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Abstract 29 

Humans and other animals routinely make choices between goods of different value. Choices are 30 

often made within identifiable contexts, such that an efficient learner may represent values relative to 31 

their local context. However, if goods occur across multiple contexts, a relative value code can lead to 32 

irrational choice. In this case, an absolute context-independent value is preferable to a relative code. 33 

Here, we test the hypothesis that value representation is not fixed, but rationally adapted to context 34 

expectations. In two experiments, we manipulated participants‟ expectations about whether item 35 

values learned within local contexts would need to be subsequently compared across contexts. Despite 36 

identical learning experiences, the group whose expectations included choices across local contexts, 37 

went on to learn more absolute-like representation than the group whose expectations only covered 38 

fixed local contexts. Thus, human value representation is neither relative nor absolute, but efficiently 39 

and rationally tuned to task demands.  40 

 41 
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 48 

 49 

 50 

 51 

  52 
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Introduction 53 

Humans and other animals often behave “as if” they calculated the value of goods, arranged 54 

goods according to their preferences in a rational manner, and chose the good with highest value. One 55 

way to achieve rational decision-making is to represent all items on an absolute scale, where an item's 56 

value is expressed as the amount of fixed units of measurement it provides. Units of measurement 57 

might be the number of food items in a foraging patch, money, or the subjective utility of consumer 58 

products. Such an absolute value code is assumed in normative theories of decision-making1, optimal 59 

foraging theory2, computational models of learning3 , and in key descriptive theories of choice4. 60 

Whilst an absolute code would equip the agent to make decisions across all contexts in which 61 

this unit of measurement is relevant, there are many reasons why biologically constrained systems 62 

may utilise different coding regimes. For example, absolute codes maintaining a constant unit may 63 

reserve precious coding range for values that occur with low frequency. Moreover, absolute codes 64 

may be more prone to deleterious noise if values cluster within a small range in a given context 65 

(leading to easily confusable items).  66 

From the olfactory system in the fruitfly5, to visual systems6, through to value coding in 67 

humans7, neural systems can overcome such problems by encoding input relative to the local context 68 

(and/or state8,9). The value of one foraging patch can, for example, be encoded relative to other nearby 69 

patches. Such context-dependent encoding has been formalised in computational models, for instance 70 

by ensuring that coding covers the entire range of values („range adaptation‟
10

) or by ensuring that 71 

values are normalised by concurrent inputs („divisive normalisation‟11).  72 

The key advantage of relative value codes is that they enable even small populations of 73 

neurons to efficiently represent items within a local context11. For the perceptual system, for example, 74 

adapting to local brightness levels (e.g., dark adaptation12) is likely close to optimal given the 75 

temporal and spatial autocorrelation in brightness in natural scenes (e.g., day-night light cycle). For 76 

value-based decisions, agents can boost discriminability of items of similar value using relative codes, 77 

which may be of particular importance if the agent aims to choose “correctly” (i.e., choose the highest 78 

valued item). This means that a foraging animal employing a relative value code may discriminate 79 
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between patches of values A = 5 and B = 6 with equal precision to when choosing between patches of 80 

values C = 20 and D = 21.  81 

There is now ample evidence from psychology, behavioural ecology, primate 82 

neurophysiology and cognitive neuroscience that humans and other animals learn, and/or make 83 

choices consistent with such context-dependent value codes (
9,13–19

 but see
20

). A relative context-84 

dependent code also describes the firing pattern of neurons in value-related areas of the prefrontal 85 

cortex21 and explains human errors of judgment across many domains17. Relative codes have also 86 

been shown to be efficient in the sense that they maximize mutual information between stimulus and 87 

neural code under certain conditions22. In this latter sense, context-dependent codes can be locally 88 

optimal and resource efficient – allowing animals to choose the best option with the use of minimal 89 

resources22,23.  90 

However, as can easily be seen, relative value encoding can lead to inferior decision-making 91 

if the local contexts in which values were encoded are intermixed. In the above example, for instance, 92 

foraging patch B = 6 is the locally superior option to A = 5, which means that a pure relative encoder 93 

may prefer it to the globally superior option from a different context - provided it is inferior in its 94 

local context (e.g., prefer B=6 to C=20, where C is from [C=20, D=21]). Such „irrational‟ decision-95 

making has been observed across species in many laboratory tasks10,15,17,24.  96 

Thus, one is faced with an additional problem: How to arbitrate the costs and benefits of 97 

absolute and relative encoding to optimize decision-making. This problem can be recast as one of 98 

expectation about context: If contexts are stable and distinct, relative encoding will be sufficient and 99 

maximizes discriminability, but if contexts are either volatile or overlapping in time, a coding regime 100 

approximating absolute encoding will be better. Here, we take a first step towards this question by 101 

implicitly manipulating human participants‟ expectations about contexts in two experiments.  In spirit, 102 

our work is similar to efforts in reinforcement learning to delineate under what circumstances, and 103 

under what cost, humans switch from a habitual (model-free) representation to a more costly 104 

representation that allows planning (model-based)25,26.   105 

In particular, we propose that humans do not use a single fixed representation of value, but 106 

flexibly tune value codes based on their expectations what the codes are for27. Further, we propose 107 
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that the selection of which code to learn, is rational and efficient28. Thus, we do not ask whether 108 

human value learning is absolute or relative overall 13,15, but whether humans flexibly adapt29,30 their 109 

value representation in a manner that can be explained by expectation.  110 

We tested the hypothesis that value representation rationally adapts to task demands in two 111 

value-learning experiments, in which human participants learned values of pair-wise presented items. 112 

We implicitly manipulated task expectations, such that one group expected to make decisions within 113 

fixed local contexts („Uncrossed‟), and another group expected to make decisions across local 114 

contexts („Crossed‟). If value learning is fixed, the learnt value representations should be identical 115 

across groups. If value learning is rationally and flexibly adapted to task demands, people in the 116 

„Crossed‟ group should go on to learn more absolute-like representations (because they expect these 117 

to be task-relevant).   118 

Despite identical learning experiences, learnt value codes differed: participants learned more 119 

complex (absolute) representations only when they expected it to be necessary, thus highlighting the 120 

rational and dynamic nature of value representation.  121 

 122 

Results 123 

Tasks and design 124 

We conducted two value learning experiments. The first experiment used real-valued items, 125 

akin to studies in economic decision-making
31

, whereas the second used binomial outcomes akin to 126 

many reinforcement learning paradigms in this domain15. In both experiments, participants went 127 

through two independent phases of learning and decision-making.  128 

In the learning phases, participants learned the value of items through trial-by-trial feedback. 129 

As our key experimental manipulation, we implicitly altered participants‟ expectations about the local 130 

contexts in which items had to be compared. After the initial learning phase, one group („Uncrossed‟) 131 

was presented with choices between fixed pairs of items (within contexts), whereas the other group 132 

