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Abstract: Botnets have become increasingly common and progressively dangerous to both business
and domestic networks alike. Due to the Covid-19 pandemic, a large quantity of the population has
been performing corporate activities from their homes. This leads to speculation that most computer
users and employees working remotely do not have proper defences against botnets, resulting in
botnet infection propagating to other devices connected to the target network. Consequently, not
only did botnet infection occur within the target user’s machine but also neighbouring devices. The
focus of this paper is to review and investigate current state of the art and research works for both
methods of infection, such as how a botnet could penetrate a system or network directly or indirectly,
and standard detection strategies that had been used in the past. Furthermore, we investigate the
capabilities of Artificial Intelligence (AI) to create innovative approaches for botnet detection to enable
making predictions as to whether there are botnets present within a network. The paper also discusses
methods that threat-actors may be used to infect target devices with botnet code. Machine learning
algorithms are examined to determine how they may be used to assist AI-based detection and what
advantages and disadvantages they would have to compare the most suitable algorithm businesses
could use. Finally, current botnet prevention and countermeasures are discussed to determine how
botnets can be prevented from corporate and domestic networks and ensure that future attacks can
be prevented.

Keywords: botnets; botnet infection; botnet detection; machine learning for botnets; deep learning
for botnets; botnet mitigation; botnet prevention

1. Introduction

Botnets are tools used to deliver malware across networks. This defines them as major
threats to corporate networks, which may always need data, applications and services
available. Botnets are the primary cause of Denial-of-Service (DOS) attacks. They can
prevent employees from accessing (sensitive and confidential) information stored within
the networks. It may negatively affect the data’s availability on the system and the data-
handling credibility of the data handler. Despite how common DOS attacks are, businesses
may not have any solutions to combat this threat. A well-known example of a botnet
attack is the Mirai botnet attack in 2016 [1]. The Mirai bot-master (i.e., the malware owner)
conducted reconnaissance of unsecured Internet of Things (IoT) devices that were connected
to the target networks and then successfully launched the malware against unsecured ports.
The Mirai botnet successfully accessed target devices due to poor IoT security configuration,
e.g., with weak passwords being assigned. Also, the malware used brute-forced password
cracking to access IoT devices. Kraken, another botnet attack that occurred in 2008, infected
over 400,000 personal computers (PCs) and was predominantly used for spamming other
network users to gain system access or cause system damage [2]. The number of botnet
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attacks is rapidly increasing with many new variants based on more advanced techniques
which can’t be easily defended using traditional and old defence strategies. Thus, mitigating
botnets and providing businesses with the best solution to respond to the large number
of various threats that may exploit them is becoming more challenging. AI is known to
assist with the improvement of network security due to its decision-making capabilities.
However, also, AI can be used by attackers to launch more sophisticated botnet attacks. This
highlights the importance of AI to be considered as key enabler to design and develop more
efficient botnet detection and prevention tools and strategies compared to the old methods.
For example, AI-based methods are particularly necessary for IoT networks. Their in-built
security may not be updated and able to counter botnet threats, since threat actors can
create botnet code variations to bypass certain firewalls, allowing them unauthorised access
to hosts. It is therefore important to consider what methods can be used to prevent and
mitigate botnet attacks. This paper provides a review on current and past methods for
botnet infections, followed by discussing traditional and modern AI-based methods and
strategies for botnet detection and prevention.

The remainder of this paper is organized as follows: Section 2 discusses what a botnet
is, along with what its capabilities are when it has successfully infected a target host.
Section 3 explains the various methodologies bot-masters may use to infect hosts, either
through code variation or vulnerability exploitation. Section 4 details how botnets can
be detected by the system along with how AI and Machine Learning algorithms may
contribute to botnet detection. Section 5 discusses prevention and countermeasures that
businesses and individuals can use to avoid botnet-related threats. Section 6 discusses
and evaluates the efficiency of some well-known Machine Learning algorithms for botnet
detection. Finally, Section 7 provides an overall conclusion.

2. Definition of Botnets

Chen et al. [3] defines botnets as one of the main methods of transporting malware
throughout networks. This methodology is responsible for a multitude of cyber-attacks
such as Distributed Denial of Service (DDoS) attacks. Botnet DDoS attacks are performed
by infecting a target network device. The infected device would then become known as
a “zombie” a device under a threat actor’s control. By using the zombie, bot-masters can
then spread the botnet throughout the network and reach other connected devices. For
DDoS attacks, the botnet can cause the network’s bandwidth to be used up more than
what is intended and will disrupt all services that each host would contain [4]. Since
network services may be in failure, this may compromise data availability. Silva et al. [5]
defines a botnet as a series of malware-infected devices that then create a network of said
devices to propagate the target network further. The spread can be used to prevent services
and disrupt the data availability. Therefore, denying permitted users to access specific
information when it is needed. Botnets are utilized in a variety of cyber-crimes, be it
enabled (where technology is used to commit them but are not relied on) or dependent
(where technology is required to do so, such as DDoS or stealing sensitive information of
their choice). Silva et al. [5] further mentions that the hacker instigating a botnet attack
would be referred to as the bot-master, who is also responsible for controlling the bot
network. Chen et al. [3] and Silva et al. [5] provided similar definitions into what a botnet
is, along with discussing the rise in such attacks. Ref. [3] emphasizes that hackers would
normally target Peer-to-Peer networks, a type of network that has computers with similar
roles connected to the network with their data shared via wired networks lacking servers.
Such infrastructure can be useful for Local Area Networks (LANs) [6]), as there would
be more connectivity between network devices so the malware can go from one infected
device to another device at a faster rate.

