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Abstract 
In this paper, the consistent second-order plate theory is developed for transversely isotropic 
plates. It is validated against the three-dimensional elasticity theory using a well-known 
benchmark problem of a simply-supported rectangular plate subjected to symmetric 
transverse sinusoidal loading. The choice of the benchmark problem is based on the fact that 
it allows for an exact three-dimensional elasticity solution to be derived in closed form. In 
this study, a closed-form solution based on Elliot’s displacement potentials for transversely 
isotropic solids is specifically derived for validation purposes. Its equivalence to other closed-
form analytical solutions is established. Expanding the closed-form analytical solution into a 
power-law series with respect to the non-dimensionalised plate thickness enables a direct 
term-by-term comparison with the consistent second-order plate theory solution and provides 
a valuable mechanism to validate the consistent plate theory for transversely isotropic plates 
in a purely analytical form. The term-by term comparison reveals that the first terms of the 
above power-law series coincide exactly with the expressions of the consistent second-order 
plate theory. In addition to the analytical validation, a numerical validation using the finite 
element method is performed. A comparative analysis of several plate theories for 
transversely isotropic plates demonstrates that the consistent plate theory can predict 
displacements and stresses in thick transversely isotropic plates with very high degree of 
accuracy, such that even for very thick plates with a thickness-to-length ratio of 0.5, the 
deviation from the three-dimensional elasticity solution is less than 1%. 
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1. Introduction 
 
Many natural and manmade engineering materials possess direction-specific material 
properties and can be viewed as homogeneous anisotropic solids on the macroscopic scale. 
Design and analysis of structural components made of such materials require methods and 
tools that accurately take into account material’s anisotropy as well as specifics of the 
component’s geometry and function. Transverse isotropy is one of the commonly 
encountered types of anisotropy whereby a material has an axis of material symmetry 
perpendicular to the plane of isotropy and requires five independent elastic constants to 
describe its elastic response. Transversely isotropic plates and plate-like components can be 
found in many areas of engineering. A plate is a structural component whose thickness is 
much smaller than its in-plane dimensions. Design and analysis of plate-like components 
usually take place within the framework known as plate theory, which is a theoretical 
construction that takes advantage of the plate’s small thickness and reduces a fully three-
dimensional analysis to a two dimensional one. Two-dimensional plate theories, as long as 
they are employed within their range of applicability, can be used to study a great variety of 
static and dynamic behaviours, geometrical configurations, loading types and boundary 
conditions. The range of applicability for a specific plate theory is usually established through 
a comparison with full three-dimensional solutions for benchmark problems, for which such 
solutions are available. Although the development of plate theories began many decades ago, 
the research effort in this area still continues, as evidenced by recent publications (Wang et al. 
(2018), Wang et al. (2019), Tran et al. (2019), Liu et al. (2019), Furtmüller and Adam (2020), 
Joshan et al. (2020)), to name but a few. 
 
Two-dimensional plate theories can be derived from a full three-dimensional elasticity theory 
using a number of approaches, as discussed in Kienzler and Kashtalyan (2020). Within the 
first, classical or engineering approach, a set of kinematical a priori assumptions is adopted 
for the displacement distribution in thickness direction, with additional assumptions 
concerning the stress distribution. Transverse shear strains are either neglected, or their 
influence is considered by means of shear-correction factors. A historical survey on classical 
plate theories may be found in, e.g., Szabo, (1987), whereas their mathematical justification is 
discussed, e.g., in Friesecke et al. (2002a, b). using the method of Γ-convergence developed 
by Giorgi (1975). Within the second, direct approach, all quantities “live” on a Cosserat-type 
surface endowed with a set of deformable directors attached to each point of the plane, 
whereas material parameters are identified through comparisons with a set of solutions of 
known test problems. A comprehensive review of Cosserat-type theories of plates and shells 
is given in Altenbach et al. (2010). The third approach develops lower-dimensional theories 
from the three-dimensional theory of elasticity by means of series expansion. In the works of 
Vekua (1955, 1985) series expansions with respect to a basis of Legendre polynomials were 
used. The so-called restricted-type theory for mixed plate-membrane problems, introduced by 
Steigmann (2008, 2012) and extended by Pruchnicki (2014), combines established modelling 
approaches of Koiter (1966, 1970a) with arguments taken from contributions based on Γ-
convergence. Within the so called consistent approach (or uniform-approximation approach), 
which originates from works of Naghdi (1963), Koiter (1970b), Krätzig (1980) and Kienzler 
(1982) and will be used within this paper, plate theories are derived from the Euler-Lagrange 
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equations of the truncated energy. Whatever the adopted approach, all plate theories are 
united by the fact that they attempt to describe a three-dimensional solid by a two-
dimensional approximation, in which all quantities are defined on a surface. 
 
The most rigorous way of constructing a two-dimensional approximation of a three-
dimensional state of stress and a three-dimensional displacement field in a three-dimensional 
solid is provided by a group of plate theories known as consistent plate theories. In a 
consistent plate theory of a given order of approximation, all terms related to that order of 
approximation are retained in the three-dimensional representation of stresses and 
displacements. Such a logical and consistent approach produces the most accurate 
representation of stresses and displacements within the chosen order of approximation, 
enabling a better understanding of mechanical phenomena under investigation. The order of 
approximation depends on the nature of a phenomenon and the characteristic in-plane length 
measure associated with it. While for static problems, a second-order approximation may be 
sufficient, for dynamic phenomena, a higher-order approximation may be necessary because 
the in-plane measure such as the wavelength, for example, may be much smaller than the 
plate length (width). 
 
A hierarchy of consistent plate theories has been developed in the works of Kienzler (2002), 
Kienzler (2004), Kienzler and Schneider (2012) and Schneider et al (2014). More recently, a 
method of constructing the displacement and stress field within a second-order consistent 
plate theory has been developed (Kienzler and Schneider, 2017). This, in turn, enabled a 
direct comparison of the consistent plate theory with the three-dimensional elasticity theory 
with a view to validate the former against the latter analytically. For a well-known benchmark 
problem of a simply supported rectangular plate subjected to symmetric sinusoidal loading, 
Kienzler and Kashtalyan (2020) derived an exact three-dimensional elasticity solution in 
closed form, expanded it into a Taylor series with respect to the non-dimensionalised plate 
thickness and carried out a direct term-by-term comparison with the consistent second-order 
plate theory solution. This term-by-term comparison revealed that the first terms of the above 
Taylor series coincide exactly with the expressions of the consistent plate theory. Due to this 
fact, the second-order plate theory can predict stresses and displacements in plates with a very 
high degree of accuracy, so that even for very thick plates with thickness-to-length ratio of 
0.5, the deviation from a three-dimensional solution is less than 1%. 
 
It should be pointed out that the above assessment of the consistent second-order plate theory 
was carried out for an isotropic plate. The aim of the present paper is to develop and validate 
analytically the consistent second-order plate theory for transversely isotropic plates. The 
objectives of the present paper are: (i) to present the development of the new consistent plate 
theory for transversely isotropic plates; (ii) to validate the new theory analytically using an 
exact three-dimensional elasticity solution, which is also developed in the paper specifically 
for this purpose; (iii) to demonstrate high accuracy of the new plate theory in comparison 
with the most widely used plate theories.  
 