(„Crossed‟) encountered items also in intermixed pairs (across contexts).  133 

We expected the Crossed group to use the experience of intermixed contexts to alter their value 134 

encoding for the subsequent independent item set. Value representations in both groups were 135 
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measured with two surprise tasks at the end of each experiment (see below). In the following, we first 136 

report on Experiment 1, which used real-valued items. 137 

Participants took on the role of consultants to manufacturers of reproduction items (replicas of 138 

historical items). There were two separate manufacturers (of cars & antiques) in two separate Phases 139 

(Fig 1A). Participants‟ goal was to learn market prices to advise on which items to manufacture. In 140 

the Learning Phases, participants learned item values through trial-by-trial feedback, after which they 141 

advised the manufacturer in separate Decision phases - without feedback. At the end, there were two 142 

surprise tasks (All-possible pairs, Value judgment) designed to measure value encoding in the last 143 

Learning phase.  144 

Participants were randomly and blindly assigned to either the Uncrossed or Crossed group 145 

(colour-coded green and blue respectively, Fig 1A). In Experiment 1, each Phase began with a 146 

Learning stage, in which participants sampled market values (Fig 1B). A single mouse-click on an 147 

item returned a single sale price (superimposed on the clicked item, Fig 1B). Participants were free to 148 

sample in any order and as much as they wished. Sampling for each pair was terminated by a selling 149 

decision (Fig 1B), after which the next pair was shown. In each Phase, participants learned the values 150 

of 6 items arranged into 3 pairs with normally distributed market prices (Fig 1A). 151 

In the Decision phases (Fig 1C), the Uncrossed group made decisions about the pairs they had 152 

previously experienced. The Crossed group additionally made decisions within novel pairings, thus 153 

breaking their learning contexts (Methods). Participants might, for example, decide between       154 

and       which had previously formed part of the first and second pair respectively. Participants‟ 155 

choices in the Decision phases and surprise tasks were incentive-compatible (Methods).   156 

We hypothesized that people do not use a fixed value-learning mechanism, but flexibly adapt 157 

their value-learning mechanisms to learn useful value representations. Given double-blind assignment 158 

to groups, both groups should start Learning 1 with the same expectations. However, the first 159 

Decision phase, Decision 1 (Fig 1C), provides very different implicit signals for the two groups.  160 

The Uncrossed group should have no problem performing in this task given successful learning 161 

(Fig 1C). This would even be the case if participants used extreme context-dependent encoding: a 162 

binary Valence code. Using this mechanism, one learns, for each pair, that one item is „good‟ and that 163 
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one item is „bad‟. That is, one learns the following (separate) sets of orderings: [      <      ], 164 

[      <      ], and [      <      ].  165 

In the Crossed group (Fig 1C), however, even participants who used less extreme relative 166 

encoding strategies may struggle to compare items across contexts, such as       (locally inferior, 167 

value of 320) and       (locally superior, value 280). These unexpected and potentially more difficult 168 

experiences led participants to be slower in responding (Mann-Whitney-U test, U = 116, p < .001; 169 

Supplementary Results III, V, Fig. S13). 170 

 171 

Decision-making performance 172 

If people adapt to expected task demands, and the implicit manipulation is sufficient to induce 173 

different expectations, the two groups should go on to learn different representations for the 174 

subsequent set of items – Learning 2 and Decision 2. Immediately after these task phases, we tested 175 

participants‟ learned representations using two surprise tasks.  176 

First, we tested their performance in an All-Pairs task, where all possible pairs of items were 177 

presented to both groups (without choice feedback). We found that the Crossed group‟s choice 178 

accuracy was significantly better than the Uncrossed group‟s despite identical learning Phases (t(44) = 179 

2.61, p = .012, CI = .026–.199, d = .77, independent t-test) and above chance performance in both 180 

groups (Fig. 2A, CIs do not overlap .5, see also Supplementary Results II). The performance 181 

difference is consistent with the Crossed group having encoded a more absolute-like value 182 

representation (Supplementary Methods I, Fig. S1).  183 

Next, we turned to a feature of our experimental design which allowed us to dissociate 184 

absolute-like encoding from any relative encoding using „diagnostic‟ item pairs. The intuition is that 185 

any relative encoding will result in a fraction of choices that are globally inferior, but locally superior 186 

within the learning context, whereas an absolute code would not result in the same mistakes. Our task 187 

items were chosen to optimize for this (Supplementary Methods I). 188 

Specifically, in Phase 2,       ~N(280,28) was paired with       ~N(250, 25). On the one 189 

hand, a relative learner would learn that       is „good‟ within its local context. On the other hand, 190 
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they would learn that both      
 ~N(300,30) and       ~N(320,32) are „bad‟ – because they were 191 

paired with higher-value items. Thus, a relative-value learner would prefer the locally „good‟ (but 192 

globally inferior)      , to the globally superior (but locally „bad‟)        : exhibiting irrational 193 

choice (see also e.g., 15).  194 

In line with these predictions, we found that the Uncrossed group preferred the globally inferior 195 

option, choosing it instead of the globally superior options (preferring       to      , and to      ), 196 

whereas the Crossed group expressed a weak preference for the globally superior items. The 197 

difference between groups was marginal for the first pair (U = 183, p = .055, r = .31), and highly 198 

significant for the second pair (U = 145, p = .003, r = .45), by Mann-Whitney U tests.  199 

In summary, participants choice behaviour shows that the groups learned different value 200 

representations despite identical learning Phases, and that the Crossed group‟s choices were more 201 

consistent with an absolute-like code than the Uncrossed group‟s (with statistical contrasts 202 

specifically selected to discriminate absolute from relative encoding, Supplementary Methods I).  203 

 204 

Value representation  205 

 While the above analyses provide tentative evidence that the groups learned different value 206 

representations, we next set out to address value representation more directly. For this purpose, 207 

participants were asked to directly indicate their learned value for each item in a Value Judgment task. 208 