Businesses are common targets for botnets to commit information theft [7] enabling
bot-masters to perform further criminal activities [3,5]. In the past, zombies (i.e., infected
victim computers) were originally used for Internet Relay Chats (IRCs), allowing assistance
with messaging throughout the internet [7]. An IRC channel enables users to join and
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communicate with other users who exist on that channel, behaving very similar to social
media chat rooms. If the channel had many users, then bots would be created to monitor
the channel. However, in such a case, the bot was not an infected machine as known today;
rather, it was an automated program for IRC channel administration. Over time, botnets
were used to attack IRC servers by sending a large number of network packets resulting in
DDoS attacks as the traffic was too much for the target IRC server to manage.

3. Infection Methods

One of the main causes of botnet malware infection is open ports. Although open ports
have a vital role in network device communication, allowing packets to be transmitted
freely [8]. Nevertheless, open ports may result in bot-masters transmitting botnet packets
throughout the network. This can also apply to black hat hackers using the open ports
to gain access to the network and use the software that would coincide with the open
port to carry out privilege escalation. Once the threat actor has gained access through
the port, the botnet can then be launched from the device by using the open ports as a
route for the infected packets to reach other devices. HTTP ports allow a packet to be
transferred throughout the internet. If unnecessarily opened, HTTP ports are in the hands
of a bot-master, they could transfer the botnet codes at a faster rate [9]. Botnets can use flags
to allow for flooding HTTP packets [10]. Flooding is where the network router would send
an outgoing multi-cast to other connected devices. This can be an advantage to bot-masters
as the flooding process would allow more devices to be reached more quickly [11]. HTTP
is a more commonly used protocol bot-masters would favour in terms of propagation.
Furthermore, flooding is a technique widely used within LANs that are scaled greater than
others, which would coincide with companies that would contain more hardware making
HTTP flooding approaches more ideal for bot-masters to use.

Botnets have been recorded as capable of infecting Secure Shell (SSH) based sessions
to propagate [10]. Despite the utilization of encryption to ensure security, SSH sessions can
still be penetrated as the bot-master may create alterations within the botnet code to build
a new variant. Within the variation, the botnet can conduct brute force attacks to access the
SSH sessions as exploiting cases where weak passwords have been used [12–14]. Botnets
can use dictionary-based attacks to be able to gain access to the sessions and allow for the
infection to be performed [15]. Feily et al. [16] elaborates that botnets are like Trojan-based
malware as both botnets and Trojans may penetrate networks via phishing. This is also
spread out by Cooke et al. [7], as the paper mentions that many bot-masters find methods
of code obfuscation to avoid being detected by anti-virus and anti-malware software.

Hong [17] defines phishing attacks as a cyber-attack that coincides with the concept of
social engineering. Phishing is where attackers send emails to a target and deceive them
into responding to gain data or run malware. Phishing occurs in three stages, picking a
target, the target responding to the email, and the phishing email acting. Phishing emails
commonly present an urgent threat to users, informing them that they only have a certain
period to open the link, causing the user to panic and respond, thus executing the malware.
Bot-masters are responsible for sending phishing emails that have been weaponized to
trigger the botnets [7,15,17]. The phishing emails persuade users to open the infected
attachments. Jeong et al. [15] discusses hyperlinked attachments, where users would
unknowingly click on a hyperlink, causing the botnet malware to be downloaded by the
unsuspecting user. Jeong et al. [15] also state that the hyperlinks may take victim users to
phishing websites, which trick users into downloading the botnet malware unwittingly.
Khonji et al. [18] further justifies [15] and states that download links within emails may be
classified as a “Man in the Browser (MITB)” cyber-attacks, which, according to [19], are
like Man-In-The-Middle attacks. However, in MITB attacks, the attack exists within the
Hypertext Transfer Protocol (HTTP) or the Hypertext Transfer Protocol Secure (HTTPS).
The threat actor intercepts the session and causes code to be injected. In the case of botnets,
the MITB attack could contain botnet code, and when the session between the user and
the infected website occurs, the MITB attack will trigger the dormant code. Abbas et al. [9]
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mentions the reason hosts MITB vulnerability exists is because the HTTP/HTTPS may
not be updated to be more secure against MITB attacks. This allows internet-based MITB-
exploiting botnets to be more likely to infect victim web pages.

