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Abstract

Automated valuation services (AVSs) offered by listings platforms pre-

dict market values based on property characteristics supplied by users.
We investigate the implementation of such a service for the City of Ab-

erdeen. We fit different market value models with machine learning
methods and assess them in a rolling windows procedure that mimics
an AVS setting. We also investigate the ease and robustness with which

the models can be implemented. We discuss how prediction uncertainty
can be measured and reported to users. If implemented in the future,

such a service has the potential to improve the transparency of the local
housing market.
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1 Introduction

It is common for professionals in the residential real estate industry to use

automated valuations. Banks and rating agencies use such valuations to re-

assess the collateral value of loan portfolios, assessors use them to estimate

the taxable value of properties, and valuers use them as an input when they

derive the market value of a particular property (RICS 2017).

For the general public, however, it was not common to use automated val-

uations. This has changed since listings platforms started to offer automated

valuation services (AVSs).1 The user, such as a house owner, submits informa-

tion on the property’s characteristics online and receives instantly a prediction

of its market value. The service might also provide information about how

certain the prediction is. Equipped with this information, the owner can then

decide, perhaps after contacting an agent and a valuer, whether to list the

property on the platform.

AVSs have the potential to improve the transparency of residential property

markets. This would require, however, that the methods used are sound, the

predictions accurate, and the information provided comprehensible for users.

Platform providers are not very forthcoming regarding the models, methods,

and data they are using. Providers are also reluctant to give information

on the accuracy of the predictions.2 Finally, it is also not clear how—if at

all—prediction uncertainty is measured and translated into the information

reported to users.

1Platforms such as ImmoScout24 and Immowelt-Immonet in Germany, Hometrack and

Zoopla in the UK, and Redfin and Zillow in the US, offer such automated valuation services.
2Keeping details about the implementation private prevents that competitors can copy

it. Matysiak (2017) finds that US providers are more open than European providers with

respect to information on accuracy.
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Academic case studies can help to clarify some of the opacity. First, case

studies can assess which statistical models, if any, are accurate enough for an

AVS.3 Second, case studies can assess how prediction uncertainty should be

measured and reported. Third, case studies can assess whether a particular

statistical model is robust enough so that it can be implemented in an AVS. For

instance, predictions must be provided promptly and lengthy computations or

numerical instabilities would impede this. As the general public is neither an

expert in real estate nor statistics, a model can only be based on property

characteristics that users are able to provide. An AVS should also render only

such statistical results that users are able to understand.

In this paper, we conduct a case study of an AVS for the housing market

of the City of Aberdeen. Such a service might be implemented in the future

and should be useful to all those who participate in the housing market of

Aberdeen. We focus on the statistical modelling and discuss aspects relevant

to the implementation of an AVS. Regarding the statistical modelling, we use

machine learning methods that fit the models for out-of-sample use. We assess

the performance of these models with a rolling windows approach that mim-

ics the updating process of an AVS. We examine whether combining two or

more predictions could lead to improved performance. We assess the statis-

tical models with respect to ease and robustness of implementation. Finally,

we examine how estimation uncertainty can be computed—examining the re-

cent suggestions by Bellotti (2017) and Krause et al. (2020)—and discuss how

estimation uncertainty can be reported most appropriately.

3As residential markets differ, it seems likely that models that work well for one market

might not do so for another market. The no free lunch theorem from machine learning

applies here, see Murphy (2012, pp. 24): no single statistical model will be best for each and

every application.
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There are many papers that fit different statistical models to house price

data.4 Relatively few papers have used methods from machine learning to

prevent that a model overfits to the data in the training sample and then

performs poorly out-of-sample. Kagie and Van Wezel (2007) use the boost-

ing machine—a machine learning method—and compare its predictive per-

formance with those of linear models estimated with ordinary least squares.

The boosting machine performs better out-of-sample, even though Kagie and

Van Wezel do not search for optimal tuning parameters. Antipov and Pokry-

shevskaya (2012) compare the performance of several models estimated with

machine learning methods, but the results are limited, as they use listings and

not transaction data. It is also not clear how they choose tuning parameters.

Mullainathan and Spiess (2017) propose a useful classification of model and

estimator pairings for machine learning methods and give an example that

uses house prices (see in particular the online appendix of their paper). Schulz

et al. (2014) use a rolling window procedure that mimics an AVS setting. They

specify a flexible parametric model using cross-validation in training samples

and use actual out-of-sample prediction errors to assess the estimated models.

Bellotti (2017) and Mayer et al. (2019) use a similar rolling window procedure.

Mayer et al. (2019) compare several flexible models estimated with machine

learning methods, but do not discuss whether the different methods could be

implemented easily and robustly.

The main findings of our case study are as follows. First, flexible models,

4Examples include: Anglin and Gençay (1996), Parmeter et al. (2007), and Haupt et al.

(2010), which examine the same data set but use different models (semi-, non-, or fully

parametric). Martins-Filho and Bin (2005) is another example of a semiparametric model.

Bourassa et al. (2010) fit different spatial models for a given data set and compare predic-

tions. McCluskey et al. (2013) fit linear, neural net, and geospatial models to a given data

set and compare predictions.
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such as penalised splines or boosting machines, outperform the linear and

spatial regression models in terms of their predictive performance. For the most

accurate models, about 52% (82%) of the predictions deviate by no more than

10% (20%) from the sale price. This is in line with the results in Kagie and Van

Wezel (2007) and Mayer et al. (2019) and demonstrates that flexible models

estimated with machine learning methods lead to accurate price predictions.

We find also evidence that combining predictions from different models leads to

even better predictions. Second, our preferred models generate only few very

large prediction errors. This indicates that these models are robust and do not

overfit to observations in training samples that have—undetected—aberrant

prices. The fairly small number of characteristics that we observe will also play

a role for this outcome.5 Third, prediction intervals give the likely range for the

sale price and are as such a useful measure to report prediction uncertainty in

an AVS. However, standard methods to compute such intervals can be costly

to implement and will perform poorly if the model is misspecified (Lei et al.

2018). Conformal prediction intervals are an attractive alternative that are

valid even if the model is misspecified.

The rest of the paper is as follows. Section 2 describes the housing market

of the City of Aberdeen and presents the transaction data that we use in our

case study. Section 3 presents and motivates the statistical models that we

consider and explains the estimators that we use. Section 4 presents the results

of our analysis. Section 5 concludes. The web-appendix gives further technical

details and results from additional robustness analyses.