Items were presented sequentially (in random order), and participants indicated the value using a 209 

slider. To test value representation, we applied representational similarity analysis (RSA)32,33 to this 210 

final judgement task (Fig 1A). Note that, although RSA was developed mainly as a multivariate 211 

analysis technique for neural data, it is increasingly deployed to characterize brain representations 212 

given behavioural data (e.g.,34–36) and can be used whenever the measure of interest is pair-wise 213 

differences on a univariate or multivariate space.  214 

We computed Representational dissimilarity matrices (RDMs) separately for each participant 215 

and averaged them to form group-wise RDMs. These RDMs, shown in Fig 3A-D, depict each group‟s 216 

value representation in the form of a dissimilarity structure (rank-transformed and scaled, see 217 
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Methods and Supplementary Results IV, Fig. S16, for the overall judgments). On this scale, a 218 

dissimilarity of 0 implies that item values are represented identically (item pairs along the diagonal), 219 

and a dissimilarity of 1 implies that item values are highly dissimilar.  220 

Empirical RDMs are most readily interpreted when compared to model RDMs. As noted, the 221 

experiment was designed to allow absolute-like codes to be dissociated from relative-like context-222 

dependent codes – irrespective of the precise context-dependent encoding. However, the RSA 223 

analysis allows contrasts between different kinds of relative value representation. Thus, to corroborate 224 

our results, we contrasted two of the most common relative value encoding models: range adaptation 225 

and divisive normalisation. For completeness, we also include a fully contrastive, binary valence 226 

model. The higher the correlation between participants‟ RDMs and the model RDMs – the better the 227 

model RDMs describe participants‟ representation of value.  228 

The first relative model („Valence‟, Fig 3E) formalizes the extreme „good vs bad‟ encoding 229 

mentioned in the introduction.  The better option in each local context is encoded as „good‟ and the 230 

worse option as „bad‟. The second relative model („Range adaptation‟, Fig 3F) formalizes range-231 

adaptation encoding, a highly successful class of context-dependent encoding schemes10,16. 232 

Accordingly, the value of the left item equals 
         

                        
  (and vice versa for the right item). 233 

Note that this model scales values within local contexts to the interval [
       

       
, 1], rather than the 234 

interval [0,1]. This is necessary here as with only two items, the full range adaptation model (e.g.16) 235 

would otherwise reduce to the valence model. The third relative model („Divisive normalisation‟, Fig 236 

3G) formalizes the divisive normalisation encoding highlighted in the Introduction. Here the value of 237 

the left item equals 
        

                     (and vice versa for the right item). We formalize absolute-like 238 

context-independent encoding, as the expected value for items. For example,       is encoded as 180 239 

because       ~ N(180,18).  240 

As can be seen in Figure 3, the three relative RDMs (E-G) have clusters of items that are 241 

objectively similar in value but are nonetheless encoded as highly dissimilar. For example, all the 242 

relative models capture the „irrational‟ value encoding, by which 280 (     ) is encoded as more 243 
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similar to 330 (     ) than to 300 (     ). The „irrational‟ dissimilarity structure follows from the 244 

context-dependent encoding of value formalized in the relative value models.  245 

 In Figure 3, we first highlight qualitative similarities between the Uncrossed group‟s RDM 246 

and the relative model RDMs (E-G), and between the Crossed group (D) and the Absolute model 247 

RDM (H). For example, the items with values 250 and 280 are encoded as highly dissimilar in the 248 

Uncrossed RDM (C) - as it is in the relative models (E-G). The Absolute RDM (H), on the other hand 249 

correctly encodes this pair as similar, as does the Crossed group RDM (D). This pattern contrasts with 250 

the gradient of increasing dissimilarity between 390 and the other items in the Crossed RDM (D). The 251 

Uncrossed RDM does not exhibit this gradient (C). Finally, it is clear that both groups encode value in 252 

a format that goes beyond mere valence encoding (c.f., Fig 3E, and A-B). Thus, participants in both 253 

groups encode and retain at least some value magnitude information.   254 

Next, we turned to the key quantitative comparison. We contrasted the correlations between 255 

each model and the two groups which takes individual differences into account. As per standard 256 

practice33, model RDMs were compared to the RDMs derived from participants‟ behaviour using 257 

rank-correlations (Methods). A large positive correlation between a participant‟s RDM and a given 258 

model RDM, shows that their representation of value is well accounted for by the model in question. 259 

For presentation purposes, we focus on the two relative models that capture key aspects of 260 

participants value representation: range-adaptation and divisive normalisation. 261 

The Crossed group learned a more absolute value representation than the Uncrossed group: 262 

both compared to the Range-adaptation model (t(44) = 2.97, p = .005, CI = .15 - .77, d = .88) and the 263 

Divisive normalisation model (t(44) = 2.57, p = .014, CI = .10 - .85, d = .76).  264 

Fig 4A-B plots model-participant RDM similarities expressed as partial Spearman Correlation 265 

Coefficients (thus discounting shared variance between models, Methods). Because the Range-266 

adaptation and the Divisive normalisation RDMs were highly correlated, we ran separate analyses 267 

contrasting each with the Absolute RDM. Symbols in Fig. 4 reflect group averages, and grey lines 268 

reflect individual participants.  269 

For the Uncrossed group (A), no model consistently outperforms another, indicated by the 270 

mix of slopes. In the Crossed group, however, most participants are substantially better accounted for 271 
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by absolute encoding (upward sloping lines), indicating that most participants changed their encoding 272 

strategy towards an absolute code. 273 

Fig 4C shows the within-group contrast between the Absolute model and the two relative 274 

models from Fig 4A-B. Positive    indicate evidence in favour of the absolute model, and negative 275 

indicate evidence in favour of the relative model. As can be seen, no model is consistently favoured in 276 

the Uncrossed group (CI‟s overlap 0). However, in the Crossed group, the absolute model is favoured 277 

(CIs do not overlap 0).  278 

The previous analyses additionally used a partial correlation approach to rule out the 279 

contribution of any shared variance. Fig 4D plots identical analyses, except that they were carried out 280 

on independently run correlations. That is, model-by-participant correlations were evaluated 281 

independently for the relative encoding models. As can be seen, the results persist with independent 282 

correlations. The Crossed group learnt a more absolute value representation than the Uncrossed 283 

group: whether one considers the Range-adaptation RDM (t(44) = 3.23, p = .002, CI = .21 - .92, d = 284 

.95), or the Divisive normalisation RDM (t(44) = 2.88, p = .006, CI = .13 - .74, d = .85).  285 

Jointly, the results so far show that people 1) adapt their learning to expected task demands 286 

(difference between groups despite identical learning Phases), and 2) only learn absolute-like value 287 

representations when a relative representation is expected to be insufficient for the task at hand (i.e., 288 

in the „Crossed‟ group). 289 

 290 

Choice and value representation in a binomial task 291 

Next, we turned our focus to a binomial decision task akin to many decision-making tasks in 292 

the field of reinforcement learning. Although economic values often come from continuous 293 

distributions as in Experiment 1 (e.g., market prices, food quantities, etc.), laboratory tasks often 294 

involve binomial outcome distributions15,37–39. Next, we therefore sought to establish whether people 295 

can also flexibly tune their value-learning mechanism for binomial outcome distributions.  296 

As can be seen in Fig 5A, key design features were kept identical to Experiment 1: learning 297 

experiences were identical across conditions, Phase 1 was designed to set participants‟ expectations 298 

for Phase 2 in a condition-dependent manner (Crossed vs Uncrossed), and learnt values were assessed 299 