Jeong et al. [15] discusses a botnet infection method that is based on dictionary attacks.
Dictionary attacks are a method of password cracking where all words existing within
a dictionary are used to brute force a password [20]. From Nam et al. [21], dictionary
attacks may be divided into either online or offline attacks. Online attacks are where each
word insertion is checked by using a server that is connected to a computer. This has the
drawback of being easy to detect for the attacker, since they are connected to the server,
allowing their activities to be detected by detection mechanisms. Therefore, online attacks
are not preferable for bot-masters to use [21]. Alternatively, dictionary attacks can take place
offline. In this case, threat actors have obtained, and attempt to crack, password hashes
from the targeted network (e.g., through sniffing the network during a reconnaissance
phase) [22]. Other methods of password hash collection discussed by Miller [23] are that
memory dumps may be observed (e.g., to find a Sequence Alignment Map (SAM) file).
SAM files are relevant to attackers since password hashes are recorded into them, although
this only applies to Windows machines. Once password hashes have been obtained, bot-
masters can decipher them without using web servers [23]. Offline dictionary attacks are
preferable since the threat actor would not be attempting to gain network access directly,
which means that the network would not have access attempts registered within its security
log, allowing for the bot-master potentially remain undetected [23].

Variants of dictionary attacks can also be used by threat actors to evade detection and
breach systems [12,24]. The first dictionary attack type is slow motion-based. This is where
a threat actor would conduct the attack, but the target sessions are constantly alternating,
escaping detection once the attack is conducted. The other method for dictionary attacks is
distributed, where the attack is launched through broadcasting its messages throughout the
target network, behaving similarly to botnet attacks but can also coincide with dictionary
attacks as both broadcasts through the target network then the attack can be performed on
multiple machines to access at least one host. The botmaster can use the accessed host to
conduct the botnet attack. Thereby allowing the botmaster to implant botnet code into the
host and infect it [24].

4. Detection Methods

Karim et al. [25] discusses types of detection mechanisms that may be implemented
within networks to alert administrators regarding incoming attacks. The examples ad-
dressed are Anomaly-based and Botnet based detection mechanisms and detection using
Fuzzy Logic. In addition, phishing detection is covered due to phishing-related attacks
being one of the main contributions to how botnets can infect networks.

4.1. Detection Types

Anomaly-based detection observes network traffic and identifies abnormal activity
within communications [25]. In the case of botnets, malware code within packets is de-
tectable. This is justified by Ahmed et al. [26] as the analysis technique would focus on
the data patterns that exist within the network. When using anomaly detection, the main
focus that [26] reveals is: a point anomaly which is a specific area of the data pattern that
does not conform to the behaviour standard of the area it exists in would be called a point
anomaly; in the case of Botnets it is important to observe the traffic and determine if any
packet would have different behaviour. Contextual anomalies are a case where the data
would have behaviour outside of its context by making comparisons to other data sets [27].
The last type of anomaly that Ahmed et al. [26] elaborates are collective anomalies; this is
where a group of data contains similarities to each other would be analysed for anomalies
which can be useful for data analysts to conduct a feature extraction and predict if there are
any inconsistencies within the set. Chen et al. [28] discusses the signature-based detection,
which is a method used to assist the detection of anomalies. However, Chen et al. [28]
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states that botnet detection using signature analysis has drawbacks. The first is that if
implemented on a large corporate network, the sheer network scale causes the detection
system to not be as effective. The second is that the rules applied to the detection will not
work because the botnet would cause changes to the network’s communication. A recent
detection method addressed by Chen et al. [28] is host-based detection. This is where hosts
on a network, along with their contents (e.g., files and running processes) are kept under
surveillance for abnormalities (e.g., botnet activity). However, a problem with this method
is that novel botnet code adaptations may be applied by the bot-master thus rendering
host-based detection useless since it is reliant on known signatures (and therefore bypassed
by unknown novel code).