5A small number of characteristics will also make it easy to check whether AVS users

request plausible characteristic combinations. Naturally, a larger number of characteristics

describe properties better and should result in better predictions.
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2 Data

2.1 Market and raw data

Aberdeen is the third largest city in Scotland and had 228,800 residents in

2017, the year in the middle of our sample period from 2015Q3 to 2019Q4.

The housing stock in 2017 consisted of 116,452 properties, mostly flats (55%),

followed by non-detached (34%) and detached houses (11%). 89,635 properties

were in the private housing sector, the majority in owner occupation (74%),

the rest was rented out. 3,991 residential property transactions were registered

for Aberdeen City in 2017, about 4% of the private stock.6

The raw transaction data comes from the Aberdeen Solicitors Property Cen-

tre Ltd (ASPC), which runs a web-based listing platform through which mem-

ber firms advertise properties for sale.7 The raw data contains the characteris-

tics of the transacted properties, such as the number of bedrooms or the type of

property. It also contains location coordinates and transaction prices obtained

from member firms that prepare and witness the conclusion of sales contracts.

In 2017, the raw data has 2,649 observations, which is less than the number

of transactions registered officially for this year. However, as new properties

are marketed directly by developers and not through the ASPC and as 1,176

new properties entered the market in 2017 (Aberdeenshire Council 2019), the

ASPC raw data cover about 95% of all resale transactions.

Our AVS case study is therefore for an active mid-sized housing market

where information on the majority of resale transactions becomes available in

6The remaining 26,817 properties were social housing and thus in the public sector, which

is not relevant here. The above numbers are collated from Aberdeen City Council (2018),

National Records of Scotland (2018), and Registers of Scotland (2018).
7The ASPC distributes also a printed register of the listings in the Aberdeen area.
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a very timely manner.

2.2 Data cleaning

The raw data has 12,032 observations. We remove 59 observations that have

missing or erroneous values for some characteristics.8 We also remove obser-

vations of unusual properties by imposing value bounds, which corresponds

roughly to trimming at the 1% level, see the web-appendix. It is unlikely that

many market participants are interested in such properties and as their market

value could be predicted only with substantial uncertainty, it seems reasonable

not to consider them for an AVS.

After the data cleaning, the data set contains 11,908 observations. Table 1

presents summary statistics for the price and property characteristics.

[Table 1 about here.]

Three characteristics are continuous: floor area and location coordinates (statis-

tics for coordinates are not reported). The remaining characteristics are either

categorical, such as the energy certificate rating (EPC), or binary, such as

central heating or garage. The characteristic room in Table 1 is the sum of

the number of bed and living rooms, as it might be arbitrary in the individ-

ual case how rooms are classified and advertised.9 The relative frequencies of

sales by property types is similar to the ones reported for the housing stock in

Section 2.1, which indicates a similar transaction propensity for the different

property types.

8Erroneous values are obvious mistakes such as a property with zero rooms or location

coordinates that are outside Aberdeen City.
9We conducted the analysis also with separate room categories. The results of this

analysis are qualitatively identical to the ones reported here, see the web-appendix for details.
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3 Methodology

3.1 Market value models

3.1.1 The prediction problem

The transaction price of a property can always be decomposed into

p = E[p|x] + ε (1)

where x is a vector of property characteristics, such as the number of rooms,

and ε is transaction noise with E[ε|x] = 0 and variance σ2
ε . We call E[p|x] the

market value function and note that

E[p|x] = min
g∈F

E
[
(p− g(x))2

]
(2)

This means that the market value function has—of all possible functions col-

lected in the set G—the minimum mean squared error for p given x (Goldberger

1991, Section 5.4).10 If we knew the conditional distribution of p given x, we

could solve Eq. 2. However, we do not know this distribution and use instead

candidate models m(x) for the market value. Each candidate model depends

on a vector θ of coefficients, which we estimate with a training sample. The

resulting estimator is denoted m̂(x) and is the better the smaller the Mean

Squared Prediction Error (MSPE)

E[(p− m̂(x))2] = (E[p|x]− E[m̂(x)])2 + E[(m̂(x)− E[m̂(x)])2] + σ2
ε

= Bias[m̂(x)]2 + Var[m̂(x)] + σ2
ε

(3)

where (p,x) are observations that have not been used for the estimation of

m(x). Three remarks are in order with respect to Eq.3. First, in the empirical

10The mean squared error on the right-hand side of Eq.2 becomes smaller the more (price

determining) characteristics x contains.

9



analysis, we estimate a version of the MSPE to discriminate between our candi-

date models m(x). Second, the three terms of the MSPE decomposition on the

right-hand side of Eq. 3 are all positive. The last term is irreducible variance

σ2
ε of the noise and corresponds to the MSPE of the unknown market value

function E[p|x], see Eq.1. As we have to choose and estimate m(x), the MSPE

of our candidate models will always be larger than σ2
ε . Third, the remaining

two terms point to a trade-off between the (squared) bias and the variance.

A highly flexible m(x) will have a small bias and, as many coefficients must

be estimated, a large variance. Estimated with a training sample, m̂(x) will

suffer from overfitting as it follows too closely the data in this sample. The

opposite holds for a highly inflexible m(x). In both cases, poor out-of-sample

predictions will result. As an AVS provides, by definition, such predictions, the

model with the right degree of flexibility must be found. We use established

methods from machine learning to deal with this task.

Many different models m(x) could be considered for an AVS. In our case

study, we use models and estimators that lead eventually to an additive rep-

resentation

m(x) =
M∑
m=1

θmbm(x,γm) (4)

with basis functions bm(·) that transform property characteristics and might

depend on further (tuning) parameters γm. Once a model is estimated and im-

plemented as an AVS, users provide vectors of characteristics x (which must

fall within the bounds imposed on the data during estimation) and market

values will be predicted instantly. We examine five different models regarding

their predictive performance and ease of implementation. The first four mod-

els cover the classes given in Mullainathan and Spiess (2017, Table 2) and are:

polynomial model, spline model, random forest, boosting machine. The poly-

nomial model nests the classical linear model and we estimate it with three
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different estimators. The fifth is a geo-spatial model, a type of model that is

frequently used in the real estate literature. The estimators for the different

models require that we choose tuning parameters to regularise the complexity

of m(x), the web-appendix provides details.