 12 

in separate surprise tasks (All possible pairs, Value judgement) as before, with the notable exceptions 300 

that value distributions were binomial, the number of „samples‟ from each distribution was fixed 301 

across participants, and the experiment was run online (Methods).  302 

Based on Experiment 1, we predicted that the Crossed group would show 1) better All-pairs 303 

task performance, 2) improved choice for the single diagnostic item pair in this experiment and 3) 304 

more absolute-like value representations – compared to the Uncrossed group. We ran an initial 305 

Experiment, which broadly confirmed these predictions, but which was underpowered to find a 306 

between-group effect of moderate size. We therefore ran a better powered pre-registered replication 307 

on which we report next (see Supplementary Results I for the results of the initial experiment). 308 

As can be seen in Fig 5B, choice performance was significantly above chance (CIs do not 309 

overlap .5, see also Supplementary Results II) in both groups. As in Experiment 1, the Crossed group 310 

made significantly better decisions when choosing between All-pairs following learning (Fig. 5B, 311 

t(222) = 2.30, p = .011, CI = .011 - inf, d = .31, one-tailed unpaired t-test). Next, we further 312 

constrained our comparison to those item pairs for which a divisive normalisation model would make 313 

opposing predictions to an absolute value code (see Supplementary Methods II, Fig. S3). Figure 4C 314 

shows choice accuracy only for those stimulus-pairs. Even for this restricted analysis, for which 315 

choosing is more difficult (differences between values are smaller, Fig. S3A) choice performance was 316 

significantly above chance in both groups (non-overlapping CIs, Fig 5C).  However, for this sub-317 

selection, the Crossed group again made better decisions than the Uncrossed group (t(222) = 3.56, p < 318 

.001, CI = .073 – inf, d = .48). Restricting the analysis further to the single diagnostic stimulus pair 319 

(Supplementary Methods II) replicates Experiment 1 (Fig 5D): Crossed group participants chose the 320 

higher-value option more frequently than Uncrossed (Fig. 5C; U = 4722, p < .001, r = .25, one-tailed 321 

Mann-U Whitney test).  322 

Next, we turned our attention again to the RSA analyses. Fig 6A,B show the group-wise 323 

average RDMs for Experiment 2. As in Experiment 1, Fig 6C-D highlight similarities between the 324 

empirical average RDMs and the model RDMs. As can be seen, and as in Experiment 1, participants‟ 325 

value representation was not consistent with a Valence code (Fig 6E, see Supplementary Results IV, 326 

Fig. S17, for the overall judgments).  327 
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However, as in Experiment 1, the Crossed group learned a more absolute value representation 328 

than the Uncrossed group: whether one considers the Range-adaptation RDM (t(222) = 3.25, p < .001, 329 

lower CI = .17, upper CI = inf, d = .43), or the Divisive normalisation RDM (t(222) = 3.09, p = .001, 330 

lower CI = .15, upper CI = inf, d = .41). 331 

 Comparing the empirical RDMs to the finer-grained model RDMs, the „cross-type‟ pattern in 332 

the two-remaining relative RDMs (Fig 6F-H) is evident in Uncrossed group (Fig. 6C), but largely 333 

absent in the Crossed group (Fig. 6D). The latter instead seems to reflect a gradient of dissimilarity 334 

approximating the underlying outcome probabilities as in the Absolute Model (.1 vs the remaining 335 

item values, Fig. 6C).  336 

Next, we turned to our partial correlation analyses, plotted in Fig 7A-B. For the Uncrossed 337 

group (A), there was a trend towards the relative models performing better than the absolute model. 338 

However, as in Experiment 1, no model consistently outperformed another (mix of sloped lines). In 339 

the Crossed group, however, participants were substantially better accounted for by absolute encoding 340 

(upward sloping lines); regardless of whether the comparison is a Range adaptation or a Divisive 341 

normalisation RDM.  342 

Fig. 7C shows the within-group contrast between the Absolute model and the two relative 343 

models from the data in Fig. 7A-B. Positive    indicate evidence in favour of the absolute model, and 344 

negative indicate evidence in favour of the relative model. As can be seen, no model is consistently 345 

favoured in the Uncrossed group (though the Range adaptation RDM is close to significant, Fig. 7C, p 346 

= .071). However, in the Crossed group, the absolute model is clearly favoured (CIs do not overlap 0).  347 

Fig. 7D shows an analysis identical to that in Fig. 7C except that it has been carried out on 348 

independently run correlations. As can be seen, the results persist with independent correlations. The 349 

Crossed group learned a more absolute value representation than the Uncrossed group: whether one 350 

considers the Range-adaptation RDM (t(222) = 3.01, p = .002, lower CI = .05, upper CI = inf, d = 351 

.40), or the Divisive normalisation RDM (t(222) = 3.15, p < .001, lower CI = .02, upper CI = inf, d = 352 

.42).  353 

In summary Experiment 2 replicated and generalised the results of Experiment 1, using an 354 

online study with binomial outcome distributions. Choice task data showed that the Crossed group 355 
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learned a different value representation than the Uncrossed group – despite identical learning 356 

experiences. The choices in the Crossed group were on average better than those in the Uncrossed 357 

group and were better specifically for item pairs for which an absolute-like representation will result 358 

in improved choice. The RSA analyses further show that the Crossed group learned an absolute-like 359 

representation, and that they learned a more absolute-like representation than the Uncrossed group.  360 

 361 

Discussion 362 

We sought to reconcile the theoretical and empirical tension between two diametrically 363 

opposing accounts of value learning and encoding: a context-independent but potentially 364 

computationally costly absolute value representation1,2,4, and an efficient local, but potentially 365 

irrational, relative value representation 7,11,13,15. We proposed that humans (and possibly other animals) 366 

do not use a single fixed mechanism – learning either absolute or relative value codes – but adapt their 367 

learning to expected task demands in an efficient and rational manner: learning sufficient and 368 

necessary value representations.  369 

 We tested this hypothesis in two human value-learning experiments: one involving normally 370 

distributed values and the other involving binomial outcomes. In each study, the first Phase was 371 

equivalent to the full experience of participants in many experimental paradigms(e.g., 15,37). The second 372 

Phase gave participants the chance to use their prior experience with the task to tune their learning 373 

mechanism to optimise task performance. Phase 2 thus mimicked the opportunity to adapt and tune 374 

learning mechanisms that arise in many real-life tasks (and which are performed more than once).   375 

Despite identical learning experiences, the two groups learned different value codes. 376 

Specifically, across the two studies, the Crossed group made decisions that are consistent with a 377 

higher-fidelity representation (Figs. 3,6), made fewer irrational choices (Fig. 2,5), and learned value 378 

representations that were more absolute-like than the Uncrossed group (Fig. 4,7). Importantly, 379 

participants consistently learned more absolute representations only when it was expected to be 380 

useful. Thus, people do not learn either absolute or relative value codes but adapt their learning to 381 

what they expect to use the code for.  382 
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Nevertheless, the reliable group differences were not always reflected at the individual level. 383 

