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Machine vision has demonstrated its usefulness in the livestock industry in terms of

improving welfare in such areas as lameness detection and body condition scoring in

dairy cattle. In this article, we present some promising results of applying state of the

art object detection and classification techniques to insects, specifically Black Soldier

Fly (BSF) and the domestic cricket, with the view of enabling automated processing for

insect farming. We also present the low-cost “Insecto” Internet of Things (IoT) device,

which provides environmental condition monitoring for temperature, humidity, CO2, air

pressure, and volatile organic compound levels together with high resolution image

capture. We show that we are able to accurately count and measure size of BSF larvae

and also classify the sex of domestic crickets by detecting the presence of the ovipositor.

These early results point to future work for enabling automation in the selection of

desirable phenotypes for subsequent generations and for providing early alerts should

environmental conditions deviate from desired values.
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1. INTRODUCTION

Insects are currently a component in the diets of two billion people around the world (1) and 2,111
known insect species have been recorded as being consumed by people (2). There is a good reason
for this. Insects such as crickets and BSF, like other types of arthropod, are remarkably efficient in
fixing biomass that is highly protein rich; they are also hardy and easy to breed (3), require little or
no processing before consuming, and they have a relatively short growth cycle. This makes them
attractive for breeding in regions of the world which suffer from food insecurity problems that affect
food supplies for both livestock and human consumption as well as offering potential alternative
protein sources for livestock feed via waste processing in mode developed areas.

Conversely, when we consider the issue of food insecurity, food waste is a financial,
humanitarian, and environmental concern, demanding a sustainable and efficient solution to
manage the ever-increasing volume of nutrition loss. Naturally, some insects feed on organic waste
and turn it into biomass. They are able to consume low-grade organic waste and convert it into
usable bio-products such as animal protein and lipids (4), which could feed livestock animals, such
as fish, poultry, and pigs.

For these reasons alone, insect farming has attracted considerable interest from industry as well
as within academia, and this interest is predicted to increase over the next decade. Evidence for
the commercial validity of insect farming is that there are already multiple companies and startups
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around the UK, such as Entocycle, Better Origin, and Beta Bugs,
who are professionally farming insects like Black Soldier Fly.
However, this approach is not limited to the UK and has been
used across the globe, e.g., the USA, Southeast Asian countries
such as Indonesia and Thailand as well as many countries
in Africa.

Insect farmers require knowledge of the growing conditions
within each growing enclosure. In a large scale insect farm there
could be many hundreds of growing enclosures. At such a scale
the individual monitoring of growing enclosures will be less than
practical. Therefore, an automated surveillance system which
can provide essential information is needed. Such information
could be: the number of insects, sex balance of the population,
and size of individual insects within an enclosure, along
with environmental conditions such as temperature, humidity,
and CO2 levels. This information from the system could be
used to calculate other information such as activity/movement
levels, amount of food remaining in an enclosure, and signs
of pathogens/predators, to provide an autonomous closed-
loop control system for each enclosure and also to provide
management information direct to farmers.

In addition, to these somewhat obvious measures that can be
leveraged cheaply from off the shelf IoT devices, the development
of advanced instance level segmentation and identification
algorithms, may allow us to begin to monitor individual inter-
actions of insects at a level that has been prohibitive in the
past, such as those identified in (5). In traditional livestock
farming, we are seeing the emergence of long term identification
and tracking systems. Example include pig farming (6) and
in dairy herd management (7), allowing social networks to
be analysed and more fine-grained approaches to welfare
adopted. It is not beyond imagination that similar techniques
can be applied to insect populations to bring about a deeper
knowledge and appreciation of colonies, as well as being able to
provide enclosure level information concerning the welfare of its
inhabitants based on individual behaviours.

This article presents results from two pilot experiments
involving BSF and domestic crickets. We report on the
acquisition device hardware which is designed to be low cost, that
when combined with state-of-the-art deep learning techniques
allow us to count, size, and sex the insects. Although important
previous work in the area of insect classification has been carried
out by: Hoye et al. (8), Valan et al. (9), Blair et al. (10), Hansen
et al. (11), there has been little prior work in the specifics of
insect detection and sex classification, less on using real world
images, and no known work for sex detection using real world
images. Our motivation for focusing on size classification for BSF
is in order.

