameters, as with previ-
ous refractive error modulation work in myopes,23,41 CC did 
not change over time in either group. ACD changed over 

time in both the control and intervention groups by a com-
parable amount; this suggests that the greater AL change 
observed in the intervention group is attributable primar-
ily to vitreous chamber depth (VCD) growth.

Accommodative lag was greater with contact lens cor-
rection than spectacle correction, which may reflect that 
hyperopes would be expected to converge less through 
the former. Given that accommodative lag has been impli-
cated in myopia progression,42,43 it is plausible that lag may 
be a factor in driving axial growth in contact lens-wearing 
participants in the present study.

In line with previous work, peripheral refraction was rel-
atively myopic in all four quadrants.44–49 Importantly, while 
wearing the intervention, relative peripheral refraction was 
hyperopic in all four quadrants, demonstrating merit in 
using centre-near contact lenses to expose the peripheral 
retina to hyperopic defocus. The findings observed in the 
intervention group offers credibility to the hypothesis that 
exposing the hyperopic eye to relative peripheral hyper-
opic defocus may provide the necessary signal to stimulate 
axial growth in children.

T A B L E  4   Summary of secondary outcomes measures for the test and control groups

Measure

Baseline 6 months 12 months 18 months 24 months 30 months 36 months

Test Control Test Control Test Control Test Control Test Control Test Control Test Control

Unaided DV
LogMAR

0.21 (0.10) 0.06 (0.05) 0.22 (0.09)
p = 1.00

0.06 (0.05)
p = 1.00

0.22 (0.09)
p = 1.00

0.04 (0.05)
p = 1.00

0.21 (0.09)
p = 1.00

0.04 (0.05)
p = 1.00

0.20 (0.09)
p = 1.00

0.03 (0.05)
p = 1.00

0.21 (0.09)
p = 1.00

0.04 (0.05)
p = 1.00

0.20 (0.09)
p = 1.00

0.04 (0.05)
p = 1.00

Spectacle DVA LogMAR 0.02 (0.04) −0.06 (0.03) 0.03 (0.04)
p = 1.00

−0.07 (0.02)
p = 1.00

0.00 (0.03)
p = 1.00

−0.07 (0.03)
p = 1.00

0.00 (0.03)
p = 1.00

−0.07 (0.03)
p = 1.00

−0.02 (0.03)
p = 1.00

−0.07 (0.03)
p = 1.00

0.00 (0.04)
p = 1.00

−0.07 (0.03)
p = 1.00

−0.01 (0.03)
p = 1.00

−0.06 (0.03)
p = 1.00

Spectacle NVA
LogMAR

0.23 (0.03) 0.18 (0.03) 0.23 (0.03)
p = 1.00

0.16 (0.02)
p = 1.00

0.21 (0.03)
p = 1.00

0.18 (0.04)
p = 1.00

0.19 (0.03)
p = 1.00

0.13 (0.03)
p = 0.02

0.18 (0.03)
p = 1.00

0.12 (0.03)
p = 1.00

0.18 (0.03)
p = 1.00

0.13 (0.03)
p = 1.00

0.15 (0.03)
p = 1.00

0.13 (0.02)
p = 1.00

Spectacle
stereoacuity
(sec of arc)

144.00 (41.18) 99.00 (42.44) 132.00 (39.80)
p = 1.00

102.00 (42.00)
p = 1.00

150.00 (40.25)
p = 1.00

111.00 (41.96)
p = 1.00

126.00 (40.45)
p = 1.00

90.00 (18.44)
p = 1.00

113.33 (17.61)
p = 1.00

98.18 (22.88)
p = 1.00

133.33 (45.28)
p = 1.00

130.91 (40.53)
p = 1.00

126.67 (45.93)
p = 1.00

136.36 (53.73)
p = 1.00

Contrast sensitivity with 
spectacles

1.51 (0.04)
p = 1.00

1.62 (0.03)
p = 1.00

1.53 (0.03)
p = 1.00

1.62 (0.03)
p = 1.00

1.57 (0.02)
p = 0.72

1.64 (0.03)
p = 1.00

CC (mm) 7.80 (0.08) 7.71 (0.10) 7.80 (0.08)
p = 1.00

7.70 (0.10)
p = 1.00

7.79 (0.08)
p = 1.00

7.72 (0.10)
p = 1.00

7.81 (0.08)
p = 1.00

7.71 (0.09)
p = 1.00

7.79 (0.08)
p = 1.00

7.70 (0.09)
p = 1.00

7.80 (0.08)
p = 1.00

7.71 (0.09)
p = 1.00

7.80 (0.08)
p = 1.00

7.70 (0.09)
p = 1.00

ACD (mm) 3.32 (0.11) 3.48 (0.07) 3.32 (0.12)
p = 1.00

3.47 (0.07)
p = 1.00

3.34 (0.11)
p = 0.21

3.48 (0.06)
p = 1.00

3.35 (0.12)
p = 1.00

3.49 (0.07)
p = 1.00

3.36 (0.12)
p = 1.00

3.50 (0.07)
p = 0.39

Amplitude of 
accommodation (D)