In the Uncrossed condition, many participants appeared to have learnt absolute-like codes. This may 384 

be driven by the fact that both absolute and relative codes yield good results for the Uncrossed group. 385 

Thus, whichever code participants favour as their “default” would be expected to persist. In the 386 

Crossed condition some participants appeared to have learnt relative codes. This may be driven by 387 

different factors beyond the scope of our current study: by cognitive capacity limitations40, intrinsic 388 

computational noise41,42, or by mechanisms relating to working memory or attention43,44. Future work 389 

might manipulate task demands and difficulty38,45, (c.f. 46 to address individual differences in value 390 

encoding.  391 

A second outstanding question is the learning mechanisms that give rise to the flexible and 392 

adaptive value representations we observe. Our studies were designed for well-controlled 393 

measurement of value representation following learning. The trade-off is that the design is not 394 

effective in characterizing learning mechanisms themselves - as opposed to the codes they give rise 395 

to. Nevertheless, our design allowed us to successfully recover the relative and absolute models in 396 

simulations, thus supporting our key RDM contrasts (Supplementary Results VII).   397 

It is possible that a single mechanism underlies the observed flexibility in value encoding. 398 

Such a mechanism could be implemented with a free parameter governing the extent to which 399 

learning is relative in the Divisive normalisation model, such that          
        

                        
 , 400 

where w is a free parameter between 0 (for wholly absolute encoding) and 1 (for wholly relative 401 

encoding). However, it is also possible that mechanisms rely at least in part on different cognitive 402 

substrates as in, for example, model-based and model-free learning47–49. Future work is needed to 403 

address the question of mechanism, and perhaps more importantly mechanism selection, which likely 404 

requires higher-level cognition and monitoring of expectations. Our experiments were designed to 405 

tests for coarse between-group differences in encoding, allowing us to ask: Is value encoding 406 

adaptive, and if so – is it rationally adaptive? Thus, further work is needed to allow more precise 407 

classification of learning and encoding mechanisms.  408 
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Finally, extrapolating beyond the behavioural data at hand, one might reasonably expect that 409 

relative values behave in a way similar to “cached” values in Reinforcement Learning, in the sense 410 

that they incorporate context into their code (without later being able to retrieve context values), 411 

whereas absolute-like encoding may rely on memory systems that separate item and context 412 

representations, allowing the system to flexibly combine them at decision time. In this sense, one 413 

might expect the absolute-like representation to preferentially recruit hippocampal-medial prefrontal 414 

circuits, whereas relative encoding may rely more heavily on striatal-prefrontal circuits, as 415 

approximately in the model-free / model-based distinction in RL49. However, further research is 416 

needed to identify the neural mechanisms arbitrating between the two encodings.   417 

In summary, our results highlight the highly dynamic and rational nature of value 418 

representation: humans do not simply have a single, fixed form of representation, but rather adjust 419 

their code in a rational50–52 manner according to expected task demands. Further, our findings 420 

highlight that both absolute and relative codes previously found can potentially be explained by the 421 

fact that participants infer which code would be sufficient for the current task.  422 

 423 

Methods 424 

Experiment 1 - Participants 425 

The study complied with all relevant ethical regulations and was approved by the local ethics 426 

committee at City, University of London. Sixty participants (37 female) were recruited via the local 427 

participation panel. Participants provided written informed consent and were debriefed. Participants 428 

had normal, or corrected-to-normal, vision, were fluent in English, healthy (no known physical or 429 

psychological conditions), and between 18-45 years old. No statistical methods were used to pre-430 

determine sample sizes, but our sample sizes are similar to those in previous work10,15. 431 

Participants were reimbursed for their time and were paid a performance-related bonus: a base 432 

pay of £5 and an additional bonus between £0 and £6. The average bonus was for a total of £2.78 433 

(range £0-6). The performance bonus was determined by choice performance across all Decision 434 

Phases as well as during the final two tasks. The greater the number of high-value choices, the greater 435 

the bonus, and the closer the judgement to the true item value the higher the bonus.  436 
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We excluded participants who did not fulfil minimal task requirements. Criteria apply to the 437 

Learning phases only (Fig 1A,B), and are therefore orthogonal to the target behaviour in the final 438 

tasks (Fig 1A). Exclusion criteria were based on 1) sampling behaviour and 2) below-chance 439 

performance for the preliminary decisions in the first sampling phase. Participants who only sampled 440 

once (or fewer times), per item per item-pair sampling opportunity, were excluded (Learning 1-2, Fig 441 

1). This cut-off represents <= 18 samples per Context and is far lower than the median of 123 442 

(IQR=118) and 143 (IQR=91) for Phase 1 and 2 respectively. There were 9 preliminary decisions in 443 

the first Phase (3 pairs presented three times each, Fig 1A,B). Someone who responded randomly 444 

when making these decisions, would be expected to achieve a choice accuracy between .22 and .78 445 

(with a mean choice accuracy of .5). This range reflects the lower and upper 95% confidence interval 446 

on a hypothetical agent who responds randomly (i.e., selects each option with p = .5). Participants 447 

who performed worse than the upper confidence interval (i.e., did not achieve at a greater choice 448 

accuracy than expected by chance) were excluded. 449 

In summary, we excluded participants who showed no or little evidence of learning – a pre-450 

condition for encoding value (whether in an absolute or relative form). In total, fourteen participants 451 

met one or both exclusion criteria for a final sample size of n=46: 24 of which had been assigned to 452 

the Uncrossed condition, and 22 of which had been assigned to the Crossed condition.  453 

Experiment 1 - Materials  454 

Participants took on the role of a consultant to a manufacturer of reproduction items in two 455 

different contexts (antiques/cars, Fig 1). The item-values and item-pairs were Phase-specific (Fig 1A). 456 

However, the mapping of item type (antiques/cars) to Phase, the mapping of specific items (e.g., 457 

typewriter) to item-values (e.g., N(180,18)), and the side on which items were presented during 458 

sampling, were all randomized across participants.  459 

Item-values (Fig 1A) were selected primarily so that absolute-value and relative-value 460 

representations dissociate (Supplementary Methods I-II, Fig. S1-3), and secondarily to achieve a 461 

balance between task-difficulties in the Learning and Decision phases (Supplementary Methods III, 462 

Fig. S4-7). A single sample from one item resulted in a draw from the corresponding normal value 463 

distribution (truncated at ±2 SD). The Learning phases (Fig 1A,B,D) were self-paced, and participants 464 
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had a wide range of different strategies as evidenced by the wide range of the number of samples 465 

drawn (range Phase 1: min=48, max=478: range Phase 2; min=32, max=509).  466 

The Decision phases (Fig 1A,C,D) involved 18 decisions per Phase. The Uncrossed group 467 

decided between the pairs they had experienced during sampling (repeated 6 times = 18 decisions). 468 