3.1.2 Polynomial model

The model has the general additive structure

m(x,θ) = zθ0 + f1(FA,θ1) + f2(LAT,LON,θ2) (5)

where the left-hand side makes now explicit that the function depends on the

vector θ of unknown coefficients. The vector z contains the constant term,

indicators for categorical characteristics in x, and quarterly time dummies; θ0

is the vector of coefficients for these variables. The function f1 produces a

polynomial of degree d1 in the floor area and f2 produces a joint polynomial of

degree d2 in the latitude and longitude. θ1 and θ2 are the vectors of coefficients

for the terms of the two polynomials. d1 and d2 are both tuning parameters.11

We estimate the coefficient vector by minimising the penalised sum of least

squares

S(θ) =
N∑
n=1

(pn −m(xn,θ))2 + λv′
1Dv2 (6)

For the polynomial model, D is the identity matrix with its first entry set to

zero, so that the coefficient for the constant term is never penalised. If we

set λ = 0, the Ols estimator for θ results; if we set v1 = v2 = θ, the Ridge

estimator results; if we set v1 = i (a vector of ones) and v2 = |θ|, the Lasso

estimator results. For Ridge and Lasso, λ is a further tuning parameter and the

penalty term in Eq. 6 punishes variability of coefficient estimates. The Lasso

11For instance, with a cubic polynomial basis, d = 3, we obtain f(x,θ) = [x, x2, x3]θ.
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estimator can go as far as shrinking estimates to zero, thereby deselecting

characteristics from the model. The regularisation achieved by penalised least

squares will increase the bias of m̂(x), but should also reduce its variance.

We fit the polynomial model of Eq. 5 with three different estimators: Ols

with best subset selection, Ridge, and Lasso (Hastie et al. 2009, Chap. 3.4).

The Lasso seems to have a comparative advantage, as best subset selection is

computational expensive and Ridge regression cannot select characteristics.

3.1.3 Penalised splines model

The model has the same structure as Eq.5, but the functions f1 and f2 are cubic

and thin plate splines, respectively, with coefficients collected in the vectors θ1

and θ2. The coefficients are estimated by minimising the penalised regression

sum of squares in Eq. 6. For the spline model, we set v1 = v2 = θ and D is

a zero matrix, except for the diagonal elements that correspond to coefficients

in θ that multiply with a truncated term.12 These diagonal elements are all

equal to one. It follows that tr(D) = K1 + K2, which is the total number of

knots used in the splines. The penalty term in Eq. 6 becomes large if f1 and

f2 are very wiggly and small if the functions are fairly smooth. K1, K2, and λ

are tuning parameters.

12The cubic splines basis is f(x,θ) = [x, x2, x3, |x − κ1|3, . . . , |x − κK |3]θ. It extends a

polynomial with truncated terms |x − κk|, which join at knots, κK > . . . > κ1. The larger

the number of knots K, the more flexible will f(x,θ) be. θ is constrained further to ensure

that the function is linear beyond the boundary knots. The thin plate splines basis is a

two-dimensional extension of the cubic splines basis (Wood 2017, Ch. 5).
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3.1.4 Random forest

Random forests are based on regression trees (Hastie et al. 2009, Chap. 15).

The leaves of trees are sets Ss that divide the characteristic space into non-

overlapping regions. Properties that fall into the same set have the same

market value. This implies

m(x) =
S∑
s=1

1(x ∈ Ss)θs (7)

where 1(·) is an indicator function that becomes ones if the characteristics x

of a property fall into the set Ss and zero otherwise. θs is the market value for

such properties. Both the sets and the corresponding market values have to be

estimated with the training data. The tree estimator starts with all possible

pairwise splits of the values of each characteristic in the data set.13 It looks

then for the characteristic and split that explains—of all such combinations—

the price variation best. This gives the first two branches of the tree. The two

branches should be split into sub-branches if this explains the price variation

even better. The procedure stops once the sets belonging to the branches con-

tain only few observations. In this instance, the leaf Ss has been determined.

For each leaf, θ̂s is the average price of those observations that fall into Ss.

The tree estimator has the tendency to overfit, however. Random forests

improve on this by averaging a large number of individual regression trees,

each tree based on a random sample from the training data set.14 In addition,

random forests randomly reduce the variables that are available for splitting

each node of the tree. This ensures that the individual trees of the random

13If properties have up to three bathrooms, split sets are {1, (2, 3)}, {2, (1, 3)} {3, (1, 2)}.
14The random forest is also robust against outliers, as unusual observations will appear in

only few re-sampled training samples. We deal with unusual observations by setting bounds,

but additional robustness can be useful.
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forest differ from each other. The fraction of variables used to determine

each branch of a tree and the minimum size of the final branches are tuning

parameters.

3.1.5 Boosting machine

The boosting machine builds on trees, often only on those with two branches

(so-called stumps). The boosting machine is a sequential procedure in which

a new tree is fitted to residuals that remain unexplained by the previous step

of the sequence (Hastie et al. 2009, Chap. 10.9). The sequence starts with the

average price for all observations in the training sample. The residuals from

this function become the target to which trees are fitted. The tree that explains

the residuals best becomes part of the estimated market value function. To

prevent overfitting, the tree is not considered in full, but only in proportion

λ, the so-called learning rate. These steps of the sequential procedure are

repeated S-times. λ, S and the number of branches in each tree are tuning

parameters.

3.1.6 Spatial autoregressive model

The spatial autoregressive (SAR) model is

m(x,θ,p) = zθ0 + f(FA,θ1) + θ2wp (8)

where the function f is a polynomial of the floor area with degree d. The row

vector w contains mostly zeros, but has entry 1/k for observations that are the

k-nearest neighbours of the subject property. The vector p collects the prices

in the training sample. The SAR model is similar to Eq. 5, but replaces the

function f2 with a multiple of the average price of nearby properties. Whereas
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the polynomial and the spline models use location coordinates to model the

spatial component of market values, the SAR model uses prices of recently

transacted nearby properties. We estimate Eq. 8 with best subset selection

and the Maximum likelihood estimator. d and k are tuning parameters.

3.2 Assessment of market value models

We estimate and evaluate the performance of the different market value mod-

els with a rolling window procedure that mimics how an actual AVS would

work. Our first training sample covers the period 2015Q3-2016Q2. We fit each

model to the full training sample and to property type sub-samples. The split

ensures that each sub-sample contains similar properties, but comes at the cost

that each sub-sample has—compared to the respective full sample—a smaller

number of observations that can be used for training. The first test sample

is for the quarter 2016Q3. We then roll the training sample forward by one

quarter and refit the models to estimate market values for subject properties

in the test sample of the next quarter.15 The procedure ends when the last

test sample, 2019Q4, is reached. We implement the procedure separately with

the price and the log price as dependent variable. Using log prices can help

to alleviate efficiency losses due to heteroscedasticity during estimation. As

users of an AVS are only interested in predictions of market values, not in

predictions of log market values, we transform the log predictions back to the

natural scale with the smearing estimator of Duan (1983). The web-appendix

15We also examined the predictive performance when the windows are rolled forward by

one month. The results are comparable to those reported here, see the web-appendix. We

did not examine the effect the length of the training sample. The samples covering four

quarters (twelve months) produce good in-sample fits for all five models and we believe that

improvements, if any at all, would be only marginal.
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provides details.