2. MATERIALS AND METHODS

This section is broken into two subsections describing our work
using machine vision on BSF and domestic crickets (Acheta
domesticus), the first to measure the size of BSF larvae, the
second to count and sex crickets. All machine vision code and
data analysis software was written in Python 3.8 using publicly
available libraries (Tensorflow, NumPy, scikit-learn).

2.1. BSF
There is a tendency of BSF farmers to favour larger flies as they
have a higher reproduction rate, the larvae are bigger and thus
contain more protein than smaller larvae. Manual selection of
such traits at an industrial level is currently infeasible due to
the high numbers of larvae making it economically unviable.
We therefore look at the first stage of automating this process
by training an object detector to distinguish those larvae that
are larger than a given threshold and are therefore suitable for
breeding, and those that are smaller and should be euthanised
for protein.

The whole process of measuring, image capturing, and
recording the sizes for the creation of this initial dataset was
manual. The focus of this work was to validate that large pupa
can be identified for selective breeding rather than precision
measurement. Using machine vision for measuring objects is
a classic use case, but often fraught with issues, such as lens
distortion, occlusion, shadowing, etc. in unconstrained capture
environments. As the larvae are non-rigid, the system needs
to be able to also cope with this, so an overall deep-learning
based classification system has been developed rather than a
measurement tool. As such, the experiments have not been
replicated (as might be expected in biological studies) – the larvae
were grown, imaged and measured. Future work will commence
the important work of investigating the effects of climate on
their behaviour and having control experiments in place to allow
statistical analysis through replication studies. Future work will
focus on investigating whether it is also possible to determine the
sex of the pupa reliably using machine vision, something which
is currently extremely difficult to do manually. This is discussed
further in Section 4.

2.1.1. Acquisition

Figure 1 shows the equipment used to capture images of BSF
larvae. BSF larvae are negatively phototactic (i.e., they avoid
strong sources of light) (12). Therefore, in order to image
continuously over 24 h, Near Infra-Red (NIR) light sources (850
nm) were used to illuminate the environment without disturbing
the larvae. This is an important consideration for any commercial
implementation and here while we use the NIR images for
analysis, the visible light source images could be used for sorting
dried BSF pupae.

As there is no publicly available Black Soldier Fly dataset,
a BSF colony was farmed to acquire images to train an object
detection model. Thus, 500 BSF larvae were purchased to
populate the colony. The BSF were kept at 27.6oC temperature,
60–65% relative humidity, and fed a diet consisting of fresh
vegetables, fruits, and plant-based products. The pre-pupae were
collected daily from the storage section and placed in a location
with controlled ambient illuminations (i.e., out of direct sunlight
to ensure consistent illumination) to capture their images. An
“ASHATA” IR camera module connected to a “Raspberry Pi 3
B+” was used to capture images. The camera was mounted at
the height of 9 cm, which was empirically determined to ensure
that the pre-pupae were of suitable size in the images. Images
were captured with the maximum resolution possible, which was
5 MP (2592 x 1944 pixels). In total, 310 visible light and 310
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NIR images of individual larvae were captured and used for
classification experiments.

The object detection model chosen for deployment was an
SSD-MobilenetV2 with an image resolution of 300 x 300 pixels as
this lightweight model is capable of running on low power edge
devices such as a Raspberry Pi.

A Train:Test:Validation split of 60:20:20 was used.