The Crossed group made decisions between novel pairs (6 novel pairs x 2 = 12 decisions, see Fig 1 469 

for examples), in addition to learnt pairs (3 pairs x 2 = 6 decisions).  470 

The two final tasks (Fig 1A,E) were identical across groups. The All-possible pairs task 471 

involved 15 pairs, representing a full factorial combination of all possible pairs from Phase 2 472 

(excluding identical pairs), repeated three times for a total of 45 pairs. The Value judgment task 473 

involved the 6 items in Phase 2, presented one at a time along with a slider-interface (min=100, 474 

max=450). For all tasks, the presentation order and presentation side (where applicable) were 475 

randomized across participants. 476 

Experiment 1 Procedure 477 

Participants read the information sheet, provided written informed consent, and completed the 478 

tasks. After completing the behavioural tasks, participants completed three questionnaires. These 479 

formed parts of one author‟s MSc dissertation project and are not reported on here.  480 

Experiment 1 Apparatus 481 

Stimuli were displayed on a touchscreen (Ilyama T2245MSC) and code was written in 482 

MATLAB (Mathworks) using PsychToolbox
53

 on Linux (Xubuntu 18.04) with a soft real-time kernel. 483 

Experiment 2 Participants 484 

The study was approved by the local ethics committee at City, University of London. 485 

Participants were recruited via Prolific Academic, fully informed, provided written informed consent 486 

and were debriefed. Participants were between the age of 18 and 40, were UK residents, were healthy 487 

(no ongoing mental health conditions, dementia/mild cognitive impairment, no daily impact of mental 488 

illness), had not participated in similar studies of ours, had a minimum approval rate on Prolific of 99 489 

and minimum of 10 submissions. We sought to include a minimum of 280 participants, conditional on 490 

having at least 100 participants in each condition passing post-completion exclusion criteria. The 491 

sample size was determined based on power calculations, which in turn were based on the pilot study 492 



 19 

(Supplementary Results I). Power calculation, exclusion criteria, and sampling strategy were all pre-493 

registered (https://osf.io/xjsmh). 494 

Online panels provide little experimental control and the potential for poor participant 495 

engagement (see also discussion in Supplementary Results VI). To minimise this issue, we employed 496 

an initial check that participants had read and understood task instructions. To be eligible, potential 497 

participants had to answer 8 multiple-choice questions correctly. In addition, participants were 498 

allowed to make only one error in the first Decision block for the stimuli they had just learnt about. 499 

Specifically, if after experiencing 10 learning trials per item-pair, participants were unable to choose 500 

the higher value items 2 out of the first 3 presentations the study ended prematurely, and participants 501 

pay was pro-rated. We chose to allow 1 error as even engaged participants might be expected to make 502 

mistakes especially for the more difficult stimulus pair (.8 vs .9). In total 888 participants expressed 503 

interest and 352 completed the full study. Most non-completers (92%) failed the initial knowledge 504 

test.  505 

Participants were reimbursed for their time and were paid a performance-related bonus. 506 

Participants were paid a base pay of £2.92 for participation (the experiment took ~35 mins) and an 507 

additional bonus between £0 and £2.92. The average bonus was £1.46 (range £0.50–£2). The 508 

performance bonus was determined by choice performance across all Learning, Decision Phases and 509 

the final two tasks. Correct choices in the Decision phases and the All-pairs task were weighted x10 510 

compared to Learning. This was done to encourage participant engagement for the tasks which did not 511 

involve feedback. In general, the reward structure was as in Experiment 1 in that the greater the 512 

number of high-value choices, the higher the bonus, and the closer the judged value to the true item 513 

value, the higher the bonus. 514 

In addition to the pre-registered a priori exclusions, we also employed pre-registered exclusion 515 

criteria based on participants‟ not fulfilling minimal task performance criteria after completing the full 516 

study. Because each participant experienced the same number of trials, sampling behaviour cannot be 517 

used for excluding disengaged participants (unlike in Experiment 1). Instead, we excluded 518 

participants who did not learn to choose among the pairs experienced during Learning. All 519 

participants were trained on the following binomial probability pairs: [.1 vs .6], [4 vs .7] and [.8 vs 520 

https://osf.io/xjsmh


 20 

.9.] - irrespective of condition. We excluded participants who made more than two errors in two 521 

repeats of these three pairs (i.e., more than 2/6 errors) at the end of the experiment (in the All-pairs 522 

task). In other words, we include only participants who showed evidence of encoding these learning 523 

phases for later recall. Note that these exclusion criteria are orthogonal to the question of absolute and 524 

relative value codes. Both absolute and relative models of learning will allow participants to learn to 525 

choose between the items in the Learning phase. In other words, choices between items of pairs that 526 

participants directly learned about - unlike novel combinations of the component items - are not 527 

diagnostic with regards to value representation.  528 

Applying these exclusion criteria, which are orthogonal to which model participants may use to 529 

encode value, leaves N=224 participants of which n=119 participants were from the Uncrossed group 530 

and n=105 were from the Crossed group. That is, it resulted in the exclusion of ~36% of participants. 531 

We report analyses also including these excluded participants in Supplementary Results VI and note 532 

that these analyses replicate those reported in the main text. 533 

Experiment 2 Materials and Procedure 534 

Experiment 2 was a pre-registered version of a previous study (https://osf.io/xjsmh). As in 535 

Experiment 1, participants took on the role of a consultant to a manufacturer of reproduction items in 536 

two different contexts (antiques/cars, Fig 4). Key design features were identical to Experiment 1. 537 

However, outcomes were binomial (successful sale/unsuccessful sale), the task was not self-paced, 538 

and the learning experience was not „blocked‟ by item-pairs (item-pairs were randomly intermixed 539 

during learning) and involved a relatively rapid stimulus display sequence.  540 

In the Learning Phases, participants saw each item pair presented side-by-side (~1 sec), 541 

followed by a response phase in which participants had ~1.5 second to make a choice, followed by 542 

sequential feedback, in which the chosen item was presented first followed by the unchosen item.  543 

Outcome feedback was in the form of a green double-rectangle image outline (successful sale) or a 544 

single-rectangle red image outline (unsuccessful sale).  545 

Experienced outcomes matched the expected outcome of the binomial distributions (Fig 4A). 546 

This was achieved by pre-allocating and shuffling an outcome vector (of 1‟s and 0‟s) for each item. 547 

This design minimizes the impact of sampling error54 on differences between participants and/or 548 
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conditions. There were two learning blocks per Learning Phase. In each block each pair was presented 549 

