1 The role of C-reactive protein (CRP) as a prognostic marker in COVID-19

2

- 3 Stringer D¹ MSc, Braude P² MBBS MRCP, Myint PK³ MBBS MD FRCP, Evans L⁴
- 4 MBChB, Collins JT⁵ MBChB MRCP MD, Verduri A⁶, MD PhD, Quinn TJ⁷ MBChB
- 5 FRCP MD, Vilches-Moraga A⁸ LMS, DGM, MSc, FRCP, Stechman MJ⁹ MBChB,
- 6 FRCS MD, Pearce L¹⁰ BMedSci BMBS FRCS MD, Moug S¹¹ BSc MBChB PhD
- 7 FRCS, McCarthy K¹² MB BS MD, Hewitt J¹³ MB BS PhD COPE Study
- 8 Collaborators[&], and Carter B PhD^{14*} MSc

- ¹ Research Fellow in Biostatistics. Department of Biostatistics and Health Informatics,
- 11 Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny
- 12 Park, London SE5 8AF. United Kingdom (dominic.stringer@kcl.ac.uk),
- ² Consultant Geriatrician, North Bristol NHS Trust, UK (philip.braude@nbt.nhs.uk)
- ³ Professor of Old Age Medicine, Institute of Applied Health Sciences, University of
- 15 Aberdeen (phyo.myint@abdn.ac.uk)
- ⁴ Surgical Registrar, Ysbyty Gwynedd, Bangor (louis.evans@wales.nhs.uk)
- ⁵ Specialist Registrar in Geriatric Medicine. Ysbyty Ystrad Fawr, Aneurin Bevan University
- 18 Health Board. (jemimacollins@doctors.net.uk)
- 19 ⁶ Consultant Respiratory Physician. Hospital of Modena Policlinico (Italy)
- 20 (VerduriA@cardiff.ac.uk)
- ⁷ Clinical Senior Lecturer. Institute of Cardiovascular and Medical Sciences, University of
- 22 Glasgow (Terry.quinn@glasgow.ac.uk)
- ⁸ Consultant Geriatrician. Department of Ageing and Complex Medicine, Salford Royal NHS
- Foundation Trust, Stott Lane, Salford, M6 8HD. Honorary Senior Lecturer, University of
- 25 Manchester, UK. (Arturo.vilches-moraga@srft.nhs.uk)
- ⁹ Consultant Surgeon, Department of Surgery, University Hospital of Wales, Cardiff
- 27 (Michael.Stechman@Wales.nhs.uk)
- ¹⁰ Consultant Surgeon. Department of Colorectal Surgery, Salford Royal NHS Foundation
- 29 Trust, Manchester (Lyndsay.pearce@srft.nhs.uk)
- 30 ¹¹ Professor and Consultant Colorectal Surgeon, Department of Surgery, Royal Alexandra
- 31 Hospital, Paisley PA2 9PN, UK (susanmoug@nhs.net)
- 32 ¹² Consultant Surgeon, Department of Surgery, North Bristol NHS Trust, Southmead Rd.
- 33 Bristol BS10 5NB, UK (Kathryn.McCarthy@nbt.nhs.uk)
- 34 ¹³ Clinical Senior Lecturer, Cardiff University and Honorary Consultant Physician, Aneurin
- 35 Bevan University Health Board (HewittJ2@cardiff.ac.uk)

1 ¹⁴ Senior Lecturer in Biostatistics. Department of Biostatistics and Health Informatics, 2 Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London SE5 8AF. United Kingdom (ben.carter@kcl.ac.uk) 3 4 *Corresponding Author: 5 Dr Ben Carter (ben.carter@kcl.ac.uk) Senior Lecturer in Biostatistics 6 Department of Biostatistics and Health Informatics, 7 8 Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK 9 10 11 244 12 Abstract word count: Manuscript word count: 3373 13 **Number of Tables** 3 14 1 Number of Figures 15 Number of supplementary Tables/Figures 3 16 17 Keywords: CRP; COVID-19; Bimodal; Trimodal; Mortality; Prognostic marker, 18 Mixture Model 19 20 **&COPE Study Collaborators:** 21 Aberdeen University: Dr Eilidh Bruce, Dr Alice Einarsson 22 Glasgow Royal Infirmary: Dr Aine McGovern 23 Inverclyde Royal Infirmary: Carly Bisset, Ross Alexander. 24 Italy (University Hospital of Modena Policlinico): Professor Giovanni Guaraldi, MD 25 King's College London: Caroline Murphy; Joanna Kelly; Dr Roxanna Short 26 27 North Bristol Trust: Tarik El Jichi Mutasem, Sandeep Singh, Dolcie Paxton, Will Harris, Dr James Hesford, Dr Mark Holloway, Dr Emma Mitchel, Dr Frances Rickard. 28 Royal Alexandra Hospital, Paisley: Norman Galbraith, Emma Bhatti, Jenny Edwards, and 29 Siobhan Duffy, Dr Fenella Barlow-Pay 30 Salford Royal Infirmary: Madeline Garcia, Shefali Sangani, Thomas Kneen, Thomas Lee, 31 32 Angeline Price Ysbyty Yystad Fawr: Dr Charlotte Davey, Ms Sheila Jones, Kiah Lunstone, Alice Cavenagh, 33 Charlotte Silver, Thomas Telford, Rebecca Simmons 34 35 36 37