There are also botnet detection tools like the SLINGbot [29]. Rahim and Bin Muhaya [29]
describes SLINGbot as a python-coded tool capable of detecting botnets. The detection is
done by using a Botnet Scenario Driver (BSD), to control the botnet, and a Composable
Botnet Framework (CBF) to ensure that the botnet and information on the routing are con-
nected. This tool can use the data gathered and make predictions on future attacks so that
companies would be more prepared for those attacks. Furthermore, Python is regarded as a
secure programming language, due to a lack of vulnerabilities that black-hat hackers could
use to exploit. This would provide more assurance that the SLINGbot would be less prone
to being infected or damaged. García et al. [30] mentions a type of anomaly detection called
CAMNEP detection, which is used to analyse the activity of a network to locate anomalies.
CAMNEP uses a three-layer methodology to ensure that the data gathered from the detec-
tion is reliable. The first layer is the anomaly detection layer which further relates to [26] as
well as [3] since both sources discuss the use of anomaly detection, by analysing the network
traffic using analysis algorithms. One such algorithm that could be used is the Hierarchical
Temporal Memory (HTM) algorithm, which is defined by Lavin and Ahmad [31]. It is used
to survey activity in actual time; this is useful in anomaly detection as the flowing network
traffic occurs in real-time. The second layer is where a concept referred to as trust models
are used, where the anomalies would then be clustered based on their behaviour. The
third layer of the CAMNEP solution is where aggregation takes place, this is to generate a
conclusion based on the average of each clustered data point and conduct the best solution
for the anomalies based on said aggregations [30].

4.2. Machine Learning Based Detection

Considering the Internet of Things (IoT), Alhajri et al. [32] addresses that machine-
based learning can also be factorial in the detection of botnets on an anomaly type basis. The
Auto-Encoders is used as an algorithm to assist with the botnet detection. The detection as
defined by Jordan [33] is a type of machine learning where a neural network is implemented
with a bottleneck to divide the layers in the network. The detection is divided into two
areas: one part would exist in the IoT’s cloud to survey the data traffic from there and the
other is applied to the sensors in the network, which can then be monitored for anomalies.

Another anomaly-based detection implemented an Intrusion Detection System (IDS)
as mentioned by both [34,35]. An IDS is used to survey any unauthorised accesses within
the network by implementing a signature-based detection approach. If there is any unau-
thorised access present, the IDS would activate and run the specific protocols to prevent
system casualty. Although the issue that [34,36] encountered is that IDS will only be func-
tional to known botnets meaning that it would need to be trained to recognise the different
anomalies depending on the situation. Lawal et al. [37] further justifies the use of IDS as it
can function in two areas, host-level where the hosts are surveyed, and the network-level
to identify anomalies on the entire network. The system can make comparisons to be-
haviour to what is already registered within its database, but it can only succeed on known
attacks [34,36]. Anomaly-based is used to detect anomalies behaving similarly to work
proposed by Karim et al. [25]. Ashraf et al. [34] proposed a botnet detection that uses a
function where it would conduct a feature extraction from the network traffic data. Feature
extraction is where Machine Learning (ML) can use data and filter out certain features to
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ensure that there is a better prediction accuracy [38]. Feature engineering can be done on
the network traffic data in order to specify highly relevant data that can be used to train
machine learning models enabling botnet traffic detection. Tobiyama et al. [39] proposed
a method based on Deep Neural Network (DNN) and Recurrent Neural Network (RNN)
that conducts pattern recognition on the network traffic data and then use the identified
patterns to generate predictions [40]. In terms of the feature extraction that is proposed by
Tobiyama et al. [39], it uses the network traffic to observe its behaviour, which would then
use RNN to find any recurring patterns within the traffic behaviour. The behaviour that is
found would then be used as extracted features. If there is an anomaly it would classify the
data and then cause an alert to the administrators.

Figure 1 shows interactions between IDS and IPS for intrusion detection through
analysing network traffic. If the IDS can detect any traces of botnet packets within the
traffic capture, then the IPS will be notified and will conduct the appropriate measures to
counteract the threat. If not, then nothing will happen, and the processes will be repeated
until an intrusion would be detected.

Data Traffic 
Forwarded to 

IDS
Machine 
Learning

Intrusion?

IPS Alerted
Intrusion
Removed

Do Nothing 
Resume 

Monitoring

Figure 1. Interactions between IDS and IPS.

Figure 2 represents an example of how a Neural Network can be used to assist
with detecting botnets. This would coincide with [34,39] proposals on the use of neural
networks to detect botnet traffic. The neural network uses traffic data for training. By using
synapses, the data would enter the hidden layer where deep learning would extract specific
features and use the pattern recognition from the RNN to identify any similarities from
the decomposed data. Further deep learning would then be conducted to identify if any
anomalies are resulting in the output layer predicting if there is either an anomaly present
or not.

Inputted Data 
Traffic 

Inputted Data 
Traffic 

Deep 
Learning

Deep 
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Figure 2. Neural Networks for botnet detection.
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Botnet detection can also coincide with decision tree classification. Firdausi et al. [41]
proposed a method that conducts a prediction on input data that involves network traffic
and would then uses feature selection to create decision trees on whether there is a botnet
or malware present. Feature extraction through the hidden layers can contribute to the
performance, and the overall outcomes of the prediction [39]. Performing feature extraction
can ensure that the data sets would be reduced in size to only the relevant data features.
This will make the accuracy much higher as there would be the possibility of missing values
existing in the frame analysis for some part of the traffic data [41].