The new consistent second-order plate theory for transversely isotropic plates is validated 
against the three-dimensional elasticity theory using a well-known benchmark problem of a 
simply-supported rectangular plate subjected to symmetric transverse sinusoidal loading. The 
choice of the benchmark problem is based on the fact that it allows for an exact three-
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dimensional elasticity solution to be derived in closed form. In this study, a closed-form 
solution based on Elliot’s displacement potentials is derived specifically for validation 
purposes. Its equivalence to other closed-form analytical solutions is established. Expanding 
the closed-form analytical solution into a power-law series with respect to the non-
dimensionalised plate thickness enables a direct term-by-term comparison with the consistent 
second-order plate theory solution and provides a valuable mechanism to validate the 
consistent plate theory in purely analytical form. The term-by-term comparison reveals that 
the first terms of the above power-law series coincide exactly with the expressions of the 
consistent second-order plate theory. In addition to the analytical validation, a numerical 
validation using the finite element (FE) method is also performed. A comparative analysis of 
several plate theories for transversely isotropic plates demonstrates that the consistent plate 
theory can predict displacements and stresses in thick plates with a very high degree of 
accuracy, such that even for very thick plates with thickness-to-length ratio of 0.5, the 
deviation from the three-dimensional elasticity solution is less than 1%. 
 
The paper is organised as follows. In Section 2, the problem statement is formulated and the 
necessary boundary conditions are specified. In Section 3, the boundary-value problem of 
Section 2 is solved within the framework of the consistent second-order plate theory for 
transversely isotropic plates. In Section 4, an exact closed-form three-dimensional elasticity 
solution using the displacement potentials method is derived for validation purposes. Its 
equivalence to other closed-form solutions available in the literature is addressed in the 
Appendix. In Section 5, the exact closed-form three-dimensional elasticity solution is 
expanded into a power series with respect to the normalised thickness parameter and a term-
by-term comparison with the consistent plate theory solution of Section 3 is carried out. In 
Section 6, a comparative analysis of several plate theories for transversely isotropic plates is 
performed with the view to establish the range of applicability of the consistent second-order 
plate theory for transversely isotropic plates. 
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2. Problem statement 
 
The problem statement is the same as in Kienzler and Kashtalyan (2020) since neither the 
load nor the boundary conditions depend on the material law. In order to keep the paper self-
contained, we repeat the statement in an abridged manner. 
 
We consider a rectangular plate ( )a b×  whose midplane is embedded in the 1 2( , )x x -plane of 

a Cartesian coordinate system. The plate continuum extends by 2h±  in 3x -direction. The 

plate is loaded along the plate faces 3 2x h= ±  by sinusoidal distributed transversal loads 

symmetrical with respect to the 3x -direction, (cf. Fig.1) i.e., 
 

  
1 21, , sin sin ,

2 2 2
.

mn
m x n xh hq x q x q
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q q q

α α
π π+ −

+ −

   + = − =   
   
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  (2.1) 

 

   
 
  Fig. 1. Plate continuum 
 
We introduce dimensionless coordinates and notations 
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The summation convention is used over repeated indices. Latin indices (i, j, k,…) have the 
range {1, 2, 3} and Greek indices ( , , )α β γ  range over {1, 2}. Displacements iu , rotations 

αψ , stresses ijσ  and stress resultants ,M Qαβ α  are defined in the usual way as depicted in 

Figs. 2-4. 
 

 
 
 Fig. 2. Displacements and rotations 
 

 
 
 Fig. 3. Stresses at the plate continuum 
 

   
 
 Fig. 4. Stress resultants and loads at the plate 
 
The non-dimensionalised transverse displacement w  is considered as energetic mean in 
Reissner’s sense as 
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2

1 2 3 3 1 2

2

( , ) ( , , )

h
a

h
a

Q w u dα αξ ξ σ ξ ξ ζ ζ
+

−

= ∫ . .    (2.3) 

 
For details, cf., e.g., Kienzler and Schneider (2017). 
 
The boundary conditions for constrained simply supported plates 
(“Klemmschneidenlagerung”) are defined as 
 

  

1 11 2 3

2 22 1 3

33 31 32

0,1: 0, 0, 0;

0,1: 0, 0, 0;
1: , 0.
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h q
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= = = =
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   (2.4) 

 
For the corresponding problem within the three-dimensional theory of elasticity, the 
following boundary conditions are to be satisfied 
 

  

1 11 2 3

2 22 1 3

33 31 32

0,1: 0, 0, 0;

0,1: 0, 0, 0;
1: , 0.

2 2

u u

u u
h q
a

ξ σ

αξ σ

ζ σ σ σ

= = = =

= = = =

= ± = ± = =

   (2.5) 

 
Within any second-order plate theory, a quantity ψ  appears 
 
  2,1 1,2ψ ψ ψ= − ,        (2.6) 

 
which is a measure for the transverse-shear deformation, cf. Reissner (1944), Reissner (1945), 
Schneider et al. (2014), Kienzler and Schneider (2017), Schneider and Kienzler (2017). Due 
to the prescribed boundary conditions (2.4), ψ  vanishes identically 
 
  1 2( , ) 0ψ ξ ξ =         (2.6) 
 
and will not be considered here further, cf. Kienzler and Kashtalyan (2020). 
 
 
3. Consistent plate theory solution for transversely isotropy 
 
For monotropic plates, the second-order consistent plate theory has been fully established in 
Schneider and Kienzler (2017). The displacements have been developed in thickness 
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direction with respect to a basis of generalized Legendre polynomials. The theory was 
specialized to transverse isotropy, the coefficients of the series expansion in Legendre 
polynomials were recalculated for a Taylor series expansion and the energetic average w  was 
introduced0F

1. The results of these extensive calculations are given in the following. 
 
We adopt the Voigt notation as 
 

  

11 12 1311 11

11 1322 22

3333 33

23 2344

31 3144
1

12 1211 122

0 0 0
0 0 0
0 0 0

2. 0 0
20
2( )

C C C
C C

C
symm C

C
C C

σ ε
σ ε
σ ε
σ ε
σ ε
σ ε

    
    
    =     
    
    −    

 (3.1) 

 
and introduce for further use the abbreviation 
 

  
2

* 13
11 11

33

CC C
C

= − ,       (3.2) 

which is named “reduced stiffness” in the textbooks on laminated composite structures, cf., 
e.g., Altenbach et al. (2004). We refer to the components of the stiffness “matrix” as 

( , 1, 2,...6)ABC A B = . In the special case of isotropy, we have 
 

  
11 33 12 13

*
44 66 11 2

(1 ) , ,
(1 )(1 2 ) (1 )(1 2 )

,
2(1 ) 1

E v EvC C C C
v v v v

E EC C C
v v

−
= = = =

+ − + −

= = =
+ −

  (3.3) 

 
with Young’s modulus E  and Poisson’s ratio v . We further define the dimensionless plate 
parameter as 
 

  
2

2
2 ,

12
hc
a

=         (3.4) 

 
which is usually a small quantity in plate theory since h a . 
 
With the two-dimensional Laplace operator () (),αα∆ = , the governing plate differential 
equation is given as  
 

 
1 Kaya, S. (2018) Eine konsistente Plattentheorie zweiter Ordnung für den Fall der 
transversalen Isotropie. Bachelor Thesis. University of Bremen. 
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*

* 2 2 1311
11

44 33

6
5

CCaC c w q c q
h C C
  

∆∆ = − − ∆     
,    (3.5) 

 
which reduces to  
 

  3 26 2
5 1

vK w a q c q
v

− ∆∆ = − ∆ − 
     (3.6) 

 
for isotropic material, cf. Kienzler and Schneider (2017), Kienzler and Kashtalyan (2020). 
 