1 Abstract

2 Background

- 3 C-reactive protein (CRP) is a non-specific acute phase reactant elevated in infection
- 4 or inflammation. Higher levels indicate more severe infection and has been used as
- an indicator of COVID-19 disease severity. However, the evidence for CRP as a
- 6 prognostic marker is yet to be determined. The aim of this study is to examine the
- 7 CRP response in patients hospitalised with COVID-19 and determine the utility of
- 8 CRP on admission for predicting inpatient mortality.

Methods

9

- Data were collected between February 27th and 10th June incorporating two cohorts:
- the COPE (COVID-19 in Older People) study of 1564 adult patients with a diagnosis
- of COVID-19 admitted to 11 hospital sites (test cohort) and a later validation cohort
- of 271 patients. Admission CRP was investigated and finite mixture models were fit
- to assess the likely underlying distribution. Further, different prognostic thresholds of
- 15 CRP were analysed in a time-to-mortality Cox regression to determine a cut-off.
- Bootstrapping was used to compare model performance (Harrell's C and AIC).

17 Results

- The test and validation cohort distribution of CRP was not affected by age and
- mixture models indicated a bimodal distribution. A threshold cut-off of CRP ≥40 mg/L
- 20 performed well to predict mortality (and performed similarly to treating CRP as a
- 21 linear variable).

Conclusions

- 23 The distributional characteristics of CRP indicated an optimal cut-off of ≥40 mg/L
- was found associated with mortality. This threshold may assist clinicians in using
- 25 CRP as an early trigger for enhanced observation, treatment decisions, and
- 26 advanced care planning.

27

22

Key Messages

2

3

4

5

6

7

8

9

1

- CRP has been used inconsistently in both patient management and as a prognostic marker during COVID-19.
 - Admission elevated CRP for patients with COVID-19 was associated with increased inpatient mortality and indicative of disease severity at admission.
 - The distribution of CRP at admission was found to be bimodally distributed, and a CRP ≥40 mg/L was the optimal threshold of increased risk of mortality.
 - Admission CRP ≥40 mg/L may be used by treating clinicians as an early warning of for enhanced care and patient centred decision making.

11

Introduction

- 2 Elevated levels of serum C-reactive protein (CRP) have been observed in patients
- with COVID-19, and used to assist with triage, diagnostics, and prognostication (1,2).
- 4 CRP is a non-specific acute phase protein that is produced by hepatocytes and
- 5 elevated in acute infection or inflammation (3). Secretion begins 4-10 hours after an
- 6 inflammatory insult and peaks at 48 hours with a short half-life of 19 hours. Crucially
- 7 it may be elevated before a patients' vital signs are affected or leucocytes are raised
- 8 (3). The profile of this biomarker has made CRP useful and routinely available in
- 9 clinical medicine for diagnostics.
- 10 CRP can be used to assist with differentiation between viral and bacterial infections,
- for example, influenza produces a mean CRP of 25.65 mg/L (CI 18.88 mg/L -
- 32.41mg/L) versus bacterial pneumonia a CRP of 135.96 mg/L (CI 99.38 mg/L -
- 13 172.54 mg/L) (4). In COVID-19 a CRP of ≥4 mg/L has been shown to be useful for
- triaging suspected cases when comparing PCR positive patients versus negative
- controls who have presented to a fever clinic with respiratory symptoms or a high
- 16 temperature (OR 4.75 Cl 3.28 6.88) (5).
- However, debate remains over the utility of CRP as a prognostic marker for patients
- admitted to hospital with COVID-19. In a recent systematic review, 10 of the 22
- included COVID-19 prognostic models treated CRP either as a factor or covariate
- 20 (6). Most these studies used CRP with a binary threshold, proposed values to predict
- inpatient mortality varied from ≥10 mg/L to ≥76 mg/L. In addition to a binary
- threshold, CRP has been examined in a trichotomized model with the two thresholds
- at \geq 40 mg/L and \geq 100 mg/L (9). A lower cut-off of \geq 20.44 mg/L was used as a
- threshold related lung injury (7), and >32.5 mg/L was found to offer 80% predictive
- power for a person needing mechanical ventilation (8). The studies adjusted for
- 26 admission CRP as a covariate to account for baseline disease severity have
- 27 assumed a linear or natural logarithm transformation (Ln(crp)) relationship with
- outcome (10,11). Although using CRP in a continuous manner may offer an
- improved understanding of the contribution of CRP within each analysis, it does not
- 30 allow CRP to be used by clinical teams to guide management of patients with
- 31 COVID-19.