11.61 (0.53) 11.61 (0.46) 11.44 (0.51)
p = 1.00

11.73 (0.38)
p = 1.00

11.39 (0.50)
p = 1.00

11.39 (0.27)
p = 1.00

11.18 (0.41)
p = 1.00

11.11 (0.39)
p = 1.00

11.03 (0.37)
p = 1.00

11.33 (0.44)
p = 1.00

11.15 (0.43)
p = 1.00

11.00 (0.36)
p = 1.00

10.86 (0.34)
p = 1.00

11.21 (0.36)
p = 1.00

Accommodative lag with 
spectacles (D)

0.76 (0.11) 0.82 (0.12) 1.01 (0.10)
p = 1.00

0.86 (0.14)
p = 1.00

1.16 (0.08)
p = 1.00

0.93 (0.09)
p = 1.00

1.23 (0.09)
p = 1.00

0.84 (0.10)
p = 1.00

1.10 (0.05)
p = 1.00

0.99 (0.10)
p = 1.00

1.11 (0.06)
p = 1.00

1.13 (0.09)
p = 1.00

1.09 (0.10)
p = 1.00

1.11 (0.07)
p = 1.00

MSE relative peripheral 
refraction temporal 30° 
(D)

−2.38 (0.52) −1.26 (0.37) −2.62 (0.53)
p = 1.00

−1.39 (0.33)
p = 1.00

−2.32 (0.61)
p = 1.00

−1.26 (0.28)
p = 1.00

−2.28 (0.59)
p = 1.00

−0.98 (0.40)
p = 1.00

−2.29 (0.52)
p = 1.00

−0.75 (0.40)
p = 1.00

MSE relative peripheral 
refraction nasal 30° (D)

−0.75 (0.30) −0.91 (0.27) −0.51 (0.25)
p = 1.00

−1.17 (0.28)
p = 1.00

−0.90 (0.30)
p = 0.51

−1.30 (0.26)
p = 1.00

−1.25 (0.52)
p = 1.00

−1.16 (0.43)
p = 1.00

−0.77 (0.31)
p = 1.00

−0.49 (0.22)
p = 1.00

MSE relative peripheral 
refraction superior 20° (D)

−0.43 (014) −0.69 (0.22) −0.71 (0.14)
p = 1.00

−0.77 (0.22)
p = 1.00

−1.02 (0.34)
p = 1.00

−0.81 (0.20)
p = 1.00

−0.76 (0.14)
p = 1.00

−0.77 (0.28)
p = 1.00

−0.58 (0.25)
p = 1.00

−0.49 (0.19)
p = 1.00

MSE relative peripheral 
refraction inferior 20° (D)

−0.91 (0.25) −0.93 (0.30) −0.57 (0.22)
p = 1.00

−0.90 (0.31)
p = 1.00

−0.76 (0.20)
p = 1.00

−0.95 (0.29)
p = 1.00

−0.85 (0.22)
p = 1.00

−0.75 (0.22)
p = 1.00

−0.66 (0.31)
p = 1.00

−0.47 (0.22)
p = 1.00

Note: p values are for within-subject differences between consecutive measures. SEM in brackets. ACD: anterior chamber depth; CC: corneal curvature;  
DVA: distance visual acuity; MSE: mean spherical equivalent; NVA: Near Visual Acuity
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Participants in the intervention arm of the study proved 
to be adept at handling and maintaining their contact 
lenses, which is in keeping with earlier work on the safety 
of contact lenses in children.50,51 Compliance with wear 
also appeared to meet the trial objectives, although this 
was a self-reported outcome.