We measure the performance of the candidate models based on the relative

prediction errors

en =
pn − m̂(xn)

m̂(xn)
(9)

where n indicates an observation in the test sample and m̂(·) is estimated

with the observations in the training sample. Negative (positive) errors imply

that the prediction of the market value is larger (smaller) than the actual

transaction price. An error of zero implies that the estimated market value

predicts the price perfectly. While this can happen occasionally, the irreducible

noise prevents that it will be the norm. Table 2 gives the performance measures

that we use to compare the different market value models.

[Table 2 about here.]

It is possible that the different measures lead to different rankings of the dif-

ferent models. Any assessment thus requires a—to some degree subjective—

judgement about which aspects of the relative error distribution are most rel-

evant for the application at hand. In our case study, we focus on the relative

error rate RER(b) and the mean squared relative error (MSRE). Both take bias

and dispersion of the relative errors into account. The RER(b) gives the frac-

tion of relative errors en that fall within the interval [−b, b]. Setting b to 10%

(20%) implies that RER(b) gives the fraction of observations in test samples

where the predicted market value does not deviate by more than±10% (±20%)

from the transaction price. Such information is frequently used by practition-

ers when assessing valuation accuracy. Moreover, as RER(b) is a function of b,

it allows for visual comparison of error distributions. The MSRE averages the

squared relative errors, and places hence more (less) weight on absolutely large
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(small) errors. In addition to the RER(b) and the MSRE, we use several other

performance measure to scrutinise specific aspects of the predictions from the

different market value models, such as their unbiasedness.

4 Empirical results

4.1 Performance of market value models

The four implementations of the rolling window procedure are: models fit

to log prices using full samples (LQ1) or property type sub-samples (LQ2)

for training; models fit to prices in natural scale using full samples (NQ1) or

property type sub-samples (NQ2) for training. The results for the implemen-

tations are given in Figures 1 and 2, which plot RER(b), and in Tables 3 to

6, which give detailed information on the performance measures. The tables

report also the performance of a simple benchmark, which predicts the market

value of properties in a test sample with the average price of all properties that

have been transacted in the last quarter of the corresponding training sample.

We call these benchmark predictions unconditional, as they ignore any further

information that is available on individual properties.

[Figure 1 about here.]

[Figure 2 about here.]

Figures 1 and 2 show that the RER(b) for the penalised splines and the boost-

ing machine model always lie—irrespective of the implementation—to the left

of the RER(b) for the other models. For both models, the fraction of predic-

tions that fall within ±10% of the price is, averaged over the three property
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types, always about three times larger than the fraction for the unconditional

model. For the two next best models, random forest and SAR, the fraction is

always about 2.8 times larger. The polynomial model comes last, irrespectively

of the estimator used, but performs still much better than the benchmark.

This shows clearly that property characteristics explain a substantial part of

the cross-sectional variation of property prices.

[Table 3 about here.]

[Table 4 about here.]

[Table 5 about here.]

[Table 6 about here.]

The penalised spline model performs best under implementation LQ2, where

52.0% (82.0%) of all predictions lie within ±10% (±20%) of the prices of the

properties in the test samples. This is slightly better than the performance

of the boosting machine, which performs best under implementation LQ1 and

produces predictions that are in 51.3% (81.1%) of the cases within ±10%

(±20%) of the transaction price.16

[Table 7 about here.]

The penalised splines model is also the best performer over all models and im-

plementations when the MSRE is the performance measure, as Table 7 shows.

16The fractions can be obtained by computing the observation-weighted averages of

RER(0.1) and RER(0.2) from Table 3 (boosting machine) and Table 4 (penalised spline).
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However, this time the penalised splines model performs best if implemented

under LQ1. The performance of the boosting machine is again close, in par-

ticular if implemented under NQ1. As both models show similar performance,

it is not obvious which one to choose for an AVS. If sufficient resources are

available, such a choice might not be necessary, as predictions could be com-

bined. We assessed this for an equally-weighted average of the predictions

from the penalised splines and the boosting machine model. The RER(0.1) in-

creases by 4.2% and the MSRE decreases by 6.7% relative to the performance

of the penalised splines model on its own, see the web-appendix for details.

The combination of predictions has not received much attention in the AVS

literature.

There are several other interesting aspects. First, all models generate pre-

dictions that are biased downwards by about 1.5% on average, see the entries

for the MRE in Tables 3 to 6. The bias comes from the fact that we predict

the market value of a property as if it was sold at the end of the training

rather than during the test sample.17 Second, as discussed above, there might

be a trade-off between using full or property type sub-samples for training.

Sub-sample observations are similar, which should make model training easier,

but the number of observations is small, which should make it more difficult.

Table 7 gathers the MSRE for the different models and implementations. Pre-

diction errors of the penalised splines model for detached houses, the smallest

segment in the Aberdeen housing market, are less dispersed when the models

are trained with full samples (MSRE of 2.2% for LQ1) than when trained with

17Over the period of our case study, the quality-controlled house price index for Aberdeen

declined, on average, by 1.5% per quarter. A statistical model could be used to forecast

changes of the price trend and these could then be used to adjust market value predictions.

However, this task is separate from finding the best market value model. We do not approach

it here.

19



sub-samples (MSRE of 2.9% for LQ2). In this case, the sample size effect

dominates. For non-detached houses, the effect is marginal and goes in the

opposite direction: the MSRE is 1.8% for LQ1 compared to 1.7% for LQ2.

For flats, there is no difference. The boosting machine performs always bet-

ter when trained with full samples, which should be the result of its adaptive

estimation. Third, Tables 4 and 6 show that errors of predictions conditioned

only on the property type are—measured with REV, MSRE, and MARE—the

least dispersed for detached houses, which seems counter-intuitive. Once all

observed characteristics are considered, the dispersion of errors for detached

houses is—as expected—above those of non-detached houses. The dispersion

of errors for flats is now the highest, something we would not expect, as flats

are less heterogeneous than houses. However, we do not observe the location

of a flat within a building —such as basement or top floor—, which is certainly

a characteristic that is highly relevant for its market value.