- 1 Whilst CRP has been argued as an important marker of disease progression in
- 2 COVID-19 (6), its distribution has never been explored to understand whether
- distinct patterns exist in a heterogeneous population. The use of CRP as a
- 4 biomarker in COVID-19 may present a quick and accessible tool in clinical
- 5 management, and trigger longer periods of enhanced observation, and may provide
- 6 information around likely disease progression, and assist with early therapeutic,
- 7 ventilation, and palliative care discussions.
- 8 The aim of this study is to examine the distribution of CRP at hospital admission, and
- 9 objectives are to: 1) assess CRP as a prognostic bimodal, or trimodal distribution; 2)
- propose and compare the categorisation of CRP as a prognostic marker to either a
- 11 linear or log-linear measure of CRP.

12 Methods

13 Study design

- 14 This observational study used two cohorts at different time points to examine the
- contribution of CRP to clinical outcomes. Permission to conduct this study was
- granted in the UK by the Health Research Authority (20/HRA/1898), and in Italy by
- the ethics committee of University Hospital of Modena Policlinico
- 18 (369/2020/OSS/AOUMO). Written consent was not required from participants as per
- ethical review. This study has been written in accordance with the STROBE
- 20 statement (12).

21 **Settings**

- Thirteen hospital sites participated, twelve from the UK and one from Italy. All were
- 23 acute hospitals directly admitting patients with suspected or confirmed COVID-19.

24 Participants

- 25 Original Cohort (Cohort 1)
- 26 Participants in Cohort 1 were included as part of the COPE study (COVID in Older
- 27 People study) as reported in the paper by Hewitt, Carter et al (13)(14). Briefly, this
- was a European multicentre observational study recruiting 1564 hospitalised adults
- between February 27th to April 28th 2020 with either SARS-CoV-2 viral PCR
- confirmed disease (95.9%) or clinically diagnosed (4.1%) COVID-19. Any patients

- aged 18 years or older admitted to the participating hospitals with a diagnosis of
- 2 COVID-19 were included. The study found frailty was associated with longer hospital
- stay, and a better predictor of mortality as an inpatient, and at day 7, than age or
- 4 comorbidity alone.
- 5 Validation Cohort (Cohort 2)
- 6 Cohort 2 consisted of an additional 271 patients recruited between 29th April and 10th
- June 2020 from a combination of six of Cohort 1's hospitals plus two additional
- 8 recruiting hospitals. All patients were SARS-CoV-2 viral PCR positive.

9 Variables

- A prognostic threshold for CRP was needed within the COPE protocol (March 2020).
- The limited literature available early in the pandemic included a case series of 73
- patients with COVID-19 presenting with a mean CRP of 51.4 mg/L (SD 41.8) (1).
- Based on this paper, and proposed by the clinical experience of the authors who
- delivered acute care a dichotomous threshold was chosen with <40 mg/L (lower
- admission CRP), and ≥40 mg/L (CRP-elevated, indicating increased disease severity
- 16 (14)).

17

18

Data sources

- 19 CRP was measured at hospital admission and transcribed from patients' medical
- 20 records. There was no attempt to standardise the CRP assay between sites.
- 21 A standardised case reporting form was used for all hospital sites. Data were
- transferred to King's College London in anonymous format for statistical analysis.

23

24

Graphical Data Analysis

- Using the test cohort the distribution of CRP was examined graphically and stratified
- by age. Finite bivariate and trivariate Gaussian mixture models were fit to CRP,
- 27 representing two and three latent classes respectively. The theoretical distribution
- from these models was compared to the empirical data and the threshold between
- the two and three classes examined. The normality assumptions were assessed
- 30 visually