Clustering is another type of ML algorithms that can detect anomalies. This is where
points of data that originate from a data set would be positioned into a table depending
on the features of specific points that are assigned to it. Other points of data would be
positioned in different areas of the graph. If the following points are like others, then
they would be closer to the corresponding points and would form a cluster [42]. In the
case of botnet detection, clustering can be useful as it would be simple to develop, which
would allow analysts to behave more time dedicated to observing the results shown over
programming [43]. Despite both the simplicity and accessibility that clustering can provide,
Seither [43] mentions that there are drawbacks to clustering data. Such as K-means based
clustering would only be able to organize data that is numerically valued. When predicting
botnets, analysts would consider features such as the flags that appear within the data
packets or both the source and destination IP addresses which would be classified as string
data types. If K-means clustering is performed, then the string features within the data set
will need to be converted into numerical values. Label encoders can be used to convert
the strings into float data. However, it can be inconvenient as the numerical conversion
could result in the data being difficult for the analysts to understand. Thereby K-means
based clustering would not be preferred by analysts since the predictions would consider
the string variables rather than just using integers or floating data.

Support Vector Machines (SVMs) are another consideration that could be used to
predict the presence of botnets. An SVM is an algorithm that would incorporate supervised
data; which in this case would be the typical network traffic behaviour for the company [44].
Zhang et al. [44] further discusses that the SVM would use a hyper-plane to divide data
points that exist within the graphs to classify each point to determine if there are any
anomalies. Some advantages that SVM’s can provide for botnet classification include
if the Botnet data set, cannot be separated through a single-dimensional means, then a
process referred to as the kernel trick is implemented to increase the number of dimensions
to ensure that a more accurate classification can be made. This is relevant to botnet
prediction as the data frames containing the typical traffic information would contain more
extracted features. This means that the prediction dimension might not be performed
using the features required to make the prediction The kernel trick is carried out by
K(x,y) = <f(x), f(y) [45]. Afonja [45] defines the formula as “K” being represented as the
Kernel while the “x” and “y” values would be treated as the number of dimension inputs
(how many dimensions would be used). “f” is the number of dimensions that would
exist within the kernel. Finally, the “<x,y>” section of the formula is the dot product of
the algorithm [45]. Another advantage that Statinfer [46] elaborates is that SVM’s are also
suitable for unsupervised classification. In the case of predicting Botnet presence, the
outcomes as to whether a data point is a botnet would not be known to the analyst. Thereby
conducting a feature extraction would allow the SVM to use every detail within the data
set and then conduct an automatic division for each point.

Although there are disadvantages that Statinfer [46] addresses such as training the
SVM may be more time-consuming as botnet data sets would have a large scale since
network traffic would have a large data packet quantity. It can also be difficult to select the
most suitable kernel for classifying the traffic data, as there are multiple kernel types.

Logistic regression is an algorithm that can be used to classify if the data is malware
(1) or not (0). Kumar et al. [47] used a training set that allows for the data to be organized
into a confusion matrix (See Table 1). The True Positive (TP) in this case would be that the
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traffic would be actual malware, False Positive (FP) is non-botnet packets being incorrectly
labelled as a botnet. True Negative (TN) is data packets that are correctly labelled as
non-botnets, while False Negative (FN) is actual botnet data being treated as non-botnet
data. To ensure that the predictions are accurate Kumar et al. [47] proposed the use of
Precision which is where the True Positive is divided by the sum of both the True and False
Positives to determine how precise the matrix is creating the formula of (p = TP/FP). The
recall is also considered where the True Positive is divided by the sum of True Positive
and False Negative (R = TP/(TP + FN)) [48]. Another method to improve the accuracy of
the regression is penalties. They would be applied for each incorrect classification and
ensure the model does not repeat the mistakes made. These include applying more weight
to certain data points to ensure that the matrix would be more trained against the poorly
predicted areas. Using logistic regression data packets can be classified to determine if the
examined packets would contain botnet data or not. Thereby, logistic regression can be
considered an efficient solution to classify botnets as the accuracy improvements are simple
to implement and not require selecting a kernel as opposed to SVM’s or using longer model
training periods that clustering algorithm would need.

Table 1. Botnet classification confusion matrix.

