
1.  Introduction
The input of biologically available nitrogen to the terrestrial biosphere has doubled compared to pre-industrial lev-
els—mainly due to the application of synthetic and organic fertilizers to agricultural land (Galloway et al., 2004). 
Consequently, global riverine fluxes of dissolved inorganic nitrogen have increased six-fold (Green et al., 2004), 
causing surface water degradation, both in terms of in-stream ecosystem health and drinking water quality (Sut-
ton et al., 2011). As the main form of inorganic nitrogen (European Environment Agency, 2012), nitrate (NO3-N) 
patterns in surface and groundwater are generally controlled by available sources, hydrological connectivity, and 
biogeochemical transformations (Inamdar & Mitchell, 2006). For agricultural catchments, fertilizer and manure 
applications are the main NO3-N input sources, with additional contributions from wet deposition and plant res-
idues (Lassaletta et al., 2009). As a result of surpluses from long-term fertilizer applications (Leip et al., 2011), 
large NO3-N storage in soils and groundwater are characteristic of most agricultural catchments (European En-
vironment Agency, 2012; van Meter et al., 2016). Given the usually long (i.e., decades to centuries) residence 
times of groundwater (Tesoriero et al., 2013), this NO3-N legacy will remain a significant source of surface water 
pollution for many years (e.g., >30 yr in an arable area in the Mississippi River Basin; van Meter et al., 2016), 
despite fertilizer inputs having been reduced over recent decades due to improved environmental legislation.

In this context, the spatiotemporal connectivity of hydrological flow paths is of critical importance, as it links 
agricultural areas with other parts of catchments, and regulates both vertical and lateral fluxes of NO3-N towards 
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river channel networks (Ocampo et al., 2006). However, the underlying processes are generally complex and char-
acterized by marked spatiotemporal heterogeneity, with numerous local factors interacting (e.g., climate, topog-
raphy, underlying geology and soils, and water management; Musolff et al., 2015). Moreover, coupling this with 
biogeochemical transformations (e.g., denitrification and mineralization) increases complexity further, as these 
processes are also highly heterogeneous and dependent on the availability of oxygen and other electron donors in 
soils or stream channels (Seitzinger et al., 2006). Therefore, it is common to find contrasting local spatial patterns 
and temporal dynamics of NO3-N within the same catchment (Ehrhardt et al., 2019; Musolff et al., 2015). To date, 
major knowledge gaps still exist in terms of how internal catchment hydrological and biogeochemical processes 
interact to drive NO3-N transport and transformations (Grizzetti et al., 2015). This is particularly significant in 
the context of projected increases in future temperatures and drought occurrences (Papadimitriou et al., 2016).

Spatial distributed water quality modeling is one way to formalize such knowledge, as impacts of various con-
trolling factors can be adequately incorporated via regional parameterization (Orban et al., 2010; Rozemeijer 
et al., 2016). A number of models have been developed to simulate both catchment water balance and NO3-N 
dynamics; ranging from statistical regression models to detailed physically based models (reviewed in Billen 
et al., 2011). According to a review of 257 distributed modeling applications (Wellen et al., 2015), ∼70% of 
these studies were based on semi-distributed models, particularly the well-known SWAT (Neitsch et al., 2011), 
INCA (Wade et al., 2002), HSPF (Bicknell et al., 1997), and HYPE models (Lindström et al., 2010), which have 
proven robust tools in terms of water and nutrient fluxes estimation, spanning across a range of catchment-scales 
(Bekiaris et al., 2005; Pisinaras et al., 2010) to the continental-scale (Abbaspour et al., 2015). However, the strat-
egy of such semi-distributed models, disaggregating a catchment into several homogenous units (sub-catchments 
or Hydrological Response Units) based on topography (or other landscape characteristics), may lead to informa-
tion loss regarding class locations and interactions between neighboring classes (Rathjens & Oppelt, 2015; Yang 
et al., 2018). Alternatively, fully distributed models, which divide the catchment into hydraulically connected 
elements such as grids or triangular elements, have also drawn interest in the modeling community (Wellen 
et al., 2015), given their capability to utilize raster information such as DTMs, as well as soil and land-use maps 
(Ouyang et al., 2010). Increasingly, grid-based water quality models have been developed and applied, generally 
with detailed physics-based description of hydrological fluxes and nitrogen transformations (e.g., Birkinshaw & 
Ewen, 2000a; Birkinshaw & Ewen, 2000b; Wriedt & Rode, 2006). For example, Birkinshaw and Ewen (2000a) 
successfully reproduced the NO3-N transport by coupling the NO3-N transformation model NITS with the phys-
ically based distributed hydrological model SHETRAN. However, application of such physically based models 
have generally been limited to data-rich catchments at smaller spatial scales (<20 km2), because the subsurface 
representation based on finite difference cells and complex physical equations results in a computationally de-
manding calibration, and the need for extensive input data (e.g., prior knowledge of subsurface characteristics) 
that are rarely available at larger catchment scales (Rathjens et al., 2015; Schoumans et al., 2009). Ultimately, 
conceptual models, which balance the spatial representativeness and model complexity by simplifying descrip-
tions of dominant physical processes, have many advantages for mesoscale catchment studies (e.g., AGNPS/
AnnAGNPS [Young et al., 1989], TNT2 [Beaujouan et al., 2001], DNMT [Liu et al., 2005]). It has been shown 
that such models were able to capture similar output simulations to fully physically based models, with much 
lower computational demands and data needs (Jackson et al., 2008; Quinn, 2004).

Recently, the fully distributed process-based mHM-Nitrate model was developed for mesoscale catchments 
(Yang et al., 2018). The new approach integrates hydrological and water quality concepts taken from two widely 
used models: the mesoscale Hydrologic Model (mHM; Samaniego et al., 2010) and the Hydrological Predictions 
for the Environment model (HYPE; Lindström et al., 2010). A grid-based structure with reservoir-based descrip-
tions of water storage-flux relationships provides comprehensive insights into spatial patterns of the dominant 
processes governing both water and nitrogen fluxes, while retaining an intermediate model complexity. More-
over, the model uses a multiscale parameter regionalization technique that facilitates full assimilation of spatial 
information by parameterizing at finer scales and upscaling to coarser simulation scales (Samaniego et al., 2010).

In this study, we applied the mHM-Nitrate in a data-rich, mixed land-use, lowland catchment (68 km2) in Ger-
many over a 30 yr period to investigate the long-term dynamics of hydrological and NO3-N fluxes, and key con-
trolling factors. Three main research questions were addressed:

1.	 �Can mHM-Nitrate reproduce the spatial distribution of hydrological and NO3-N fluxes?
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2.	 �Did the spatially distributed results capture the temporal dynamics of NO3-N fluxes over a 30 yr period, in-
cluding extreme wet and dry periods?

3.	 �What were the key controlling factors of hydrological partitioning and biogeochemical transformations, and 
how did they regulate the spatiotemporal patterns of NO3-N?

