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Abstract:  

The unique properties of a wide range of Rare Metals (RMs) are crucial to achieve the 

functionality of modern technologies. By text mining 5,146,615 USPTO patents during the 

period 1976-2015, this paper systematically studies the technological dependence of new 

inventions on 13 key RMs, with the aim of exploring the link between critical raw materials 

and frontier technological innovation. We find that RMs play an increasing role as the material 

basis for modern technologies: the dependence varies significantly across technological areas 

and metal types, and it is particularly high for some emerging technologies such as 

semiconductors, nanotechnology, and green energy technologies. Further, we use a panel of 

technology-RM pairs over four decades to assess the impact of RM supply on innovation 

dynamics. The results show that increases in the supply of an RM significantly improve the 

patent output of technology areas based on it, contributing to the understanding of how 

innovation dynamics are shaped by the availability of natural resources with technological 

criticality. 
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1. Introduction  

Natural resources are the material basis for industry development and economic growth. 

As a special group of critical raw materials, rare metals (RMs), also known as minor metals, 

are becoming more and more prominent in high-tech industries, and are regarded as “technology 

metals” with great criticality at the innovation frontier (Abraham, 2015; Graedel et al., 2015; 

European Commission, 2020). Different from major and base metals (e.g., copper, iron, and 

aluminium), RMs are like the “vitamins” or “spices” for the industry – only used in very small 

quantities, but providing unique and essential chemical, electrical or mechanical properties, and 

leading to extensive applications in a variety of high-tech products, such as semiconductors, 

catalysts, engines, turbines, batteries, as well as medical equipment and weapons (e.g. Gunn, 

2014; Abraham, 2015; Watari et al., 2020).  

While the importance of RMs for technological innovation is steadily expanding, they 

also face significant supply risks (e.g., National Research Council, 2008; Humphries, 2010; 

European Commission, 2012; Hayes & McCullough, 2018). These are related to depletion due 

to mineral scarcity, geographical concentration of deposits, political instability of producing 

countries, geopolitical risks in global RM trade as well as low recycling rates (Radetzki, 2008; 

Narine, 2012; Lederer & McCullough, 2018). Taken together, such risks may constrain 

industrial development and the advancement of modern technologies. For example, the solar 

energy industry and the technologies related to it are seriously affected by fluctuations in the 

supply of gallium (Ga) and indium (In) (Gunn, 2014). On the other hand, RM extraction may 

give rise to serious negative externalities in the supply locations: this is the case, for instance, 

of tantalum and cobalt, labelled ‘conflict minerals’ as specifically associated with armed 

conflict, human rights abuses and corruption. Despite such criticalities and the potential impacts 

of RMs on frontier technologies, neither innovation studies nor economics research have paid 

enough attention to RMs.  

Against this backdrop, in what follows we systematically analyse the extent to which 

modern technologies depend on various RMs and attempt to explore a crucial but unanswered 

question: as critical raw materials of emerging industries and technologies, do changes in RMs’ 

supply influence the innovation dynamics by affecting the patent output of RM-based 

technology areas?  

We first explore the technological dependence on RMs by identifying the RM 

keywords in the USPTO patent text and observe a high dependency — 10.87% of 5,146,615 

patents granted over the period 1976-2015 depends on at least one RM in our sample. 

Subsequently, we estimate a panel model of 5,644 technology subgroup-RM pairs to assess the 

https://www.sciencedirect.com/science/article/pii/S0301420718301296#bib36


impact of RM supply, measured by the annual global metal production, on the innovation 

performance of RM-based technology areas, measured by patent numbers. A major challenge 

is the problem of endogeneity, whereby technology developments may reversely affect metal 

production decisions, or they are simultaneously influenced by unobservable factors, like policy 

changes and scientific discoveries. We address this issue by developing an instrumental 

variable (IV) that captures the exogenous variation of RM supply by considering the metal 

companionability and co-production relationship between RMs and their geological hosts, i.e. 

the base metals (Nassar et al., 2015; Sprecher et al., 2017). We find a positive impact of RM 

supply on innovation — when the production of an RM increases by 1% relative to the level in 

1975, on average patent outputs in technology subgroups based on this RM increase by 0.026%. 

The positive impact is highly robust using alternative IVs, regression models, samples, 

thresholds, and definitions of RM-based technology areas. These findings support the idea that 

RM supply influences the dynamics of frontier technological innovation. 

Our paper contributes to the literature in various respects. First, we enhance the 

understanding of the driving forces of innovation and the endogenous technological 

development under the influence of changing supply conditions of critical natural resources. 

As a “creative destruction” process, innovation leads to production paradigm shifts and new 

combination modes of production factors (Schumpeter, 1942, p.81-86). Mainstream economics 

argues that technological innovation solves or ameliorates the resource scarcity, enabling 

society to overcome natural supply constraints and achieve sustainable development (e.g., 

Solow, 1974; Stiglitz, 1974; Rosenberg, 1976; Acemoglu et al., 2012). However, such a 

“technology optimism” overlooks the endogeneity of technological change: innovation itself 

may be reversely influenced by resource supply conditions. It is less clear whether and how 

natural resources’ availability in turn affects technology dynamics, especially, when we 

consider some critical raw materials with relatively low recycling rate and substitution 

possibilities, like the RMs (Graedel, 2015). In this paper we argue that because of their unique 

technological characteristics, the rarity and supply risks of RMs may become the potential 

constrains for the advancement of frontier technologies. 

Second, this paper also contributes to the resource criticality studies by broadening the 

understanding of the rare metals. Existing literature on RMs mainly focuses on material flow 

analysis and supply chain management (e.g. Kim & Davis, 2016; Sauer & Seuring, 2017); 

criticality assessment (e.g. Hayes & McCullough, 2018); international regulations, as well as 

the corresponding behaviours and responsibilities of firms (Diemel & Cuvelier, 2015; Hofmann 

et al., 2018). Although regarded as “technology metals”, RMs have rarely been systematically 

studied from an actual technological perspective. It is widely recognized in the literature that 



modern technology is strongly dependent on critical raw material and RMs, and possible supply 

risks may cause shocks to technological change, particularly in high-tech industries (Eggert, 

2010). However, it is still unknown how intense and varied this dependency is: following 

Diemer et al. (2021), this paper makes an attempt to quantitatively and comprehensively 

measure RM technological dependence through patent text mining.  

The paper is organized as follows: Sections 2 reviews the literature and establishes the 

theoretical foundations; Sections 3 explains the selection and data sources of RMs and 

technologies as well as the text mining methods, whilst Section 4 calculates the technological 

dependence on RMs; Section 5 and 6 estimate the impact of RM supply on the innovation 

dynamics and test robustness; Section 7 concludes providing further research directions.  

2.Literature review  

2.1 Technology dynamics and natural resource availability 

Different streams of literature have analysed the interdependency between technological 

dynamics, natural resource availability and economic growth. In the neo-classical growth 

theories, technology determines the relationship between natural resources and economic 

growth. Solow (1974), Dasgupta & Heal (1974) as well as Stiglitz (1974) use one-sector 

optimal growth models with non-renewable resources as input to explain the compatibility 

between natural resource constraints and economic development. They come to the conclusion 

that with exogenous technologies as the fundamental driving force, positive long-run growth 

can be achieved in the presence of non-renewable natural resources. Technological progress 

and capital accumulation can substitute resources and compensate for the negative effects of 

resource scarcity. However, this exogenous perspective does not consider that natural resources 

may in turn influence technological progress (Barbier, 1999). The relationship between natural 

resource availability and technology development is then endogenized by resource and 

ecological economists in the framework of the New Growth Theory. For example, Barbier 

(1999) modifies the Romer-Stiglitz model by allowing resource scarcity as a constraint 

condition for innovation and shows that it may offset the long-run rate of innovation. Bretschger 

(1999; 2005) uses a multi-sector setting, and assuming non-renewable resources as the essential 

inputs in the research sector he finds that resource supply conditions lead to structural changes 

across sectors and have a deep influence on both technology trajectory and economic 

development. 

 Under other endogenous views, the “induced innovation hypothesis” argues that 

technological progress is significantly determined by the dynamics of the supply of production 

factors (Hicks, 1932; Schmookler, 1962; Jaffe et al., 2004; Chakraborty & Chatterjee, 2017). 



Specific factor supply conditions determine the optimal combination of resources, which 

changes as technology progresses by adjusting the meta-production functions to the dynamics 

of resource availability (Dosi, 1988). To test this important hypothesis, early empirical studies 

show that land supply conditions and its substitution with labour determine the trajectories of 

agricultural technologies (e.g. Hayami & Ruttan, 1970; Kawagoe et al., 1986; Olmstead & 

Rhode, 1993). More recent works focus on the relationship between conventional energy supply 

and development of alternative energy technologies (e.g. Newell et al., 1999; Cheon & 

Urpelainen, 2012; Aghion et al., 2016). In his pioneering article, Popp (2002) shows that 

anticipated energy prices encourage new patents for a wide range of green and energy-efficient 

technologies. This inducement effect is further strengthened by properly designed energy 

policies and environmental standards (e.g. Popp, 2001; 2002; Johnstone et al., 2010; Lindman 

& Söderholm, 2016; Böhringer et al., 2017), under the assumption of substitutable inputs, 

Acemoglu et al. (2012) find that environmental policies can direct innovation towards green 

technologies and lead to long-term sustainable growth.  