The second, Reissner-type differential equation involving ψ  and ψ∆  will not be considered 
here, since ψ  vanishes identically for the given boundary-value problem as already 
mentioned. Also in the following, all contributions of ψ  will be suppressed. 
 
Similarly to Kienzler and Schneider (2017), the displacement fields can be evaluated a 
posteriori by satisfying the boundary conditions (2.4c) along the plate faces (2 )h aζ = ±  and 
the homogeneous local equilibrium equations , 0ij iσ =  with the following results 

 

 
2 2
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4
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120
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c α
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2

23 13
2
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3 1
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u Cw c w
a C c

ζ 
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 
 

 ( )
2

4 * 2 *
1 44 11 33 13 11 33 132 2

33 44

1 3 (5 ) 5
20

c A C C C C C C C
C C c

ζ 
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
 

  ( )
4

* 2 *
44 11 33 13 11 33 134
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24

C C C C C C C w
c
ζ 
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2

6 13
2 12

33

1
2

Cc A A
c C
ζ

+ +


       (3.8) 

  ( )
2

* 2 * 2 *
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4
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80

C C C C C C C C C C C C C C
c
ζ

+ − + − + −  

  
(

)

6
2 * 2 * * 2
44 13 11 33 13 44 11 33 11 33 136

*2 2 8
11 33 13

1 ( 3 ) ( 3 )
720

( ).

C C C C C C C C C C C
c

C C C w O c

ζ
+ − + + −

+ ∆∆∆ +

 

 
Note that the displacements do not depend on 12C . As in the isotropic case, the constants 1A  

and 2A  remain undetermined within the second-order theory. They do not contribute to the 
stress distribution. With (3.1), the stresses can be evaluated yielding 
 

 2 2
11 12 33 44 , 33 44 12 33 132

33 44

1 ( ) ( )C C C C w C C C C C w
C Cαβ αβ αβσ ζ δ= − − − − ∆


 

 2 *
33 11 12 11 33 13 44 ,
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30
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c C C C C C C C C
c
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4
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11 33 13 44 4( 2 ) ( )KC C C C w O c

c
ζ  + − ∆∆∆ + 

 
 

 
The stress distribution satisfies the boundary conditions along the plate faces 
 

  

6
3

2

6
33

2

0 ( ),

1 ( )
2

h
a

h
a

O c

q O c

ασ

σ

±

±

= +
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      (3.12) 

 
and the local homogeneous equilibrium equations 
 

  
( )

( )

* 4
, 3 ,3 11

* 6
3, 33,3 11

0 ( )

0 ( ) .

C O c

C O c

βα β α

α α

σ σ ζ

σ σ

+ = +

+ = +
     (3.13) 

 
The formulae (3.7)-(3.11) look quite complicated, but for given material constants, the pre-
factors are just numbers and the equations have the same structure as in the isotropic case, cf. 
(3.10) and (3.11) in Kienzler and Kashtalyan (2020). For isotropy they coincide. 
 
For the solution of (3.5) of our specific boundary-value problem (2.4) under the applied load 
(2.1), we employ the obvious ansatz 
 
  1 2sin sinmnw w m nπξ παξ=       (3.14) 
 
and obtain from (3.5) with (2.2) for the constants mnw   
 

  
3 *

2 2 1311
3 4 *

11 44 33

12 61 .
5

mn
mn mn

mn

a q CCw c
h C C C

γ
γ

  
= + −     

    (3.15) 

 
The ansatz satisfies the differential equation (3.5) and the boundary conditions (2.4a and b) 
identically. Thus (3.14) with (3.15) is the exact analytical solution of our plate-boundary-
value problem. 
 
Next, we calculate the corresponding displacements form (3.7) and (3.8) and find 
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44 13 11 33 13 44 11 33 11 33 13 11 33 136

1 (3 ) ( 3 ) ( )
9

C C C C C C C C C C C C C C O c
c
ζ  + − − − − + 

  
 

 
With (3.9 - 3.11) we find for the stresses 
 

  11 1 22 4

2
2 212 33 13

*
11 33

2 2
* 2

44 13 11 33
33 44

sin sin

( ) ( )

3 (2 )( )
10

mn
mn

mn

a q m n
hc

C C Cm n
C C

c C C C C m
C C

ζσ πξ παξ
γ

π πα

γ π

=

 −
+



+ −

 

 ( * 2
44 13 11 33 13 12 33*

11 33

3 1 (5 3 3 )
10

C C C C C C C
C C

+ + −    (3.18) 
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 )

(

(

) )

* 2 2
11 33 12 33 13

2
* 2

44 13 11 332

* 2
44 13 11 33 13 12 33*

11 33

* 2 2 4
11 33 12 33 13

( ) ( )

1 (2 )( )
6

1 ( )

( ) ( ) ( ) ,

C C C C C n

C C C C m
c

C C C C C C C
C C

C C C C C n O c

πα

ζ π

πα

− −

+ − −

+ − + −

+ − +  

 

 

  

22 1 22 4

2
2 212 33 13

*
11 33

2 2
* 2

44 13 11 33 13 12 33*
33 44 11 33

* 2 2
11 33 12 33 13

sin sin

( ) ( )

3 1 ( (5 3 3 )
10

( ) ( )

mn
mn

mn

a q m n
hc

C C C m n
C C

c C C C C C C C
C C C C

C C C C C m

ζσ πξ παξ
γ

π πα

γ

π

=

 −
+


 + + − 

− − 


 

  )* 2
44 13 11 33

3 (2 )( )
10

C C C C nπα+ −    (3.19) 

(

)

2
* 2

44 13 11 33 13 12 332 *
11 33

* 2 2
11 33 12 33 13

* 2 4
44 13 11 33

1 1 ( )
6

( ) ( )

(2 )( ) ( ) ,

C C C C C C C
c C C

C C C C C m

C C C C n O c

ζ

π

πα


+ − + −



+ −

− − +  

 

 

  

12 1 22 4

2 2
11 12

11 12* *
11 44 11 33

2
* * 4
11 33 13 44 11 33 13 442

cos cos

( )

3 1( 3 ) ( ) ( ) ,
10 6

mn
mn

mn

a q m n m n
hc

cC C C C
C C C C

C C C C C C C C O c
c

ζσ π πα πξ παξ
γ

γ

ζ

=

 −
− + −


  + − − +  
  

 (3.20) 

 

  

1 2
3 2

1 2

2 22 2
* 4
11 33 13 442 2

33 44

cos sin
sin cos2

3 1 ( 2 ) 3 5 ( ) ,
60

mn
mn

mn

m m na q
n m nh

c C C C C O c
c C C c

α

π πξ παξ
σ

πα πξ παξγ

γζ ζ

 
=  

 
    

− − − − +    
    

 (3.21) 
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33 1 2

2 2 *2 2 4
411 33 13 44

2 2 4
33 44

sin sin

21 9 9 6 ( ) .
6 120

mn

mn

a q m n
h

c C C C C O c
c C C c c

ζσ πξ παξ

γζ ζ ζ

=

    − − − − + +    
     

(3.22) 

 
 

4. Three-dimensional elasticity theory solution 
 
Following Elliott (1948), displacements in a homogeneous transversely isotropic solid can be 
represented in terms of three quasi-harmonic functions 1 2 3, ,φ φ φ  in the form 
 