2.  Materials and Methods
2.1.  Study Catchment

The study site is the 68 km2 mixed-land-use Demnitzer Millcreek catchment (DMC), located ∼55 km SE of 
Berlin, Germany. The catchment experiences a typical mid-continental climate, with relatively low precipitation 
(∼569  mm/year) and slightly higher potential evapotranspiration (650–700  mm). Seasonal rainfall is similar 
in total amount but different in distribution, with more intense and convective events in summer, while more 
frequent, but low-intensity frontal events occur in winter. It is a flat headwater catchment (average slope <2%; 
Figure 1a). Streamflow is generally groundwater-dominated and strongly seasonal (winter maxima), with low 
runoff coefficients (Smith et al., 2020). Flows are sensitive to changes in climate or water management, and can 
even be discontinuous with channels drying for months during dry summers (Kleine et al., 2020).

The geology is dominated by ground moraine tills in the north and glacio-fluvial deposits in mid-southern sec-
tions (Figure 1b). Brown-earth soils with ∼70% sand characterize much of the catchment (Figure 1c), leading to 
high vertical hydraulic conductivity (Kleine et al., 2020). Arable land and pasture are the main land uses, covering 
>60% of the area and dominating the upstream catchment, while forestry increases downstream, accounting for 
36% of the area (Figure 1d). Several wetlands are distributed sporadically in the mid and south-sections of the 
catchment, with a major one located in the central part of catchment and traversed by the main stream (termed 
as “central wetland” in the following text). There are also several small dispersed urban settlements in DMC, 
but their impact on discharge and nutrients is limited due to the low population (∼5,000 residents) and adequate 
wastewater treatment facility (Wu et al., 2021).

Land management practices in the catchment have gradually changed since 1990. Following the re-unification of 
Germany, synthetic fertilizer applications were generally reduced and farming became less intensive in many of 
the German catchments (Ehrhardt et al., 2019), which was likely to have also occurred in DMC though exact data 
are unavailable. The channel network in northern part of catchment (including arable land and central wetland) 
was historically deepened and straightened for artificial drainage. These drainage practices ceased in 1990, which 
initially led to the gradual re-naturalization of channel characteristics (Bösel, 2018). In 2000, the central wetland 
was restored proactively by excavating backwaters connected to the main stream, and installing in-channel bunds 
to reduce channel depth and slow flow velocities. More modest, but natural wetland expansion has occurred since 
2004 when beavers recolonized the catchment, with numerous dams particularly in the central wetland, increas-
ing the area of inundation. Such changes have increased water residence time and nutrient retention in restored 
wetland areas (Smith et al., 2020; Wu et al., 2021).

2.2.  The mHM-Nitrate Model

The mHM-Nitrate model was recently developed by integrating a nitrogen sub-model into the multi-scale con-
ceptual mHM platform (Kumar et al., 2013; Samaniego et al., 2010). As a fully distributed model, grid-based 
hydrological and nitrogen fluxes are simulated in terrestrial and in-stream phases at each timestep. Figure S1 
shows the model structure and key components. For detailed model descriptions please refer to Yang et al. (2018) 
as only a brief summary follows.

2.2.1.  Hydrological Sub-Model

The hydrological component of the mHM model has a flexible reservoir-based conceptual structure (Figure S1), 
which has been successfully applied to multiple river basins at different scales (Samaniego et al., 2010; Thober 
et al., 2019). The main hydrological processes include canopy interception (Dickinson, 1984), rain-snow parti-
tioning and snow pack dynamics (Hundecha & Bárdossy, 2004), evapotranspiration, infiltration, deep percola-
tion, and runoff generation (Bergstrom, 1995). Runoff processes are classified as fast interflow, slow interflow, 
and baseflow in the hydrological sub-model, which represent overland/near-surface stormflow, shallow sub-
surface flow, and deep groundwater flow (GW flow), respectively. These processes are simulated in each grid. 
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Generated discharge is then routed in-stream to its neighboring downstream cell using the Muskingum flood 
routing algorithm (Gill, 1978).

2.2.2.  Nitrogen Sub-Model

The nitrogen sub-model describes the nitrogen mass balance, including its transport and transformation under 
various physical fluxes and biogeochemical interactions. Fully integrated with the hydrological sub-model, ni-
trogen transport aligns with soil water dynamics, including infiltration into the soil, percolation to deeper soil 
layers and groundwater, and ultimately export to the stream. Dissolved nitrogen is categorized into two classes, 
the organic (DON) and inorganic nitrogen (DIN, equivalent to NO3-N in our study), and both forms are assumed 
to be fully mixed in each conceptual reservoir.

The description of nitrogen transformations is mainly adopted and modified from HYPE, a well-tested model in 
various water quality studies (Lindström et al., 2010). Four different nitrogen pools were established in each soil 
layer of terrestrial grids, known as active and inactive soil organic nitrogen (SONA, SONi), and dissolved organic 

Figure 1.  (a) Elevation, (b) geology, (c) soil, and (d) land use types of Demnitzer Millcreek catchment (DMC).
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and inorganic nitrogen (DON, DIN). Within these pools, nitrogen transformations are updated at each timestep, 
including denitrification (from DIN to gaseous nitrogen leaving the system), mineralization (from DON/SONA 
to DIN), dissolution (exchanges between SONA and DON) and degradation (from SONI to SONA). In-stream 
denitrification (DIN reduction in the channel network) and assimilation (from DIN to DON) are also simulated 
in the grids where channels occur. The initial states of all these biogeochemical processes and the input sources 
(wet deposition, fertilizer/manure applications, and plant residues) should be pre-defined based on the prior 
knowledge of the catchment.

2.3.  Data Acquisition

2.3.1.  Forcing Data Sets

The required forcing meteorological data sets are precipitation, temperature, and potential evapotranspiration. 
The daily data sets of the first two were obtained from the three nearest weather stations (Lindenberg, Man-
schnow, and Müncheberg) operated by the German Weather Service (DWD), all within 19 km distance of the 
catchment. Potential evapotranspiration was estimated via the Penman-Monteith method.

The external NO3-N inputs consist of wet deposition, plant residual matter, fertilizer, and manure applica-
tion. NO3-N in precipitation was defined as 2  mg/L according to the EMEP data for the period 1995–2005 
(EMEP, 2001), which resulted in an annual wet deposition ranging from 8 to 17 kg/ha·yr in DMC over the past 
30 yr. The remaining inputs were based on a prior survey in DMC and typical values from the similar German 
catchments (Yang et al., 2018). The total NO3-N inputs ranged from 80 to 120 kg/ha·yr in agricultural area over 
the study period (Figure S2).

2.3.2.  Calibration and Validation Data Sets

Discharge data has been collected at Demnitz Mill (Figure 1a) since 1992 at various timesteps. The time series 
was constructed for model calibration and validation, by resampling the temporal resolution to weekly before 
2001 and daily after 2001. Also, eight groundwater wells were established in DMC, with groundwater levels 
monitored since 2001 and resampled to daily timestep for subsurface storage validation.

Water quality monitoring was conducted via grab sampling at five sites along the stream (Figure 1a): the entrance 
and outlet of the central wetland (Peat North and Peat South), the same location as the water level gauge (Dem-
nitz Mill), and catchment outlet (DM 27 and Berkenbrück). The NO3-N time series also started since 1992 and is 
generally weekly in temporal resolution, with several gaps at some sites due to funding limitations.