In summary, existing economics and innovation research provides important explanations 

for the co-evolution between natural resource supply and technological progress. Nonetheless, 

many theoretical models are based on strong substitution assumptions between capital and 

resources (e.g. Solow, 1974) or between different resource inputs (e.g. Acemoglu et al., 2012). 

Accordingly, empirical studies mainly analyse how the shortage of general inputs (e.g. 

conventional energies, land) can stimulate new technologies that use relatively abundant 

resources as a substitute for the scarce ones. This perspective fails to fully consider resource 

heterogeneity: differently from general inputs, some natural resources, such as critical raw 

materials, are technologically crucial and therefore the high substitution assumption is 

unrealistic (Graedel et al., 2015). They work as essential inputs and directly enter core R&D 

processes, limiting constant innovation rates in the long run. To our knowledge, very little 

research has analysed the relationship between the supply of such critical resources and 

technological change. 

In this context, this article focuses on the impact of critical raw materials on innovation, 

bearing in mind that inducement effects may be favoured by the abundance of general inputs 

like energy and basic materials, major shocks in prices/supplies and scarcities of critical and 

crucial inputs (Dosi, 1988). As a special group of natural resource, RMs represent a highly 

relevant case of critical raw materials that are rare, non-renewable and currently irreplaceable. 

Here we argue that their supply not only indirectly “induces” innovation but may also work as 

the critical material basis that directly “determines” technological frontier dynamics.  



2.2 Rare metals: technological criticality and supply risks  

With the advancement of science, the unique electrical, thermal, chemical, and optical 

properties of RMs have become evident, paving the way for new cutting-edge technologies. As 

a result, the range of useful and available chemical elements for human societies has gradually 

expanded. For example, the elements used in computers grew from 11 in the 1980s to 15 in the 

1990s, and to 60 in the 2010s (Zepf & Achzet, 2015). Furthermore, the adoption of RM-based 

technologies generates substantial improvements in the performance of existing products, 

leading also to the creation of entirely new goods.  

Academic research emphasises the high reliance of two major technology paradigm shifts 

on RMs. First, the transition to clean and green energy technologies strongly depends on RMs 

(Grandell et al., 2016). Almost all core green technologies, including solar electricity, wind 

power, fuel cells, hydrogen production and storage, electric cars and energy-efficient lighting 

are heavily dependent on different RMs (Grandell et al., 2016; Valero et al., 2018). Second, 

alongside the advent of industry 4.0, revolutionary technology breakthroughs in information, 

communication, and artificial intelligence have significantly increased the complexity and 

sophistication of electronic equipment, raising the demand for various RMs as essential inputs 

in advanced electronic components. These include lithium (Li) and cobalt (Co) in batteries, 

gallium (Ga) and germanium (Ge) in integrated circuits, tantalum (Ta) in capacitors, 

molybdenum (Mo) in transistors as well as indium (In) in the displays (Eggert, 2010; Gunn, 

2014).  

Unlike other natural resources, RMs work as critical materials and the technological use is 

hardly replaced due to their unique properties (Ayres & Peiro, 2013; Abraham, 2015). 

Engineering and natural science research indicates that for many RMs “no suitable substitutes 

can be found no matter what price is offered without performance and function being seriously 

compromised ”  (Graedel et al., 2015 p. 6299). The R&D aimed at identifying possible 

substitutes often requires very long cycles and high costs, thus making alternatives for many 

RMs rarely available (European Commission, 2012). Moreover, the potential substitutes of a 

certain RM are often other RMs which also face supply constraints. For example, this is the 

case of the replacement of cobalt (Co) with rare earth element neodymium (Nd) in permanent 

magnets (Ku, 2018). Consequently, studies highlight that the future advancement of many high-

tech products will be constrained by the supply shortage of RMs. For instance, the drastic 

increase in critical RM prices may be an obstacle to the diffusion of green energy products. 

This may negatively affect the development and adoption of clean energy technologies (Leader 

et al., 2019). 

Relatedly, RM markets are impacted by potential crises in the supply chain. The high 



demand and criticality of RMs in high-tech industries further increase the risk of extreme price 

spikes or even material unavailability (Moss & Tzimas, 2013). These supply risks come from 

different stages of the RM value chain, from upstream mineral mining to metal production 

(smelting, refining and heat processing) and then to global trade. For some RMs, the ore 

extraction is concentrated in a small number of locations subject to weak institutional 

environments, which make the critical ore supply vulnerable to wars, social and political 

instability, human rights violation and natural disasters (e.g. Berman et al., 2017; Giuliani, 2018; 

Diemer et al., 2021). In addition, the smelting and refining of many RMs has gradually shifted 

to multinationals from emerging countries (especially, China), which is accompanied by more 

uncertainties from trade conflicts and geopolitical events (Narine, 2012; Mancheri, 2015; 

Fiaschi et al., 2017; Lederer & McCullough, 2018).  

In this context, the RM supply may influence researchers’ innovation output. It is well-

known that innovation is a risk-taking investment where invention efforts are allocated 

depending on the expected market returns. Fluctuations in the supply chain affects RM 

availability in downstream industries. Sufficient supply increases the production scale and 

market size of products intensive in RM-based technologies, therefore rising the probability of 

their application and commercialization (Acemoglu, 2002). On the other hand, the scarcity of 

certain critical materials makes it less rewarding to invest in related technologies if the costs of 

alleviating scarcity are too high (Smulders, 2005). For the case of RMs, it is difficult to find 

their viable alternatives to achieve the same functionality. As a result, insufficient production 

or disruption in an RM supply may directly make the downstream application and 

manufacturing more costly and reduce the returns of R&D in RM-intensive technologies, 

constraining the innovation output in such technological areas. Based on the above background, 

our main research hypothesis is: 

Hypothesis: Rare Metal supply, in terms of global production, shapes the technological 

frontier dynamics by impacting the innovation output of RM-based technology areas. 

3.Data and methodology  

3.1 Selection of RMs and global production trends 

There is no universal list for Rare metals /Minor metals, the definition and criteria vary 

from study to study (Ayres & Peiro, 2013). As described by the Minor Metal Trade Association1, 

RMs encompass a vast array of metals which: 1. are reserved and produced in significantly 

smaller quantities than base metals, and almost do not exist alone in the earth but are obtained 

largely or entirely as a by-product of host metals from geologic ores, 2. are not traded on formal 

 
1. https://mmta.co.uk/glossary-of-minor-metal-terms/ 

https://www.sciencedirect.com/science/article/pii/S0301420718301296#bib36


exchanges, like London Metal Exchange, 3. are important for emerging industries as 

“technology metals” and “critical raw materials” (European Commission, 2012). In this paper, 

we select the most concerned RMs by referring to the resource criticality literature, as listed in 

Table 1. It is important to note that we did not include two groups of RMs which are also widely 

discussed. The first is precious metals, such as gold, silver and platinum which are also rare 

and technologically important, but they are more intensively used as currency or jewelleries 

rather than for industrial use. Moreover, we did not include rare earth metals2: although also 

crucially important and widely investigated by the literature (e.g. Humphries, 2010), 

information on their production is not available for individual elements.  

----------------------------------- 

INSERT TABLE 1 HERE 

----------------------------------- 
 

 

We obtained the global production data of these 13 rare metals during 1975-2015 from the 

United States Geological Survey database of historical statistics for mineral and material 

commodities. Figure 1 shows the annual production of RMs during 1975-2015. In general, the 

production of most metals has risen with fluctuations, especially after 2000, the upward trends 

accelerate. At the same time, the production trends of different metals show significant 

differences. That of cadmium, tantalum, and selenium fluctuates greatly, while for cobalt, 

lithium, vanadium, indium, and bismuth the trend is relatively stable. We also observe that 

some macro events have common impacts on the production of all metals. For example, around 

2010, almost all metals show different degrees of production decline connected to the financial 

crisis. We further compare production changes relative to 1975 across metals3.  It is observed 

that RMs experienced different trends over four decades: gallium and indium have the fastest 

growth, by 40 and 20 times respectively, lithium and cobalt have also increased for five times, 

while the growth of cadmium, germanium and tellurium remains limited. 

----------------------------------- 

INSERT FIGURE 1 HERE 

----------------------------------- 

 

3.2 Patent data and technology dynamics 

We use patents granted by the US Patent and Trademark Office (USPTO) over the period 

1976-2015 to measure the global dynamics of RM-based technologies. Patent statistics are a 

 
2. Rare earth elements are a group of 17 elements: La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu plus 

Sc and Y. 