 31 2
1

1 1 2

,u
x x x

φφ φ ∂∂ ∂
= + +
∂ ∂ ∂

 

 31 2
2

2 2 1

,u
x x x

φφ φ ∂∂ ∂
= + −
∂ ∂ ∂

       (4.1) 

 1 2
3 1 2

3 3

,u k k
x x
φ φ∂ ∂

= +
∂ ∂

 

 
where 

  11 1 44 11 2 44
1 2

13 44 13 44

,C C C Ck k
C C C C
θ θ− −

= =
+ +

     (4.2) 

 
and 1 2,θ θ  are the roots of the characteristic equation 
 
  2

11 44 13 44 13 11 33 33 44[ (2 ) ] 0.C C C C C C C C Cθ θ+ + − + =    (4.3) 
 
The functions 1 2 3, ,φ φ φ  satisfy the following quasi-harmonic equation 
 

  

2 2 2

2 2 2
1 2 3

44
3

11 12

0, (no summation)

2

i i i
ix x x

C
C C

φ φ φθ

θ

∂ ∂ ∂
+ + =

∂ ∂ ∂

=
−

   (4.4) 

 
The constant 3θ  represents the ratio between the shear moduli in the plane of isotropy and the 
plane normal to it. For isotropic materials it is equal to unity. For transversely isotropic 
materials it can be viewed as an anisotropy parameter that characterises the degree of 
anisotropy exhibited by the material. For example, mica gneiss with elastic properties 

11 12 13 33 4489.73 GPa, 22.21 GPa, 23.50 GPa, 65.86 GPa, 24 GPaC C C C C= = = = =  
(Hakala et al, 2007) has the anisotropy parameter 3 0.71θ = . 
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The expressions for stresses in the homogeneous transversely isotropic solid can be derived 
by substituting (4.1a-c) into the linearised strain-displacement relations and stress-strain 
relations (3.1) 
 

  
2 2 2 22

3
11 11 12 13 11 122 2 2

1 1 2 3 1 2

( )i i i
i

i
C C C k C C

x x x x x
φ φ φ φσ

=

 ∂ ∂ ∂ ∂
= + + + − ∂ ∂ ∂ ∂ ∂ 
∑  

  
2 2 2 22

3
22 12 11 13 11 122 2 2

1 1 2 3 1 2

( )i i i
i

i
C C C k C C

x x x x x
φ φ φ φσ

=

 ∂ ∂ ∂ ∂
= + + − − ∂ ∂ ∂ ∂ ∂ 
∑  

  
2 2 22

33 13 13 332 2 2
1 1 2 3

i i i
i

i
C C C k

x x x
φ φ φσ

=

 ∂ ∂ ∂
= + + ∂ ∂ ∂ 
∑  

  
2 22

3
23 44 44

1 2 3 1 3

( 1) i
i

i
k C C

x x x x
φ φσ

=

 ∂ ∂
= + − ∂ ∂ ∂ ∂ 
∑     (4.5) 

  
2 22

3
13 44 44

1 1 3 2 3

( 1) i
i

i
k C C

x x x x
φ φσ

=

 ∂ ∂
= + + ∂ ∂ ∂ ∂ 
∑  

  
2 2 22

3 3
12 11 12 11 12 2 2

1 1 2 2 1

1( ) ( )
2

i

i
C C C C

x x x x
φ φ φσ

=

   ∂ ∂ ∂
= − + − −   ∂ ∂ ∂ ∂   
∑  

 
The form of the quasi-harmonic functions depends on the specific boundary-value problem to 
be solved. For our problem under consideration, load distribution given by (2.1) and 
boundary conditions specified by (2.5), the three quasi-harmonic functions can be chosen in 
the form 
 

  ( ) 1 2
1 1 1 3 2 1 3cosh sinh sin sin ,mx nxC x C x

a b
π πφ λ λ= +  

  ( ) 1 2
2 3 2 3 4 2 3cosh sinh sin sin ,mx nxC x C x

a b
π πφ λ λ= +  

  ( ) 1 2
3 5 3 3 6 3 3cosh sinh cos cos ,mx nxC x C x

a b
π πφ λ λ= +   (4.6) 

  
2 21 , 1, 2,3.i

i

m n i
a b
π πλ

θ

    = + =    
     

 

 
with iθ  given by (4.3) and (4.4b), provided the roots of the characteristic equation (4.3) are 

real. This choice of form for the harmonic functions ( 1,2,3)k kφ =  allows for the boundary 
conditions (2.5a,b) at the edges of the plate to be satisfied identically. The six unknown 
constants ( 1, ,6)kC k =   in (4.6) are found from the boundary conditions (2.5c) at the top 
and bottom surfaces of the plate. For the problem formulated in Section 2, they are found to 
be 
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 2 1
1 2 3 4 5 6

3 3

0, , 0, , 0, 0,
2 2
mn mnq qC C C C C Cβ β

β β
= = = = − = =  (4.7) 

 
where 
 

  1 1 1 1

2 2 2 2

( 1) cosh(0.5 ),
( 1) cosh(0.5 ),
k h
k h

β λ λ
β λ λ

= +
= +

 

  
2 2

2
3 33 1 1 13

m nC k C
a b
π πβ λ

     = − +            
    (4.8) 

 

  

2 2 2 1

2 2
2

13 33 2 2

1 1 1 2

( 1) cosh(0.5 )sinh(0.5 )

( 1) cosh(0.5 )sinh(0.5 ).

k h h

m nC C k
a b

k h h

λ λ λ

π π λ

λ λ λ

+

     + + −            
+

 

 
In view of (4.7) and (4.8), Elliot’s quasi-harmonic functions (4.6) can be simplified as 
 

  2 1 2
1 1 3

3

sinh sin sin ,
2
mnq mx nxx

a b
β π πφ λ
β

=  

  1 1 2
2 2 3

3

sinh sin sin ,
2
mnq mx nxx

a b
β π πφ λ
β

= −     (4.9) 

  3 0.φ =  
 
Substitution of (4.9) into (4.1) yields the following closed-form expressions for the 
displacements 
 

1 2
1 2 1 3 1 2 3

3

1 [ sinh sinh ]cos sin ,
2
mnq mx nxmu x x

a a b
π ππ β λ β λ

β
 = − 
 

 

1 2
2 2 1 3 1 2 3

3

1 [ sinh sinh ]sin cos ,
2
mnq mx nxnu x x

b a b
π ππ β λ β λ

β
 = − 
 

  (4.10) 

1 2
3 1 1 2 1 3 2 2 1 2 3

3

1 [ cosh cosh ]sin sin .
2
mnq mx nxu k x k x

a b
π πλ β λ λ β λ

β
= −  

 
Likewise, substitution of (4.9) into (4.5) yields closed form expressions for the stresses 
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1 2
11

3

2 2
2

2 11 12 13 1 1 1 3

2 2
2

1 11 12 13 2 2 2 3

1 sin sin
2

sinh

sinh ,

mnq mx nx
a b

m nC C C k x
a b

m nC C C k x
a b

π πσ
β

π πβ λ λ

π πβ λ λ

=

      − − +     
      

     − − − +     
       

  (4.11a) 

 

  

1 2
22

3

2 2
2

2 12 11 13 1 1 1 3

2 2
2

1 12 11 13 2 2 2 3

1 sin sin
2

sinh

sinh ,

mnq mx nx
a b

m nC C C k x
a b

m nC C C k x
a b

π πσ
β

π πβ λ λ

π πβ λ λ

=

      − − +     
      

     − − − +     
       

  (4.11b) 