2.4.  Model Parameterisation and Sensitivity Analysis

2.4.1.  Model Parametrisation

For the description of the influential parameters and the range of all parameters please refer to Tables 1 and S1. 
Generally, the parametrization strategy for the hydrological simulation was adopted from mHM, including the 
parameter ranges for calibration. The parameters related to snow/rain partition, soil moisture distribution, and 
interflow generation were assigned based on simplified land use type (impervious, pervious, and forest area), 
while the parameters of GW flow generation were allocated based on geology classification (Figure 1b). The 
other parameters remained identical in all grids (Samaniego et al., 2010). The Muskingum routing was realized 
based on three general parameters corrected by slope, channel length, and pervious area fraction.

As for nitrogen simulations, six parameters were used to reflect the six major NO3-N biogeochemical processes 
described above. These processes are dominated by in situ physical, chemical, and biological characteristics, 
which generally show high spatial heterogeneity and are sensitive to anthropogenic impacts such as agricultural 
fertilizer application (Lassaletta et al., 2009; Taylor et al., 2016). Therefore, the corresponding parameters were 
conceptualized as land-use-dependent and assigned based on the land use types (Figure 1d).

2.4.2.  Sensitivity Analysis

Although regional parameterization grouped the spatially distributed parameters to reduce the computational 
demands, the total number of parameters in the hydrological and nitrogen sub-models still reached 50 and 36, 
respectively, which is computationally intensive. Therefore, we applied the Morris Method (Morris, 1991), also 
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known as the elementary effects (EE) method, to identify insensitive parameters. The parameter ranking was 
realized according to the EE extracted from multiple perturbation trajectories, by generating each trajectory with 
a set of starting parameters, and perturbing each parameter pi by a variation Δi based on a radial one-at-a-time 
strategy. The EE of ith parameter can be estimated as:

𝐸𝐸𝐸𝐸𝑖𝑖 =
𝑓𝑓 (𝑋𝑋𝑝𝑝𝑖𝑖+Δ𝑖𝑖

) − 𝑓𝑓 (𝑋𝑋𝑝𝑝𝑖𝑖 )

Δ𝑖𝑖

� (1)

where f denotes the objective function (root-mean-square-error, RMSE).

To achieve a better coverage of the feasible parameter space, the Latin-Hypercube sampling method was selected 
to generate the starting points and variation Δ. A matrix of EE (n * r) was then available for further calculation 
of the mean (μi) and standard deviation (σi):

𝜇𝜇𝑖𝑖 =

∑𝑟𝑟

𝑗𝑗=1
|EE

𝑗𝑗

𝑖𝑖
|

𝑟𝑟
, 𝜎𝜎𝑖𝑖 =

√∑𝑟𝑟

𝑗𝑗=1
(EE

𝑗𝑗

𝑖𝑖
− 𝜇𝜇𝑖𝑖)

𝑟𝑟 − 1
� (2)

where 𝐴𝐴 EE
𝑗𝑗

𝑖𝑖
 is the EE of ith parameter in jth trajectory.

The sensitivity analysis was conducted using the SAFE tool (Sensitivity Analysis for Everybody, Piano-
si et  al.,  2015). As mHM-Nitrate consists of two sub-models, we ranked the parameters separately for each 
sub-model first. Then, a joint sensitivity analysis was applied for the full version with both sub-models activated. 
The top 15 ranked parameters of the joint sensitivity analysis were identified as sensitive (Table 1).

2.5.  Model Calibration and Validation

2.5.1.  Model Calibration

Given that this is the first distributed NO3-N modeling in DMC, all parameters were included in the calibration. 
Due to the expensive computational demands, the dynamically dimensioned search (DDS) was selected for pa-
rameter optimization for its approximation capacity of global optimal solutions within limited iterations (Tolson 
& Shoemaker, 2007). Also, we combined the Nash-Sutcliffe efficiency (NSE) and its logarithmic form for error 
estimation, which can effectively offset the over-sensitivity towards high values or outliers when using the con-
ventional NSE approach:

Parameter Description

Deniw In-stream denitrification rate (kg m−2 d−1)

soil11 Transfer function parameter for saturated hydraulic conductivity

soil7 Pedotransfer function parameter for calculating soil moisture content

soil9 Pedotransfer function parameter for calculating soil moisture content

pet1 Parameter for aspect correction of potential evapotranspiration

interf4 Recession factor of slow interflow generation

Perco Recharge coefficient of percolation

soil10 Transfer function parameter for saturated hydraulic conductivity

geo4 Groundwater recharge recession in Geological unit 4 (moraine)

soil17 Shape factor for calculating infiltration

soil14 Factor for calculating actual evaporation from soil layers

geo2 Groundwater recharge recession in Geological unit 2 (Glaciofluvitile deposits)

soil8 Pedotransfer function parameter for calculating soil moisture content

denis2 Soil denitrification rate (kg m−2 d−1) in land use 2 (arable land)

snow1 Temperature threshold for snow accumulation

Table 1 
Top 15 Sensitive Parameters From the Joint Sensitivity Analysis
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𝑂𝑂𝑂𝑂𝑞𝑞𝑞𝑞𝑞 = min

{
6

√
(1 − NSE)

6
+ (1 − lnNSE)

6

}
� (3)

The objective function was then estimated as the weighted error of discharge 
(wq = 0.9) and in-stream NO3-N (wn = 0.1) according to Yang et al. (2018):

𝑂𝑂𝑂𝑂 = min {𝑂𝑂𝑂𝑂𝑞𝑞 ⋅𝑤𝑤𝑞𝑞 + 𝑂𝑂𝑂𝑂𝑛𝑛 ⋅𝑤𝑤𝑛𝑛}� (4)

After the initial test, the number of DDS iterations was set as 50,000 for 
a full convergence of optimized parameter sets. Due to the availability of 
discharge data, the calibration was only conducted at the Demnitz Mill from 
2010 to 2019, which includes wettest and driest conditions in the past 30 yr 
(Wu et al., 2021). We repeated the calibration independently for five times, 
and manually checked the optimized parameters to ensure they reflect our 
local knowledge. Then the best parameter set was chosen for further analysis.

Moreover, to evaluate the representativeness of the optimized parameter set, 
100,000 additional parameter sets were generated, with insensitive parame-
ters fixed as the best parameter sets above and sensitive parameters re-sam-
pled via Latin hypercube method. The 95% confidence bands of simulated 
discharge and in-stream NO3-N at Demnitz Mill from the top 5% parameter 
sets were treated as the parametric uncertainty.

2.5.2.  Model Validation

The model was first validated at Demnitz Mill for two periods (2001–2009 
and 1992–1999), with performance metrics NSE and RMSE applied to eval-

uate the goodness-of-fitness of both discharge and in-stream NO3-N simulations. Then, the sum of the water 
stored in all subsurface reservoirs in mHM-Nitrate (i.e., three soil layers, unsaturated and saturated zone) was 
calculated. Comparison between the simulated subsurface storage and measured groundwater levels from eight 
wells allowed the subsurface flows to be assessed qualitatively. In addition, a spatial validation for NO3-N sim-
ulation in stream water was conducted at Peat North, Peat South, DM27, and Berkenbrück, due to the available 
NO3-N time series (>100 records) at these sites.