3. Details are shown in Figure A1 in the online appendix.  



reasonable measurement for innovation output and technological structure (e.g., Pavitt, 1985; 

Griliches, 1990; Castellacci & Natera, 2013; Consoli et al., 2016, 2021).  

There are in total about 5,300,000 granted patents in the USPTO during the covered period4. 

In this research, we use two technological classifications. First, the Cooperative Patent 

Classification (CPC) system is used as the regression unit in the econometrics analysis. CPC is 

a more detailed and advanced version of IPC and has been officially used by both USPTO and 

EPO for classifications at five technological levels, which ensure consistency over time5 . 

Following Consoli et al., (2021), we extract CPC class for each patent from ‘cpc_current’ table 

in the “PatentsView” database. Second, the WIPO technology classification is used to analyse 

the dependence on RM among different technology areas. This taxonomy was initially 

developed by Schmoch (2008), it assigns all patents to 35 technology fields which are further 

aggregated into five main technology sectors – Chemistry, Electrical engineering, Instruments, 

Mechanical engineering, and Others. This is a useful classification in cross-sector comparison 

because of the balanced patent size, full coverage of all technology areas, within-sector 

homogeneity and cross-sector differences, and has been widely used in patent analyses (e.g., 

d’Agostino et al., 2013; Balland et al., 2019). 

3.3 Identification of RM-based technologies 

The identification of RMs in the patent databases is carried out by text-mining, searching 

within the patent description for the name of the relevant metal elements in the section of 

“Detailed description text”. This text-mining method has been used to identify specific 

characteristics of technologies, such as dependency on rare earth elements (Fifarek et al., 2008), 

conflict minerals (Diemer et al., 2021), as well as toxic substance (Biggi & Giuliani et al, 2022). 

The detailed description text is the information disclosed by the inventors in the patent 

application. It includes information on the function and application of the invention, the detailed 

technical process and the materials used to achieve its function. We note that mentioning a 

material could have different motivations, as due to technologies produced directly from basic 

and applied research for that material, or to innovations in applied technologies for which that 

material is an essential component (Fifarek et al., 2008); moreover, it may also relate to 

obtaining, saving, or recycling that material (Diemer et al., 2021).  

In this paper, we focus on the technologies “based on” RM or employing them as inputs. 

To do so, we exclude two groups of technologies: (1) those potentially related to mining 

 
4. Patent data source: https://patentsview.org/ 

5 . Technological classification standards have been evolving over time due to emergence of new areas and 

disappearance of old ones, making cross-time comparison impossible. The use of CPC avoids this issue because all 

historical patents are reclassified retrospectively by USPTO according to the current CPC classification.  

https://patentsview.org/


technologies (41,239 patents in the class E21), and (2) metallurgy technologies (67, 328 patents 

in classes C21-C30) which include those for producing, refining, smelting as well as recovering 

and recycling metals and metalloids. Our final sample for the analysis includes 5,146,615 

patents.6 If the patent inventor mentions an RM keyword in the detailed description text, we 

consider the innovation as resulting from the properties of the specified RM and the patent as 

RM-based. However, this method has some other potential limitations. For example, it fails to 

identify the degree of dependency on individual RM: for two patents, which both mention an 

RM, one may use it as a necessity, while for the other RM may not play a major role. 

Nevertheless, in this paper we are concerned mainly about the relative proportion of RM-based 

patents in different aggregated technology groups and their temporal trends, rather than 

individual patents. We assume that if a technology area has a higher proportion of RM-based 

patents, then this area has a higher dependency upon RM materials.  

4. Technological dependence on RMs 

In this section we focus on the technological dependence on RMs by describing the general 

trends of RM-based patents and their distribution across technologies and RMs. 

4.1 General trends 

Through keyword identification, we found that 559,328 patents (10.87%) mention at least 

one RM keywords. Therefore, more than one tenth of modern technologies are somehow 

dependent on the selected 13 RMs, indicating their high importance in innovation. The 

technological dependency on RMs is measured in both absolute and relative terms: 1. the total 

number of RM-based patents (with at least one RM keyword), 2. the share of RM-based patents 

in the total patent number. Figure 2 shows that the number of RM-based patents has risen by 

nearly 7 times over the 40 years: from 6,000 new RM patents in 1976 to more than 40,000 in 

2015. At the same time, despite two slight drops from 1976 to 1987 and 1993 to 1998, the share 

of RM-based patents in total patents increased, from the initial 9% to 14% in 2015. This 

indicates that RMs are becoming increasingly important in modern technologies. 

----------------------------------- 

INSERT FIGURE 2 HERE 

----------------------------------- 

 

Next, trends are observed also for the 5 WIPO sectors (Figure 3). In terms of absolute RM 

patent numbers on the left, the Chemistry sector started at a high level and had the most RM-

based patents for nearly 25 years, maintaining relatively stable growth until 2005, which since 

 
6. For a detailed description see Figures A2 and A3 in the online appendix. 



then accelerated. For the Electronic engineering sector, we observe a sharp increase since 1997: 

in 2004 it surpassed Chemistry. The number of RM-based patents in Instruments also showed 

a stable increase, whilst that in Mechanical engineering was modest.  

----------------------------------- 

INSERT FIGURE 3 HERE 

----------------------------------- 

 

In terms of shares, that in Chemistry is significantly higher than in any other sectors, and 

the gap further widened over time, increasing to 32% in 2015. In comparison, the share of 

Electrical engineering remained relatively constant over time and was surpassed by Instrument 

technologies in 1992. Mechanical engineering and Other technologies had shares lower than 

the average and gradually increased over the period. We also compare the technological 

dependence on different RMs over time7: the number of patents using lithium remained the 

highest, meanwhile indium patents experienced the fastest growth.  Patents based on gallium, 

germanium, and tantalum also increased significantly. This indicates that the technological 

dependence is dynamic and the relative importance of different RMs varied with time.  

4.2 RM dependence by technology field  

We then consider the RM dependency of specialized technologies by zooming into the 35 

WIPO fields and six green energy technologies (Figure 4).  

----------------------------------- 

INSERT FIGURE 4 HERE 

----------------------------------- 

 

Fields in the Chemistry sector has high share of RM-based patents, in which Micro-

structure and nano-technology shows the highest dependence (37% of patents are related to at 

least one RM). Similarly, three fields: Material, metallurgy; Organic fine chemistry and 

Macromolecular chemistry, polymers also show a strong dependence. All fields above are 

closely related to material science (Schmoch, 2008), indicating that there are diversified 

technologies about inventing, producing new materials which use RMs as components looking 

for property improvements. It is important to note that these technologies are usually general-

purpose technologies (GPTs), work as the basis for others, such as nano-technologies for 

semiconductors (Moser & Nicholas, 2004; Petralia, 2020).  

For the Electrical engineering sector, unsurprisingly, the field of Semiconductors has the 

highest dependence on RMs, which is one of the core technologies in the hardware 

infrastructure for ICT (Schmoch, 2008). The second by importance is Electrical machinery, 

 
7. Details are shown in Figure A4 in the online appendix. 



apparatus, energy. Other fields in this sector, such as Computer technology, are mainly about 

software technologies, thus depend much less on RMs. For other sectors, Optics (22%), 

Analysis of biological materials (14%) and Medical technology (10%) show high dependence. 

For Green energy technologies, it can be observed that several fields show very high 

dependence on the RMs, such as, Fuel cells, where 34% patents use at least one RMs as input, 

particularly lithium and cobalt. In addition, patents in Bio-fuels, Solar energy and Nuclear 

energy also have a high degree of dependence, consistently with the literature of green and 

renewable energy technologies (e.g. Valero et al., 2018; Dominish et al., 2019; European 

Commission, 2020). 

To sum up, the analysis illustrates a high dependence of technologies on RMs which varies 

across technologies, levels of analysis as well as RM types. RMs are becoming critical inputs 

in more and more patents, and having diversified applications in a number of GPTs, especially 

material technologies and many emerging technologies. At the same time, each technology field 

depends on specific RMs, reflecting specialized technical requirements and specific properties 

of RMs.  

5. The impact of RM supply on technology dynamics 

The analysis above illustrates that certain technology areas are highly dependent on specific 

RMs. In this section, we focus on those “RM-based technology areas”, using econometrics 

models to further explore whether changes in the metal supply, in terms of production, influence 

the innovative output in those areas, thus testing our main research hypothesis.  

5.1 Sample - RM-based technology areas 

The CPC technology system has 5 levels of classification, namely: section, class, subclass, 

group and subgroup. We use the finest subgroup level to capture the relationship between RM 

and specialized technologies. Our dataset is structured in the format of technology-RM pairs. 

We focus on “RM-based technology areas”, 𝑇𝑒𝑐ℎ𝑖 − 𝑅𝑀𝑗, which are defined as all subgroups 

in which more than 10% of patents use a certain 𝑅𝑀𝑗 during the research period. All pairs 

exceeding this threshold enter the main sample8. This pair structure allows us to explain the 

technology dynamics by the joint effects of both dimensions. For each 𝑇𝑒𝑐ℎ𝑖, there may be one 

or several pairs, depending on how many RMs it depends on. In order to ensure that subgroups 

in our sample are comparable, we exclude the extremely small ones whose total number of 

patents is less than 100 during the four decades. The final sample consists of 5,644 

𝑇𝑒𝑐ℎ𝑖 − 𝑅𝑀𝑗 pairs in which 2,534 subgroups were granted 611,249 patents (accounting for 

 
8. Samples with different definitions of RM-based technology areas were also used, discussed in Robustness tests 

(3).  