 

 

1 2
33

3

2 2
2

2 13 13 33 1 1 1 3

2 2
2

1 13 13 33 2 2 2 3

1 sin sin
2

sinh

sinh ,

mnq mx nx
a b

m nC C C k x
a b

m nC C C k x
a b

π πσ
β

π πβ λ λ

π πβ λ λ

=

      − − +     
      

     − − − +     
       

  (4.11c) 

 

  
{ }

44 1 2
13

3

2 1 1 1 3 1 2 2 2 3

cos sin
2

( 1) cosh ( 1) cosh ,

mnq C mx nxm
a a b

k x k x

π ππσ
β

β λ λ β λ λ

 =  
 

+ − +

   (4.11d) 

 

 
{ }

44 1 2
23

3

2 1 1 1 3 1 2 2 2 3

sin cos
2

( 1) cosh ( 1) cosh ,

mnq C mx nxn
b a b

k x k x

π ππσ
β

β λ λ β λ λ

 =  
 

+ − +

   (4.11e) 

 

  

{ }

11 12 1 2
12

3

2 1 3 1 2 3

cos cos
2

sinh sinh .

mnq C C mx nxm n
a b a b

x x

π ππ πσ
β

β λ β λ

 −   =    
   

−

  (4.11f) 

 
It should be pointed out that Elliot’s displacement potentials cannot be applied directly to 

isotropic materials. For 11 33 44 11 13
1, ( )
2

C C C C C= = − , c.f. (3.3), the two distinct single roots 

of the characteristic equation (4.3), that depend on the material moduli, collapse to the double 
root 1 2 1θ θ= =  (independent of the elastic moduli). By a limit analysis 2 1 1θ θ→ → , it can be 
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shown that the displacements (4.10) and the stresses (4.11) transform smoothly to the 
equations given in Kienzler and Kashtalyan (2020) for isotropic materials. Also, if an 
isotropic material with Young’s modulus E , Poisson’s ratio ν  and shear modulus 66C =

( )ν+=
12
EG  , is treated as a transversely isotropic material with (cf. 3.3)

( )
( )( )11 33

1
1 1 2

E
C C

ν
ν ν

−
= =

+ −
, 

( )( )12 13 1 1 2
EC C ν

ν ν
= =

+ −
 but with the exception that 44C kG= , 

where k  is a parameter, then the three-dimensional solution based on Elliott’s displacements 
potentials will numerically converge to the three-dimensional elasticity solution for an 
isotropic plate when 1k → . It may be mentioned further that the transition from transversely 
isotropic to isotropic material is possible without any special treatment after Taylor expansion 
of (4.10) and (4.11) in thickness direction, what is carried out in the next section. 
 
 
5. Taylor series expansion and comparison 
 
Since the higher-order plate theories are Taylor-series expansions of Nth order of the exact 
solution of the three-dimensional theory of elasticity, cf. Schneider et al. (2014), we develop 
the exact solution into a power series in 2c  and compare both term by term. It is sufficient to 
consider the displacements iu . If the terms of the second-order plate theory coincide with 
those of the series expansion of the three-dimensional solution, the stresses will also coincide 
term by term due to Hooke’s law (3.1). 
 
To start with, we rearrange (4.10 a-c) by replacing iβ  and kα  in terms of αλ  and the 
components of the stiffness tensor (3.1). Details will be given in the Appendix. With the 
abbreviations  
 

 1 2 2 2 1 1 2 1
1 1 1 1( , , ) cosh sinh sinh cosh ,
2 2 2 2

A h h h h hλ λ λ λ λ λ λ λ       = −       
       

 (5.1) 

 

 1
mna

κ γ=          (5.2) 

 
we obtain with the dimensionless coordinates (2.2) 
 

  
1 2

13 44

44
1 2

cos( )sin( )
1
2 sin( ) cos( )

mn

m m nC C au q
nC m n

a

α

π πξ παξ

πα πξ παξ

 
 +  =  
 
  

 

  2 2 2 2
1 2 2 33 13 1 33 13

1
( , , )( )( )A h C C C Cλ λ λ κ λ κ+ +

    (5.3) 

  2 2
2 1 33 13 2 1

1( ) cosh sinh( )
2

C C h aλ λ κ λ λ ζ  +  
 
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  2 2
1 2 33 13 1 2

1( ) cosh sinh( ) ,
2

C C h aλ λ κ λ λ ζ  − +  
  

 

 

  13 44
3 1 2

44

1 sin( )sin( )
2 mn

C Cu q m n
C

πξ παξ+
=  

  2 2 2 2
1 2 2 33 13 1 33 13

1
( , , )( )( )A h C C C Cλ λ λ κ λ κ+ +

    (5.4) 

  2 2
1 2 2 33 13 2 1

1( ) cosh cosh( )
2

C C h aλ λ λ κ λ λ ζ  +  
 

 

  2 2
1 33 13 1 2

1( ) cosh cosh( ) .
2

C C h aλ κ λ λ ζ  − +  
  

 

 
The constants αλ  may be expressed as 
 

 11 44
* * 2 2
11 33 13 44 11 33 13 44 11 33 44

2 .
2 ( 2 ) 4

C C
C C C C C C C C C C C

αλ κ=
− − −

  (5.5) 

 
Then it follows 
 

  
4

44
2 2 2 2 4 *
2 33 13 1 33 13 11 13 44 33

1 .
( )( ) ( )mn

Ca
C C C C C C C Cλ κ λ κ γ

=
+ + +

  (5.6) 

 
The series expansion itself was performed with Mathematica and leads finally to the 
following result 
 

 
3

1 2
3 4 *

1 211

12 cos sin
sin cos

mn

mn

u a q m m n
n m na h C

α π πξ παξζ πα πξ παξγ
 =  
 

 

 
2 2 2

* *
13 44 11 33 44 13 11 332

33 44

11 9(3 ) 5 ( )
30

mnc C C C C C C C C
C C c
γ ζ  

− + + + −  
 

 

 ( )
4 4

2 * 2 * *2 2
44 11 33 13 44 11 33 13 11 332 2

33 44

1 9 (195 157 ) 73 27
4200

mnc C C C C C C C C C C
C C
γ + + + −  (5.7) 

   ( )
2

2 * 2 * *2 2
44 11 33 13 44 11 33 13 11 332210 (5 3 ) 3C C C C C C C C C C

c
ζ

− + + −  

   ( )
4

2 * 2 * *2 2
44 11 33 13 44 11 33 13 11 33435 ( ) 3C C C C C C C C C C

c
ζ + − + − 

 

 

 
3 2 2 2

*3
1 2 44 13 11 33 13 443 4 * 2

11 33 44

12 1sin sin 1 3(3 4 ) 5
10

mn mn

mn

u a q cm n C C C C C C
a h C C C c

γ ζπξ παξ
γ

  = − − +  
  

 

 
4 4

2 * 2 * *2 2
44 11 33 13 44 11 33 13 11 332 2

33 44

1 9 (195 157 ) 3 8
4200

mnc C C C C C C C C C C
C C
γ   + − + + +   
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2

* 2 *
44 44 11 33 13 11 33 132630 (5 3 )C C C C C C C C

c
ζ  + + +   

   
4

* 2 *
44 44 11 33 13 11 33 134175 ( )C C C C C C C C

c
ζ 

 − − +  


 