In future work, it would be important to establish if a 
greater effect can be achieved through earlier interven-
tion. Exposing the hyperopic eye to peripheral hyperopic 
defocus at a younger age, when natural growth is faster, 
may yield better results as well as potentially improving 
the visual outcome, for instance, measures of VA and ste-
reopsis. Nevertheless, it is important to recognise the diffi-
culties of recruiting hyperopes, particularly at a young age. 
Given the nature of refractive error distribution, hyperopes 
are relatively scarce in comparison to their myopic coun-
terparts. Furthermore, in the absence of amblyopia, low to 
moderate hyperopes are likely to ‘pass’ rudimentary vision 
screening at school,52 and may not present for routine as-
sessment within primary care optometry due to being able 
to accommodate to overcome their refractive error. In the 
UK, those who fail vision screening are typically diverted 

to secondary care for several years making recruitment 
at a young age more difficult in a primary care setting. 
Additional opportunities to expand upon refractive error 
modulation in children with hyperopia could be through 
nuanced optical approaches based upon the mechanism 
established here. In the present trial, a single dose ap-
proach was taken using a 2.00 D add in an ‘off-the-shelf’ 
design intended for presbyopic correction. Further work 
should assess the impact of using different sized central 
zones and higher add powers to expose the peripheral ret-
ina to a greater degree of hyperopic defocus. In addition, as 
an extension to the present work, it would be interesting to 
understand if the response to the intervention is related to 
the magnitude of the baseline refractive error.

In terms of the main objective, being able to demon-
strate the impact of the intervention on axial growth in 
hyperopes is encouraging. However, it is important to 
recognise the limitation of this work in terms of refractive 
error outcome, which lacked statistical power and did not 
reach a significant level.

Having identified a mechanism to modulate axial 
growth holds promise for hyperopes, and provides a 

T A B L E  4   Summary of secondary outcomes measures for the test and control groups

Measure

Baseline 6 months 12 months 18 months 24 months 30 months 36 months

Test Control Test Control Test Control Test Control Test Control Test Control Test Control

Unaided DV
LogMAR

0.21 (0.10) 0.06 (0.05) 0.22 (0.09)
p = 1.00

0.06 (0.05)
p = 1.00

0.22 (0.09)
p = 1.00

0.04 (0.05)
p = 1.00

0.21 (0.09)
p = 1.00

0.04 (0.05)
p = 1.00

0.20 (0.09)
p = 1.00

0.03 (0.05)
p = 1.00

0.21 (0.09)
p = 1.00

0.04 (0.05)
p = 1.00

0.20 (0.09)
p = 1.00

0.04 (0.05)
p = 1.00

Spectacle DVA LogMAR 0.02 (0.04) −0.06 (0.03) 0.03 (0.04)
p = 1.00

−0.07 (0.02)
p = 1.00

0.00 (0.03)
p = 1.00

−0.07 (0.03)
p = 1.00

0.00 (0.03)
p = 1.00

−0.07 (0.03)
p = 1.00

−0.02 (0.03)
p = 1.00

−0.07 (0.03)
p = 1.00

0.00 (0.04)
p = 1.00

−0.07 (0.03)
p = 1.00

−0.01 (0.03)
p = 1.00

−0.06 (0.03)
p = 1.00

Spectacle NVA
LogMAR

0.23 (0.03) 0.18 (0.03) 0.23 (0.03)
p = 1.00

0.16 (0.02)
p = 1.00

0.21 (0.03)
p = 1.00

0.18 (0.04)
p = 1.00

0.19 (0.03)
p = 1.00

0.13 (0.03)
p = 0.02

0.18 (0.03)
p = 1.00

0.12 (0.03)
p = 1.00

0.18 (0.03)
p = 1.00

0.13 (0.03)
p = 1.00

0.15 (0.03)
p = 1.00

0.13 (0.02)
p = 1.00

Spectacle
stereoacuity
(sec of arc)