11.88% of all USPTO granted patents) during 1976-2015 (details of the sample are shown by 

Tables A1, A2 in the online appendix). 

5.2 Model specification   

The model is set by referring to studies on the induced innovation hypothesis, discussed in 

Section 2 (e.g. Popp, 2002). The dependent variable is the patent output of RM-based subgroups, 

measured by the share of patent grant number of each subgroup over the total USPTO granted 

patents in each year. Independent variables include the lagged production of corresponding RM 

as well as other control variables.  

 𝑃𝑎𝑡𝑒𝑛𝑡 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑆𝑢𝑏𝑔𝑟𝑜𝑢𝑝𝑖,𝑗,𝑡

   𝑇𝑜𝑡𝑎𝑙 𝑃𝑎𝑡𝑒𝑛𝑡 𝑁𝑢𝑚𝑏𝑒𝑟𝑡

= 𝛽1  𝑅𝑀 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑗,𝑡−1 + ∑ 𝛽𝑘 𝑍𝑖,𝑗,𝑡−1

5

𝑘=2

+ 𝑅𝑀 𝐹𝐸 +  𝑌𝑒𝑎𝑟 𝐹𝐸 +  𝑇𝑒𝑐ℎ 𝐹𝐸 + 𝜀𝑖,𝑗,𝑡 

 where i indexes 2,534 technology subgroups9, j stands for the 13 rare metals and t denotes 

the years 1976-2015. Our dependent variable is normalized by z-score. By using this share as 

the dependent variable, we consider the impact of macroeconomic and exogenous changes, 

such as changes in patent laws or government policy, leading to changes in both total and RM-

based areas. The model uses the application date rather than the grant date of patents as measure 

of innovation in order to document it as early as possible (Popp, 2003; Böhringer et al., 

2017).  𝑅𝑀 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑗,𝑡−1  measures the production of RM j in year t, in terms of ratios 

relative to the initial level in 1975.  In addition to this model setting, we also check the 

robustness of our results by considering a fixed effect Poisson model in which the dependent 

variable is the absolute number of patents. 

Besides RM production, we control for several other factors that are likely to affect the 

innovation output of RM-based technologies, denoted by  𝑍𝑖,𝑗,𝑡−1 . First, we control 

for  𝐾𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒 𝑠𝑡𝑜𝑐𝑘𝑖,𝑡−1  which is the knowledge accumulated until the previous year in 

technology subgroup i: this variable represents the cumulative and path-dependent nature of 

technology development, and it is calculated as follows: 

 𝐾𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒 𝑠𝑡𝑜𝑐𝑘𝑖,𝑡 = ∑ 𝑒−𝛾1𝑠 · (1 − 𝑒−𝛾2(𝑠+1)) · 𝑃𝐴𝑖,𝑡−𝑠

𝑃

𝑠=0

 

Referring to (Popp, 2001), this formula measures the pre-existing state of knowledge at 

each time t for technology subgroup i. Since innovation decays in value with time, 𝛾1is the 

depreciation rate of past technologies and 𝛾2 is the diffusion rate of existing patents with the 

assumption that it takes time for technological knowledge to diffuse among innovators. 

 
9. In which, 1,312 subgroups are based on only one RM, and the rest 1,222 are based on multiple RMs and appear 

more than one time in the sample. An alternative sample of technology subgroups with the most important RM 

(with highest share of patents based on this RM) showed similar results, which are available upon request. 



Following (Kim et al., 2017), we use the mean values as estimated by Popp (2001) with γ1 = 

0.44 and γ2 = 2.97. 

Second, technological change is not only influenced by technologies in the same area but 

also by spillovers from related technological areas (Grupp, 1996). Technological relatedness 

stimulates knowledge recombination and leads to more innovation output (e.g. Boschma & 

Frenken, 2012). Assuming that technologies in the same group have larger relatedness with 

each other, we include a control named  𝑇𝑒𝑐ℎ𝑛𝑜𝑙𝑜𝑔𝑦 𝑖𝑛 𝑠𝑎𝑚𝑒  𝐺𝑟𝑜𝑢𝑝𝑖,𝑡−1 which denote the 

number of patents in the same technology group but not in subgroup i. Furthermore, the 

development of RM-based technologies may also be influenced by other technology subgroups 

which depend on the same RMs. To control for this cross-technology effect we also include the 

variable  𝑅𝑀 𝐷𝑒𝑚𝑎𝑛𝑑_𝑜𝑡ℎ𝑒𝑟 𝑎𝑟𝑒𝑎𝑠𝑖,𝑗,𝑡−1 which measures the number of patents using the same 

RM j in other technology subgroups except i. A higher value  implies that technology subgroup 

i may face more competition for the same metal. We also control for the degree of dependence 

of technologies on the corresponding RMs by the variable  

𝑅𝑀 𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑒 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦𝑖,𝑗,𝑡−1 . A summary and correlation matrix for the independent 

variables is reported in Table A3 in the online appendix. 

We include several fixed effects in the model to control for constant unobservable factors. 

The propensity to patent innovation varies across technology areas: in some, such as Chemistry 

and Electronic engineering, it is higher than in others, where secrecy is more important to 

protect innovation. Therefore, technology subgroup fixed effects are included. Year fixed 

effects are added to control for macrolevel economic and technological trends (Griliches, 1990). 

Finally, RM fixed effects are also included to account for RM-specific unobserved 

heterogeneity. 

5.3 Endogeneity and identification strategy 

The empirical setting proposed above may be subject to endogeneity problems. First, 

reverse causality can be a concern if technology dynamics influence the production of RMs. 

When a key technological breakthrough using an RM occurs, the expected and actual demand 

for the metal will increase, stimulating metal producers to increase production capacity.  

The omitted variable bias represents another issue: some factors may influence RM 

production and technology dynamics at the same time. For example, some basic discoveries in 

natural or engineering sciences may enhance the understanding of the properties of certain RMs. 

This may simultaneously improve the metal production efficiency and inspire innovators about 

new ways of RM application. Moreover, government policies pay special attention to the 

shortage of certain RMs and try to stabilize their supply (European Commission, 2012); at the 



same time, policies may support certain industries or technologies which are impacted by the 

potential RM shortages. All these factors potentially bias the estimated effect. 

To solve these endogeneity concerns, we develop a new instrumental variable strategy by 

using the metal co-production relationships to identify exogenous shocks to RM production. 

Unlike major metals, RMs are typically found in relatively low concentrations in the mineral, 

and they are only, or largely, constituents in deposits of more abundant base metals (copper, 

iron, aluminium, etc.). As a result, RMs seldom form viable deposits of their own, and instead 

are mined and produced as companion metal or by-products and recovered from the different 

forms of waste, scraps, slags or gas of the base metals in the processing, smelting, refining 

stages (e.g. Eggert, 2010; Harper et al., 2015; Nassar et al., 2015;), as shown in Figure 5. 

Therefore, RM supply is strongly influenced by the demand for base metals: a major demand 

reduction for a base metal causes significant supply constraints for its companion RMs (Graedel, 

2015; Sprecher et al., 2017). 

 

----------------------------------- 

INSERT FIGURE 5 HERE 

----------------------------------- 

 

We argue that the influence of the base metal production on RM production is exogenous 

for two reasons. First, this influence is unidirectional, the production of RM does not reversely 

influence base metal production because the latter account for the major revenue of mining and 

their production is mainly driven by macroeconomic factors such as, for instance, urbanization 

speed in China and India. On the other hand, even if the prices for by-product metals are high, 

a small market scale means the commercial incentive is limited (Moss et al., 2013). Therefore, 

mining and producing decisions are mainly determined by the exogenous shocks on base metals, 

and RMs do not typically experience supply expansions in a short timespan (Sprecher et al., 

2017). A production increase for base metals results in supply increases and price drops for the 

by-product and co-product RMs (e.g. Campbell, 1985; Hagelüken, 2011; Moss et al., 2013;). 

Second, the production of base metals does not impact the dependent variable – i.e. patents in 

RM-based technology areas – because base metals are more widely used as basic materials in 

much larger amounts in a variety of industrial sectors, such as construction materials and metal 

containers, and have very different properties and functions than RMs. This assumption is 

further verified in the robustness test. 

The type of base metal and the degree of metal companionability vary greatly among RMs, 

are shown in the Table 2. For almost all RMs in our sample, more than 50% of the production 

is from a single base metal. Some RMs are entirely co-produced with one base metal, for 



example cadmium from zinc, zirconium from titanium, and gallium from aluminium. Others 

have more than one base metal as source, like cobalt and tantalum. 