Positive Negative

Positive Malware Packet Normal Packet but labelled as Botnet Packet
Negative Botnet Packet labelled as a Non-botnet Packet Normal Packet

A fog-based framework is a framework that functions by having a fog layer, which is
used to cover the entirety of the network, ensuring all data storage’s within the network
are covered, Fog networks are highly compatible with IoT systems [36,49]. Fog computing
is advantageous as the response time can be faster as well as an increase in scale, allowing
the network to be altered more efficiently [37,50]. The fog-based framework does have
disadvantages as well. According to George et al. [51], Fog-based computing would
require all data within the network to be accessed by the framework. This would result
in confidential information being revealed to unauthorized users, which could leading to
specific information being leaked to other sources. Another drawback that is addressed by
George et al. [51] is that the framework would be time-consuming due to developers and
administrators needing to scale the network as well as ensure that there would be enough
bandwidth present to gain a faster result. To assist with increasing network bandwidth, one
way is to delete programs or files that would use large quantities of bandwidth. However,
the issue with this mitigation is that some files might be an asset to the company. This
can also apply to programs as there is the possibility that they would be instrumental to
conducting work performance. Therefore, developers would need to select carefully which
files and programs would need to be deleted.

Another tool that can be useful in terms of detecting botnets is honeypots. Garre et al. [12]
defines honeypots as a network tool that can lure threat actors into conducting exploits.
Tsikerdekis et al. [52] justifies that honeypots are for exploitation analysis and assist with
providing more prevention strategies for the network holders. It can also coincide with
Machine Learning as the data gathered from the honeypot analysis would then record the
information into the ML database to allow the system to adapt to the newer threats [32].
According to Mukherjee [53], honeypots are classified as three different types; High interac-
tion would incorporate services used on an actual network as well as the host’s Operating
System (OS) to seem like an authentic host which would then increase the likelihood of
the honeypot being infected. Medium interaction is not as complex as high interaction
type honeypots but will strike a balance between interacting with resources from higher
to a lower rate. There could be lower interaction in specific areas because it can allow
security admins to have enough time to be able to respond to threat actors. Finally, Low
interaction honeypots would contain the least number of services to maintain security. This
allows them to be the simplest of the three types to develop and conduct maintenance on,
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although the drawback comes with the honeypot not being as convincing to threat actors
as opposed to High and Medium Interaction.

4.3. Fuzzy Logic Based Detection

Joshi et al. [54] proposed a strategy based on fuzzy logic. Defined by Chai [55], it is
an AI-based method that does not use Boolean logic to its full extent precisely. However,
it does incorporate true and false to assist with decision making when the outcome is
unknown and control the system when there is a certain amount of input’s being involved
and allows the AI to create its own decision on how the outcome would operate. Joshi
et al. [54] proposed an approach that analyses the network traffic and would conduct
pre-processing from the traffic’s data set. Joshi et al. [54] used a data set that contains a
mix of both types of traffic. Then using fuzzy logic, enables the system to contain feature’s
that it would not previously have that can complement the traffic data set more effectively.
The fuzzy logic’s conclusions and the newly established features allow it to observe any
anomalies that are within the network and then make connections to what is in its database
and detect the botnet activity on its own.

4.4. Phishing Detection

Phishing detection can also be a crucial part in both prevention and detection of
botnets, Moghimi and Varjani [56] provided two separate methodologies in terms of a web
page’s authenticity since infected website links that are attached to emails can be one of the
causes of the botnet’s being triggered into the system and infecting the host. In the case
of how Moghimi and Varjani [56] accomplishes the detection by using a pre-processing
methodology for a data set [54] by filtering out unwanted data as well as data that would
be redundant in the machine learning. The phishing data would then be sampled to train
the machine learning for the detection. Then the features for the phishing detection model
would be implemented, such as what features are already contained within the model [56].
By determining from the data if it is True Positive or False Positive for phishing, said
features can be used to evaluate whether a website is an actual or phishing type; this
represents whether it is used for phishing attacks or is an actual website. The phishing
detection model proposed by Moghimi and Varjani [56] used a database and generates its
features on how phishing websites are and accordingly uses the information that has been
gathered to generate its conclusions on whether it is real or not. According to Abu-Nimeh
et al. [57], ML can also be used to assist with phishing detection via Neural Networking.
Within the input layer, potential phishing emails can be inserted and via synapses can
transition through the hidden layer of the network, through the hidden layer the emails
would conduct functions depending on the node further relating to [34,39], discussing
using neural networks in the case of whether data packets would contain botnet code or
not as an unsupervised prediction. Weights should also be necessary to ensure that there
would be a better classification on the emails to ensure that the hidden layer nodes are
weaker, in the case of the email’s the weaker nodes can cause incorrect predictions. In
addition, neural networks can also be difficult to implement as explained by Abu-Nimeh
et al. [57] can be due to the specific regularization involved, therefore conducting these
predictions through a Neural Network should be conducted if the analyst is experienced
with the construction as well as the analysis. Features that can be extracted for the machine
learning would be if the wording within the email will be poorly spelt or if the grammar
is along with if the message would contain the phrase “Dear Customer” at the start [58].
Although that would mean that when using training data, it would need to consider all
the features contained within an email, such as the proper spelling, file attachments, etc.
Furthermore, it would also be important to implement a spam filter within the network, a
defence mechanism that uses machine learning to classify if the email is spam or an actual
email [59]. When relating to domestic networks, it can also cause the implication that there
would be no resources to generate a Neural Network construction. Furthermore, it would
be time-consuming for users to develop and obstruct business progress.
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Dedeturk and Akay [60] mentions that Spam Filtering would use a logistic regression
algorithm to classify if the email would be spam or not through binary means. Spam emails
can be defined as one (1) and real emails can be labelled as (0) values. However, Logistic
Regression may classify the emails incorrectly as legitimate emails would be labelled
as spam and vice-versa. The results of potential phishing emails are shown through a
confusion matrix labelling each as a TP would be equal to a spam email, TN would be
treated as a non-spam email FP is where an email is classified as a spam email but not, and
FN is an email that is spam but is classified as a non-spam email (See Table 2).