10 times, for a total of 30 trials per block and 60 trials per Phase. The presentation order was 550 

randomized.  551 

Each of the two blocks of Decision trials (two for each Learning Phase), involved 12 decisions 552 

without feedback. The Uncrossed group made decisions between pairs experienced during learning (3 553 

pairs x 4). In addition to experienced pairs (3 pairs presented once), the Crossed group made decisions 554 

also between novel pairs composed of items from different learning pairs (9 novel pairs, randomized 555 

across participants). Thus, each group experienced 24 Decision trials per Learning Phase.  556 

The two final tasks (Fig 1A,E) were identical across groups. The All-possible pairs task 557 

involved 15 pairs, representing a full factorial combination of all possible pairs from Phase 2 558 

(excluding identical pairs), repeated twice (controlling for presentation side) for a total of 30 pairs. 559 

The Value judgment task involved the 6 items in Phase 2, presented one at a time along with a slider-560 

interface (min=0%, max=100%) representing the probability of an item selling. The presentation 561 

order and presentation side (where applicable) were randomized across participants for all tasks.  562 

Design and Statistical Analyses – Experiment 1 & 2 563 

Both experiments used a between-subject design with participants assigned randomly and 564 

blindly to one of two conditions: Uncrossed and Crossed. Our analyses focus on differences between 565 

the two groups for the two final tasks and within-task contrasts against reference magnitudes.  566 

The primary inferential statistic was the t-test. T-tests are relatively robust and were used 567 

whenever feasible. For data with clear deviations from parametric assumptions (e.g., Fig 2B), less 568 

powerful non-parametric tests were used. To rule out potential limits to t-test robustness affecting 569 

inferences we also ran all our t-tests reported here using non-parametric tests (all resulting in the same 570 

conclusion as the t-test). We also report 95% CIs (parametric or bootstrapped) for all descriptive 571 

statistics here. CIs can be used for inference by comparing them to reference magnitudes. For 572 

example, if the mean choice accuracy is above .5, and the 95% CI of that mean does not overlap .5, 573 

choice performance was significantly greater than chance.  574 

All reported tests for Experiment 1 are two-tailed. Predictions for Experiment 2 were pre-575 

registered (https://osf.io/xjsmh) and derived from results from Experiment 1, and the initial pilot 576 
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version of Experiment 2 (Supplementary Results I), and all between-group contrasts were one-tailed. 577 

Reported effect sizes are Cohen‟s d for t-tests (>= .2 small, >= .5 medium, >= .8 large) and rank-578 

biserial correlation r for non-parametric tests (>= .1  small, >= .3 medium, >= .5 large). 579 

Standard RSA protocols33 were followed. Empirical value RDMs were computed as the 580 

Euclidean distance between each participant‟s value judgements. Average RDMs were computed by 581 

averaging (arithmetic mean) over participants‟ RDMs separately for each group. Model RDMs were 582 

computed as the Euclidean distance between item values defined by the relevant model equations 583 

(Main Text). For display purposes RDMs were rank-transformed (equal stays equal) and scaled to 0-584 

1, where 0 implies identical item-values and 1 means maximally dissimilar item-values.  585 

We computed the similarity between model RDMs and participant RDMs by partial correlation 586 

(Spearman). Partial correlation accounts only for unique variance. This means that a correlation 587 

between one model RDM and a participant‟s RDM cannot be explained by the second model RDM. 588 

Because our interest lay in dissociating absolute from relative encoding (not distinguishing between 589 

various relative models), and because relative models were highly correlated, we performed these 590 

analyses separately for each contrasting relative model (Fig 4 & 7). We also performed analyses with 591 

independent correlations (i.e., any shared variance between models is not taken into account). Like the 592 

partial correlation analyses, these used the Spearman correlation coefficient. For all correlational 593 

analyses, large positive r‟s imply a high degree of similarity between participants value representation 594 

and model RDMs (and r = 0 implies no relationship).  595 

For the key statistical analysis, to establish whether the evidence in favour of the absolute 596 

model over the relative model was greater in the Crossed group than the Uncrossed group, we 597 

computed the difference between the absolute and the relative models independently for each group 598 

and contrasted those differences with t-tests. A positive difference in r indicates evidence in favour of 599 

absolute encoding and a negative difference in r indicates evidence in favour of relative encoding. 600 

These differences can also be used to infer whether there was a tendency to favour relative or absolute 601 

encoding within each group by contrasting the 95% CIs of those averages differences to 0.  602 

All statistical analyses were performed in MATLAB 2021b (MathWorks).   603 

 604 
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Data availability 606 

Data is available online on OSF (https://osf.io/h32u6/).  607 

 608 

Code availability 609 

Analysis code is available on OSF (https://osf.io/h32u6/).  610 
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Figure 1. Experiment 1 Design and Tasks. (A) Each participant was double-blindly assigned to either the 742 

Uncrossed (green) or the Crossed (blue) group. There were two Phases, which were structurally identical, but 743 

with different market values and item types. The mapping between item types and context was randomized 744 

across participants, as was the item-value mapping, and item type was counterbalanced. In each Phase, 745 

participants first learnt market values of 6 items (antiques or vintage cars) arranged into 3 pairs. The notation in 746 

the panel indicates the normal value distributions from which experienced samples were drawn: N(M,SD) where 747 

M is the mean and SD the standard deviation. Samples were truncated at ±2SD to avoid potential extreme 748 

outlying values (A, see also Supplementary Methods III). Participants learnt by sampling (B). A click on an 749 

item returned a single sample. Participants were free to sample as much as they wished. Sampling for a given 750 

pair ended once a preliminary selling decision was made. There were three sampling phases for each item-pair 751 

(three preliminary decision/item). Learning was followed by Decision (C), in which participants made decisions 752 

without feedback. The Uncrossed groups made decisions about previously sampled item-pairs. The Crossed 753 

group also made decisions between novel item-pairings, composed of items from different item-pairs. We 754 

predicted that the expectations induced by Decision in Phase 1 would cause value learning mechanisms to 755 

diverge across groups in Phase 2 (D). Phase 2 learnt values were assessed in two „surprise‟ final tasks: In All-756 

possible pairs (E) participants made decisions between all possible pairs from Phase 2 (N=15, repeated thrice for 757 

N=45). In Value judgment (F), participants judged the value the value of the six stimuli in Phase 2 presented in 758 

a random order by adjusting a slider (min=100, max=450, in integer steps) until it matched the perceived item 759 

value.  760 

 761 

Figure 2. Experiment 1 All-pairs choice accuracy. (A) Choice accuracy as a function of group. Coloured 762 

symbols represent group means (green square = Uncrossed; blue triangle = Crossed). Grey discs represent 763 

individual participants (Uncrossed N=24; Crossed N=22). Error bars are 95% CIs. Statistics reflect the group-764 

wise contrast t(44) = 2.61, p = .012, CI = .026–.199, d = .77, independent t-test. (B) Choice accuracy for a sub-765 

selection of highly diagnostic pairs, in which a local high-value item (Item2) was globally inferior to other local 766 

low-value items (Item3, Item5). Error bars are bootstrapped 95% CIs. P-values reflect Mann-Whitney U tests: U 767 