2.5.3.  Re-Optimization for Period 1992–2000

Due to unsuccessful transfer of the optimized parameter set to period 1992–2000 for NO3-N simulation (see 
below), the model was separately re-optimized for pre-2001. All the hydrological parameters were fixed and 
excluded from re-optimization, considering the good performance of flow simulation in this period, and to avoid 
overparameterization. Given the major differences between the two periods were in the agricultural area and cen-
tral wetland (i.e., gradually cessation of drainage maintenance since 1990 and the wetland restoration in 2000), 
the most sensitive NO3-N parameters (rates of aquatic denitrification, soil denitrification, and soil mineralization) 
in arable land, pasture and wetland (deniw2-4, denis2-4, minlr2-4) were selected for optimization. 50,000 param-
eter sets were generated using Latin hypercube method to fully explore the parameter space. Two criteria, RMSE 
and percent bias, were used to evaluate the performance of these parameter sets.

3.  Results
3.1.  Model Performance

3.1.1.  Parameter Sensitivity

The sensitivity analysis was conducted separately within hydrological and nitrogen sub-models, and jointly with 
integrated model. The top 15 sensitive parameters from joint ranking are listed in Table 1. According to the 
separate sensitivity analysis (Figure  2a), parameters in the soil moisture module (which determine hydraulic 
conductivity and soil moisture distribution) dominated the hydrological simulations. The parameters for PET, 
infiltration, and percolation also impacted the hydrological simulation. In terms of separate sensitivity of NO3-N 
parameters (Figure 2b), denitrification and primary production rates were most influential, while parameters of 

Figure 2.  Sensitivity ranking for separate (a) hydrological/(b) nitrogen 
parameters and (c) for the joint sensitivity analysis (see Table 1 for parameter 
explanation). Increases in the X and Y axes indicate a stronger influence on 
model results and interdependence with the other parameters, respectively.
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the remaining transformation processes (mineralization, degradation, and dissolution) only showed minor effects. 
The joint sensitivity ranking indicated the dominant role of hydrological parameters in the overall NO3-N simu-
lation (Figure 2c), while only two NO3-N parameters (in-stream denitrification and soil denitrification in arable 
land) were identified as sensitive.

3.1.2.  Model Performance at the Calibration Site

The hydrological simulations at Demnitz Mill performed well in all three periods, with NSE >0.6 and no de-
terioration in performance for validation periods (Figure 3; Table 2). The NO3-N simulations also successfully 
captured the seasonal and long-term dynamics of in-stream NO3-N at Demnitz Mill after 2000. The simulated 
uncertainty range derived from Latin hypercube samplings bracketed the best optimized simulation from DDS, 
and most of the discharge and NO3-N observations, further giving us confidence in the robustness of the model 
calibration schemes. However, the optimized parameter set failed to captured in-stream NO3-N at Demnitz Mill 
during 1992–2000 (though flow dynamics were well simulated), with significant underestimation of almost all 
high peaks and low NSE value (0.50; see Figure S4).

3.1.3.  Spatial Validation of Subsurface Storage and In-Stream NO3-N at Uncalibrated Sites

The GW level monitored at 8 sites since 2001 provided an opportunity to evaluate the robustness of subsurface 
hydrological simulations. From a qualitative perspective, the simulated subsurface storage changes matched the 

long-term dynamics of measured groundwater levels, including the regular 
inter-annual variability and the significant increase during the wettest peri-
od (2011–2012; Figure 4). The spatial distribution of simulated subsurface 
storage also showed a high affinity with the data from the corresponding GW 
wells (average R > 0.7, p < 0.01; Table S3). The only exception was GW7, 
located near a small inundated area, which could not be captured by the mod-
el, resulting poorer correlation.

Spatial validation was also applied for in-stream NO3-N simulation, using the 
in-stream NO3-N records from 5 monitoring sites across the catchment (Fig-
ure 1a). The NSE of the NO3-N simulations at these sites ranged from 0.54 
to 0.67 (Table 3), indicating that the model captured the spatial variability of 

Figure 3.  Model performance of discharge (upper panel) and nitrate concentrations (lower panel) in the calibration period 
(2010–2018), validation 1 (2001–2009) and validation 2 (1992–2000) period.

Discharge Nitrate

C v1 v2 c v1 v2

NSE [-] 0.61 0.66 0.62 0.67 0.62 0.23

RMSE 0.13 0.10 0.11 1.87 2.51 4.81

Table 2 
NSE and RMSE [mm for Discharge, mg/L for Nitrate] Values for Discharge 
and Nitrate at Demnitz Mill During 2010–2019 (Calibration, c), 2001–2009 
(Validation 1, v1) and 1992–2000 (Validation 2, v2)



Water Resources Research

WU ET AL.

10.1029/2021WR030566

9 of 20

in-stream NO3-N reasonably well. The lowest NSE was found at DM27, which could be explained by the limited 
number of samples there.

3.1.4.  Re-Optimization for Period 1992–2000

To identify a more appropriate parameter ranges for NO3-N simulation in 1992–2000, 50,000 random parameter 
sets were evaluated using two criteria RMSE and percent bias. As is shown in Figure 5, the model performance 
was sensitive to both aquatic and soil denitrification rates, while mineralization rates had nearly no impact. 
Among the denitrification parameters, those in arable land (deniw2, denis2) showed more dominant impacts, 
while the rest were less important (deniw3,4 and denis3,4). Although the domination of deniw2 and denis2 
masked the rest parameters to some extent, it is clear that decreasing denitrification rates can lead to better model 
performance for this earlier period. Further, the parameter PDF against RMSE suggested the ideal parameter 
ranges of denis2 and denis2. So accordingly, the denitrification rates in arable land, pasture, and wetland were 
manually lowered, while mineralization remained unchanged (see re-optimized values in Table S2). The compar-
ison of parameter sets performance before and after optimization is shown in Figure S4. Significantly improved 
performance was achieved at Demnitz Mill with the new parameter set, as NSE increased from 0.50 to 0.66 
(Table 4). The simulated in-stream NO3-N now captured both low concentrations in the growing seasons and 
high peaks in winter. The NSE at other sites also reached >0.65 (Table 4), which validated the spatial represent-
ativeness of the optimized parameter set.

Given the reasonable validation performance of hydrological and NO3-N simulations, the outputs generated by 
the original parameter set for post-2001, along with the re-optimized parameter set for pre-2001 were integrated 
and used for further analysis.

3.2.  Spatial Distribution of Hydrological Fluxes and Biogeochemical Transformations

For an overview of spatially distributed model outputs, the main hydrological fluxes, corresponding NO3-N con-
centrations and biogeochemical transformations were averaged over the whole period (1992–2018). As shown 
in Figure 6, most hydrological fluxes exhibited moderate spatial variability, mainly depending on the vegetation 
cover. As the dominant hydrological processes in DMC, actual evapotranspiration (AET) were up to 42 mm/yr 

higher from forestry areas (Figure 6a). Consequently, reduced vertical hydro-
logical transport was simulated compared to the non-forested areas, which 
is covered by crops, grass, and shrubs. Infiltration and subsequent interflow 
generation were 29.0% and 31.4% lower respectively in southern part of DMC 
(mostly underlain by forest) compared to the northern part (mostly underlain 
by crops; Figure 6b). GW flow exhibited a similar spatial pattern, though 
its parameterisation was based on catchment geology (Figure 1b). The geo-
logical impact was masked by the strong differences of water recharge from 
soil layers with different vegetation covers, which further led to the vegeta-
tion-dependent distribution of GW flow (27.8% lower in non-forestry area).