4.2 Implementation and quality assurance

The setting up of an AVS requires that the underlying statistical model can be

implemented robustly and maintained easily in order to provide market value

estimates at low cost on a continuous basis. The implementation involves

the stages of data preparation, model training and testing, fitting of the final

model m̂(x), and—eventually—its integration in a web service.18 Less robust

models m̂(x) require additional attention every time the models are fitted and

may produce unreliable estimates. In our experience, the maximum likelihood

estimator of the SAR model can suffer from convergence issues, which require

18Since we fit the models to location coordinates, a web service also needs to integrate

digital maps to match a street address—as provided by the user—to coordinates.
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additional attention during the training stage. Models that overfit to the data

in training samples can produce unreliable market value estimates. This can

be seen from Table 4, where the MSRE of the polynomial (fitted with Ols) and

the SAR models are several orders larger than the MSRE of the other models.19

The other models (or other estimators for the polynomial model) balance the

bias-variance trade-off through regularisation and cope much better with the

problem of overfitting.

An AVS in operation needs to be backtested to monitor performance and

identify potential improvements. Plots of cross-validated relative errors (CVRE)

and realised MSRE are useful tools to monitor the quality of an AVS over time.

The CVRE indicates how a newly trained model is expected to perform on fu-

ture market value requests. The MSRE summarises the performance given the

transacted properties in a given period. Figure 3 gives an example and shows

the quarterly CVRE and MSRE of the penalised splines and boosting machine

models.

[Figure 3 about here.]

The CVRE and MSRE are closely related to each other, indicating that the

models perform as expected. However, deviations between them can point to

problems that need to be investigated further. For instance, the unusually

large MSRE for detached houses in 2019Q3 is due to a single property which

receives a market value estimate substantially above its actual transaction

price. This divergence cannot be explained with the characteristics of the

property, so transaction noise seems the cause of it. Figure 3 shows that the

overall performance of both models gets worse for flats over the period of

19The large MSRE is caused by a single property in the test sample that has a floor area

just outside the range observed in the training sample.
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our case study. During the past decade, many new flats were constructed in

Aberdeen and these flats have started to enter the resale market. We do not

observe a property’s age and cannot control for possible vintage effects this

brings. Spatial plots of the errors and tests of spatial correlation are other

useful tools for backtesting. In our case, neither reveal any structure in the

errors that remains unexplained (not reported).

4.3 Uncertainty of market value estimates

Users of an AVS are not only interested in the market value estimate itself,

but also the uncertainty associated with this estimate. Automated valuations

targeted at professional users often report interval estimates which provide a

price range that is likely to cover the sale price that the property will fetch

if it is sold (Krause et al. 2020). Such prediction intervals provide a sound

conceptual framework for assessing uncertainty. Prediction intervals can be

computed in different ways which may lead to significant differences in the

intervals’ reliability (realised coverage) and efficiency (interval length).

To demonstrate how uncertainty estimates can be computed, we examine

the performance of two main approaches—standard and conformal prediction

intervals—for market value estimates from the penalised splines model. Stan-

dard prediction intervals rely on asymptotic theory and may not be reliable

in finite samples. Conformal prediction intervals, in contrast, require less de-

manding assumptions and are reliable even if the model is misspecified (Lei

et al. 2018).20 Table 8 reports the realised coverage of the standard and con-

20The bootstrap is a third approach for the construction of prediction intervals, which

often produces better finite sample results than standard method. We refer to Krause et al.

(2020) for a comparison of the bootstrap and standard approaches. For an application of

22



formal prediction intervals for our data. The prediction intervals are computed

at the 80% and 90% confidence levels. Details are given in the web-appendix.

[Table 8 about here.]

The standard prediction intervals over-cover the nominal confidence levels.

This is likely due to deviations from the normal approximation underlying their

construction, which results in much wider intervals than those from the con-

formal method. The conformal prediction intervals have reasonable coverage

rates that are closer to their nominal levels. It must be noted, however, that

the length of the conformal prediction intervals depend only on the data in the

training sample and not the particular properties for which a market values

should be estimated. Thus, unlike standard prediction intervals, the conformal

intervals will be too wide for some and too short for other properties.

Though appealing from a statistical point of view, prediction intervals are

often misunderstood. A common misperception is that a (1 − α) confidence

level implies that there is (1−α)% chance that the sale price will fall within the

reported prediction interval. A prediction interval, however, is an estimate of

the possible price range which either contains the price or not. Hence, a correct

interpretation of the confidence level is based on the notion of calculating

prediction intervals from many samples. While the interval bounds will vary

from sample to sample, (1 − α)% of these hypothetical prediction intervals

will include the sale price. To avoid such confusion, an AVS targeted at the

general public could report an uncertainty score that, for instance, categorizes

uncertainty according to the implied confidence level of prediction intervals

that are within ±10%,±20%, . . . of the market value estimates. An alternative

conformal prediction intervals see Bellotti (2017).
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to such a qualitative measure are Bayesian credible intervals, which would allow

probabilistic statements about the sale price itself to be made.

5 Conclusion

In this paper, we conducted a case study for an AVS for the housing market of

the City of Aberdeen. We considered five statistical models and used machine

learning methods to fit the models for the explicit purpose of predicting market

values out-of-sample. While all of the models allow for a flexible relationship

between property characteristics and price, they differ by how this flexibility is

regularised in order to avoid that the models fit too closely to data in training

samples. The case study produces three important insights.

First, the penalised splines and the boosting machine outperform the poly-

nomial and the spatial autoregressive models. It does not matter much which

estimator is used for the estimation of the polynomial model. The random

forest shows a good performance overall. The boosting machine has been ap-

plied to house price data by Kagie and Van Wezel (2007) and Mayer et al.

(2019). In both cases, however, penalised splines were not part of the set of

candidate models. In our preferred implementation, the penalised spline model

is effectively a decomposition of the log price into shift terms for categorical

characteristics, a undetermined function for the floor space and an undeter-

mined function for the location value. While additive models have been used

to model house prices before (see Fn.4), they have not been considered for ap-

plications that focus on out-of-sample performance. Given that the penalised

splines model performs slightly better than the boosting machine and given

its more intuitive form, we find it a particular attractive model. Perhaps a

combination of the market value estimates from both models would be even

24



better. The question of whether and how to combine estimates from different

candidate models is a question for future research.