6 6
3 * 2 2 *2 2 * 2
44 13 11 33 13 44 11 33 11 33 133 3

33 44

1 9 (1195 791 ) (115 391 )
126000

mnc C C C C C C C C C C C
C C
γ  + − + + +  

   *2 2 *3 3
44 11 33 13 11 3327 32C C C C C C + −      (5.8) 

 
2

2 * 2 *2 2 * 2
44 44 13 11 33 13 44 11 33 11 33 132135 (265 157 ) (35 73 )C C C C C C C C C C C C

c
ζ + + − −  

   *2 2
11 33 1327C C C −   

 
4

2 * 2 * * 2 *2 2
44 44 13 11 33 13 44 11 33 11 33 13 11 33 1341575 (7 3 ) ( 3 )C C C C C C C C C C C C C C C

c
ζ  − + − − −   

 
6

2 * 2 * * 2 *2 2
44 44 13 11 33 13 44 11 33 11 33 13 11 33 136175 (3 ) ( 3 )C C C C C C C C C C C C C C C

c
ζ  + − − − −  

 

  }8( )O c+  

The comparison of (3.16), (3.17) with (5.7), (5.8), respectively leads to the conclusion that all 
terms not containing the constants 1A  and 2A  perfectly coincide. The constants 1A  and 2A , 
which would follow from higher-order plate theories, can now be calculated. By comparing 
equal coefficients, we find 
 

 2 * 2 * *2 2
1 44 11 33 13 44 11 33 13 11 332 2

33 44

3 1 (195 11 ) 171 8 ,
1400

A C C C C C C C C C C
C C

 = − − + +   (5.9) 

 

 3 * 2
2 44 13 11 33 133 3

33 44

1 1 5 (1643 79 )
14000

A C C C C C
C C

= + +  

 2 * *2 2
44 11 33 11 33 13(6905 6943 )C C C C C C− −      (5.10) 

 *2 2 *
11 33 44 13 11 33(5841 320 ) .C C C C C C − +   

 
For isotropic materials, again, the constants (5.9) and (5.10) coincide with (5.5) and (5.6), 
respectively, of Kienzler and Kashtalyan (2020). 
 
 

6. Parametric study 
 
In Kienzler and Kashtalyan (2020), an extended parametric study was performed for isotropic 
plates comparing the results of the exact 3-D elasticity solution with those for the second-
order consistent plate theory. Displacements and stresses had been compared and it turned out 
that the relative error was less than 1% even for “brick-like plates” with 1 2h a = . An 
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extended parametric study1F

2 for transversely isotropic plates was performed for sinusoidal 
loads, constants loads, various plate thicknesses varying between 1 20h a =  and 1 2h a = , 
as well as different length-to-width ratios 1.0, 1.3, 1.5, 1.8, 2.0a b = . It turned out, 
again, that the relative error between the 3-D elasticity solution and the consistent plate theory 
is far less than 1%. So, little insight can be gained from providing numerous tables and 
figures. Instead, using Kirchhoff-type and Reissner-type plate elements available in Abaqus 
as well as three-dimensional finite element (FE) simulation, we will show results for the 
transverse displacement 3u  in the middle of a quadratic plate ( 1)α =  at the midplane and 
along the normal, in table and figure formats respectively. The wave numbers m  and n  are 
set to one and the results are non-dimensionalized by 
 

  
4 * 3 3

11
3 3

11

1 1, ,
2 2( )

3

u
C hu
q a a

ζ
πζ

 
 
 =      (6.1) 

 
with the new thickness variable ζ  
 

  1 1, .
2 2

h
a

ζ ζ ζ= − ≤ ≤ +       (6.2) 

 
The material is mica gneiss, with the parameters from Hakala et al. (2007) as 
 
  11 1289.73 GPa, 22.21 GPa,C C= =  
  13 3323.50 GPa, 65.86 GPa,C C= =      (6.3) 
  44 24 GPaC =  
 
and 
 
  *

11 81.34 GPa.C =        (6.4) 
 
The anisotropy parameter (4.4b) has the value of 
 
  3 0.71θ = .        (6.5) 
 
Mica gneiss, chosen here for illustrative purposes, is a moderately anisotropic rock. 
Generally, rocks are not as strongly anisotropic as wood and fibre-reinforced composites, and 
consequently moderate anisotropy in rocks is sometimes neglected. However this may lead to 
significant errors when estimating the in situ state of stress in rock formations, which in turn 
may have unintended environmental consequences if the said rock formation is considered, 
for example, as a possible site for a radioactive waste depository (Hakala et al, 2007). Rock 
plates are often used to study various static and dynamics phenomena in rocks, therefore the 

 
2 Farahani, P.A. (2019). Vergleich von analytischen und numerischen Lösungen des 
Plattenproblems im isotropen und transversal isotropen Fall. Bachelor Thesis. University of 
Bremen. 
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numerical values provided by this benchmark problem example may also be used for 
validation purposes in computational modelling and simulation of transversely isotropic 
rocks. 
 
The elasticity solution is indicated by 3

Eu and is taken from (5.4). The Abaqus 3-D simulation 
using C3D20R elements is denoted by 3

Au , the Kirchhoff plate simulation by 3
Ku , the 

Reissner-plate simulation by 3
Ru and the consistent plate calculation by 3

Pu . 
 
The latter follows from (5.8) as 

( )

( )(

) ( )( )

( )

2 2
* 2

3 44 13 11 33 44 132
33 44

4 4
2 * 2 *
44 11 33 13 44 11 33 134 2 2

33 44

*2 2 2 * 2 *
11 33 44 44 11 33 13 11 33 13

4 * 2 *
44 44 11 33 13 11 33 1

1 11 (3 4 )
20

1 1 195 157 3
16800

18 5 3
20

1
6

P hu C C C C C C
a C C
h C C C C C C C C
a C C

C C C C C C C C C C

C C C C C C C C

πζ ζ

π

ζ

ζ

 = − − +  

+ − + +

+ + + +

− − +( )3

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( )(
)( )

( ) (( )
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6 6
3 * 2
44 13 11 33 136 3 3

33 44

2 *2 2 * 2 *2 2 *3 3
44 11 33 11 33 13 44 11 33 13 11 33

2 2 * 2 *2 2 * 2
44 44 13 11 33 13 44 11 33 11 33 13

*2 2
11 33 13

1 1 1195 791
3024000

115 391 27 32

1 265 157 35 73
16800
27

h C C C C C
a C C

C C C C C C C C C C C C

C C C C C C C C C C C C

C C C

π

ζ

+ − +

+ + + −
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(6.6) 

( ) (( )
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4 2 * 2 * * 2
44 44 13 11 33 13 44 33 11 11 33 13

2 * 2
13 33 11

1 7 3 3
120

( )

C C C C C C C C C C C C

C C C
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( ) (( )
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6 2 * 2 * * 2
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2 * 2 8
13 33 11

1 3 3
90

( ) ( )

C C C C C C C C C C C C

C C C O c
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The results for 0ζ =  are shown in Table. 1, where %∆  is defined as follows: 

3 3

3

% 100%, , , ,
E X

E

u u X A K R P
u
−

∆ = ⋅ = .  
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Table 1 Transverse displacements 3u  for different plate theories 
 

h
a

 1
20

 ∆% 
1

10
 %∆  

1
5

 ∆% 
1
3

 ∆% 
1
2

 ∆% 

3 (0)Eu  1.015 - 1.061 - 1.243 - 1.659 - 2.412 - 

3 (0)Au  1.015 0.07 1.061 0.06 1.242 0.06 1.659 0.04 2.411 0.06 

3 (0)Ku  0.999 1.52 0.999 5.79 0.999 19.56 1.002 39.73 0.999 58.54 

3 (0)Ru  1.016 -0.06 1.066 -0.43 1.267 -1.92 1.744 -5.11 2.671 -10.73 

3 (0)Pu  1.015 0.00 1.061 0.00 1.243 0.00 1.659 0.01 2.411 0.05 
 
 
As evidenced by values presented in Table 1, the FE simulation is very accurate. Following a 
convergence study, a mesh size from 0.025 was deemed to be sufficiently accurate, i.e., 40 x 
40 elements in 1ξ  and 2ξ  direction for a quadratic plate. In thickness direction, the number of 
elements was chosen depending on the plate thickness. For 1 20, 1 10, 1 5, 1 3h a =  
and 1 2 , the number of elements in the thickness direction was taken as 2, 4, 8, 14 and 20, 
respectively.  
 