144.00 (41.18) 99.00 (42.44) 132.00 (39.80)
p = 1.00

102.00 (42.00)
p = 1.00

150.00 (40.25)
p = 1.00

111.00 (41.96)
p = 1.00

126.00 (40.45)
p = 1.00

90.00 (18.44)
p = 1.00

113.33 (17.61)
p = 1.00

98.18 (22.88)
p = 1.00

133.33 (45.28)
p = 1.00

130.91 (40.53)
p = 1.00

126.67 (45.93)
p = 1.00

136.36 (53.73)
p = 1.00

Contrast sensitivity with 
spectacles

1.51 (0.04)
p = 1.00

1.62 (0.03)
p = 1.00

1.53 (0.03)
p = 1.00

1.62 (0.03)
p = 1.00

1.57 (0.02)
p = 0.72

1.64 (0.03)
p = 1.00

CC (mm) 7.80 (0.08) 7.71 (0.10) 7.80 (0.08)
p = 1.00

7.70 (0.10)
p = 1.00

7.79 (0.08)
p = 1.00

7.72 (0.10)
p = 1.00

7.81 (0.08)
p = 1.00

7.71 (0.09)
p = 1.00

7.79 (0.08)
p = 1.00

7.70 (0.09)
p = 1.00

7.80 (0.08)
p = 1.00

7.71 (0.09)
p = 1.00

7.80 (0.08)
p = 1.00

7.70 (0.09)
p = 1.00

ACD (mm) 3.32 (0.11) 3.48 (0.07) 3.32 (0.12)
p = 1.00

3.47 (0.07)
p = 1.00

3.34 (0.11)
p = 0.21

3.48 (0.06)
p = 1.00

3.35 (0.12)
p = 1.00

3.49 (0.07)
p = 1.00

3.36 (0.12)
p = 1.00

3.50 (0.07)
p = 0.39

Amplitude of 
accommodation (D)

11.61 (0.53) 11.61 (0.46) 11.44 (0.51)
p = 1.00

11.73 (0.38)
p = 1.00

11.39 (0.50)
p = 1.00

11.39 (0.27)
p = 1.00

11.18 (0.41)
p = 1.00

11.11 (0.39)
p = 1.00

11.03 (0.37)
p = 1.00

11.33 (0.44)
p = 1.00

11.15 (0.43)
p = 1.00

11.00 (0.36)
p = 1.00

10.86 (0.34)
p = 1.00

11.21 (0.36)
p = 1.00

Accommodative lag with 
spectacles (D)

0.76 (0.11) 0.82 (0.12) 1.01 (0.10)
p = 1.00

0.86 (0.14)
p = 1.00

1.16 (0.08)
p = 1.00

0.93 (0.09)
p = 1.00

1.23 (0.09)
p = 1.00

0.84 (0.10)
p = 1.00

1.10 (0.05)
p = 1.00

0.99 (0.10)
p = 1.00

1.11 (0.06)
p = 1.00

1.13 (0.09)
p = 1.00

1.09 (0.10)
p = 1.00

1.11 (0.07)
p = 1.00

MSE relative peripheral 
refraction temporal 30° 
(D)

−2.38 (0.52) −1.26 (0.37) −2.62 (0.53)
p = 1.00

−1.39 (0.33)
p = 1.00

−2.32 (0.61)
p = 1.00

−1.26 (0.28)
p = 1.00

−2.28 (0.59)
p = 1.00

−0.98 (0.40)
p = 1.00

−2.29 (0.52)
p = 1.00

−0.75 (0.40)
p = 1.00

MSE relative peripheral 
refraction nasal 30° (D)

−0.75 (0.30) −0.91 (0.27) −0.51 (0.25)
p = 1.00

−1.17 (0.28)
p = 1.00

−0.90 (0.30)
p = 0.51

−1.30 (0.26)
p = 1.00

−1.25 (0.52)
p = 1.00

−1.16 (0.43)
p = 1.00

−0.77 (0.31)
p = 1.00

−0.49 (0.22)
p = 1.00

MSE relative peripheral 
refraction superior 20° (D)

−0.43 (014) −0.69 (0.22) −0.71 (0.14)
p = 1.00

−0.77 (0.22)
p = 1.00

−1.02 (0.34)
p = 1.00

−0.81 (0.20)
p = 1.00

−0.76 (0.14)
p = 1.00

−0.77 (0.28)
p = 1.00

−0.58 (0.25)
p = 1.00

−0.49 (0.19)
p = 1.00

MSE relative peripheral 
refraction inferior 20° (D)

−0.91 (0.25) −0.93 (0.30) −0.57 (0.22)
p = 1.00

−0.90 (0.31)
p = 1.00

−0.76 (0.20)
p = 1.00

−0.95 (0.29)
p = 1.00

−0.85 (0.22)
p = 1.00

−0.75 (0.22)
p = 1.00

−0.66 (0.31)
p = 1.00

−0.47 (0.22)
p = 1.00

Note: p values are for within-subject differences between consecutive measures. SEM in brackets. ACD: anterior chamber depth; CC: corneal curvature;  
DVA: distance visual acuity; MSE: mean spherical equivalent; NVA: Near Visual Acuity
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platform for an extension to this work. The ability to accel-
erate axial growth in hyperopes may help to decrease the 
risk of ocular comorbidities associated with small globes6–9 
as well as reduce the burden of refractive error in these 
children.1–5 Furthermore, multifocal contact lenses in chil-
dren with hyperopia appear to be well tolerated both from 
a handling and wearing perspective as well as providing 
good visual performance.
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