31 32

Statistical Analysis

- 1 Primary Analysis: Mixture modelling analysis
- 2 The empirical data from the test cohort were fit to a Gaussian mixture model with
- one, two or three components using an Expectation-Maximisation algorithm (to refine
- 4 the starting values) then maximum likelihood estimation (Stata routine "fmm"). The
- 5 models were compared using the AIC and the thresholds determined by the
- 6 posterior probability of belonging to the two or three class models.
- 7 Secondary Analysis: Prognostic modelling analysis
- 8 To assess differing thresholds for CRP as a prognostic factor of outcome, a series of
- 9 mixed-effects multivariable Cox proportional hazards models for time to mortality, in
- a method consistent with the COPE study primary analysis (13). The model was
- adjusted for elevated CRP using a level of ≥40 mg/L, in addition to: patient age
- group (<65, 65-79, ≥80 years old), sex, diabetes (yes/no), hypertension (yes/no),
- coronary artery disease (yes/no), and kidney disease (eGFR <60 ml/min/1.73m²).
- Dichotomized thresholds of CRP were compared within a range of 10mg/L to
- 15 100mg/L in 5mg/L intervals (\geq 10 mg/L, \geq 15 mg/L, etc). Model performance was
- evaluated and compared using Harrell's C and the Akaike information criterion (AIC)
- 17 (15). We compared the dichotomised thresholds against linear CRP and Ln(cRP) (as
- 18 CRP is known to be skewed) as benchmarks of performance. This method was
- chosen as dichotomising results can lead to a loss of information resulting in a lower
- 20 predictive power compared to using a continuous measure (16). Bootstrapping was
- used to construct 95% percentile confidence intervals for differences in model
- 22 performance between the best-fitting models. Bootstrapping was stratified by site
- with 1000 replications for each comparison. A complete case analysis was used in
- 24 all cases due to negligible missing data (<4%).

Validation Cohort (Cohort 2)

25

- To provide an indication of whether the original results from Cohort one were likely to
- be replicable to a wider group of patients with COVID-19, the analysis was repeated
- on an independent validation sample (Cohort 2). Using the validation cohort, two-
- 30 class and three-class mixture models were estimated using the empirical data
- without restriction. On evidence of overfitting, to assess the additional benefit of a
- very elevated category for CRP, the validation cohort was fitted using a three-class

- 1 mixture model, with the class-two mean fixed using the validation cohort two-class
- 2 mixture model mean.

4 Comparison of the prognostic effect of CRP

- 5 Using a mixed-effect multivariable Cox regression, the effect of elevated CRP will be
- 6 reported using a adjusted hazards ratio (aHR), alongside the respective 95%
- 7 confidence interval (95%CI), for a linear CRP, Ln(CRP).

8 9

13

Role of the funding source

- 10 There was no funding source for this study. The corresponding author had full
- access to all the data in the study and had final responsibility for the decision to
- submit for publication.

Results

- The study included 1835 patients across Cohorts 1 and 2, which were drawn from 12
- hospitals in the UK and one from Italy. Of the total study participants, 26.4% (n=484)
- died in-hospital, varying between sites from 13.3% to 42.9%. A comparison for those
- who died in hospital was carried out in Table 1 split into Cohort 1 (n=1564) and
- 18 Cohort 2 (n=271). In Cohort 1, 27.2% died and the median CRP for those that died
- was 115 mg/L (63 mg/L 191 mg/L [IQR]) compared to 69 mg/L (29 mg/L -140
- 20 mg/L) among those who survived. For patients with CRP \geq 40 mg/L mortality was
- 31.9% compared to 15.0% for patients with CRP <40 mg/L. Median follow up time
- (time to mortality or discharge) was 13 days (6 22 days).

23

- Cohort 2 experienced 21.8% mortality. Among those who died, median CRP was 86
- mg/L (48 mg/L 173.5 mg/L) compared to 53 mg/L (16 mg/L 109 mg/L) among
- those who survived. For patients with CRP ≥40 mg/L mortality was 28.6% compared
- to 10.4% for patients with CRP < 40 mg/L. The median follow up time (time to death
- or discharge) was 10 days (5 18) days).

29

30

Results of Cohort 1 (n=1564)

31 Distribution of CRP

- 32 On graphical examination of the distribution of Ln(CRP), it exhibited negative skew,
- with two "peaks" suggestive of a bimodal distribution, see Figure 1: Plot (i), and

- Supplementary Figure 1: Plot(i, ii). The distribution of Ln(CRP) was observed in age
- stratified groups of <65, 65-79, and \geq 80 years old. On inspection there was no
- 3 difference between the distribution age stratified, or the complete data set.

20

5 Primary Analysis: Mixture Modelling Analysis

- 6 Following the two suggested peaks in the examination of the Ln(CRP) distribution a
- two-latent class finite mixture model was fitted. It appeared to graphically fit the data
- when examined against the empirical distribution in Figure 1: Plot (i). This was
- 9 supported by a comparison with the one-class (or null) model, which displayed a
- higher AIC (4739 compared to 4524). The simple threshold at which the predicted
- probability of belonging to a two-class model being greater than one-class was 38
- mg/L. This will be implemented as ≥ 40mg/L herein to account for the imprecision of
- the measurement of CRP, and also for ease of recall in a busy clinical setting.
- The three-class finite mixture model fit slightly better than the two-class finite mixture
- model (AIC of 4484) with probability of class-one membership highest between
- range 0-14 mg/L, class-two between 15-120 mg/L, and class-three for values of CRP
- 17 ≥120 mg/L, see Figure 1: Plot (iii).
- The primary analysis proposed a single optimal threshold of CRP ≥40 mg/L to
- indicate elevated CRP.