Figure 4.  Simulated subsurface storage (red) and measured groundwater levels (blue) during 2001–2019 at multi-gauges at 
daily time steps.

Peat North Peat South DM27 Demnitz Mill Berkenbrück

N 399 351 108 870 418

NSE [-] 0.59 0.67 0.54 0.63 0.58

RMSE 2.84 2.39 3.13 2.26 2.13

Table 3 
Number of Samples (n), NSE, and RMSE of NO3-N Simulation at All Gauges 
During 2001–2019
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The patterns of NO3-N concentrations and biogeochemical processes were also highly land use-dependent. Fig-
ure 6d shows the comparison of NO3-N inputs under different land use. In arable land and pasture with fertilizer/
manure applications, the inputs reached up to 120 kg/ha·yr, while those in forest and wetland, which merely 
consist of plant residues, were limited <25 kg/ha·yr. Highly dependent on the available pools, biogeochemical 
transformations mainly followed the spatial pattern of NO3-N inputs, with ∼30–50 kg/ha·yr of soil mineralization 
and denitrification in agricultural areas compared to <10 kg/ha·yr in the non-agricultural areas. Aquatic deni-
trification was different, as it is determined by both discharge and available NO3-N, increasing along the main 
stream and reaching a maximum near Demnitz Mill. Despite the significantly stronger denitrification in northern 
part of DMC, the discrepancy on NO3-N inputs in different land uses was not offset. Consequently, higher NO3-N 
concentrations in interflow and GW flow were simulated in the agricultural area, with respective average values 
over 30 yr of 10.6 and 11.9 mg/L in agricultural area and 2.5 and 0.5 mg/L in the remaining predominantly for-
ested area.

3.3.  Temporal Dynamics of Water and NO3-N Balances

The annual water and NO3-N balances in DMC were calculated based on the average values of all grids (Fig-
ure 7). The water balance generally followed precipitation inputs, which showed significant increases in storage 
and groundwater recharge in wet years when annual precipitation exceeded 600 mm (1993, 1998, 2002, 2007, 
2010, and 2017), while subsurface storage remained relatively constant or moderately decreased in the remaining 
years (Figure 7b). The strongest replenishment of subsurface storage occurred during 2010 (113.5 mm). But this 
was followed by a prolonged dry period, and a gradual decrease of subsurface storage to a deficit of 190.8 mm by 
the end of 2016. AET was the dominant component that contributed to the water balance (>80%), while runoff 
generation always accounted for <25% (Figures 7a and 7b). The temporal variability of all hydrological process-
es was also aligned with annual precipitation, as significant positive correlations were found between annual 
precipitation and AET/interflow/GW flow. However, contributions from three hydrological components varied 
due to varying inter-annual wetness. for example, AET accounted for only 67%–82% of annual precipitation in 
wet years, while in dry years such as 2014–16, simulated AET could exceeded precipitation. In contrast, a higher 
proportion of precipitation contributed to interflow generation in wet years and the following year. GW flow also 
followed a similar long-term pattern to interflow but with a significant lag, as the peaks of GW flow generation 
occurred in 1–2 yr after precipitation peaks. Accordingly, the higher proportion of runoff generation did not 

occur in wet years but one year afterwards, ranging from 21.5% to 34.4% of 
precipitation inputs.

Biogeochemical transformations also followed inter-annual wetness condi-
tions. The only exception is plant uptake, which remained independent from 
annual precipitation (31.2–45.3 kg/ha·yr) and accounted for 65.0%–73.8% of 
the total NO3-N inputs. In contrast, denitrification was negatively correlated 
with annual precipitation. In wet years 2007, 2010, and 2017, denitrifica-
tion was simulated as 42.5, 39.6 and 39.4 kg/ha·yr and accounted for 33.2%–
37.7% of annual inputs, while in dry years 2014 and 2015, NO3-N loss by 
denitrification was only 19.0 and 19.5 kg/ha·yr (<17% of annual inputs). The 

Figure 5.  The probability density of 9 nitrate parameters against two evaluation criteria RMSE, (a); percent bias, (b) during re-optimization for period 1992–2000. 
Y-axis of each subplot denotes the parameter values, while X-axis denotes the RMSE and NSE (normalized to 0–1). The color of each pixel denotes the probability 
density of the specific parameter value (X) under the specific evaluation performance (Y). The white dashed line is the parameter values before re-optimization.

Peat North Peat South DM27 Demnitz Mill Berkenbrück

NSE [-] 0.74 0.81 – 0.50 0.61

RMSE 2.25 1.70 – 3.86 2.70

NSE [-]* 0.73 0.68 – 0.66 0.65

RMSE* 2.35 2.23 – 3.19 2.57

Table 4 
Performances of NO3-N Simulation With Original and Modified (*) 
Parameter Sets
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NO3-N export via interflow and GW flow generally followed the long-term trends of two runoff components. 
Interflow export exhibited higher losses in wet years or one-year afterwards, while GW flow export generally 
showed a 1–2 yr lag. Compared to export in GW flow, losses in interflow were highly variable, and could reach 
up to 16.0 kg/ha·yr in wet year like 2010 but drop to 1.0 kg/ha·yr in dry year like 2016. Simulated GW flow ex-
ports, however, remained at a relatively stable level (4.6–10.9 kg/ha·yr), mainly depending on the hydrological 
fluxes.

Moderate differences of all NO3-N components were found between pre-2001 and post-2001, which could be 
attributed to the lower denitrification, and higher potential of interflow export prior to wetland restoration. for ex-
ample, denitrification was simulated as 24.1 and 39.6 kg/ha·yr in year 1998 and 2010, despite annual precipitation 
being close. Similarly, different interflow export potential can be found between 1993 and 2010, when NO3-N 
export via interflow was similar (16.0 kg/ha·yr in both years), whereas interflow fluxes were very different (107.2 

Figure 6.  Spatial distribution of major hydrological fluxes (a–c), corresponding NO3-N concentrations (e–f), annual fertilizer 
input (d), and major nitrate processes (g–i).
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and 156.8 mm in 1993 and 2010). It is clear that more NO3-N was exported with similar interflow fluxes in pre-
2001 corresponding to lower denitrification.

3.4.  Distinct Long-Term Schemes in Agricultural and Forest Areas

Based on the temporal dynamics (Section 3.3.1) and spatial patterns (Section 3.3.2) of simulated outputs, land-
scape characteristics and hydroclimatic variability were identified as two main sets of controlling factors on 
hydrological and nitrogen fluxes. To further reveal their impacts in a more disaggregated way, the model outputs 
were differentiated based on agricultural/forest areas (see Figure S3 for area selection) and extreme wet/dry peri-
ods (2010–11 and 2014–15 respectively). Four distinct conditions are shown in Figure 8.