= 183, p = .055, r = .31 and U = 145, p = .003, r = .45 respectively. X-axis coordinates of participants‟ data have 768 

been jittered for presentation purposes. 769 

 770 

Figure 3. Experiment 1 Value RDMs. Average RDMs for the Uncrossed group (A) and the Crossed group (B). 771 

Note that items are ordered by the underlying value (not item number). Average RDMs (C,D) but with pair-wise 772 

similarities matching those of different models (E-H) highlighted. Model RDMs (E-H). The colour scale 773 

indicates rank-transformed and rescaled dissimilarity (see Methods, 0=minimal dissimilarity, 1=maximal 774 

dissimilarity).  775 

 776 

Figure 4. Experiment 1 RDM correlations. Partial Spearman participant x model correlations for the Uncrossed 777 

(A, green squares, N=24) and Crossed group (B, blue triangles, N=22) respectively. Each panel (A,B) shows 778 

two analyses: one in which range-adaptation is pitted against absolute encoding, and another in which divisive 779 

normalisation is pitted against absolute encoding. The larger the r the better the model accounts for participants‟ 780 

value representation. Symbols indicate group means and error bars reflect 95% CIs. Grey lines represent 781 
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individual participants. Downwards sloping lines (from left to right) indicate that participants‟ representation of 782 

value is better modelled as relative. Upward sloping lines (from left to right) indicate that the participants‟ value 783 

code is better accounted for by an absolute code. (C) Mean participant x Model correlation differences 784 

(participant x Absolute r – participant x Relative r). Positive r‟s indicate that the absolute model fits better and 785 

negative r‟s that the relative model fits better. Symbols reflect means and error bars reflect 95% CIs. The 786 

reported p-values reflect group-wise contrasts, which assess whether the evidence in favour of the absolute 787 

model over the relative model was stronger in the Crossed group: t(44) = 2.97, p = .005, CI = .15 - .77, d = .88)  788 

and t(44) = 2.57, p = .014, CI = .10 - .85, d = .76 respectively. (D) As (C) but for independent correlations. The 789 

p-values reflect key across-group contrasts t(44) = 3.23, p = .002, CI = .21 - .92, d = .95 and   (t(44) = 2.88, p = 790 

.006, CI = .13 - .74, d = .85).  791 

 792 

Figure 5. Experiment 2 Design and All-pairs choice accuracy. Key design features of Experiment 2 were 793 

identical to Experiment 1. Each participant was assigned (double-blind) to either the Uncrossed (green colour) 794 

or the Crossed (blue colour) groups. There were two Phases, which were structurally identical, but with different 795 

market values and item types. In each phase, participants first learnt the likelihood that an item would sell of 6 796 

items (antiques or vintage cars, order counterbalanced across participants) arranged into 3 pairs. Values were 797 

matched to the expected outcomes of binomial distributions (B(N, p), where p is the probability of observing a 798 

sale on a single trial (N=1). Values were matched such that with p=.1, for example, participants would observe a 799 

successful sale on 2 out of 20 trials (Methods, see also Supplementary Methods III). Learning was followed by 800 

Decision, in which participants made consequential decisions without feedback. The Uncrossed groups made 801 

decisions about previously sampled item-pairs. The Crossed group made decisions between novel item-pairings, 802 

composed of items from different previously sampled item-pairs. (B) All-pairs choice accuracy as a function of 803 

group. Coloured symbols represent group means (Uncrossed=green square, N=119; Crossed=blue triangle, 804 

N=105). Error bars are 95% CIs. Gray dots represent individual participants. The p-value reflects a one-tailed 805 

independent t-test t(222) = 2.30, p = .011, CI = .011 - inf, d = .31. (C) Sub-set of All-pairs trials for which 806 

Divisive normalisation and Absolute encoding make different predictions (see Supplementary Methods III). 807 

Coloured symbols represent group means (Uncrossed=green square, Crossed=blue triangle). Error bars are 95% 808 

CIs. Gray dots represent individual participants. The p-value reflects a one-tailed independent t-test t(222) = 809 

3.56, p < .001, CI = .073 – inf, d = .48 (D) The single All-pairs stimulus-pair for which strong context-810 

dependent encoding would result in different choices compared to absolute value encoding. Error bars are 811 

bootstrapped 95% CIs. Gray dots represent individual participants. For (D) participants could either make 0, 1 812 

or 2 errors. The p-value reflects a one-tailed Mann-Whitney U, U = 4722, p < .001, r = .25. X-axis coordinates 813 

of participants‟ data have been jittered for presentation purposes.  814 

 815 

Figure 6. Experiment 2 Value RDMs. Average RDMs for the Uncrossed group (A) and the Crossed group (B). 816 

Note that items are ordered by the underlying value (not item number). Average RDMs (C,D) but with pair-wise 817 

similarities matching those of different models (E-H) highlighted. Model RDMs (E-H). The colour scale 818 

indicates rank-transformed and rescaled dissimilarity (see Methods, 0=minimal dissimilarity, 1=maximal 819 

dissimilarity). 820 

 821 
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Figure 7. Experiment 2 Model RDM correlations. Partial Spearman participant x model correlations for the 822 

Uncrossed group (A, green squares, N=119) and Crossed group (B, blue triangles, N=105). Each plot shows two 823 

analyses: one in which range-adaptation is pitted against absolute encoding, and another in which divisive 824 

normalisation is pitted against absolute encoding. The larger the r the better the model accounts for participants‟ 825 

value representation. Symbols indicate group means and error bars reflect 95% CIs. Grey lines represent 826 

individual participants. Downwards sloping lines (from left to right) indicate that participants‟ representation of 827 

value is better modelled as relative. Upward sloping lines (from left to right) indicate that the participants‟ value 828 

code is better accounted for by an absolute code. (C) Mean participant x Model correlation differences 829 

(participant x Absolute r – participant x Relative r). Positive r‟s indicate that the absolute model fits better and 830 

negative r‟s that the relative model fits better. Symbols reflect means and error bars reflect 95% CIs. The 831 

reported p-values reflect key Crossed-Uncrossed group-wise contrasts assessing whether the evidence in favour 832 

of the absolute model over the relative model was stronger in the Crossed group: t(222) = 3.25, p < .001, lower 833 

CI = .17, upper CI = inf, d = .43); t(222) = 3.09, p = .001, lower CI = .15, upper CI = inf, d = .41). (D) As (C) 834 

but for independent correlations. The p-values reflect key across-group contrasts:  (t(222) = 3.01, p = .002, 835 

lower CI = .05, upper CI = inf, d = .40); (t(222) = 3.15, p < .001, lower CI = .02, upper CI = inf, d = .42).   836 
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