Table 2. Spam filtering confusion matrix.

Positive Negative

Positive Spam Spam Email classified as Non-Spam
Negative Non-Spam Email but classified as Spam Non-Spam

Although relating to Kumar et al. [47], precision and recall can be used to mitigate the
incorrect classifications from the first model and then implement said corrections to the
newer models along with applying weights to help with strengthening the weaker areas of
the regression.

4.5. Packer Detection

Packers are widely used tools to ensure that botnets would have obfuscation from
signature detection and IDS and IPS. To counteract the use of packers and ensure that
the malware is detected, Devi and Nandi [61] used a concept referred to as the Size of
Code (SOC). SOC is defined as being the use of calculating the individual sizes of all the
sections that would exist in the malware packet’s code [62]. This means that since the
malware code is packed it would cause the code to be split to a certain size. Therefore,
calculating the packet sizes would cause the packer to become unpacked which is the
opposite of the Botnet data being packed. Devi and Nandi [61] extended this by checking
what the uninitialized data within the packed malware is. Since the packed malware is
compressed, it would cause difficulty for the firewalls to detect the botnet code as they
may be configured to detect as malware code would originally contain a large quantity of
data being stored within the packets. Furthermore, since packers would intend on using
missing data Fuzzy logic can also assist with filling in the missing values to further conduct
the classifications on the presence of malware packer’s [55].

5. Prevention and Mitigation Strategies

Relating to Feily et al. [16] in terms of botnet infections originating from phishing-based
attacks, Alexander and Wanner [63] mentions that social engineering attacks can be avoided
by providing staff with training on how to respond to different social engineering-based
threats. Alexander and Wanner [63] defines this as cyber-attacks that depend on deceiving
human users. The training procedures, discussed by Saleem and Hammoudeh [64], are
essential to prevent phishing-based attacks as providing user training on how to respond
properly to unknown emails. Bhandari [65] and Alexander and Wanner [63] discuss
methods to ensure links that have been emailed to users are checked and not accessed.
However, Bhandari [65] highlighted an issue that the source does not go into further details
on the prevention side of botnets. However, the use of email attachments needs to be
examined before access [63].

Another aspect highlighted by Bhandari [65] is that the open ports that the system
does not use must be closed. This relates to Tunggal [8] as bot-masters would use open
ports to be able to access the network hosts. This means that all unused ports should be
closed and only allow one that is secure and needed to communicate with other devices to
be left open. In the case of brute-force attacks, one such method that is mentioned by both
Kirushnaamoni [66] and Wang et al. [67] are implementing the use of account locking in
sessions. This is where password insertion for authentication is given a limited number
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of times. The maximum would usually be set to three attempts for users to authenticate
themselves before they are forced out of the session. In the case of botnets, those that would
attempt to access SSH sessions would only be able to use three insertions, allowing for
sessions to be more secure and decreasing the chances of being vulnerable to brute-force
attacks. Although, this comes with the drawback of limiting the attempts for legitimate
users on the network if they would forget the SSH passwords. Another measure would
be to use secure passwords by using a mix of letters, numbers and special characters at
a specific length, thereby it can also mitigate dictionary attacks as strong passwords may
not be actual words [65]. This is validated by Kirushnaamoni [66] as it provided a similar
idea of using an attempt limit on the sessions. Although [66] also has a unique aspect
of mentioning the use of providing a delayed response. Lengthening the duration of the
password check on the system can also ensure that the botnet conducting the brute force
attack will not be able to keep attempting at a rapid rate.

Bhandari [65] suggests ensuring that updated firewalls are implemented into networks.
Botnets can cause anomalies into standard traffic flow within the targeted network, which
would mean that there would be suspicious packets within the traffic [3,25]. Therefore,
configuring the firewalls would allow for the suspicious packets to be analysed. If the
packet contains malware code, the security system filters the packet and denies access
to the host it is trying to enter. Although this comes with the drawback of networks
placing firewalls in the wrong areas and would allow the bot-master to use the vulnerable
parts to perform the exploitation [68]. This can also coincide with the vulnerability of
security misconfiguration, meaning that the security needs to be implemented properly
and applying the firewalls correctly to ensure that botnet attacks, and cyber-attacks in
general, do not harm the system.