Second, an AVS should not only consider the out-of-sample performance

of market value estimates, but must also ensure that the models can be fitted

easily and that estimates can be calculated quickly. We experienced that some

models are able to deal with this better than others. The SAR model, for

instance, suffered at times from slow convergence, which could pose a serious

problem in an AVS.

Third, an AVS must provide some indication to users how certain the mar-

ket value estimates are. This requires not only the correct measure to assess

such uncertainty, but requires that the information is reported in a clear man-

ner. We have shown that prediction intervals based on conformal methods

produce reliable uncertainty measures for market value estimates. Bayesian

credible intervals have a more intuitive interpretation than the prediction in-

tervals discussed here. Their implementation, however, requires to state prior

assumption on the sale price distribution. This is an area for future research.
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Table 1: Summary statistics for the transacted properties. Reports sum-
mary statistics for properties transacted during 2016Q3-2019Q4. Price is in GBP

’000. Floor area is in sqm. Rooms is the sum of the number of bed and living rooms.
Number of observations is 11,908.

Mean Std. Dev. Min. Max

Price 192.15 110.27 25.00 155.00

Floor area 83.73 41.12 19.00 458.00

Rooms 3.71 1.47 1.00 10.00

Bathrooms 1.25 0.49 1.00 4.00

EPC rating 3.74 0.87 2.00 7.00

Property type

Detached 0.11

Non-detached 0.39

Flats 0.50

Has

Central heating 0.93

Garden 0.73

Garage 0.23

Double garage 0.04

Other parking 0.48
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Table 2: Performance measures. Gives description of and formulas for the
performance measures based on the relative prediction errors. NT is the number of

observations in the test samples that provide the relative prediction errors en. 1(·) is
the indicator function that takes the value one if the argument is correct and value
zero otherwise.

Performance measure Description Formula

Mean relative error Arithmetic average over

all errors

MRE = N−1
T

∑NT

n=1 en

Median relative error Middle of the error distri-

bution

MDRE = med (en)

Relative error variance Variation of errors around

their mean

REV = N−1
T

∑NT

n=1(en −MRE)2

Mean squared relative

error

Arithmetic average over

squared errors

MSRE = N−1
T

∑NT

n=1(en)2

Mean absolute relative

error

Arithmetic average over

absolute errors

MARE = N−1
T

∑NT

n=1 |en|

Relative error rate Fraction of errors that fall

within −b 6 en 6 b

RER(b) = N−1
T

∑NT

n=1 1(|en| 6 b)
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Table 3: Performance measures 2016Q3-2019Q4, implementation LQ1.
Shows performance measures for market value models fitted to log prices with quar-

terly rolling window, trained with full samples. Log market value predictions are
re-transformed to natural scale using the smearing estimator of Duan (1983).

MRE MDRE REV MSRE MARE RER(0.1) RER(0.2)

Detached (NT = 1, 019)

Unconditional 0.8740 0.7150 0.5536 1.3174 0.8866 0.0451 0.0952

Polynomial (Ols) -0.0107 -0.0197 0.0366 0.0367 0.1416 0.4651 0.7630

Polynomial (Ridge) 0.0190 0.0022 0.0923 0.0927 0.1559 0.4287 0.7306

Polynomial (Lasso) -0.0076 -0.0147 0.0347 0.0348 0.1440 0.4228 0.7581

Penalised splines -0.0008 -0.0079 0.0224 0.0224 0.1100 0.5792 0.8545

Random forest 0.0061 -0.0068 0.0262 0.0263 0.1166 0.5536 0.8378

Boosting machine 0.0090 0.0028 0.0246 0.0246 0.1137 0.5674 0.8446

Spatial autoregressive 0.0039 -0.0086 0.0267 0.0268 0.1271 0.4779 0.8073

Non-detached (NT = 3, 632)

Unconditional 0.1057 -0.0601 0.2604 0.2716 0.3406 0.1892 0.4193

Polynomial (Ols) -0.0050 -0.0167 0.0339 0.0340 0.1429 0.4309 0.7470

Polynomial (Ridge) -0.0114 -0.0282 0.0353 0.0354 0.1476 0.4072 0.7299

Polynomial (Lasso) -0.0060 -0.0208 0.0364 0.0364 0.1508 0.3937 0.7197

Penalised splines -0.0036 -0.0069 0.0177 0.0177 0.1022 0.5837 0.8739

Random forest -0.0219 -0.0260 0.0223 0.0228 0.1156 0.5361 0.8348

Boosting machine -0.0056 -0.0073 0.0179 0.0180 0.1032 0.5757 0.8780

Spatial autoregressive 0.0018 -0.0103 0.0235 0.0235 0.1144 0.5507 0.8411

Flats (NT = 4, 344)

Unconditional -0.2910 -0.3552 0.1015 0.1862 0.38 0.0967 0.2247

Polynomial (Ols) -0.0230 -0.0164 0.0554 0.0559 0.1865 0.3363 0.6137

Polynomial (Ridge) -0.0271 -0.0261 0.0651 0.0658 0.2044 0.3006 0.5654

Polynomial (Lasso) -0.0229 -0.0174 0.0602 0.0607 0.1960 0.3145 0.5847

Penalised splines -0.0251 -0.0205 0.0349 0.0355 0.1453 0.4275 0.7426

Random forest -0.0619 -0.0640 0.0388 0.0426 0.1607 0.3971 0.6878

Boosting machine -0.0130 -0.0177 0.0368 0.0370 0.1450 0.4471 0.7463

Spatial autoregressive -0.0365 -0.0382 0.0429 0.0442 0.1647 0.3831 0.6683
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Table 4: Performance measures 2016Q3-2019Q4, implementation LQ2.
Shows performance measures for market value models fitted to log prices with quar-

terly rolling window, trained with property type sub-samples. Log market value
predictions are re-transformed to natural scale using the smearing estimator of Duan
(1983).