As in the case of isotropy, the Kirchhoff-plate theory is applicable only for very thin plates. 
For h a =1/10, the error already exceeds 5% and for thicker plates the theory is not 
applicable anymore. Reissner’s plate theory delivers still acceptable results for thick plates in 
the range of h a =1/3. The consistent second-order plate theory for a brick-like plate with 
h a =1/2 delivers very accurate results within an error of far less than 1%. 
 
We note that the displacement values calculated using Abaqus, Kirchhoff plate theory and the 
consistent plate theories are smaller than the value obtained using 3-D elasticity theory, 
whereas for Reissner plate theory the opposite is true. A possible explanation for this trend is 
that a Reissner plate is more compliant producing a greater displacement in comparison to the 
elasticity solutions, because the stiffening effect due to transverse normal stresses is not 
completely taken into account. A Kirchhoff plate is stiffer, i.e. the displacements are smaller 
in comparison to the elasticity solution since the deformation due to transverse shear are 
neglected (shear-rigid plate theory). 
 
Finally, we will show the development of 3 ( )Pu ζ  for different ratios of h a  for different 

approximation orders. To this extent, we cut equation (6.6) after the constant term: 0
3u , after 

the 2( )h a  term: 1
3u , after the 4( )h a  term: 2

3u  and after the 6( )h a  term: 3
3u   

 
 0

3 ( ) 1u ζ =          (6.7) 
 

 
2 2

1 * 2
3 44 13 11 33 44 132

33 44

1 1( ) 1 (3 4 )
20

hu C C C C C C
a C C
πζ ζ = − − +  

  (6.8) 
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h C C C C C C C C
a C C

C C C C C C C C C C
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π
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+ + + +

− − +( )*
11 33 13 .C C 
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    (6.9) 

 
 3

3( ) ( )Pu uζ ζ=         (6.10) 
 
We plot the results in Fig. 5 versus ζ  for 1 3h a = . 
 

 
 

Fig. 5 Transverse displacement 3
iu  for different approximation orders 

 
The transverse displacement 0

3u  represents the result of the classical solution and is equal to 1 
(const.). The first-order approximation (quadratic parabola) improves the solution 
considerably, whereas the second-order approximation adjusts the displacement in a still 
visible manner. The third-order term, which is not fully fixed within the consistent second-
order plate theory, results in a marginal improvement not visible in Fig. 5. 
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7. Conclusion 
 
Following on from the Kienzler and Kashtalyan (2020) paper, in which the consistent second-
order plate theory for isotropic plates was assessed from the perspective of the three-
dimensional elasticity theory, in this paper, the consistent second-order plate theory has been 
developed for transversely isotropic plates. To validate the new theory analytically, closed 
form solutions for the benchmark problem of a simply supported rectangular plate under 
sinusoidal load were derived, both within the new consistent second-order plate theory as 
well as within the three-dimensional elasticity theory. For the latter, an approach based on 
displacement potential functions was used. The elasticity solution was expanded into a Taylor 
series, which enabled their term by term comparison in analytical form with the second-order 
plate solution. The Taylor series expansion with respect to the non-dimensionalised 
thickness-to-length ratio revealed that the formulae of the new plate theory coincide exactly 
with the first terms of the Taylor-series expansion of the three-dimensional elasticity solution. 
 
Additionally, numerical comparisons were made with Kirchhoff’s and Reissner’s plate 
theories as well as FE simulations, for the special case of a quadratic plate under a single-
wave sinusoidal loading. Numerical results demonstrated that the consistent second-order 
plate theory for transversely isotropic plates works remarkably well, so that even for thick 
plates with a thickness-to-length ratio equal to 0.5 – which are rather three-dimensional bricks 
than plates – the deviation from the three-dimensional elasticity solution is far less than 1%. 
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Appendix 
 
In Section 4, we developed the solution of the three-dimensional theory of elasticity for the 
boundary-value problem (2.5) based on Elliot’s displacement potentials iφ  (Elliot, 1948). 
Reference to this solution will be given in the following by (KK).  
 
We are aware of two further solutions for the same problem. Nicotra et al. (1999), in the 
following abbreviated by (NPT), extended the classical Levinson solution (Levinson, 1985) 
for transversely isotropic materials and considered the same simply supported plate 
continuum under sinusoidal loads.  
 
On the other hand, in Nematzadeh et al. (2012), in the following abbreviated by (NEN), a 
solution is provided based on two potential representations F  and χ  of the Lekhnitskii-Hu-
Nowacki solution (Lekhnitskii, 1981; Hu, 1953; Nowacki, 1954). For the boundary-value 
problem under consideration, it turns out that χ  is identically zero and F  has to satisfy a 
quasi-biharmonic differential equation. 
 
All three quite different approaches are claimed as exact three-dimensional solutions of the 
three-dimensional linear theory of elasticity of one and the same boundary-value problem. 
Thus, due to the uniqueness requirements established by Kirchhoff (1859), they must be 
identical. It is the object of this Appendix to show this identity since it is not at all obvious 
from the provided formulae in the different approaches.  
 
The three approaches rely on the solution of a characteristic equation. In KK we have (4.3) 
 
  [ ]2

11 44 13 44 13 11 33 33 44(2 ) 0.C C C C C C C C Cθ θ+ + − + =    (A.1) 
 
With (3.2), the two solutions 
 

 
2* *

11 33 44 13 11 33 44 13 33
1,2

11 44 11 44 11

2 21 4
2

C C C C C C C C C
C C C C C

θ
  − − = ± −    

   (A.2) 

 
are transformed to new constants 1λ  and 2λ  by 
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(cf. 2.2e). From simple algebra, it follows 
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and we find from (A.2) 
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With (A.4), the following identities can be proved easily 
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which will be used in the following. 
 
The constants in the displacement solution (KK) (4.10) with (4.8) can now readily be 
evaluated in terms of αλ  and ABC  
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           (A.8) 
 
and the displacements are calculated as  
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C C C C

λ λ ζ λ λ ζ

λ κ λ κ

    
        − + + 

  

  (A.10) 

 
with αλ  given by (A.5). Equation (A.9) and (A.10) coincide with (5.3) and (5.4), 
respectively. 
 