Secondary Analysis: Prognostic modelling

- The time to mortality analysis included 1502 participants (96%) in the complete case
- 22 population. A cut-off of ≥65 mg/L appeared to fit best in the sample on all measures
- 23 (Harrell's C of 0.7068, AIC of 5124) (Table 2) after fitting different binary
- categorisations of CRP in a Cox model for time to mortality. Differences in measures
- of goodness of fit were small especially between cut-offs in the range of ≥40 mg/L to
- 26 ≥90 mg/L. CRP as a continuous Ln(CRP) measure performed considerably better
- 27 (Harrell's C of 0.7157, AIC of 5001), and with little improvement on this using a linear
- scale (Harrell's C of 0.7040, AIC of 5024). Bootstrapped differences in the measures
- of goodness of fit between a cut-off of ≥40 mg/L and the marginally better performing
- 30 cut-off of ≥65 mg/L; no difference in performance was seen with 95%Cl for all
- measures (Table 3). There was evidence that both a cut-off of \geq 40 mg/L and of \geq 65

- 1 mg/L outperformed a cut-off of ≥10 mg/L, the upper limit of the normal range for CRP
- 2 (17). It should be noted that that Ln(crp) was the optimal parameterisation compared
- 3 to either ≥40 mg/L (-135.1 AIC, bootstrapped 95% CI -210.4 to -65.1) or ≥65 mg/L (-
- 4 123.5 AIC, bootstrapped 95% CI -197.6, to -55.8)

Results of Cohort 2 (n=271)

7 Distribution of CRP

- 8 Cohort 2 included 271 new patients from eight hospital sites: 85 (31.4%) were fully
- 9 independent, recruited from two new hospital sites; 186 were pseudo-independent,
- being newly recruited patients from original hospital sites in Cohort 1. There was no
- difference in the demographic, comorbidities and distribution of CRP was seen in
- 12 Cohort 2 and Cohort 1 (Table 1).

13 14

Fitting finite mixture models

- The empirical distribution of the Cohort 2 Ln(CRP) appeared to graphically reasonable
- a similar pattern to Cohort 1, see Figure 1: Plot (ii). The two-class finite mixture
- model gave a consistent threshold (CRP ≥41 mg/L). The unrestricted three-class
- 18 finite mixture model exhibited likely overfitting to the data on examination of the
- 19 distributions. Inconclusive evidence for the additional second cut-off was found with
- the class three distribution entirely contained within class-two, with a large variance.
- 21 There was no additional benefit for fixing the central distribution mean and allowing
- 22 the mixture proportion to vary, but this can be seen graphically in Figure 1: Plot (iv).
- 23 The simple threshold between class-one and class-two was ≥41 mg/L.

24

- The time to mortality analysis included 208 of the participants (77%) with complete
- data. Fitting different binary categorisations of CRP in a Cox model for time to
- 27 mortality gave a CRP cut-off of ≥40 mg/L as the best fitting model (Harrell's C of
- 28 0.7187, AIC of 424), outperforming the Ln(CRP) model (Harrell's C of 0.7014, AIC of
- 427), see Table 2. There was no evidence of difference in performance between a
- 30 cut-off ≥65 mg/L and ≥40 mg/L, or between ≥40 mg/L and Ln(CRP) on examination of
- bootstrapped 95%CI Supplementary Table 1.

32

33

The prognostic effect of elevated CRP with prognostic properties

- 1 The aHR for CRP ≥40 mg/L were 2.58 (95%Cl 1.95 to 3.41) and 2.61 (95%Cl 0.54 to
- 4.63) for Cohorts 1 and 2 and the estimate of CRP appeared stable (Supplementary
- 3 Table 2). For comparison CRP ≥65 mg/L, the aHR was consistent in Cohort 1
- 4 (aHR=2.48; 95%CI 1.96 to 3.14) but appeared unstable in Cohort 2 (aHR=1.61;
- 5 95%CI 0.84 to 3.09). Using a cut-off of ≥40 the sensitivity, specificity, positive
- 6 predictive value and negative predictive value was 0.84; 0.33; 0.32; 0.85 for Cohort 1
- 7 and 0.82, 0.43, 0.29, and 0.90 for Cohort 2.

9

Discussion

10 Key results

- 11 CRP reasonably followed a bimodal distribution using data from two independent
- cohorts. There was inconclusive evidence of a trimodal distribution; whilst the AIC
- metric suggested it fit better, on graphical examination there appeared to be
- 14 overfitting.

15

- In an analysis of 1835 patients across 13 hospital sites using a binary cut-off for CRP
- as a prognostic factor of COVID-19 inpatient death appeared to have similar
- predictive power compared to treating it as a linear or Ln(CRP). In addition, a cut-off
- value to indicate disease severity is simpler to use in a clinical setting than a linear
- predictor. These findings support the use of a simple binary threshold for CRP in
- 21 daily clinical medicine. These results are well aligned with many published analyses
- in COVID-19 that have already employed a binary cut-off (4,18–20).

