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ABSTRACT
Autonomous systems, like drones and self-driving cars, are becom-
ing part of our daily lives. Multiple people interact with them, each
with their own expectations regarding system behaviour. To adapt
system behaviour to human preferences, we propose and explore a
game-theoretic approach. In our architecture, autonomous systems
use sensor data to build game-theoretic models of their interaction
with humans. In these models, we represent human preferences
with types and a probability distribution over them. Game-theoretic
analysis then outputs a strategy, that determines how the system
should act to maximise utility, given its beliefs over human types.
We showcase our approach in a search-and-rescue (SAR) scenario,
with a robot in charge of locating victims. According to social psy-
chology, depending on their identity some people are keen to help
others, while some prioritise their personal safety. These social
identities define what a person favours, so we can map them di-
rectly to game-theoretic types. We show that our approach enables
a SAR robot to take advantage of human collaboration, outperform-
ing non-adaptive configurations in average number of successful
evacuations.

CCS CONCEPTS
•Computer systems organization→Robotics; •Human- cen-
tered computing→ Collaborative interaction.
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1 INTRODUCTION
Autonomous systems are increasingly operating among us. We
share roads with self-driving cars [4], and drones deliver parcels at
our doorsteps [15]. These systems need to adapt to the complexity of
the real world. For instance, changes in weather conditions require
adaptation from delivery drones, since harsh weather can distort
sensor data needed for object detection [3]. These systems should
also adapt to the needs, expectations, and preferences of the human
beings they interact with [9]. For example, self-driving car users
differ on preferred speed and route to destination. This depends on
their sense of urgency, how safe they feel, and even the trust they
have in the system. Recognising and adapting autonomous systems
to the differences among humans is key for enabling robot-human
cooperation. More importantly, if a system does not align with
human expectations, it is less likely to be trusted and used [14].

Dealing with uncertain human preferences is not only a problem
for autonomous systems. Game theory, the study of mathematical
models of conflict and cooperation [12], is also interested in sce-
narios where interacting agents are uncertain about each other’s
preferences. Game theory studies scenarios — called games —where
rational and self-interested agents interact, and these interactions
affect the utility they perceive. This definition suits board games,
card games, markets, and even software development teams [6]. In
games like chess, agent preferences are unambiguous: they both
have full visibility of the board and want to win the game. In con-
trast, in games like poker agent preferences are uncertain, since
they have no access to the deck or their opponent’s hand. Bayesian
games are game-theory’s approach to model such scenarios.

One of the most representative examples of Bayesian games are
sealed-bid auctions [13]. Here agents are the bidders and, although
they know their own valuation of the auctioned item, they ignore
the valuation of competing bidders. An agent’s private informa-
tion, like the item valuation, is called its type. In a Bayesian game,
the probability distribution over types is common knowledge. An
agent’s strategy in a Bayesian game defines their behaviour accord-
ing to their type. At equilibrium, the strategy of every agent is the
best response to the strategies of the other agents. An equilibrium
is stable — deviation from equilibrium would result in utility loss
— so we expect agents to adopt these strategies. In fact, there is
empirical evidence that experienced bidders perform equilibrium
strategies when engaging in internet auctions [19].

In this paper, we propose autonomous systems equipped with
Bayesian game models of human-system interactions (section 2).
Using sensors, autonomous systems detect when they engage in
an interaction that requires adaptation. When this happens, the
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system uses sensor data to complete a game-theoretic model. Fi-
nally, a game solver analyses the model to obtain the strategies at
equilibrium. The autonomous system then translates this strategy
to actuator commands.

The game-theoretic models behind system adaptation are, in
essence, models of social behaviour. Thus, designing these mod-
els can benefit from psychological theories of group behaviour. In
section 3, we use the social identity approach to design a search-and-
rescue (SAR) robot. The robot’s mission is to traverse a disaster zone
and search for victims. Once the robot locates a victim, it can either
guide the victim to safety, or ask for support from first-responders
in the area. Social psychology suggests that, in an emergency, most
affected people develop a group identity favouring cooperation [10].
To reflect this, our SAR robot builds a game model of human in-
teraction with two types. Survivors with the group-identity type
prefer to help victims. If the robot offers to guide them to safety,
it can count on surrounding victims being assisted. In contrast, if
the robot faces a survivor with the personal-identity type, it would
be better to request first-responder support, to avoid victims being
abandoned.