NEN use the same Voigt notation as (3.1). We merely have to replace in (1 NEN)  
 
  , 1, 2,...,6.AB ABA C A B= =      (A.11) 
 
The characteristic equation (8 NEN) reads 
 
  ( )4 2

33 44 13 44 13 11 33 11 44(2 ) 0.C C s C C C C C s C C+ + − + =    (A.12) 
 
For reason of comparison, we divide (A.12) by 4s  yielding  
 

  ( )11 44 13 44 13 11 33 33 444 2

1 1(2 ) 0.C C C C C C C C C
s s
+ + − + =   (A.13) 

 
Thus we identify 
 

  
1 2

2

2 1
1

1 1 ,

1 1 .

s

s

λ
κθ

λ
κθ

= =

= =
       (A.14) 
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After adjusting the notation 
 

  1 2 3

1 2

, ,

, , , ,

m nB B B
a a
h x a y a z a

π πα κ

λ κ ξ ξ ζ

= = =

= = = =
    (A.15) 

 
the displacements (NEN 32a) read 
 

  
1 2

13 44
2

1
1 2

cos( )sin( )
2

sin( ) cos( )
mn

m m nq C C au n m n
a

α

π πξ παξ

πγ κ α πξ παξ

 
 +

= −  
 
 

 

  

2 2
2 1 13 11 1 2

2 2
1 2 13 11 2 1

1( ) cosh sinh( )
2

1( )cosh sinh( ) ,
2

C C h a

C C h a

λ λ κ λ λ ζ

λ λ κ λ λζ

  +  
 

 − +  
  

  (A.16) 

 

 3 1 2
1

2 sin sinmnqu m nπξ παξ
γ

=  

 2 2 2 2 2 2
1 11 13 11 2 1 13 44 2 11 44 1 22

1 1cosh cosh( )
2

C C C C C C C h aλ κ λ λ λ λ λ ζ
κ

    − + − −    
   

 

 

 2 2 2 2 2 2
2 11 13 11 1 2 13 44 1 11 44 2 12

1 1cosh cosh( )
2

C C C C C C C h aλ κ λ λ λ λ λζ
κ

   + + − −    
    

, 

where            (A.17) 

 

3 2 2 2 2
1 44 1 13 11 2 13 114

1 2

1 2 1 2 2 1

14 ( )( )

1 1 1 1sinh cosh cosh sinh
2 2 2 2

C C C C C

h h h h

κγ κ λ κ λ κ
κ λ λ

λ λ λ λ λ λ

= − + +

        −        
        

 

 
which can be rearranged with (A.8) as 
 

  2 2 2 2
1 44 1 2 1 13 11 2 13 11

1 2

4 ( , , )( )( )C A h C C C Cγ λ λ λ κ λ κ
λ λ

= + + +  

 
and further with (A.6 c. d) to 
 

  
2 2

2 2 2 21 2
1 44 1 2 1 33 13 2 33 134

1 2

4 ( , , ) ( )( )C A h C C C Cλ λγ λ λ λ κ λ κ
λ λ κ

= + + + . (A.18) 

 
Introducing (A.6 c. d) and (A.6 e. f) into (A.16) and (A.17), respectively, and using (A.18), 
the relations for uα  and 3u  of the equations (A.9) and (A.10) are recovered, respectively. 
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Next we turn our attention to NPT. The stress-strain relation is given in symbolic notation 
(5.1 NPT) 
 

  ( )
( )

1

2

3 1 1 2 2

2 ( ) ( )

( ) ( )

2 ( ) ( ) ,

µ λ τ

τ

τ

⊥ ⊥

⊥ ⊥

= + ⋅ + ⋅

+ ⋅ + ⋅

+ ⋅ + ⋅

       

     

     

 

where  
 

  

[ ]

1 1 2 2

2  sym 1,2.

c c c c
z z

c zα α α

⊥

= ⊗ + ⊗

= ⊗

= ⊗ =

   

 

 

 




 

 
The unit vectors 1 2( , , )c c z    form an orthogonal Cartesian frame with coordinates 

1 1 2 2 3( , , ).x a x a x aξ ξ ζ= = = . We transform the symbolic notation into our index notation and 
identify  

  

11 22

33 1,

44 55 3

66 11 22

13 23 2

2 ,

,
1 ( ) ,
2

,
0 otherwise.AB

C C
C
C C

C C C

C C
C

µ λ
τ

τ

µ

τ

= = +
=

= =

= − =

= =
=

      (A.19) 

 
The characteristic equation (5.11,12 NPT) is given as 
 
  4 2 2 4 0s pβ κ β κ− + =  
 
with  
 

  

1 2 2 3

1 3

1

( 2 ) ( 2 ) ,

2 ,

s

p

τ λ µ τ τ τ
τ τ

λ µ
τ

+ − +
=

+
=

      (A.20) 

 
and κ  as introduced in (A.3b). 
 
Avoiding confusion with iβ (A.7), we define 
 
  ,β η=  
 
introduce (A.19), multiply by 4

33 44 /C C η  and find 
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  [ ]
4 2

11 44 13 44 13 11 33 33 444 2(2 ) 0.C C C C C C C C Cκ κ
η η

+ + − + =   (A.21) 

 
Comparison with (A.1) leads to the identification  
 

  ,κη
θ

=         (A.22) 

 
and finally to 
 

  
2 2

1 2
2 2
2 1

,
.

λ η
λ η

=
=

        (A.23) 

 
The solution of our boundary value problem is given by (2.9 NPT) 
 

  1 2 ,

3 1 2

( ) ( , ) ,
( ) ( , )

u g w
u f w
α αζ ξ ξ

ζ ξ ξ

= −

=
      (A.24) 

 
with (5.14 NPT) 
 

 1 2 2 2 3 1 4 1

1 2 2 2 3 1 4 1

( )  cosh ( )  sinh ( )  cosh ( )  sinh ( )

( )  cosh ( )  sinh ( )  cosh ( )  sinh ( ).

f a K a K a K a K a

g a L a L a L a L a

ζ λ ζ λ ζ λ ζ λ ζ

ζ λ ζ λ ζ λ ζ λ ζ

= + + +

= + + +

   

   

  (A.25) 

 
From the boundary conditions at the upper and lower faces of the plate, the constants are 
evaluated. 2 4 1, ,K K L    and 3L  vanish and the remaining constants are expressed with (A.19) as 

  

1
1 2 44 13

1 2 2
44 2 33 13 1 2

2
1 2 44 13

3 2 2
44 1 33 13 1 2

1cosh 
( )1 2 ,

2 ( ) ( , , )
1cosh 

( )1 2 ,
2 ( ) ( , , )

mn

mn

h
C CK q

C C C A h

h
C CK q

C C C A h

λ
λ λ
λ κ λ λ

λ
λ λ
λ κ λ λ

 
 +  = −

+

 
 +  = +

+





 

           (A.26) 

  

2 2
2 33 44

2 1 2
2 13 44

2 2
1 33 44

4 3 2
1 13 44

,
( )

,
( )

C CL K
C C

C CL K
C C

λ κ
κ λ

λ κ
κ λ

−
= −

+

−
= −

+

 

 

 

 
and 1 2( , , )A hλ λ  as given by (A.8) 
 
Introducing (A.26) and (A.25) into (A.24) and using the identities (A.6 a, b) we arrive exactly 
at (A.9) and (A.10). Thus it has been shown that all three approaches lead to one and the same 
result. 
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In NPT, results for an isotropic material response are also given. It can be shown that the 
displacements coincide with the solution of Saidi et al. (2009) and the solution based on 
Youngdahl’s displacement potentials (Youngdahl, 1969) presented in Kienzler and 
Kashtalyan (2020). 