23

- The bimodal distribution of CRP may reflect the presence of a latent class influence.
- 25 Candidate variables for this latent class may include confounders that were not fully
- controlled for: chronic inflammatory conditions, genomic variation of the virus,
- 27 genetic susceptibility of populations, or other binary exposures such as BCG
- vaccination status (21–23).

- The association of higher CRP with worse outcomes may be due to the severity of
- the disease consistent with the "cytokine storm" theory of COVID-19 where the
- innate immune system is activated releasing TNF-alpha, IL-6 and IL-1. Elshazli et al
- found CRP to be a valid biomarker of death from COVID-19 when examining a range

- of haematological and immunological markers. IL-6 was found to be most predictive
- 2 (OR=13.87) of death, and CRP the next best marker (OR=7.09)(24). However, IL-6
- is not routinely available to clinicians, but being linked to CRP as a trigger for its
- 4 transcription makes CRP a better candidate tool for front line hospital usage (25). In
- 5 the same Elshazli paper a threshold level of 38.2 mg/L was demonstrated to have
- the best sensitivity and specificity, which fits well with our findings, this was also
- 7 found within a recent Cochrane Diagnostic Test Accuracy review (26). In addition an
- 8 elevated CRP may not be attributable to COVID-19 alone, and may represent
- 9 concomitant pathology such as secondary bacterial pneumonia. Although co-
- infection is well known in other viral respiratory illnesses, the rate in COVID-19 has
- been found to be far less, being present in around 5.9% of the general COVID-19
- hospital population, and 8.1% of those with critical illness (18).

- 14 There data presented here support a single threshold, and whilst there was
- argument for competing cut-offs of ≥40, ≥65, or greater, the single cut-off is
- consistent with other studies (8,24). In addition, it would be clearer and safer to offer
- a conservative approach taking for the lower value of CRP, as a higher threshold
- may falsely reassure clinicians

- There is a need for simple tests to aid clinical management, as the behaviour of CRP
- in COVID-19 may provide useful immediate risk stratification as to whom may have a
- 22 poor outcome. The threshold of CRP ≥40 offered a high negative predictive value, so
- patient presenting with a low CRP are unlikely to exhibit disease progression, and
- 24 high sensitivity analysis which might lead to opening discussions with patients and
- 25 their carers about the possible course of the disease. This may assist with early
- resource planning around the potential for critical care support, and may help guide
- 27 rapid safe discharge from acute hospitals (5). Although the results within this paper
- give a population based cut-off, any interpretation and management plan must be
- 29 made on an individual patient basis, with clinicians using CRP in context of clinical
- 30 history, examination, investigation, noting the threshold offered a low positive
- 31 predictive value. Beyond clinical predictive value, this model may be useful for
- monitoring the outcomes of treatments, for example in a trial of Tocilizumab, CRP
- monitoring was used as a marker of efficacy (27).

Strengths and Limitations

- This was a large study that included participants admitted to 13 hospital sites. The
- 4 demographics, case-mix and mortality are similar to other larger studies reported
- within the UK, increasing the findings generalisability (20). We have also shown
- 6 good replication between the two UK wide cohorts. However, caution should be
- 7 given to the threshold reported for CRP as studies identifying optimal cut-offs may be
- 8 subject to selection bias, and may not be replicable (28). Using a threshold of ≥40
- 9 offered a high sensitivity and negative predictive value, but low positive predictive
- 10 value.

11

- A limitation of this study is that due to the urgent nature of research data collection in
- a pandemic, disease severity on admission was only assessed using CRP without
- collection of circulating lymphocytes, interleukin-6, procalcitonin, serum lactate, and
- viral load, all of which may also contribute to disease severity (29).

16 17

Interpretation

- A simple threshold ≥40 mg/L should be used within clinical practice to guide disease
- 19 severity and likely disease progression. Future studies should analyse using this
- 20 simple threshold.

21

22

Generalisability

- The impact of these findings support the routine assessment of serum CRP as an
- 24 adjunct in the early diagnosis and assessment of illness severity of hospitalised
- patients with COVID-19. We recommend CRP ≥40 mg/L on admission may indicate
- an increased risk of disease progression and death and warrants an enhanced level
- of discussion and clinical support.

28 29

Conclusions

- We have demonstrated that CRP follows a bimodal distribution in hospitalised
- patients with COVID-19. This requires further exploration to discover the latent class
- effect of unobserved factors influencing the distribution of CRP. A CRP of ≥40 mg/L
- on admission to hospital should be seen as a reliable indicator of disease severity

- and increased risk of death. We recommend clinicians to use this cut-off as a
- 2 prognostic indicator only in conjunction with an individualised clinical assessment,
- 3 frailty assessment, incorporating a person's wishes and values, to make early
- 4 decisions about enhanced observation, critical care support, and advanced care
- 5 planning.