2.2. Crickets
2.2.1. Acquisition

Images were captured from a cricket growing facility in Calabar,
Nigeria where researchers from the University of Calabar have
been carrying out work into the commercial growing of crickets
(Acheta domesticus) for agricultural purposes. An Insecto device,
a system developed by SciFlair, Bristol, specifically for the
monitoring of cricket enclosures, was used to capture these
images. The device is equipped with a range of sensors for
measuring: humidity, air pressure, CO2, and volatile organic
compounds (VOC); as well as a camera module, LED lamp, and
internet connectivity. The device was mounted to the roof of one
of the growing vessels so that the camera captured a top down

FIGURE 1 | Device for capturing images of BSF larvae—ASHATA IR camera

module, connected to a Raspberry Pi 3 B+.

image of the enclosure. A view of the bottom of the Insecto device
is shown in Figure 2. An example of one of the images captured
by the Insecto device can be seen in Figure 5. The Insecto device
was configured to capture an image each hour it was powered on.
These images were then uploaded to an internet cloud storage
service. This image is used as input to the YOLOv5 model. The
camera module used in the Insecto device is a Raspberry Pi
Camera with a Sony IMX477 CMOS sensor. Each image captured
was a 24 bit sRGB 4056 x 3040 pixel jpeg image.

In the period starting from the 12th of July until the 8th of
August 2021, 195 images were uploaded to the cloud storage
service. Of these 195 images a random sample of 100 images were
selected in which the crickets were marked with bounding boxes
using the Computer Vision Annotation Tool (CVAT), a free open
source tool developed and made available by Intel (13). In total,
2,796 crickets were labelled. These labels were used to train the
YOLOv5 object detector to count the insects.

The second stage, classifying the sex of the cricket, was
performed by adding additional annotations to these bounding
boxes based on the visible presence of an ovipositor as seen
in Figure 3. It should be noted that crickets which received

FIGURE 3 | An adult female Cricket, Acheta domesticus. Identifiable as female

due to ovipositor (marked by red arrows). Image modified from (14).

FIGURE 2 | (a) The “Insecto” device providing temperature, humidity, CO2, air pressure, and volatile organic compound levels environmental condition information

together with timelapsed image capture that was used to capture the images of crickets from the University of Calabar. (b) Screenshot of the data captured and

displayed from a webservice.
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a “Female” attribute with a “False” value likely included some
images of females with occluded ovipositors, females which were
too blurry to positively identify their ovipositors, and juvenile
females/Nymphs with undeveloped ovipositors. Crickets without
an ovipositor visible therefore cannot definitively be identified as
male due to the presence of these immature female, occluded, and
blurry instances. For this reason a Female[True/False] class was
selected over Female/Male classes for the cricket annotation.

For the actual sex classification, feature extraction was
performed using VGG-16 (15) with pre-trained ImageNet
weights, and the outputs from the final convolutional layers are
then used in an SVM for classification.

Again, a Train:Test:Validation split of 60:20:20 was used. The
test dataset (20% of total dataset) contains 20 images taken from
the cricket growing container with 268 cricket instances (100
female, 168 male) which were manually annotated.

We present our validation results in Table 1 in terms
of precision [Equation (1) what proportion of positive
identifications were actually correct]; recall [Equation (2)
what proportion of actual positives were identified correctly];
and F1 [Equation (3) the harmonic mean of the two which
provides an additional measure of the accuracy]. The third row
in Table 1, “Accuracy” presents the overall accuracy, i.e., the
number of correct identifications out of the total number of
images.

Precision =
True Positive

True Positive+ False Positive
(1)

Recall =
True Positive

True Positive+ False Negative
(2)

F1 = 2×
Precision× Recall

Precision+ Recall
(3)

3. RESULTS

Here, we present the results from our pilot studies for measuring
the size of BSF larvae, distinguishing whether the larva is best
suited to breeding or consumption, as well as counting and
sexing crickets.

3.1. BSF
The size distribution of the BSF shown in Figure 4. An example
output from the trained SSD-MobilnetV2 model is also shown
in Figure 4. The trained model performs with a Mean Average
Precision (mAP) of 0.87 which indicates that it is able to correctly
classify the larvae in 87% of cases in the validation set.

3.2. Cricket Detection and Sexing
Figure 5b shows an example image with bounding boxes and
confidence intervals overlaid after running inference with the
trained model. The model was able to detect crickets with an F1
score of 86% when the confidence threshold was set to 0.525 (F1
vs. confidence can be seen in Figure 5a).