MRE MDRE REV MSRE MARE RER(0.1) RER(0.2)

Detached (NT = 1, 019)

Unconditional 0.0061 -0.0890 0.1607 0.1606 0.2830 0.2237 0.4308

Polynomial (Ols) -0.0056 -0.0139 0.0341 0.0341 0.1284 0.5172 0.8210

Polynomial (Ridge) -0.0071 -0.0175 0.0312 0.0312 0.1327 0.4897 0.7856

Polynomial (Lasso) -0.0078 -0.0130 0.0318 0.0319 0.1327 0.4769 0.8004

Penalised splines 0.0004 -0.0053 0.0288 0.0288 0.1180 0.5634 0.8535

Random forest -0.0252 -0.0381 0.0263 0.0269 0.1207 0.5270 0.8220

Boosting machine -0.0074 -0.0135 0.0277 0.0277 0.1182 0.5506 0.8220

Spatial autoregressive 0.6244 -0.0084 4e+02 4e+02 0.7526 0.5556 0.8348

Non-detached (NT = 3, 632)

Unconditional -0.0022 -0.1545 0.2116 0.2116 0.3272 0.1589 0.3455

Polynomial (Ols) -0.0099 -0.0257 0.0327 0.0328 0.1361 0.4617 0.7715

Polynomial (Ridge) -0.0105 -0.0299 0.0343 0.0344 0.1454 0.4292 0.7354

Polynomial (Lasso) -0.0087 -0.0294 0.0340 0.0341 0.1433 0.4375 0.7472

Penalised splines -0.0097 -0.0098 0.0164 0.0165 0.0978 0.6093 0.8910

Random forest -0.0351 -0.0377 0.0205 0.0217 0.1126 0.5430 0.8411

Boosting machine -0.0087 -0.0091 0.0184 0.0184 0.1033 0.5859 0.8736

Spatial autoregressive -0.0116 -0.0129 0.0190 0.0191 0.1027 0.5931 0.8794

Flats (NT = 4, 344)

Unconditional -0.0101 -0.1076 0.1990 0.1991 0.3372 0.1724 0.3734

Polynomial (Ols) 2e+08 -0.0186 2e+22 2e+22 2e+08 0.3464 0.6225

Polynomial (Ridge) -0.0085 -0.0244 1.1632 1.1633 0.2123 0.3187 0.5861

Polynomial (Lasso) -0.0210 -0.0206 0.0579 0.0583 0.1914 0.3319 0.6018

Penalised splines -0.0174 -0.0171 0.0353 0.0356 0.1450 0.4348 0.7444

Random forest -0.0574 -0.0582 0.0387 0.0420 0.1588 0.4000 0.6988

Boosting machine -0.0112 -0.0154 0.0389 0.0390 0.1474 0.4433 0.7386

Spatial autoregressive 3e+12 -0.0255 5e+25 5e+25 3e+12 0.3957 0.6937
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Table 5: Performance measures 2016Q3-2019Q4, implementation NQ1.
Shows performance measures for market value models fitted to prices with quarterly

rolling window, trained with full samples.

MRE MDRE REV MSRE MARE RER(0.1) RER(0.2)

Detached (NT = 1, 019)

Unconditional 0.8625 0.7059 0.5465 1.2904 0.8755 0.0481 0.1011

Polynomial (Ols) -0.0074 -0.0081 0.0299 0.0300 0.1308 0.4907 0.7886

Polynomial (Ridge) 0.0116 0.0020 0.0334 0.0335 0.1401 0.4356 0.7660

Polynomial (Lasso) 0.0038 0.0013 0.0324 0.0324 0.1396 0.4346 0.7679

Penalised splines -0.0101 -0.0133 0.0220 0.0221 0.1103 0.5860 0.8476

Random forest -0.0058 -0.0104 0.0241 0.0241 0.1139 0.5595 0.8397

Boosting machine 0.0000 -0.0021 0.0246 0.0246 0.1145 0.5556 0.8279

Spatial autoregressive 0.0033 -0.0087 0.0324 0.0324 0.1221 0.5113 0.8348

Non-detached (NT = 3, 632)

Unconditional 0.0997 -0.0668 0.2576 0.2675 0.3393 0.1894 0.4091

Polynomial (Ols) 0.0005 -0.0104 0.0372 0.0372 0.1497 0.4017 0.7260

Polynomial (Ridge) -0.0109 -0.0276 0.0361 0.0362 0.1516 0.3822 0.7161

Polynomial (Lasso) -0.0044 -0.0208 0.0382 0.0383 0.1556 0.3811 0.7032

Penalised splines -0.0034 -0.0058 0.0187 0.0187 0.1056 0.5661 0.8684

Random forest -0.0255 -0.0278 0.0218 0.0224 0.1150 0.5300 0.8373

Boosting machine -0.0083 -0.0094 0.0181 0.0182 0.1038 0.5735 0.8733

Spatial autoregressive 0.0012 -0.0062 0.0223 0.0223 0.1125 0.5471 0.8494

Flats (NT = 4, 344)

Unconditional -0.2951 -0.3578 0.1002 0.1873 0.3818 0.0965 0.2201

Polynomial (Ols) -0.0202 -0.0185 0.0607 0.0611 0.1892 0.3416 0.6112

Polynomial (Ridge) -0.0416 -0.0343 0.0575 0.0592 0.1951 0.3168 0.5861

Polynomial (Lasso) -0.0350 -0.0260 0.0572 0.0584 0.1931 0.3248 0.5868

Penalised splines 0.0065 -0.0191 1.4519 1.4519 0.1810 0.4109 0.7093

Random forest -0.0749 -0.0721 0.0375 0.0431 0.1620 0.3969 0.6842

Boosting machine -0.0308 -0.0289 0.0347 0.0357 0.1442 0.4388 0.7422

Spatial autoregressive -0.0344 -0.0388 0.0435 0.0447 0.1647 0.3874 0.6713
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Table 6: Performance measures 2016Q3-2019Q4, implementation NQ2.
Shows performance measures for market value models fitted to prices with quarterly

rolling window, trained with property type sub-samples.

MRE MDRE REV MSRE MARE RER(0.1) RER(0.2)

Detached (NT = 1, 019)

Unconditional 0.0053 -0.0903 0.1618 0.1618 0.2842 0.2100 0.4289

Polynomial (Ols) 0.0087 -0.0033 0.0513 0.0514 0.1448 0.4759 0.7709

Polynomial (Ridge) -0.0065 -0.0139 0.0365 0.0365 0.1428 0.4553 0.7630

Polynomial (Lasso) -0.0075 -0.0164 0.0354 0.0354 0.1390 0.4553 0.7699

Penalised splines 0.0055 0.0018 0.0380 0.0381 0.1338 0.4956 0.8191

Random forest -0.0390 -0.0426 0.0244 0.0259 0.1199 0.5270 0.8142

Boosting machine -0.0214 -0.0159 0.0278 0.0282 0.1205 0.5408 0.8201

Spatial autoregressive -0.0014 -0.0030 0.0675 0.0675 0.1390 0.5261 0.8043

Non-detached (NT = 3, 632)