----------------------------------- 

INSERT TABLE 2 HERE 

----------------------------------- 

 

Therefore, we use the production of the base metal (if one RM have multiple base 

metals, we use the primary one with the highest companionability degree) as an instrumental 

variable to predict the exogenous shocks to the RM production. Similar to the RMs production 

variable, our instrument is also standardised relative to the production in 1975.  

5.4 Regression results 

Table 3 shows the OLS regression results and the second stage results of the IV estimation10. 

We start with the simple model in column 1, which solely includes the variable of interest, RM 

production, with RM fixed effects as well as technology fixed effects to capture the unobserved 

heterogeneity at these fine-grained levels. In columns 2 we include the full battery of covariates 

discussed above. In columns 3 and 4, we implement our IV strategy for the same specifications 

of column 1 and 2. In all models, the variable of interest,  𝑅𝑀 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑗,𝑡−1  is always 

positive at the 1% significance level, indicating that the supply of an RM indeed increases the 

innovation output of the technology subgroups which are based on it. The coefficient on RM 

production in the specification of column 4 indicates that a one-unit increase (100% increase 

relative to 197511) in the production of a certain RM on average leads to a rise in the share of 

patents in RM-based subgroups by 0.0139 standard deviation, which corresponds to 2.56% 

increase of the patent output. By comparing the results between the OLS and IV regressions, 

we notice that the coefficients on  𝑅𝑀 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑗,𝑡−1 are all larger in the IV models. This 

indicates that the simple OLS estimation underestimates the effect of RM supply. There are 

many factors, such as for instance public policies and trade regulation shocks, exerting opposite 

influences on RM supply and RM-based innovation. For example, national and international 

governments including the US, Japan and the EU Commission provide supports for sectors 

under the threats of critical raw material scarcities. Moreover, as the major RM supplier, China 

has imposed export restrictions on some RMs with increasing technological importance. In 

general, these findings support our research hypothesis that increasing the supply of RMs does 

provide incentives to innovation in the relevant technology areas and encourage new patents. 

On the contrary, a decreasing supply or supply disruption of RMs may constrain the generation 

 
10. The first stage estimation results are shown in Table A8 in the online appendix.  

11. Until 2015, the production of the 13 RMs, on average, increased by 647.15% relative to the initial values in 1975. 



of new technologies in areas based on these materials. Hence, these results provide a first 

suggestion that the supply of RMs shape frontier technological developments of the 

contemporary society. 

As far as the control variables are concerned, the effect of  𝐾𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒 𝑠𝑡𝑜𝑐𝑘𝑖,𝑡−1  on 

patents is significant and positive, indicating that past knowledge accumulation leads to more 

innovation output. In line with other studies (e.g. Kim et al., 2017), innovation in RM-based 

areas is also path-dependent and builds on the existing knowledge stock of its own technology 

subgroup. Similarly, the coefficient on  𝑇𝑒𝑐ℎ𝑛𝑜𝑙𝑜𝑔𝑦 𝑖𝑛 𝑠𝑎𝑚𝑒  𝐺𝑟𝑜𝑢𝑝 𝑖,𝑡−1 is also positive and 

significant in all models, indicating a positive correlation between RM-based technologies with 

innovation activities in other technology subgroups of the same group. This may be due to 

positive spillover effects from related technologies, or to technologies in the same group being 

influenced simultaneously by similar market demands and policies. Moreover, 

𝑅𝑀 𝐷𝑒𝑚𝑎𝑛𝑑_𝑜𝑡ℎ𝑒𝑟 𝑎𝑟𝑒𝑎𝑠  𝑖,𝑗,𝑡−1  is significantly negative. This may indicate that the 

increasing demand for a certain RM in other areas is negatively correlated with the innovation 

output in the observed RM-based technology subgroup. The literature argues that there is 

competition for sourcing RMs across different industrial sectors: for example, solar energy 

competes with electronics for gallium and indium materials (Leader et al., 2019). Our results 

show that this competition also seem to occur in upstream R&D activities.  

 

----------------------------------- 

INSERT TABLE 3 HERE 

----------------------------------- 

 

6. Robustness checks 

In this section we further test the robustness of our results by: (1) checking the validity of 

the IV, (2) using different thresholds, grouping and definitions for RM-based technologies and 

(3) using alternative regression methods. 

(1) Further validations of the instrumental variable 

First, the validity of the IV rests on the assumption that the base metal production is related 

to the RM production, but uncorrelated with innovation in RM-based technology areas. 

However, there is the possibility that the base metals are also used in those technologies, which 

may invalidate the IV and bias the estimation results. To address this potential problem, by 

using the same text mining method, we identify keywords of base metals in the patent 

descriptions and exclude patents which mentioned both RMs and their main base metals. By 

doing so, we rule out the probability that RMs and base metals are not only related on the supply 



(production) side but also on the technological demand side. The regression result is shown in 

column 1 of Table A4. After excluding those patents, the estimated effect remains significantly 

positive.  

Second, the IV in the main model captures the production of the primary base metal of RMs 

without considering differences in the companionability across RMs and corresponding base 

metals. RMs with a high companionability may be more impacted by changes in the base metal 

production. To consider this heterogeneity, we re-construct our IV by weighting the base metal 

production by the degree of companionability (the percentage of an RM produced from co-

production process with a base metal) between RMs and base metals. The results are shown in 

column 2 of Table A4. The coefficient of interest remains positive and highly significant. These 

results further validate our IV estimation approach.  

(2) Using alternative samples definitions and grouping of RM-based technology 

areas 

The regression sample we use consists of Tech-RM pairs for which subgroups have at least 

10% of patents based on a specific RM. There are two major issues with this definition. First, 

the 10% threshold is an arbitrary choice and changing the threshold may impact our findings. 

Second, our results may also be influenced by technology grouping levels. Hence, we address 

these two concerns by using alternative definitions of RM-based technology areas. 

Thus, in addition to the initial value 10%, we used 4 alternative thresholds, from 20% to 

50%. The results are shown in Table A5. 𝑅𝑀 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑗,𝑡−1 remains positively significant 

using all four alternative thresholds and the coefficients are larger than in the 10% threshold 

sample. This result confirms that the findings above are robust to different thresholds of RM-

based technology areas. 

Furthermore, the regressions in Table 3 are based on the finest technology scale, that is 

subgroups at the 5-digit level of the CPC classification. We test whether our previous findings 

are robust to alternative definitions of technology levels. Using the same data structure, we 

consider group (4-digit) and subclass (3-digit) levels, as shown in Table A6. Because of the 

changes in the aggregation level, the number of observations significantly decreases. These 

results show that the relationship between patents and RM production remains statistically 

significant and positive irrespective of the level of detail adopted in defining technologies.   

(3) Changing regression method 

Finally, we further check the robustness of our findings by adopting a Poisson model as an 

alternative regression method. In this setting, the dependent variable is now the absolute 

number of patents in subgroup i. The results are shown in Table A7, where we estimate different 



specifications, also including the IV. Overall, RM production remains still significant and 

positive in all columns, thus further corroborating our hypothesis. 

The robustness checks above suggest that our main finding is stable with alternative samples, 

no matter how we change the technology aggregation level, thresholds, and definition of “RM-

based technology areas”, or also using alternative regression models. We interpret this evidence 

as very suggestive that the effect of RM supply on innovation output is highly robust. 

 

7. Conclusion and discussion 

Technological innovation co-evolves with the availability and supply of natural resources. 

On the one hand, frontier technologies are experiencing tremendous shifts, changing types, 

modes, and efficiency in the utilisation of natural resource. Economists believe technological 

innovation makes it possible to replace rare and expensive resources with relatively abundant 

and cheap resources, which helps overcoming natural resource constraints and achieving 

sustainable development (Rosenberg, 1976). For example, for energy resources, new 

technologies enabled us to shift from wood to coal, to petroleum to hydropower, and then to 

solar, nuclear, and other unconventional energy sources. On the other hand, technological 

progress also makes the materials in use become more diversified and advanced to achieve 

some specific functionalities. As a result, modern society is more and more dependent on some 

important non-renewable resources like critical raw materials, which have become essentials in 

technological progress and economic growth (Groth & Schou, 2002). In this way, natural 

resource supply in turn influences the trajectory of frontier technology dynamics. 

Using 13 widely concerned RMs, this paper contributes to the understanding on this deep 

interdependence between resource supply and technology progress. RMs are regarded as 

“technology metals” with great criticality to high-tech manufacturing and cutting-edge 

technological innovation, especially under the paradigm shifts of clean and green energy as 

well as ICT and AI revolutions. The functionality and special properties of RMs cannot be 

easily replaced with substitutes (Ayres & Peiro, 2013; Graedel et al., 2015; Leader, 2019). The 

case of RMs suggests that the availability of critical raw materials has a direct impact on the 

frontier innovation dynamics —  technological progress of the current society is still 

endogenously subject to the natural environment and the supply of resources with technological 

criticality.  