Consistent with the conclusion above, NO3-N fluxes in all components, including soil layers and deeper aquifer, 
exhibited higher magnitudes under arable land compared to forest. This was evident in both wet and dry periods, 
indicating the dominant role of NO3-N inputs. Similar to the spatial patterns in Section 3.3.1, lower infiltration, 
percolation, and subsequent interflow/GW flow generation were simulated under forest, regardless of the wetness 
condition. However, the effects of these hydrological differences on the NO3-N distribution are secondary to 
(partly masked by) the background concentrations in arable land and forest. In other words, landscape character-
istics (NO3-N inputs and storage), rather than hydrological transport, dictated the spatial pattern of background 
NO3-N values regardless of climatic change.

Hydrological transport, however, had a dominant influence on temporal dynamics - more specifically, during the 
transition between wet and dry periods in both arable land and forest. In dry periods, the vertical hydrological 
fluxes (i.e., infiltration through the soil layers and percolation into deeper aquifer) were significantly depressed, 
leading to a decrease in runoff generation (76.6% and 78.6% under arable land and forest respectively). Addi-
tionally, drought conditions profoundly altered the sources of runoff generation. In wet periods, interflow was 
more dominant, accounting for 60.0%–67.3% of the runoff, while in dry periods, GW flow was dominant and 
the contribution of interflow dropped to 31.1%–46.0%. The reduced vertical hydrological fluxes correspondingly 
changed the NO3-N distribution in the soil layers and generated runoff, by limiting NO3-N transport into deeper 

Figure 7.  Long-term water and NO3-N balance in DMC. The statistics of hydrological fluxes are shown in subplot (a), 
where P, AET, IF, and GWF denote precipitation, actual evapotranspiration, interflow, and groundwater flow, respectively. In 
subplot (b), the annual fluxes of water components are shown as stacked areas while input precipitation is shown as line. The 
annual dynamics of the catchment storage balance (𝐴𝐴 ΔStorage = P − AET − IF − GWF ) are also included. Similarly, subplot 
(c) shows the statistic of NO3-N balance while subplot (d) consists of the annual sum of NO3-N inputs (fertilizer/manure 
application (FM), plant residue (PR), wet deposition (WD), and soil mineralization (M)) and consumptions (plant uptake 
(PU), denitrification (D), and export via interflow (IF) and groundwater flow (GWF)). The NO3-N storage balance was also 
calculated as 𝐴𝐴 ΔStorage = inputs − consumptions .
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soil layers and the underlying aquifer. In Section 3.2.2, we saw that NO3-N storage increased in dry years (Fig-
ure 7b). Here, Figure 8 shows more clearly that the storage and inputs were restricted to the first two soil layers. In 
the dry years of 2014–15, simulated NO3-N storage in first two soil layers increased by 34.0% and 57.7% in arable 
land and forest, respectively, and the NO3-N concentration in soil layer 1 in arable area reached up to 83.1 mg/L. 
In contrast, 44.0% lower NO3-N concentrations in soil layer 3 were simulated due to the lack of NO3-N supply 
from upper layers. This further led to a 43.4% decrease of NO3-N concentration in generated interflow.

4.  Discussion
4.1.  Credibility of Modeling Results During 2001–2019

Spatially distributed environmental models have stimulated interest over the past few decades, due to the in-
creasing availability of distributed hydrometeorological/geospatial data and advances in computational resources 
(Tang et al., 2007; Wellen et al., 2015). Though greater spatial details in models are feasible, model users need 
to carefully evaluate the results, as the increasing complexity of such models poses challenges in terms of greater 
potential for overparameterization and uncertainty from model inputs and structure (Tonkin & Doherty, 2005). 
In our modeling application, good performance was achieved in 2001–2019 with calibration based on hydro-
logical and water quality data from Demnitz Mill. This is similar to many other studies, where calibration is 
only based on observations at the catchment outlet (Wellen et al., 2015). However, as already noted by many 
researchers (Fuamba et al., 2019; Moussa et al., 2007; Uhlenbrook & Sieber, 2005), single-gauge-based calibra-
tion can be misleading (e.g., higher NSE) compared to calibration to multiple gauges, because equifinality can 

Figure 8.  Hydrological states (in mm, black), fluxes (in mm/yr, blue), and NO3-N concentrations (in mg/L, red) under agricultural (a, b) and non-agricultural areas (c, 
d) during wet ((a and c), in 2010–2011) and dry periods ((b and d), in 2015–2016).
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result in significant but unidentified compensating errors in distributed grids (Tang et al., 2007; van Werkhoven 
et al., 2008). To assess the spatial representativeness of our modeling, we used in-stream NO3-N from 5 distribut-
ed sites for validation. Such validation strengthened confidence in the simulation results, as both the high peaks 
and low values were successfully captured at all sites after 2001 (Figure S4). In other words, we demonstrate 
that mHM-Nitrate has the capacity to reproduce reliable spatial distribution of in-stream NO3-N based on the 
observation of a single catchment outlet gauge, and can be a useful tool for sparsely monitored catchments. This 
is especially meaningful, considering that data is lacking at most sites, and multiple-gauges calibration is usually 
impossible outside specific research catchments (Moreau et al., 2013).

Despite the apparent success of in-stream NO3-N simulations, uncertainty over internal processes remains as a re-
sult of data lack for quantitative verification. The main sources of uncertainty come from two aspects: uncertainty 
over input data and parameter compensation within the model. The uncertainty of inputs (e.g., N-sources) has 
long been emphasized by the modeling community, given its obvious impact on simulations (Tang et al., 2007; 
Wriedt & Rode, 2006). Unfortunately, precise records of fertilizer inputs were unavailable for DMC, though the 
sources and amounts of NO3-N inputs in our study were comparable to many modeling applications in similar 
agricultural landscapes in Europe (e.g., Leip et al., 2011; Yang et al., 2018). The second source of uncertainty, the 
compensation effects of parameters representing internal processes, is common in distributed modeling applica-
tions (Anderton et al., 2002; Arnold et al., 2015; Van der Velde et al., 2010). This is also likely to affect our results 
given the total number of 86 parameters in mHM-Nitrate. In other words, it is possible that the overestimation of 
one process compensates the underestimation of other processes, which leads to an overall “good fit” at stream 
gauges (Arnold et al., 2015). An alternatively way to constrain the uncertainty is incorporating “soft information” 
in model assessment (Arnold et al., 2015; Fuamba et al., 2019). In our study, groundwater levels from 8 sites were 
used to qualitatively evaluate the changes in subsurface storage. The dynamics of simulations and observations 
matched spatially and temporally (Figure 4), increasing our confidence on subsurface simulations.