Unconditional -0.0041 -0.1549 0.2108 0.2108 0.3273 0.1602 0.3475

Polynomial (Ols) -0.0062 -0.0200 0.0369 0.0369 0.1407 0.4438 0.7541

Polynomial (Ridge) -0.0114 -0.0282 0.0348 0.0350 0.1488 0.4053 0.7219

Polynomial (Lasso) -0.0098 -0.0268 0.0351 0.0351 0.1475 0.4182 0.7313

Penalised splines -0.0087 -0.0082 0.0187 0.0188 0.1037 0.5796 0.8744

Random forest -0.0389 -0.0382 0.0201 0.0216 0.1126 0.5394 0.8425

Boosting machine -0.0144 -0.0126 0.0185 0.0187 0.1043 0.5785 0.8673

Spatial autoregressive -0.0089 -0.0084 0.0201 0.0201 0.1055 0.5845 0.8764

Flats (NT = 4, 344)

Unconditional -0.0145 -0.1100 0.1973 0.1975 0.3366 0.1694 0.3745

Polynomial (Ols) -0.0146 -0.0173 0.0744 0.0746 0.1881 0.3512 0.6218

Polynomial (Ridge) -0.0306 -0.0269 0.0595 0.0604 0.1923 0.3211 0.5956

Polynomial (Lasso) -0.0234 -0.0221 0.0571 0.0577 0.1902 0.3312 0.5983

Penalised splines -0.0151 -0.0178 0.0460 0.0462 0.1502 0.4357 0.7384

Random forest -0.0679 -0.0650 0.0373 0.0419 0.1587 0.4019 0.6978

Boosting machine -0.0240 -0.0226 0.0364 0.0370 0.1446 0.4498 0.7471

Spatial autoregressive -0.0214 -0.0213 0.0448 0.0453 0.1573 0.4065 0.7047
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Table 7: Mean squared relative error 2016Q3-2019Q4. Shows MSRE for dif-
ferent implementations. Log market value predictions are re-transformed to natural

scale using the smearing estimator of Duan (1983). Number of observation is 8,995.

LQ1 LQ2 NQ1 NQ2

Unconditional 0.3488 0.1998 0.3446 0.1986

Polynomial (Ols) 0.0449 9e+22 0.0479 0.1270

Polynomial (Ridge) 0.0566 0.5792 0.0470 0.0474

Polynomial (Lasso) 0.0478 0.0455 0.0473 0.0460

Penalised splines 0.0268 0.0271 0.7112 0.0342

Random forest 0.0301 0.0321 0.0326 0.0319

Boosting machine 0.0279 0.0294 0.0274 0.0286

Spatial autoregressive 0.0339 2e+25 0.0343 0.0376
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Table 8: Comparison of prediction intervals. Shows summary statistics for
standard and conformal prediction intervals for penalised splines model. Nominal

coverage is (1 − α). Penalised splines model is fitted to log prices with quarterly
rolling window, samples split by property type. Length reports the interval length
relative to the market value estimate.

Standard Conformal

Coverage Length Coverage Length

Detached (N = 1, 019)

α = 0.1 0.929 0.600 [0.085] 0.898 0.517 [0.086]

α = 0.2 0.881 0.465 [0.065] 0.826 0.394 [0.062]

Non-detached (N = 3, 632)

α = 0.1 0.935 0.507 [0.061] 0.891 0.428 [0.051]

α = 0.2 0.869 0.394 [0.047] 0.782 0.310 [0.032]

Flats (N = 4, 344)

α = 0.1 0.933 0.756 [013.6] 0.871 0.595 [0.096]

α = 0.2 0.866 0.583 [0.103] 0.762 0.437 [0.063]
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Figure 1: Relative error rate for 2016Q3-2019Q4, implementation LQ1
and LQ2. Shows the relative error rate for market value models fitted to log prices

with quarterly rolling window, samples are (not) split by property type in lower
(upper) panel. Log market value predictions are re-transformed to natural scale

using the smearing estimator of Duan (1983). Relative error rate is truncated at
1.0.
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Figure 2: Relative error rate for 2016Q3-2019Q4, implementation NQ1
and NQ2. Shows the relative error rate for market value models fitted to prices

with quarterly rolling window, samples are (not) split by property type in lower
(upper) panel. Relative error rate is truncated at 1.0.

38



Penalised splines

Detached

● ●

●

●

●
●

●

●
●

●

● ●
●

0.01

0.02

0.03

0.04

0.05

0.06

0.07

2016Q3 2017Q1 2017Q3 2018Q1 2018Q3 2019Q1 2019Q3

● MSRE
CVRE

Boosting machine

Detached

● ●
●

●

●

●

●
●

●

● ●

● ●

●

0.01

0.02

0.03

0.04

0.05

0.06

0.07

2016Q3 2017Q1 2017Q3 2018Q1 2018Q3 2019Q1 2019Q3

● MSRE
CVRE

Non−detached

● ●
●

●

●
● ●

●
●

●

●
● ●

●

0.01

0.02

0.03

0.04

0.05

0.06

0.07

2016Q3 2017Q1 2017Q3 2018Q1 2018Q3 2019Q1 2019Q3

● MSRE
CVRE

Non−detached

● ● ●

●

● ● ●
● ●

●
●

●

● ●

0.01

0.02

0.03

0.04

0.05

0.06

0.07

2016Q3 2017Q1 2017Q3 2018Q1 2018Q3 2019Q1 2019Q3

● MSRE
CVRE

Flats

● ●
●

●

●

●

●

●

●

●

● ● ● ●

0.01

0.02

0.03

0.04

0.05

0.06

0.07

2016Q3 2017Q1 2017Q3 2018Q1 2018Q3 2019Q1 2019Q3

● MSRE
CVRE

Flats

● ●

● ●

●
●

● ● ●

●

●

●
●

●

0.01

0.02

0.03

0.04

0.05

0.06

0.07

2016Q3 2017Q1 2017Q3 2018Q1 2018Q3 2019Q1 2019Q3

● MSRE
CVRE

Figure 3: MSRE and CVRE for each quarter in 2016Q3-2019Q4, imple-
mentation LQ2. Shows the MSRE and CVRE for penalised splines model and

boosting machine. Horizontal line is MSRE for the whole period. Models are fitted
to log prices with quarterly rolling window, samples are split by property type in

lower (upper) panel. Log market value predictions are re-transformed to natural
scale using the smearing estimator of Duan (1983).
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