Empirically, this paper contributes by providing the first systematic exploration of the 

dependency of frontier technologies on RMs. We find that during the last four decades, 10.87% 

of patents granted by the USPTO use RMs as inputs, and that this dependence varies with 



technology areas, scale of analysis as well as type of rare metals. Moreover, technology 

application of RMs has experienced scale and structural changes over time: the number of RM-

based patents has increased by 7 times over time, and Electronic engineering surpassed 

Chemistry and became the technology sector with most RM-based patens. Among all RMs, 

whilst lithium has shown the highest numbers of patents over the period, indium and gallium 

have experienced the biggest increase in technology applications, and at the same time their 

production growth has been the most significant. Our econometric exercise, which accounts for 

endogeneity, support the hypothesis that RMs supply has a significant causal impact on the 

innovation output of RM-based technology areas.  

Our findings have policy relevance and implications for future research. The case of RMs 

may further encourage scholars and policymakers to devote attention to the entire global 

network and value chain system within which innovation occurs, considering the distribution 

of benefits and costs across the actors and the geographies involved. Given the high dependency 

on critical natural resources, it is likely that a constantly increasing supply of RMs would be 

needed to ensure steady innovation rates. However, RM supplies are recognized to be subject 

to great societal and environmental risk and uncertainty (National Research Council, 2008; 

Humphries, 2010; Hayes & McCullough, 2018; European Commission, 2020). The extraction, 

exploitation and trade of many rare metals, such as cobalt and tantalum which are labelled 

among others as “conflict minerals”, contribute to wars, conflicts and human right violations in 

developing countries and regions (Hofmann et al., 2018). Exploring the relationship between 

RM supply and technological dynamics provides a better understand of the “dark side of 

innovation” and help resolve the apparent trade-off between technological change and global 

fairness and equity (Castellacci & Archibugi, 2008; Giuliani, 2018; Diemer et al., 2021). 

Further investigation is required. First, because of data availability, this paper only focuses 

on 13 critical RMs. Other RMs are also of significant technological importance, especially the 

widely concerned Rare Earth Elements (REE) (Hayes & McCullough, 2018). Different critical 

raw materials have distinct technological properties and applications and may experience 

different supply risks. Second, this paper focuses on the impact on innovation activities. It is 

also important to further explore the impact on the downstream industries and products which 

depend on RMs. Third, in this paper RM supply and technological dynamics are measured at 

the global scale. However, their actual availability varies with geography, thus being influenced 

by multifaceted factors such as geological mineral distribution, local socio-economic and 

political conditions, national and international policies, trade agreements as well as global 

geopolitics events. For example, in 2010 under the embargo of China, Japan had little access to 

new REE materials (Mancheri, 2015); because of the Dodd Frank Act, business companies 

listed in the US stock market have additional limits in obtaining “conflict minerals” RMs such 



as cobalt and tantalum from the Democratic Republic of Congo (Dalla & Perego, 2018). Future 

research should focus on finer geographic scales (Diemer et al., 2021) to explore whether and 

how differences in the availability of RMs shape the development trajectories of firms, regions 

and countries.  
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Table 1. Selected RMs and examples of related literature 

Rare metals Related Literature 

Bismuth (Bi) Hagelüken (2011); Moss et al. (2011); 

Cadmium (Cd) Moss et al. (2011); Valero et al. (2018) 

Cobalt（Co） Humphries (2010); Campbell (2020) 

Gallium (Ga) Ayres & Peiro (2013); Frenzel et al. (2017) 

Germanium (Ge) Harper et al. (2015); Frenzel et al. (2017) 

Indium (In) Elshkaki & Shen. (2019); Grandell et al. (2016); Frenzel et al. (2017) 

Lithium (Li) Liu et al. (2019); King & Boxall (2019) 

Molybdenum (Mo) Leader et al. (2019); Zhu et al. (2020) 

Selenium (Se) Grandell et al. (2016); Elshkaki & Shen (2019);  

Tantalum (Ta) Humphries (2010); Kim et al. (2019) 

Tellurium (Te) Watari et al. (2020); Valero et al. (2018) 

Vanadium (V) Moss et al. (2013); Gunn et al. (2014) 

Zirconium (Zr) Moss et al. (2011); Zhu et al. (2020) 

Note: Two elements, selenium and tellurium are metalloids rather than metals. However, they have some similar 

characteristics and applications with metals, therefore they are analysed together with other metals in the literature 

(i.e. Elshkaki & Shen, 2019; Zhu et al., 2020; Watari et al., 2020). 

 

Table 2. Metal companionability between base and rare metals 

Rare metals Base metals and companionability degree 

Bismuth (Bi) Lead (Pd) (54%) 

Cadmium (Cd) Zinc (Zn) (100%) 

Cobalt（Co） Nickel (Ni) (50%); Copper (Cu) (35%) 

Gallium (Ga) Aluminium (Al) (100%) 

Germanium (Ge) Zinc (Zn) (60%) 

Indium (In) Zinc (Zn) (80%) 

Lithium (Li) Potassium (K) (52%) 

Molybdenum (Mo) Copper (Cu) (46%) 

Selenium (Se) Copper (Cu) (90%) 

Tantalum (Ta) Tin (Sn) (15%); Niobium (Nb) (13%) 

Tellurium (Te) Copper (Cu) (90%) 

Vanadium (V) Iron (Fe) (62%) 

Zirconium (Zr) Titanium (Ti) (100%) 

 

Information Sources: Nassar et al. (2015); Harper et al. (2015). Companionability degree measures what percentage of an RM is 
produced from the co-production process with a base metal. 

 

 

 

 

 



Table 3.  Regression results 

                         OLS estimation   IV estimation 

 (1) (2) (3) (4) 

𝑅𝑀 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑗,𝑡−1 0.0220*** 0.0111*** 0.0392*** 0.0139*** 

 (0.000615) (0.000537) (0.00148) (0.00102) 

𝐾𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒 𝑠𝑡𝑜𝑐𝑘𝑖,𝑡−1  0.0319***  0.0319*** 

  (0.000111)  (0.000111) 

𝑇𝑒𝑐h𝑛𝑜𝑙𝑜𝑔𝑦 𝑖𝑛 𝑠𝑎𝑚𝑒  𝐺𝑟𝑜𝑢𝑝𝑖,𝑡−1  0.000193***  0.000191*** 

  (3.27e-06)  (3.30e-06) 

𝑅𝑀 𝐷𝑒𝑚𝑎𝑛𝑑_𝑜𝑡h𝑒𝑟 𝑎𝑟𝑒𝑎𝑠  𝑖,𝑗,𝑡−1  -3.18e-05***  -3.47e-05*** 

  (1.94e-06)  (2.14e-06) 

𝑅𝑀 𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑒 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦𝑖,𝑗,𝑡−1  -0.000201  -0.000199 

  (0.0140)  (0.0140) 

Constant -0.0537*** -0.332*** - - 

 (0.00236) (0.00626)   

     

Year Fixed effect Yes Yes Yes Yes 

RM Fixed effect Yes Yes Yes Yes 

Technology Fixed effect Yes Yes Yes Yes 

Technology subgroup number 2534 2534 2534 2534 

Technology-RM pairs 5644 5644 5644 5644 

Observations 225,188 223,945 225,188 223,945 

R-squared 0.384 0.578 - - 

Note:  *, **, *** indicate significance level at 10%, 5% and 1%, respectively. First stage results for columns 3 and 4 are reported 
in Table A8 in the online appendix. 

  



Figure 1. Global annual production of the 13 RMs, 1975-2015 (Unit, metric ton) 

 

Data source: US Geological Survey 

 

 

 

 

 

 

 



 

 

Figure 2. General trends of technological dependence on RMs 

 

 

 

 



 

 

Figure 3. Trends in RM-dependence by WIPO technology sectors, 1976-2015 (left: absolute numbers; right: shares) 

 

 

 

 

 



Figure 4. Share of RM-based patents by technology field, 1976-2015 

 



 

 

Figure 5. Co-production process of base metals (main product) and RMs (by-product) 

Information Sources: (Nassar et al., 2015; Harper et al., 2015) 

  



 

Online Appendix. Supplementary materials 

 

A.1 Description of RM global production 

 

Figure A1. Production changes for the 13 RMs, 1975-2015, relative to 1975 (Y axis has 

unequal intervals) 

 

Data source: US Geological Survey 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

A.2 Patent Description 

Figure A2. Patent trends, 1975-2015  

 

 

 

 

 

 

 

 

Total USPTO granted patents Total USPTO patents by WIPO technology sector 



 

Figure A3. Total patent number by WIPO 35 technology fields and 5 sectors 

 

Note: Green technologies are identified according to the WIPO Green Inventory list. 