We compare our adaptive robot with a proself-oriented and a
prosocial-oriented one (section 4). The proself-oriented robot al-
ways requests first-responder support, assuming other survivors
will not assist victims. The prosocial-oriented robot assumes cooper-
ation will always happen, so it always offers guidance. The adaptive
robot performs the best regarding average successful evacuations,
suggesting the viability of our proposal.

In this work, we therefore show how game-theory and social
psychology can enable autonomous systems’ adaption to uncertain
human preferences. Like the SAR scenario, we believe there are
other situations that can also benefit from our approach.

2 ADAPTING TO HUMAN PREFERENCES
Our goal is to build systems that, during operation, autonomously
optimise their response to the preferences of the humans they
engage. To accomplish this, we equip systems with autonomic man-
agers that control their behaviour via sensors and actuators. Fol-
lowing the MAPE-K model [8], the autonomic manager has five
responsibilities:

(1) Themanagermonitors sensor data to detect interactions with
humans that require adaptation.

(2) The knowledge is represented by a game-theoretic model of
the interaction. The manager updates this model frequently,
according to the person the system is facing.

(3) Each time the model is updated, the manager analyses the
model by calculating an equilibrium strategy for the man-
aged system.

(4) During planning the manager translates this strategy into
actuator commands.

(5) Finally, the system’s actuators execute these commands, com-
pleting the interaction with the human.

As shown in Figure 1, we distribute these responsibilities among
four components. At runtime, the Game Selector notifies the Game
Builder that an interaction of type 𝐺 ′ is taking place, given sen-
sor readings 𝑋 . The Game Builder then produces a game-theoretic
model𝐺 of such interaction.𝐺 takes the form of a game tree, like the

Figure 1: Component diagram of our adaptive architecture.

one in Figure 2. While some elements of𝐺 must be obtained at run-
time —like the probabilities 𝑃 from the Type Estimator— engineers
can incorporate other elements at design time. For instance, in our
SAR scenario (section 3) the agents, actions, and utility functions
do not depend on runtime information. Finally, the Game Solver
solves𝐺 obtaining the equilibrium strategy 𝑆𝑆 for the system, that
can be translated to actuator commands. In the rest of this section,
we describe each component in detail.

Game Selector. During operation, an autonomous system can
interact with multiple people. Not every interaction needs an adap-
tation to the person’s preferences. For example, a self-driving car
does not need to adapt to every person it encounters while wait-
ing at a zebra crossing. In our architecture, the system supports a
set of interactions that it can model for adaptation purposes. The
role of the Game Selector component is to detect, based on sensor
data, if the autonomous system is engaging in an interaction that
requires adaptation. When this happens, it forwards the necessary
information to the Game Builder component so it can model such
interaction using game theory.

Game Builder. As discussed in section 1, Bayesian games are an
adequate representation for handling uncertain human preferences.
We represent Bayesian games using game trees. Per interaction,
the Game Builder produces a game model 𝐺 with the following
elements:

• The agents 𝑆 (autonomous system) and𝐻 (human) engaging
in the interaction.

• 𝐴𝑆 are the actions the system can perform, and 𝐴𝐻 the ac-
tions the human can perform during the interaction.

• In the game tree, the system performs actions at the nodes
belonging to 𝑁𝑆 . The human acts at the nodes belonging to
𝑁𝐻 .

• 𝑇 is the type space for the human agent. Each type 𝑡 ∈ 𝑇

is associated to a node 𝑛 ∈ 𝑁𝑆 . These nodes have the same
available actions.

• 𝑃 : 𝑇 ↦→ [0, 1] is a probability distribution over the human’s
type space.