Botnets are likely to traverse the network through using open services that will not
be used, in the targeted network such as using UDP protocols along with using ports of a
specific protocol [69]. Therefore the mitigation, in this case, is to ensure that only ports that
are necessary to the network are left open. Furthermore, Gupta et al. [69] suggests the use
of ensuring regular security system and firewall updates to ensure that traffic that contains
botnet code is denied access. This can be further justified by applying Access Control
Lists (ACLs), a series of lists that define how traffic can flow through the network within
Local Area Network (LAN). The lists would categorize if the computers had permission
to communicate with certain devices or denied [10]. ACLs have similar functionalities
to firewalls due to capabilities for traffic permission, and denial [69]. Despite firewall
capabilities, it is important to ensure updates, as botmasters can create variations in their
malware coding to penetrate the firewalls and elude detection. Vayansky and Kumar [70]
suggests using filtering for both emails from outside the company. This will ensure that
the implication of infected emails will not be sent to any host on the network along with
filtering infected phishing sites. Vayansky and Kumar [70] also justifies staff training to
ensure that the proper measures are taken if emails have been sent to staff members.

6. Machine Learning Algorithms Comparisons

Tuan et al. [71] used the UNBS-NB data-set to make accurate comparisons between
SVM, K-means and Decision Tree classifier algorithms, from the results that have been
gathered by Tuan et al. [71] methodology, it shows that the K-Means algorithm had the most
accuracy in classifying botnets within the data-set being evaluated at “94.78” which relating
to Kaushik [42], the data-set was properly cleaned, and the algorithm was able to use the
features to differentiate botnets packets from the regular packets properly. The second most
accurate algorithm was Decision Tree’s, which had the accuracy of “94.43” based on Tuan
et al. [71] methodology. However, the Decision Tree classifier has a sensitivity rating of
“94.52” for the data set, which is higher than the clustering algorithms being set to “89.78”
for the data sensitivity. On the other hand, SVM, has the lowest accuracy of the three, where
it has an accuracy score of “84.32” and sensitivity of “99.08” making SVM have the highest
sensitivity between the three algorithms. The pattern that Tuan et al. [71] identifies from
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the results table is that the higher the accuracy of the algorithms would mean that there
would be more sensitivity present. Although, Nguyen et al. [72] argued that Decision Tree
classifiers are the most accurate from their prediction scores. However the main contrast
between both [71], and ref. [72] is that Random Forest was considered within [72] approach
which showed the highest accuracy, the accuracy further improves once the optimized
model proposed by Nguyen et al. [72] achieved “99.04” accuracy. Although since Random
Forest is an ensemble variant for Decision Tree, the accuracy would justify the effectiveness
of decision tree classifiers.

7. Conclusions

From the evidence gathered, the primary causes of botnets being able to penetrate
network systems are through both phishing attacks and the use of brute-forcing sessions
within packet transition. This means that to ensure the reduction of the risk for botnets, it is
important for the network administrators to equip firewalls against botmaster’s variations
on the malware code and update firewalls constantly. It is also important for IDS and IPS
to be implemented if the botnet was able to penetrate the firewalls. Furthermore, password
strength will also need to be considered for SSH sessions. Using long passwords with
encryption can assure that sessions would not be cracked and allow the bot-master to
conduct an insertion throughout the host communication. ACLs are useful as they can
enable botnets to have a limited propagation on hosts and isolate the infected hosts to
ensure that machines with more sensitive information and data would be more secure from
any other related attacks. Phishing attacks can be prevented via staff training on how to
appropriately respond to emails as well as links that originate from unknown sources. For
further confirmation on emails being sent to them, staff can ask the sender personally if
they have sent an email to them. Other measures that can be taken are email and website
filtering. AI has also been shown to have a key role in detecting infections using fuzzy
logic. It would be able to consider missing binary values within data packets during traffic
during flow time to detect the presence of malicious code by using its decision-making
capabilities. This would also correlate to packers, as they can allow the botnet code to be
compressed, causing the data to have missing values. Furthermore, the IDS and IPS can
ensure whether the bot-master can penetrate the network. The IDS can alert administrators
to the bot-master accessing the network and allow the IPS to ensure that the bot-master
is removed from the network. Through using aspects such as fuzzy logic and ML-based
IDS/IPS, AI can contribute to the network and IoT security through protecting them from
botnets or malware threats in general. Moreover, research results that leveraged machine
learning for botnet detection show that some ML methods and algorithms like Deep Neural
Networks, Decision Trees and K-Means function more effectively with better prediction
accuracy. In contrast, other algorithms like SVM are less efficient.
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