(https://www.wipo.int/classifications/ipc/green-inventory/home) 

 

 

 

 

 

 



Figure A4. Trends of technological dependence by RM, 1976-2015 (left: absolute patent 

numbers; right: ratios relative to 1976)  
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A.3 Sample description 

 

Table A1. Distribution of Tech-RM pairs by technology sector and field 

Sector Field    Number of pairs 

Chemistry Organic fine chemistry 618 

Chemistry Basic materials chemistry 263 

Chemistry Macromolecular chemistry, polymers 216 

Chemistry Chemical engineering 157 

Chemistry Materials, metallurgy 117 

Chemistry Biotechnology 111 

Chemistry Environmental technology 49 

Chemistry Surface technology, coating 29 

Chemistry Micro-structural and nano-technology 26 

Chemistry Food chemistry 6 

Electrical engineering Semiconductors 1807 

Electrical engineering Electrical machinery, apparatus, energy 589 

Electrical engineering Audio-visual technology 173 

Electrical engineering Computer technology 78 

Electrical engineering Basic communication processes 21 

Electrical engineering Telecommunications 11 

Electrical engineering Digital communication 1 

Instruments Optics 751 

Instruments Medical technology 260 

Instruments Analysis of biological materials 65 

Instruments Measurement 55 

Instruments Control 5 

Mechanical engineering Textile and paper machines 75 

Mechanical engineering Machine tools 41 

Mechanical engineering Other special machines 30 

Mechanical engineering Transport 30 

Mechanical engineering Engines, pumps, turbines 22 

Mechanical engineering Thermal processes and apparatus 9 

Mechanical engineering Mechanical elements 8 

Mechanical engineering Handling 3 

Other fields Furniture, games 16 

Other fields Civil engineering 1 

Other fields Other consumer goods 1 
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Table A2. Distribution of Tech-RM pairs by metal 

                 Metal        Number of pairs 

lithium 1117 

cobalt 764 

indium 657 

tantalum 546 

molybdenum 522 

gallium 451 

zirconium 446 

germanium 437 

vanadium 206 

cadmium 182 

selenium 135 

bismuth 129 

tellurium 52 

Sum 5644 

 

 

 

 

Table A3. Independent variable description and correlation matrix 

 Mean Std dev Min Max 1 2 3 4 5 

1. 𝑅𝑀 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑗,𝑡−1 2.700 3.951 0.352 39.818 1     

2. 𝐾𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒 𝑠𝑡𝑜𝑐𝑘𝑖,𝑡−1 9.544 18.291 0.000 1174.922 0.1862 1    

3. 𝑇𝑒𝑐ℎ𝑛𝑜𝑙𝑜𝑔𝑦 𝑖𝑛 𝑠𝑎𝑚𝑒  𝑠𝑢𝑏𝑔𝑟𝑜𝑢𝑝𝑖,𝑡−1 456.309 750.11 0.000 4445.000 0.2099 0.224 1   

4. 𝑅𝑀 𝐷𝑒𝑚𝑎𝑛𝑑_𝑜𝑡ℎ𝑒𝑟 𝑎𝑟𝑒𝑎𝑠𝑖,𝑗,𝑡−1 2620.281 2332.312 110.000 9817.000 0.276 0.2926 0.2883 1  

5. 𝑅𝑀 𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑒 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦𝑖,𝑗,𝑡−1 0.223 0.143 0.100 0.981 0.0483 0.0148 0.0545 0.0849 1 
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A.4 Robustness test results 

 

Table A4. Robustness test on IV 

 (1) Excluding patents with base 

metal keywords 

(2) Heterogeneous 

companionability 

𝑅𝑀 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑗,𝑡−1 0.0189*** 0.0122*** 

 (0.00105) (0.000853) 

𝐾𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒 𝑠𝑡𝑜𝑐𝑘𝑖,𝑡−1 0.0305*** 0.0319*** 

 (0.000114) (0.000112) 

𝑇𝑒𝑐h𝑛𝑜𝑙𝑜𝑔𝑦 𝑖𝑛 𝑠𝑎𝑚𝑒  𝐺𝑟𝑜𝑢𝑝𝑖,𝑡−1 0.000201*** 0.000191*** 

 (3.39e-06) (3.35e-06) 

𝑅𝑀 𝐷𝑒𝑚𝑎𝑛𝑑_𝑜𝑡h𝑒𝑟 𝑎𝑟𝑒𝑎𝑠𝑠  𝑖,𝑗,𝑡−1 -5.07e-05*** -3.23e-05*** 

 (2.20e-06) (2.10e-06) 

𝑅𝑀 𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑒 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦𝑖,𝑗,𝑡−1 -0.150*** -0.000169 

 (0.0143) (0.0142) 

   

RM Fixed effect Yes Yes 

Year Fixed effect Yes Yes 

Technology Fixed effect Yes Yes 

Technology subgroups number 2534 2534 

Technology-RM pairs 5644 5644 

Observations 223,945 218,366 

R-squared - - 

Note:  *, **, *** indicate significance level at 10%, 5% and 1%, respectively. First stage results are reported in Table A9. 
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Table A5. Changing thresholds for RM-based technologies (IV estimation) 

Thresholds 
20% 30% 40% 50% 

𝑅𝑀 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑗,𝑡−1 0.0236*** 0.0233*** 0.0288*** 0.0288*** 

 (0.00180) (0.00232) (0.00244) (0.00342) 

𝐾𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒 𝑠𝑡𝑜𝑐𝑘𝑖,𝑡−1 0.0349*** 0.0333*** 0.0317*** 0.0365*** 

 (0.000174) (0.000283) (0.000325) (0.000465) 

𝑇𝑒𝑐h𝑛𝑜𝑙𝑜𝑔𝑦 𝑖𝑛 𝑠𝑎𝑚𝑒  𝐺𝑟𝑜𝑢𝑝𝑖,𝑡−1 0.000221*** 0.000285*** 0.000296*** 0.000359*** 

 (5.85e-06) (8.73e-06) (1.16e-05) (1.94e-05) 

𝑅𝑀 𝐷𝑒𝑚𝑎𝑛𝑑_𝑜𝑡h𝑒𝑟 𝑎𝑟𝑒𝑎𝑠  𝑖,𝑗,𝑡−1 -4.86e-05*** -4.88e-05*** -5.50e-05*** -5.44e-05*** 

 (3.73e-06) (5.10e-06) (6.44e-06) (1.03e-05) 

𝑅𝑀 𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑒 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦𝑖,𝑗,𝑡−1 0.00201 0.00518 0.0110 -0.000897 

 (0.0273) (0.0495) (0.0949) (0.192) 

     

RM Fixed effect Yes Yes Yes Yes 

Year Fixed effect Yes Yes Yes Yes 

Technology Fixed effect Yes Yes Yes Yes 

Technology subgroup number 1346 817 537 250 

Technology-RM pairs 2224 1142 673 310 

Observations 88,243 45,360 26,768 12,373 

R-squared 
- - - - 

Note:  *, **, *** indicate significance level at 10%, 5% and 1%, respectively. First stage results are reported in Table A10. 
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Table A6. Changing technology grouping levels (IV estimation) 

Levels 
(1) 4-digits CPC group 

level 

(2) 3-digits CPC 

subclass level 

𝑅𝑀 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑗,𝑡−1 0.00655*** 0.0164*** 

 (0.00190) (0.00477) 

𝐾𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒 𝑠𝑡𝑜𝑐𝑘𝑖,𝑡−1 0.00189*** 0.000248*** 

 (7.79e-06) (2.63e-06) 

𝑅𝑒𝑙𝑎𝑡𝑒𝑑 𝑡𝑒𝑐ℎ𝑛𝑜𝑙𝑜𝑔𝑖𝑒𝑠 𝑖,𝑡−1 3.69e-05*** -5.23e-06*** 

 (1.71e-06) (1.61e-06) 

𝑅𝑀 𝐷𝑒𝑚𝑎𝑛𝑑_𝑜𝑡h𝑒𝑟 𝑎𝑟𝑒𝑎𝑠  𝑖,𝑗,𝑡−1 1.94e-06 -1.50e-05*** 

 (2.14e-06) (5.67e-06) 

𝑅𝑀 𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑒 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦𝑖,𝑗,𝑡−1 -0.000903 -0.00218 

 (0.0227) (0.107) 

   

RM Fixed effect Yes Yes 

Year Fixed effect Yes Yes 

Technology Fixed effect Yes Yes 

Technology subgroup number 603 63 

Technology-RM pairs 1104 108 

Observations 43,929 4,294 

R-squared 
- - 

 

Note:  *, **, *** indicate significance level at 10%, 5% and 1%, respectively. First stage results are shown in Table 

A11. 