• The interaction ends when reaching terminal nodes in 𝑁𝐸 .
• The function 𝑢𝑆 : 𝑁𝐸 ↦→ R produces the system’s utility
when reaching a node in 𝑁𝐸 . The function 𝑢𝐻 : 𝑁𝐸 ×𝑇 ↦→ R
does the same for the human agent, given their utility also
depend on their type.
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• The function 𝜒𝑆 : 𝑁𝑆 ↦→ 2𝐴𝑆 selects which actions from 𝐴𝑆

are available at node ℎ ∈ 𝑁𝑆 . The corresponding function
for the human agent is 𝜒𝐻 : 𝑁𝐻 ×𝑇 ↦→ 2𝐴𝐻 .

• The function 𝜎𝑆 : 𝑁𝑆 × 𝐴𝑆 ↦→ 𝑁𝐻 ∪ 𝑁𝐸 selects a human’s
node ℎ ∈ 𝑁𝐻 following a system’s action. The function
𝜎𝐻 : 𝑁𝐻 ×𝐴𝐻 ×𝑇 ↦→ 𝑁𝑆 ∪ 𝑁𝐸 does node selection after a
human’s action.

In the context of the general Bayesian game framework, the
game𝐺 has additional restrictions:𝐺 is limited to two agents, with
multiple types only for the person agent. Given that the number of
players and type spaces have a large impact on model size, we adopt
these model constraints to keep the model tractable. Also, there is
the fact that a system can require multiple interaction models. For
example, a self-driving car interacts with the driver, the passengers,
and police officers, at different times. Each one of these interactions,
depending on context, might need their own game-theoretic model.

Type Estimator. The probability distribution over types 𝑃 is a key
element of our models. Without it, the game 𝐺 becomes a game of
incomplete informationwith very limited applications besides worst-
case scenario analysis [7]. Also, 𝑃 must be obtained at runtime —
each person encountered during operation has different probability
values — so its calculation must be efficient. Given its importance,
we have a dedicated component for obtaining 𝑃 in our architecture.

Based on a relevant sensor data, the Type Estimator component
computes 𝑃 , an estimate of the type probabilities 𝑃 for the person
interacting with the autonomous system, given a game 𝐺 . The
component uses the model 𝑚\ : 𝑇 × R𝑛 ↦→ [0, 1] to compute
probability values for each type 𝑡 ∈ 𝑇 and a vector 𝑋 of 𝑛 sensor
readings.

Game Solver. The Game Builder component produces a game-
theoretic model 𝐺 for a given human interaction with the system.
The Game Solver component obtains the equilibrium profiles of that
model. For a game𝐺 , a profile contains two strategies: a strategy 𝑠𝑆
for the autonomous system and a strategy 𝑠𝐻 for the human agent.
As mentioned in section 1, at equilibrium 𝑠𝑆 is the system’s best
response to the person’s strategy 𝑠𝐻 , and vice versa.

For an autonomous system, the strategy 𝑠𝑆 assigns a probability
to each action in 𝜒𝑆 (𝑛) for each node 𝑛 ∈ 𝑁𝑆 . The human’s strategy
𝑠𝐻 depends on their type: it assigns a probability to each action in
𝜒𝐻 (𝑛, 𝑡) for every node in 𝑛 ∈ 𝑁𝐻 and type 𝑡 ∈ 𝑇 .

There are multiple algorithms for obtaining equilibria [16], and
models can have more than one equilibrium profile. It is the Game
Solver’s responsibility to transform the equilibrium profiles into
actionable commands for the system’s actuators. For example, in a
self-driving car the system’s strategy in a profile can take the form
of a target driving speed, or a neighbourhood to avoid. The Game
Solver needs to translate these generic statements into specific
commands for the car’s navigation system.

3 A SEARCH-AND-RESCUE ROBOT
Emergency services actively use robots for rescue operations [2].
Among their many advantages, they can traverse the disaster area
without exposing first-responders to danger. In our scenario, we
deploy an autonomous search-and-rescue robot at a disaster zone.
Its job is to search for victims and secure their evacuation. At the

disaster zone, the robot can encounter affected individuals, victims
with injuries, and first-responders coordinating the SAR opera-
tions. The robot has two ways to facilitate victim safe evacuation:
1) after locating a victim, it can guide them to safety using its nav-
igation capabilities; or 2) it can request assistance from a human
first-responder via radio, informing their location. However, in
most emergency situations, first-responders are scarce, busy, and
sometimes unable to access the affected area.