To further assess representation of internal processes, comparison with other modeling studies was instructive. In 
DMC, flow dynamics have been recently simulated with the tracer-aided distributed hydrological model EcH2O-
iso (see model descriptions in Kuppel et al., 2018). Using water isotopes as tracers and including distributed 
soil moisture data as calibration targets, the internal hydrological fluxes were simulated with greater model 
complexity and robustness (Smith et al., 2021). The very similar spatial patterns of AET and discharge from the 
two models demonstrated the key hydrological fluxes estimated by mHM-Nitrate were reasonable, though we 
cannot directly compare other internal processes due to the different conceptualization and model structure. For 
NO3-N modeling, our study is the first application in DMC, so comparison is only possible with previous studies 
in analogous catchments with similar latitude (Table 5). Generally, the NO3-N leaching aligned to the agricul-
tural (especially arable) land use, and the leaching rates in DMC were on the same order of magnitude with sites 
sharing similar proportions of agricultural land cover (e.g., Hesser et al., 2010; Yang et al., 2018). The exception 
is significantly higher leaching in Rode et al. (2009), which is probably due to dense artificial drainage aiding 
both mineralization and transport. Similar stimulated NO3-N leaching by artificial drainage was also reported 
in Hu et  al.  (2007), where agriculture accounted for >90% of the catchment area and NO3-N losses reached 
up to 29 kg/ha·yr. Denitrification rates were unavailable in several studies because they were either included 

Area km2 Agri. % Precip. mm Leaching kg/ha Denitr. kg/ha Location References

67 57 675 7 21 Germany Our study

99.5 40 640 <10–31 – Germany Hesser et al. (2010)

105–215 39–60 606–751 18–41 – Germany Rode et al. (2009)

456 52 660 5 24 Germany Yang et al. (2018)

482 >90 996 29 23 U.S. Hu et al. (2007)

65,000 53 500–1,300 18 – EU Grizzetti et al. (2015)

800,000 42 597 6 19 EU Malagó et al. (2017)

Note. Agri. and Precip. denote agricultural proportion and annual precipitation, respectively.

Table 5 
Reported Annual NO3-N Leaching (Leaching) and Denitrification (Denitr.) Rates in Modeling Applications (From 
Catchment to Regional-Scale)
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in terrestrial NO3-N retention or not reported. But the available reports range from 19 to 24 kg/ha·yr, which is 
consistent with our simulated value (21 kg/ha·yr; Table 5). For mineralization, the reported values span a wide 
range, as the process is closely coupled with soil properties and land management; for example, 11.5 (Kopáček 
et al., 2013), 16 (Devito et al., 1999), 65–67 (Ferrant et al., 2011), 115–139 (Devito et al., 1999), and 4–104 
(Andersson et al., 2002) kg/ha·yr. Our results are in the same order of magnitude and close to some studies (e.g., 
Yang et al., 2018), which represent similar characteristic are they are in the same climate and geomorphic unit in 
NE Germany. This suggestd the mineralization has been reasonably simulated. However, uncertainty needs to be 
considered as no direct observation is available in DMC for validation.

4.1.1.  Limitations in NO3-N Simulation Pre-2001

Though the initial calibrated parameter set performed well after 2001, it performed less well in reproducing the 
in-stream NO3-N prior to 2001. The poorer performancepotentially originates from the lack of physics-based 
description of some biogeochemical processes (e.g., dissimilatory nitrate reduction to ammonia [Rogers 
et al., 2021] or vegetation uptake [Newcomer et al., 2021]), as they were all highly conceptualized and simplified 
in mHM-Nitrate. Further, the change in management practices might account for another limitation in parameter 
transferability, given the gradual cessation of drainage since 1990 and wetland restoration in 2000 in DMC (Smith 
et al., 2020; Wu et al., 2021). Many previous studies have highlighted the potential impacts of management on 
nitrogen transport (Arheimer & Wittgren, 2002; Gärdenäs et al., 2006; Olesen et al., 2019; Taylor et al., 2016). 
Ideally, these management practices should be conceptualized and integrated into the model for the pre-2001 
simulation; however, conceptualizing and upscaling these practice-related processes are difficult and detailed 
data would be required (e.g., the location and fluxes of drains), which are generally unavailable at the catchment 
scale (Rode et al., 2009). Consequently, detailed mechanistic descriptions have often been limited to field-scale 
modeling (e.g., tile drainage in Gärdenäs et al., 2006), while for catchment-scale modeling, they were simplified 
as changing the land use, defining a simple new module or re-parameterizing the relative processes (Arheimer 
& Wittgren, 2002; Olesen et al., 2019; Rode et al., 2009; Taylor et al., 2016). In this study, we used the latter 
solution: recalibrating the parameters in terms of soil denitrification, aquatic denitrification, and mineralization 
in arable land, pasture and wetland, to represent the impacts of drainage and wetland restoration. By revealing 
the PDF of parameter values against model performance (Figure 5), 50,000 iterations were enough to indicate 
how these values should be adjusted for period pre-2001, that is, lower soil and aquatic denitrification rates. This 
matched our local knowledge in DMC (Smith et al., 2020; Wu et al., 2021), as both reducing drainage and wetland 
restoration have been shown to increase stream water residence times, therefore increasing the potential for deni-
trification and NO3-N retention (Hansen et al., 2018). It is important to recognize that following the re-unification 
of Germany, synthetic fertilizer applications were generally reduced in many agricultural areas in the former East 
Germany (Ehrhardt et al., 2019). Considering the abnormally high NO3-N observations before 1996 (Figures 3 
and S4), reduction on fertilizer inputs since then was also likely in DMC and may affect our results. However, 
here we did not change the fertilizer inputs during optimization due to the lack of accurate records, and to prevent 
introducing more uncertainties. Such correspondence between a modeler's local knowledge and parameter ad-
justment are necessary, as overparameterization is common for distributed models due to the high-dimensional, 
nonlinear parametric spaces (Tang et al., 2007).

4.2.  Controlling Factors in Spatiotemporal Pattern of NO3-N

From the analysis of the simulation results, we identified landscape characteristics, hydroclimatic variations 
and management practices as three controlling factors for NO3-N patterns in DMC. Although these factors have 
been well documented elsewhere (Inamdar & Mitchell, 2006), their site-dependent characteristics means that 
transferring knowledge of the relative influence of such factors between different catchments is usually difficult 
(Musolff et al., 2015). However, by fully incorporating relevant spatial information, distributed modeling pro-
vides a framework for differentiating these controlling factors and evaluating them in a quantitative manner, and 
a fine level of spatial resolution.

From the spatial perspective, vegetation cover was the major factor on catchment hydrology, controlling the 
depressed fluxes in interflow and GW flow in forest compared to non-forest areas (Figure 6). This was mainly 
attributable to the higher ET from forests, also consistent with other modeling applications in DMC (see en-
hanced transpiration in forest in Smith et al., 2021). However, the heterogeneity of fluxes was modest, and only 
had a minor impact on NO3-N patterns. In contrast, NO3-N inputs dictated the spatial distribution of NO3-N in all 
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soil layers, aquifers and streams (Figure 6). For in-stream NO3-N draining arable land, the concentrations have 
remained >10 mg/L over much of the past 30 yr, close to the maximum values suggested by the Drinking Water 
Directive (Council of the European Union, 1998). Similarly, high concentrations have been reported in many 
surface water bodies in Europe due to extensive diffuse sources (Bøgestrand et al., 2005; Lassaletta et al., 2009; 
Velthof et al., 2009). The high N surplus (60 kg/ha·yr in Europe, see Leip et al., 2011) has not only contributed 
to surface water pollution, but also extensively contaminated GW bodies (European Environment Agency, 2012). 
As a groundwater-dominated catchment, GW flow in DMC accounted for 40%–70% of runoff generation and 
its NO3-N concentration remained stable (∼12 and 0.5  mg/L in agricultural and forested areas respectively; 
Figure 8). In other words, NO3-N storage in GW reservoir dictated the high background concentrations in arable 
land due to historical fertilizer inputs. The recovery from the contaminated GW is generally slow due to the long 
residence times (Tesoriero et  al.,  2013), which can exceed >25  yrafter intensive management (Pérez-Martín 
et al., 2016). To note is that, identifying NO3-N inputs as the major landscape characteristic for NO3-N concen-
trations in DMC was based on the fact that the soil properties (i.e., sandy and clay proportions) were relatively 
uniform. In other catchments, subsurface geology and soil properties can be the dominant factors as well (e.g., 
sandy proportion in Rode et al., 2009).