On the Calabar test set the VGG-16 network achieved very
promising performance after 30 epochs of training. Results

TABLE 1 | VGG-16 sex classifier results on the Calabar dataset.

Precision Recall F1 N

Female 0.91 0.91 0.91 98

Unknown 0.95 0.95 0.95 164

Accuracy - - 0.93 262

Macro Avg 0.93 0.93 0.93 262

Weighted Avg 0.93 0.93 0.93 262

Metrics are defined by Equations (1)–(3). N is the number of observations these are

based on.

were achieved which gave an F1 score of 93% for the sex
classification of the crickets as shown in the performance
breakdown by class/sex in Table 1. The confusion matrix
showing the comparison of Actual/ground truth data against the
predicted class results is shown in Figure 6. Some discussion of
the implications of these results can be seen in the next section.

4. DISCUSSION

In summary, our results show the following:

1. High accuracy detection of liveAcheta domesticuswith 86% F1
score at 0.523 using YOLOv5.

2. High accuracy classification of real world Acheta domesticus
to a sex level by further training a pre-trained convolutional
neural network. Achieved F1 scores of 93% using VGG-16
with an SVM.

3. High accuracy detection of BSF larvae of 87% mAP using
SSD-MobilenetV2.

4. Initial successful trials of the “Insecto” device to remotely
gather images and environmental information using a low cost
device with minimal setup and maintenance requirements.

This research shows that the application of deep learning models
to both the detection of Acheta domesticus and classification
of their sex is accurate enough to be useful for commercial
cricket growing organizations. These results also have promise
for deployment in camera traps to detect and classify other
species to a species as well as classify sex from real world images.

While the accuracy of the cricket detector is reasonable at 86%,
it can be seen in Figure 5b that some highly occluded crickets
were identified by the detector and all non-occluded crickets were
also identified. However, three instances of detection errors can
be observed in this image which are indicative of the models
performance on the rest of the dataset. The first error is a false
positive with a confidence of 0.77 which is located to the right
of the white container, the second is a pair of crickets enclosed
by a single bounding box to the bottom right of the white
container, and the third is a highly occluded cricket near the top
region of the green leaves. These three instances represent the
typical situations where the model fails: when crickets are highly
occluded, when crickets are overlapping or on top of one-another,
and where there are objects which have features which appear
vaguely cricket-like and are next to green objects; it seems that
the model confuses these with highly occluded crickets.
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FIGURE 4 | (A) The tri-modal distribution of BSF larvae size. (B) Example image of BSF classification trained primarily on size, and confidence levels with mAP score

of 0.87.

FIGURE 5 | (a) F1 confidence curve shows best F1 score of 0.86 with a confidence threshold of 0.523 (highlighted with red circle), and (b) example results of cricket

detection using YoloV5 with confidence threshold set to 0.523.

It is likely that further improvements can be made by
optimising the chosen architecture as well as providing larger
amounts of training data. Typically, the errors result from highly
occluded or tightly clustered/overlapping insects. A similar issue
is described and mitigated by using a modified Mask-RCNN
(16) for separating tightly clustered pigs by Tu et al. (17). The
suggested approach should generalise well to crickets.

With regards to BSF larvae, our results demonstrate the
feasibility of being able to separate colonies based on phenotypic
traits (in this case size) with 87% accuracy. With a larger dataset,
the performance of this is likely to be improved upon. It is
hypothesised that this method causes the next generation to
favour larger sized larvae. We, therefore, suggest that further
work compares the generational effects of selective breeding
through the automation of this process. It is therefore proposed
that future work should perform a controlled group experiment,
to acquire two similar BSF colonies and perform selective
breeding on one of the colonies over a number of generations.
Except for this, all the remaining conditions must be the same.

Only then, the resulting performance plots could be compared to
conclude the approach’s effectiveness.