References

2

- 1. Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. The Lancet. 2020 Feb 15;395(10223):507–13.
- 2. Liu F, Li L, Xu M, Wu J, Luo D, Zhu Y, et al. Prognostic value of interleukin-6, C-reactive protein, and procalcitonin in patients with COVID-19. J Clin Virol. 2020 Jun;127:104370.
- 8 3. Pepys MB, Hirschfield GM. C-reactive protein: a critical update. J Clin Invest. 2003;111(12):1805–12.
- Haran JP, Beaudoin FL, Suner S, Lu S. C-reactive protein as predictor of bacterial infection among patients with an influenza-like illness. Am J Emerg Med. 2013 Jan;31(1):137–44.
- Li Q, Ding X, Xia G, Chen H-G, Chen F, Geng Z, et al. Eosinopenia and elevated C-reactive protein facilitate triage of COVID-19 patients in fever clinic: A retrospective case-control study. EClinicalMedicine [Internet]. 2020 Jun 1 [cited 2020 Aug 18];23. Available from: https://www.thelancet.com/journals/eclinm/article/PIIS2589-
- 17 5370(20)30119-X/abstract
- Systematic evaluation and external validation of 22 prognostic models among hospitalised adults with COVID-19: An observational cohort study | medRxiv [Internet].
 [cited 2020 Oct 1]. Available from: https://www.medrxiv.org/content/10.1101/2020.07.24.20149815v1
- Chen W, Zheng KI, Liu S, Yan Z, Xu C, Qiao Z. Plasma CRP level is positively associated with the severity of COVID-19. Ann Clin Microbiol Antimicrob. 2020 May 15;19(1):18.
- Herold T, Jurinovic V, Arnreich C, Lipworth BJ, Hellmuth JC, von Bergwelt-Baildon M, et
 al. Elevated levels of IL-6 and CRP predict the need for mechanical ventilation in
 COVID-19. J Allergy Clin Immunol. 2020 Jul 1;146(1):128-136.e4.
- 28 9. Clinical features and inpatient trajectories of older inpatients with COVID-19: a
 29 retrospective observational study. 2020 Aug 26 [cited 2020 Oct 1]; Available from: https://www.researchsquare.com/article/rs-61056/v1
- 10. Hamer M, Gale CR, Kivimäki M, Batty GD. Overweight, obesity, and risk of
 hospitalization for COVID-19: A community-based cohort study of adults in the United
 Kingdom. Proc Natl Acad Sci. 2020 Sep 1;117(35):21011–3.
- 11. Shang W, Dong J, Ren Y, Tian M, Li W, Hu J, et al. The value of clinical parameters in predicting the severity of COVID-19. J Med Virol [Internet]. 2020 Jun 2 [cited 2020 Sep 18]; Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7280691/
- 12. Elm E von, Altman DG, Egger M, Pocock SJ, Gøtzsche PC, Vandenbroucke JP, et al.
 The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE)
 Statement: Guidelines for Reporting Observational Studies. PLOS Med. 2007 Oct
 16;4(10):e296.
- 13. Hewitt J, Carter B, Vilches-Moraga A, Quinn TJ, Braude P, Verduri A, et al. The effect of frailty on survival in patients with COVID-19 (COPE): a multicentre, European,