The SAR robot supports adapting to a single interaction: finding
two people in close proximity, a victim that is unable to move and
a survivor that is healthy. The rescue team wants to maximise the
number of successful evacuations, so in this scenario they prefer
that the robot guides both people to a secure location. By not re-
questing first-responder support, they can invest their efforts in
evacuating additional victims. But, for both people to evacuate un-
der robot guidance, we need help from the survivor. Otherwise, the
victim would be left behind.

For our SAR robot to adapt using Bayesian game models, we
need types that reflect the likelihood for a person in the area to help.
We rely on social psychology and the social identity framework [18]
to inform type selection. Social psychology research establishes
that identity determines people behaviour. People may act upon
a personal identity, defined by their personality; or a social iden-
tity, defined by their group membership. This group identity can
arise from being a woman, a student, or even an engineer. Each
identity comes with beliefs, norms, and values that affect human
behaviour [17]. In an emergency context, people acting upon their
group identity are more likely to exhibit pro-social behaviours, like
helping others [10]. In contrast, people acting upon their personal
identities are more likely to show self-interest [5].

When the robot’s Game Selector component detects this inter-
action, it forwards sensor data to the Game Builder component
to generate a game tree, like the one in Figure 2. This interaction
model has the following elements:

• The agents are the SAR robot (𝑆) and the survivor (𝐻 ).
• 𝐴𝑆 = {𝑁,𝐶} where 𝑁 corresponds to navigate and guide
them to safety and 𝐶 to calling for first-responder support.

• 𝐴𝐻 = {𝑁+, 𝑁−,𝐶+,𝐶−}. When the robot offers guidance (𝑁 ),
the survivor can help the victim (𝑁+) or follow the robot by
themselves (𝑁−). In case the robot calls a first-responder (𝐶),
the survivor can wait with the victim (𝐶+) or evacuate by
themselves without support (𝐶−).

• 𝑇 = {𝐺, 𝑃}, where 𝐺 corresponds to the group-identity type
and 𝑃 to the personal-identity type.

• 𝑢𝑆 is the expected number of successful evacuations.
• 𝑢𝐻 is an identity metric.

The values for 𝑢𝑆 and 𝑢𝑅 in the tree at Figure 2 are not backed
by empirical evidence, and their sole purpose is to demonstrate our
approach. For example, in the bottom-left node, the robot offers
guidance (𝑁 ) to a survivor with group-identity type 𝐺 , and they
respond by accepting the offer taking the victim with them (𝑁+).
In this case, the robot’s utility is 𝑢𝑆 = 3, reflecting the evacuation
of 3 people: the survivor, the victim, and another survivor rescued
by the first-responder. For the survivor, their utility is 𝑢𝐻 = 1.3.
This value is the sum of 1 for a successful evacuation plus 0.3 for
following identity expectations [1].
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Figure 2: Game tree for the SAR scenario.

Table 1: Preliminary evaluation results.

Robot 𝑟𝐺 = 50% 𝑟𝐺 = 60% 𝑟𝐺 = 70% 𝑟𝐺 = 80%

Adaptive 91.6 92.8 93.9 95.3
Proself 89.2 89.9 90.5 91.2
Prosocial 86.1 89.0 91.6 94.0

To complete the model, we need the probability estimates 𝑃 for
the group-identity𝐺 and personal-identity 𝑃 types. People express
their identity externally via social identity markers, like clothing,
language, and even behaviours. We equip the Type Estimator com-
ponent with a model𝑚 that translates social identity markers —
inferred from sensors at the Game Selector component — into a
probability distribution over the social identities in 𝑇 . Given that
|𝑇 | = 2, we use a multi-layer perceptron with a single output neu-
ron using a sigmoid activation function. Training𝑚 should be done
offline, before robot deployment.

Once the model is complete, we use Gambit [11] to obtain the
strategies at equilibrium. We only consider equilibria with subgame
perfect profiles with pure strategies, to reflect rational players with
deterministic strategies. A pure strategy for the robot is to either
offer guidance (𝑁 ) or ask for first-responder support (𝐶). In case
Gambit finds more than one equilibrium, the robot acts conserva-
tively by selecting 𝐶 . The Game Solver component then translates
the resulting strategy to commands to the robot’s navigation system
for strategy 𝑁 , or to GPS and radio for strategy 𝐶 .