Hydroclimate only had a minor influence on the overall spatial NO3-N pattern due to the near-uniform dis-
tribution of precipitation. However, it was the main driver of the temporal dynamics; more specifically, the 
wetness conditions determined the inter-annual variability of NO3-N by regulating the transport capacity. The 
four schemes summarised in Figure 8, show how NO3-N was retained in the soil zone due to the lack of vertical 
hydrological connectivity in dry periods, and led to a strong decrease in interflow concentrations. The impor-
tance of hydrological connectivity in solute transport has been well documented (Bechtold et al., 2003; Hesser 
et al., 2010; Ocampo et al., 2006). For example, Hesser et al. (2010) found that NO3-N dynamics could only be 
simulated satisfactorily with reasonable simulation of key contributing runoff components. Not only the solute 
transport, the dominance of hydrological conditions also largely regulated biogeochemical transformations in 
DMC, demonstrated by the sensitivity ranking of model parameters (Figure 2). Despite soil denitrification and 
mineralization accounting for 20%–30% of NO3-N inputs, their temporal dynamics were mainly controlled by 
the wetness conditions and the resulting influence on catchment hydrology. On the one hand, the landscape 
connectivity determined how much NO3-N can be transported vertically and laterally, and therefore where N is 
stored and available for further transformations (Bechtold et al., 2003). On the other hand, all the transformation 
processes were intrinsically correlated to the soil moisture distributions (Seitzinger et al., 2006). Similar to other 
catchments (Hesser et al., 2010; Rode et al., 2009), NO3-N export in dry years was substantially lower than in wet 
years (91.5% less in DMC), as an integrated result of depressed hydrological fluxes and biogeochemical process-
es. However, dry years were still important in the longer term, as nitrogen accumulation in the soil during these 
periods enhanced NO3-N concentrations and fluxes in the subsequent years as wetness increased (e.g., 2002 and 
2017; Figure 3). These accumulation-flushing sequence of NO3-N observed in DMC (Wu et al., 2021) have been 
reported for many other catchments (Bechtold et al., 2003; Dupas et al., 2016; Outram et al., 2016). Considering 
that the risk of NO3-N peaks can even be higher due to projected (Papadimitriou et al., 2016) or observed (Kleine 
et al., 2020) climate change (more frequent and severe droughts), further understanding of hydrological and bio-
geochemical re-coupling in re-wetting periods is needed.

Management practices for stream and wetland restoration were the remaining influence on the NO3-N dynamics 
in the study period. Their incorporation in the modeling results is “implicit” here because they were not concep-
tualized by any model equation but by recalibration to the period before management intervention. By comparing 
the simulated results between the original and recalibrated parameter sets, we can roughly estimate that the 
NO3-N export would be ∼10% higher if the cessation of tile drainage and wetland restoration were not applied. 
Considering the restored wetland accounted for 2.5% of the catchment area, such performance was not ideal com-
paring to the previous observations or simulations on restored wetlands. For examples, a 6% NO3-N reduction 
was achieved by restoring only 0.4% of the catchment area as wetlands in a Swedish catchment (Arheimer & 
Wittgren, 2002), and a 5% increase of wetland areas was simulated to reduce ∼30% NO3-N export in Mississippi 
River basin (Hansen et al., 2018). Given the high NO3-N budgets in arable land, further management to enhance 
wetland areas is a potential option for reducing surface water pollution. Moreover, reducing agricultural inputs is 
key to achieving water quality targets. As McLellan et al. (2015) point out, effective reduction of NO3-N export is 
unlikely without reducing fertilizer inputs and removing large areas of land from agricultural production. To aid 
the development of more sustainable management strategies, coupling catchment nitrogen models with economic 
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models is recommended, as it can evaluate alternative management practices from both NO3-N reduction and 
economic loss perspectives (Peña-Haro et al., 2009). Thus, spatially distributed models like mHM-Nitrate have 
important potential in landscape analysis to support such management.

5.  Conclusions
Nitrogen transport and transformations at the field scale are quite well understood, but our ability to quantify 
NO3-N fluxes and export at the catchment scale remain limited due to spatially heterogeneous biogeochemi-
cal-hydrological processes that are dynamic at a range of temporal scales. To unravel the coupling of NO3-N 
cycling and hydrological processes in a more explicit and quantitative way, a grid-based model, mHM-Nitrate, 
was applied in a mesoscale catchment (Demnitzer Millcreek, DMC) near Berlin. Calibration against observations 
at a single gauge were successfully validated for the 2001–2019, and the spatial outputs were further validated 
against in-stream NO3-N concentrations from 5 sites. However, changes in management practices led to degraded 
performance in pre-2001. A recalibration was conducted for this period based on Latin-Hypercube sampling 
and our prior site knowledge, which support an increased role for instream de-nitrification following restoration. 
Overall, mHM-Nitrate can adequately simulate hydrological and NO3-N fluxes with relatively limited data, but it 
is sensitive to dramatic change of management practices.

Further analyzing the long-term hydrological and NO3-N fluxes, we identify landscape characteristics, hydro-
climatic variability, and management practices as three dominant controlling factors in DMC. (a) Landscape 
characteristics, that is, vegetation cover and NO3-N inputs, dictated the spatial patterns of flow and NO3-N. (b) 
Hydroclimatic variability, that is, changing inter-annual wetness conditions, determined the hydrological trans-
port capacity, which further drove the NO3-N dynamics. The simulated NO3-N in soil layers showed that NO3-N 
was retained in soil zone in dry periods due to the depressed vertical transport, therefore leading to lower con-
centrations in generated runoff. Consequently, inter-annual NO3-N dynamics exhibited an accumulation-flushing 
mechanism in dry-wet years. The sensitivity analysis also revealed that biogeochemical transformations were 
closely related to hydrological transport. (c) Management practices, that is, the cessation of tile drainage and wet-
land restoration, reduced NO3-N export by 10%. Due to the high potential of NO3-N peaks, our study highlighted 
the need for further research on rewetting periods. It also demonstrated that further management practice will be 
needed to reduce NO3-N losses in DMC, including reducing agricultural inputs, taking land out of production 
and/or increasing restored wetland areas.

Data Availability Statement
The data used are presented in the tables, figures and Supporting Information. For source codes please refer to 
https://doi.org/10.5281/zenodo.3891629.
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