In the group level model, the variable Related technologies is measured by the number of other patents in the same 

subclass. Similarly, for the subclass level model, it is measured at the class level. 
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Table A7. Robustness test by Poisson regression 

 (1) Poisson (2) Poisson (3) Poisson IV 

𝑅𝑀 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑗,𝑡−1 0.0309*** 0.0268*** 0.0520*** 

 (0.000339) (0.000368) (0.000728) 

𝐾𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒 𝑠𝑡𝑜𝑐𝑘𝑖,𝑡−1  0.00399*** 0.00354*** 

  (2.32e-05) (2.43e-05) 

𝑇𝑒𝑐h𝑛𝑜𝑙𝑜𝑔𝑦 𝑖𝑛 𝑠𝑎𝑚𝑒  𝐺𝑟𝑜𝑢𝑝𝑖,𝑡−1  0.000620*** 0.000615*** 

  (2.44e-06) (2.46e-06) 

𝑅𝑀 𝐷𝑒𝑚𝑎𝑛𝑑_𝑜𝑡h𝑒𝑟 𝑎𝑟𝑒𝑎𝑠  𝑖,𝑗,𝑡−1  -7.79e-05*** -8.88e-05*** 

  (1.38e-06) (1.41e-06) 

𝑅𝑀 𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑒 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦𝑖,𝑗,𝑡−1  -2.759 14.70 

  (932,521) (3.290e+06) 

    

Year Fixed effect Yes Yes Yes 

Technology-RM pairs fixed effect Yes Yes Yes 

Technology subgroup number 2534 2534 2534 

Technology-RM pairs 5,643 5,643 5,644 

Observations 225,159 223,917 224,512 

R-squared 0.384 0.578 - 

Note:  *, **, *** indicate significance level at 10%, 5% and 1%, respectively. First stage results of column 3 are the 
same as column 2 in Table A8. 
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A.5 First stage regression results 

 

Table A8. First stage regression results of Table 3 

 (1) (2) 

𝐵𝑎𝑠𝑒 𝑚𝑒𝑡𝑎𝑙 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑗,𝑡−1 4.199*** 5.283*** 

 (0.0195) (0.0181) 

𝐾𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒 𝑠𝑡𝑜𝑐𝑘𝑖,𝑡−1  0.00792*** 

  (0.000372) 

𝑇𝑒𝑐ℎ𝑛𝑜𝑙𝑜𝑔𝑦 𝑖𝑛 𝑠𝑎𝑚𝑒  𝐺𝑟𝑜𝑢𝑝𝑖,𝑡−1  0.000375*** 

  (1.10e-05) 

𝑅𝑀 𝐷𝑒𝑚𝑎𝑛𝑑_𝑜𝑡h𝑒𝑟 𝑎𝑟𝑒𝑎𝑠  𝑖,𝑗,𝑡−1  0.00153*** 

  (6.50e-06) 

𝑅𝑀 𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑒 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦𝑖,𝑗,𝑡−1  0.00480 

  (0.0470) 

Constant -3.314*** -9.143*** 

 (0.0284) (0.0367) 

RM Fixed effect Yes Yes 

Year Fixed effect Yes Yes 

Technology Fixed effect Yes Yes 

Technology subgroup number 2,534 2,534 

Weak identification: Cragg-Donald 

Wald F statistic 
46554.11 85163.20 

Observations 225,188 223,945 

R-squared 
0.608 0.689 

Note:  *, **, *** indicate significance level at 10%, 5% and 1%, respectively 

The IV  𝑃𝑟𝑖𝑚𝑎𝑟𝑦 𝐵𝑎𝑠𝑒 𝑚𝑒𝑡𝑎𝑙 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑗,𝑡 is significantly and positively correlated with the variable 

of interest  𝑅𝑀 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑗,𝑡−1 , indicating that one unit increase in the production of primary base metal 

corresponds to a 5.283 unit increase in the by-product RM production, controlling for other variables and fixed 

effects. The results of Cragg-Donald Wald F statistic show that the IV passes the weak identification test. We now 

obtain the levels of RM production exogenously predicted by the instrument and examine their causal effects on 

innovation dynamics. 
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Table A9. First stage regression results of Table 4 

 (1) Excluding patents with base 

metal keywords 

(2) Heterogeneous 

companionability 

𝑅𝑀 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑗,𝑡−1 5.283*** 42.45*** 

  (0.0181) (0.110) 

𝐾𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒 𝑠𝑡𝑜𝑐𝑘𝑖,𝑡−1 0.00792*** 0.00751*** 

  (0.000372) (0.000341) 

𝑇𝑒𝑐h𝑛𝑜𝑙𝑜𝑔𝑦 𝑖𝑛 𝑠𝑎𝑚𝑒  𝐺𝑟𝑜𝑢𝑝𝑖,𝑡−1 0.000375*** 0.000339*** 

  (1.10e-05) (1.01e-05) 

𝑅𝑀 𝐷𝑒𝑚𝑎𝑛𝑑_𝑜𝑡h𝑒𝑟 𝑎𝑟𝑒𝑎𝑠  𝑖,𝑗,𝑡−1 0.00153*** 0.00154*** 

 (6.50e-06) (5.92e-06) 

𝑅𝑀 𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑒 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦𝑖,𝑗,𝑡−1 0.00480 0.00642 

 (0.0470) (0.0433) 

    

Constant -9.143*** -9.549*** 

 (0.0367) (0.0308) 

RM Fixed effect Yes Yes 

Year Fixed effect Yes Yes 

Technology Fixed effect Yes Yes 

Technology subgroups number 2,534 2,534 

Weak identification: Cragg-Donald Wald F 

statistic 
85163.20 1.5e+05 

Observations 223,945 218,366 

R-squared 0.689 0.748 

Note:  *, **, *** indicate significance level at 10%, 5% and 1%, respectively 
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Table A10. First stage regression results of Table 5 

Threshold 20% 30% 40% 50% 

𝐵𝑎𝑠𝑒 𝑚𝑒𝑡𝑎𝑙 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑗,𝑡−1 5.287*** 5.716*** 6.751*** 7.574*** 

 (0.0291) (0.0418) (0.0546) (0.0819) 

𝐾𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒 𝑠𝑡𝑜𝑐𝑘𝑖,𝑡−1 0.00524*** 0.0111*** 0.00828*** 0.00645*** 

 (0.000530) (0.000887) (0.00107) (0.00147) 

𝑇𝑒𝑐h𝑛𝑜𝑙𝑜𝑔𝑦 𝑖𝑛 𝑠𝑎𝑚𝑒  𝐺𝑟𝑜𝑢𝑝𝑖,𝑡−1 0.000674*** 0.00105*** 0.00127*** 0.00156*** 

 (1.74e-05) (2.59e-05) (3.58e-05) (5.68e-05) 

𝑅𝑀 𝐷𝑒𝑚𝑎𝑛𝑑_𝑜𝑡h𝑒𝑟 𝑎𝑟𝑒𝑎𝑠  𝑖,𝑗,𝑡−1 0.00163*** 0.00179*** 0.00201*** 0.00223*** 

 (1.05e-05) (1.55e-05) (2.11e-05) (3.26e-05) 

𝑅𝑀 𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑒 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦𝑖,𝑗,𝑡−1 0.0106 0.00573 -0.0291 0.0329 

 (0.0835) (0.156) (0.314) (0.608) 

Constant -9.592*** -10.90*** -12.86*** -14.33*** 

 (0.0658) (0.114) (0.206) (0.433) 

RM Fixed effect Yes Yes Yes Yes 

Year Fixed effect Yes Yes Yes Yes 

Technology Fixed effect Yes Yes Yes Yes 

Technology subgroup number 1346 817 537 250 

Weak identification: Cragg-Donald 

Wald F statistic 
32925.02 18666.79 15272.54  8551.50 

Observations 88,243 45,360 26,768 12,373 

R-squared 
0.705 0.737 0.776 0.819 

Note:  *, **, *** indicate significance level at 10%, 5% and 1%, respectively 
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Table A11. First stage regression results of Table 6 

Levels 

4-digits CPC 

Group level 

3-digits CPC Subclass 

level 

𝐵𝑎𝑠𝑒 𝑚𝑒𝑡𝑎𝑙 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑗,𝑡−1 3.244*** 3.344*** 

 (0.0357) (0.115) 

𝐾𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒 𝑠𝑡𝑜𝑐𝑘𝑖,𝑡−1 0.000620*** 0.000325*** 

 (4.46e-05) (1.61e-05) 

𝑅𝑒𝑙𝑎𝑡𝑒𝑑 𝑡𝑒𝑐ℎ𝑛𝑜𝑙𝑜𝑔𝑖𝑒𝑠𝑖,𝑡−1 0.000144*** 2.54e-05** 

 (9.77e-06) (1.15e-05) 

𝑅𝑀 𝐷𝑒𝑚𝑎𝑛𝑑_𝑜𝑡h𝑒𝑟 𝑎𝑟𝑒𝑎𝑠  𝑖,𝑗,𝑡−1 0.00101*** 0.00113*** 

 (1.18e-05) (4.07e-05) 

𝑅𝑀 𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑒 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦𝑖,𝑗,𝑡−1 0.0330 0.216 

 (0.132) (0.773) 

   

Constant -5.520*** -6.206*** 

 (0.0787) (0.279) 

RM Fixed effect Yes Yes 

Year Fixed effect Yes Yes 

Technology Fixed effect Yes Yes 

Technology subgroup number 603 63 

Weak identification: Cragg-Donald 

Wald F statistic 
8265.54 849.02 

Observations 43,929 4,294 

R-squared 
0.637 0.651 

Note:  *, **, *** indicate significance level at 10%, 5% and 1%, respectively 

 