- observational cohort study. Lancet Public Health [Internet]. 2020 Jun 30 [cited 2020 Jul
- 9];0(0). Available from: https://www.thelancet.com/journals/lanpub/article/PIIS2468-
- 3 2667(20)30146-8/abstract
- 4 14. Price A, Barlow-Pay F, Duffy S, Vilches-Moraga A, Moug SJ, Carter B, et al. A study
- 5 protocol for COPE study: COVID-19 in Older PEople the influence of frailty and
- 6 multimorbidity on survival. A multi-centre, European observational study. BMJ Open
- 7 [Internet]. 2020 Sep 11 [cited 2020 Sep 18]; Available from:
- 8 https://abdn.pure.elsevier.com/en/publications/a-study-protocol-for-cope-study-covid-19-
- 9 in-older-people-the-infl
- 15. Harrell FE, Califf RM, Pryor DB, Lee KL, Rosati RA. Evaluating the yield of medical
- 11 tests. JAMA. 1982 May 14;247(18):2543-6.
- 12 16. Akaike H. EE Trans Autom Control. 1974 Dec;19(6):716–23.
- 13 17. Ali N. Elevated level of C-reactive protein may be an early marker to predict risk for
- severity of COVID-19. J Med Virol [Internet]. [cited 2020 Sep 18];n/a(n/a). Available
- from: https://onlinelibrary.wiley.com/doi/abs/10.1002/jmv.26097
- 18. Langford BJ, So M, Raybardhan S, Leung V, Westwood D, MacFadden DR, et al.
- 17 Bacterial co-infection and secondary infection in patients with COVID-19: a living rapid
- review and meta-analysis. Clin Microbiol Infect [Internet]. 2020 Jul 22 [cited 2020 Sep
- 1];0(0). Available from: https://www.clinicalmicrobiologyandinfection.com/article/S1198-
- 20 743X(20)30423-7/abstract
- 19. Vasileva D, Badawi A. C-reactive protein as a biomarker of severe H1N1 influenza.
- 22 Inflamm Res. 2019;68(1):39–46.
- 23 20. Docherty AB, Harrison EM, Green CA, Hardwick HE, Pius R, Norman L, et al. Features
- of 20 133 UK patients in hospital with covid-19 using the ISARIC WHO Clinical
- 25 Characterisation Protocol: prospective observational cohort study. BMJ [Internet]. 2020
- 26 May 22 [cited 2020 Sep 1];369. Available from:
- 27 https://www.bmj.com/content/369/bmj.m1985
- 28 21. Wu T-L, Tsao K-C, Chang CP-Y, Li C-N, Sun C-F, Wu JT. Development of ELISA on
- 29 microplate for serum C-reactive protein and establishment of age-dependent normal
- 30 reference range. Clin Chim Acta. 2002 Aug 1;322(1):163–8.
- 22. Ferreira GD, Simões JA, Senaratna C, Pati S, Timm PF, Batista SR, et al. Physiological
- markers and multimorbidity. J Comorbidity [Internet]. 2018 Oct 23 [cited 2020 Sep
- 1];8(1). Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6201184/
- 23. Toyoshima Y, Nemoto K, Matsumoto S, Nakamura Y, Kiyotani K. SARS-CoV-2 genomic
- variations associated with mortality rate of COVID-19. J Hum Genet. 2020 Jul 22;1–8.
- 24. Elshazli RM, Toraih EA, Elgaml A, El-Mowafy M, El-Mesery M, Amin MN, et al.
- 37 Diagnostic and prognostic value of hematological and immunological markers in COVID-
- 19 infection: A meta-analysis of 6320 patients. PLOS ONE. 2020 Aug
- 39 21;15(8):e0238160.
- 40 25. Markanday A. Acute Phase Reactants in Infections: Evidence-Based Review and a
- 41 Guide for Clinicians. Open Forum Infect Dis [Internet]. 2015 Jul 3 [cited 2020 Sep
- 42 16];2(3). Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4525013/

- 1 26. Stegeman I, Ochodo EA, Guleid F, Holtman GA., Yang B, Davenport C, Deeks JJ,
- Dinnes J, Dittrich S, Emperador D, Hoo) L, Spijker R, Takwoingi Y, Van den Bruel A,
- Wang J, Langendam M, Verbakel JY, Leeflang MMG. Routine laboratory testing to
- 4 determine if a patient has COVID-19. Cochrane Database of Systematic Reviews 2020,
- 5 Issue 11. Art. No.: CD013787. DOI: 10.1002/14651858.CD013787.

- 27. Luo P, Liu Y, Qiu L, Liu X, Liu D, Li J. Tocilizumab treatment in COVID-19: A single center experience. J Med Virol. 2020;92(7):814–8.
- 9 28. Holländer N, Sauerbrei W, Schumacher M. Confidence intervals for the effect of a 10 prognostic factor after selection of an 'optimal' cutpoint. Stat Med. 2004;23(11):1701–13.
- 29. Tan L, Kang X, Ji X, Li G, Wang Q, Li Y, et al. Validation of Predictors of Disease
- Severity and Outcomes in COVID-19 Patients: A Descriptive and Retrospective Study.
- Med N Y N [Internet]. 2020 May 19 [cited 2020 Sep 18]; Available from:
- 14 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7235581/

15

16

Declarations

17 Contributions of authors

- 18 Conceived the study (BC, PB), developed the protocol (BC, DS, PB), collected the data (PB,
- 19 PM, LE, JC, VA, TQ, AV, MS, LP, JH, SM, KMc), analysed the data (DS, BC), interpreted
- the findings (DS, BC, PB), drafted the initial manuscript (DS, PB, BC), all authors approved
- 21 the final manuscript.
- 22 BC is the guarantor of the study findings

23 Funding declaration

- 24 This study received no specific funding. The study was partially supported through the NIHR
- 25 Maudsley Biomedical Research Centre at the South London and Maudsley NHS Foundation
- 26 Trust in partnership with King's College London (BC)

27 Data Sharing Agreement

- Data is available on request from the corresponding author after submission of a statistical
- 29 analysis plan, after approval from the COPE Study Investigators.

30 Competing Interests Statement

31 No author has a competing interest