4 PRELIMINARY EVALUATION
We compare our adaptive SAR robot (section 3) against two non-
adaptive ones: a proself-oriented robot that always requests first-
responder support (𝐶), assuming the survivor would abandon the
victim; and a prosocial-oriented robot that always offers guidance
(𝑁 ) counting on the help from other survivors.

We expose each robot to 30 scenarios, having each scenario com-
posed by 33 interactions. An interaction is the situation described
in section 3 — and represented in Figure 2 — where a SAR robot
encounters a survivor and a victim. During an interaction, the ro-
bot under evaluation adopts a strategy (𝑁 or 𝐶), and the survivor
responds maximizing their utility 𝑢𝐻 according to their type (𝐺 or
𝑃 ). The game outcome corresponds to a node 𝑛 ∈ 𝑁𝐸 , assigning
a utility to the robot 𝑢𝑆 and the survivor 𝑢𝐻 . For example, let us
consider a scenario interaction between a proself-oriented robot
and a survivor with group-indentity. According to its strategy 𝐶 ,
the robot asks for first-responder support. As shown in Figure 2,

to maximise their utility the group-identity survivor should wait
with the victim (𝐶+), resulting in an outcome with 𝑢𝑆 = 2.8 and
𝑢𝐻 = 1.3.

Unlike the prosocial-oriented and proself-oriented robots, the
adaptive SAR robot needs sensor data to select a strategy. Using
the make_classification method from the Scikit-learn library, we
generate an artificial dataset with 10,000 samples representing sen-
sor readings. Each sample has 100 features, but only 3 of them are
informative. To the best of our knowledge, there is no behavioural
evidence on the magnitude of group identity propagation. Hence,
in our evaluation we use 50%, 60%, 70%, and 80% as plausible val-
ues for 𝑟𝐺 , the proportion of generated samples associated to the
group-identity type.

We split the dataset in two parts: 33% was used for evaluation
and 67% for training the neural network𝑚 on the Type Estimator.
We undersample the majority type during training to handle class
imbalance. To avoid overfitting, our training process uses early
stopping, with patience of 20 epochs without improvement.

Table 1 shows the evaluation results1. For every value of 𝑟𝐺 , the
adaptive SAR robot has a higher value for 𝑢𝑆 , the average robot
utility per scenario. We also observed that with higher values of 𝑟𝐺 ,
the accuracy of𝑚 decreases due to less samples for the minority
class. At 𝑟𝐺 = 50%, 𝑚 has an accuracy of 89% on the validation
dataset. At 𝑟𝐺 = 80% this value is 67%. Even with this modest
accuracy, the adaptive robot is able to capitalise on the emergent
prosocial behaviour, outperforming the proself-oriented robot by
4.5% and the prosocial-oriented one by 1.38% when 𝑟𝐺 = 80%,.

5 DISCUSSION
Game theoretic models of human-robot interaction are at the core
of our approach. Model elements related to the robot, like its actions
𝐴𝑆 and utility function 𝑢𝑆 can be considered from an engineering
perspective. However, the model elements related to human be-
haviour are more suited to a social psychology perspective. There is
a natural correspondence between game-theoretic types and social
identities. In our SAR scenario, the social identity framework pro-
vided useful abstractions for grouping people according to outcome
preferences. People’s reactions to robot actions 𝐴𝐻 and the utility
they perceive 𝑢𝐻 should be based on social psychology research.

The Type Estimator𝑚 plays a crucial role in our architecture.
Inferring a person’s type 𝑇 from sensor data can be complex. A
person’s type can depend on features like their clothing, spoken
language, or proximity to other people. Hence, designing𝑚 requires
expertise in multiple computing disciplines.

We have thus proposed a novel approach for designing au-
tonomous systems that adapt to human preferences. We suggest
that it can be applied to other scenarios, like human-robot trust.
This would require mapping trust levels to types, and adapting
robot actions to the perceived trust level. We believe our approach
is a step towards more resilient autonomous systems.
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