Although a possible product of a relatively small sample size,
it is interesting that a tri-modal distribution is shown in the
sizes of the larvae in Figure 4A. While the overall distribution
is normal, the clear troughs either side of the modal peak
are unexpected, and the reason for the outer peaks is not
known but does infer that if this distribution is replicated
across other colonies, and that these phenotypes are inheritable,
then automated systems that rely on vision based sizing will
be able to identify and separate individuals based on these
size distributions. While it might be expected that the sizes
would fall under a normal distribution, or that as suggested by
Putra and Safa’at (18), that female pupae are larger, that a bi-
modal distribution (corresponding to the sex), the presence of
the central peak indicates other influences (perhaps based on
conversion performance) are present.

While environmental data was captured successfully by the
Insecto boxes in Nigeria, and the robustness of the device
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FIGURE 6 | Confusion matrix of sex classification from cropped detections

using transfer learning based on VGG-16 base model weights showing 89 out

of 96 females are correctly identified.

demonstrated, the actual data has not yet been analysed nor
incorporated into any control loop. Future work will seek to
automatically adjust local temperatures, humidity, and airflow
in order to assess their impact on the colonies and develop
optimal conditions for the insects to thrive. This type of low-
cost, low-maintenance device could prove to be exceptionally
useful for smallholder farms to monitor small scale insect farms
that could provide a reliable source of protein for livestock
in developing countries. It could also be used in large scale
farms to remotely monitor conditions where manual inspection
would be prohibitively time consuming. Future work will use the
environmental monitoring data to provide a closed loop feedback
system to maintain conditions, and be used to determine optimal
parameters to increase yields in comparison to control groups
which are controlled at the room level.

With minimal effort, it will also be possible to detect
anomalous behaviour which may offer early indications of
problems in a colony, for example disease which requires
intervention. Using the object detection frameworks presented
here, it would also be possible to assess whether an insect has not
moved for a prolonged period of time and, if it is an isolated case,
remove it from the tray or alternatively dispose of the whole tray
if many such incidents are detected.

It should be acknowledged that there are limitations associated
with this early work. For example, the sex classifier has only
been tested on one species of cricket under relatively controlled
conditions. This species has very visible sex characteristics, i.e.,
a large ovipositor. This means that the same level of accuracy is
less likely for other species with less visible sex characteristics. It
would be interesting to investigate the possibility of sexing BSF
larvae using machine vision. While it is possible to sex adult BSF
there is only limited work on attempting to sex pupae. Putra
and Safa’at (18) showed that there was a significant correlation
between the length of pupae and the sex (the longer the pupa,
the more likely it was to be female) and reported classification

accuracy of 62%. Through a longitudinal study it would be
possible to generate a dataset of pupa that resulted in male or
female BSF and then use a CNN in an attempt to extract more
subtle features than the pupa length and increase the predictive
accuracy. If this is found to be the case, then care must be taken
when selecting individual larvae for subsequent generations, that
sufficient numbers of the smaller males are included for viability.
This also justifies the need to investigate more robust indicators
of sex in BSF larvae rather than their size alone.

However, both experiments clearly show that machine vision
can be used for counting, sizing and sexing insects reliably in
typical insect farming environments and pave the way for a great
deal of future work in whichmore complex features such as inter-
actions (e.g., aggression or mating events) might be detected and
recorded. This represents a considerable step forward towards
automating such processes. It is possible to envisage such systems
being able to guide robotic arms, perhaps with soft-robotic
end-effectors to pick and place individuals between different
colonies to balance overall numbers and ensure a balance of
males and females as well as selection of individuals with desired
phenotypes for future generations.

5. CONCLUSIONS

We demonstrate the efficacy of object detection and classification
methods on two types of insects commonly farmed as sources of
protein. We show that machine vision can be used for accurately
counting, sizing, and sexing (in the case of crickets), where this
important information can be used to effectively monitor colony
health and potentially assist in automatically selecting desirable
traits for future generations. This paves the way for further work
in automated closed-loop insect farming and in exploring the
ability to monitor insect behaviour at colony, and potentially
individual levels.
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