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Abstract: Nanoparticles are efficient drug delivery vehicles for targeting specific organs as well
as systemic therapy for a range of diseases, including cancer. However, their interaction with the
immune system offers an intriguing challenge. Due to the unique physico-chemical properties,
carbon nanotubes (CNTs) are considered as nanocarriers of considerable interest in cancer diagnosis
and therapy. CNTs, as a promising nanomaterial, are capable of both detecting as well as delivering
drugs or small therapeutic molecules to tumour cells. In this study, we coupled a recombinant
fragment of human surfactant protein D (rfhSP-D) with carboxymethyl-cellulose (CMC) CNTs
(CMC-CNT, 10-20 nm diameter) for augmenting their apoptotic and immunotherapeutic properties
using two leukemic cell lines. The cell viability of AML14.3D10 or K562 cancer cell lines was reduced
when cultured with CMC-mwCNT-coupled-rfhSP-D (CNT + rfhSP-D) at 24 h. Increased levels of
caspase 3, 7 and cleaved caspase 9 in CNT + rfhSP-D treated AML14.3D10 and K562 cells suggested
an involvement of an intrinsic pathway of apoptosis. CNT + rfhSP-D treated leukemic cells also
showed higher mRNA expression of p53 and cell cycle inhibitors (p21 and p27). This suggested
a likely reduction in cdc2-cyclin B1, causing G2/M cell cycle arrest and p53-dependent apoptosis in
AML14.3D10 cells, while p53-independent mechanisms appeared to be in operation in K562 cells.
We suggest that CNT + rfhSP-D has therapeutic potential in targeting leukemic cells, irrespective of
their p53 status, and thus, it is worth setting up pre-clinical trials in animal models.

Keywords: carbon nanotubes; human SP-D; cancer cells; apoptosis; immunotherapy

1. Introduction

The innate immune system plays a key role in the clearance of pathogens and synthetic
compounds including nanoparticles [1,2]. Nanoparticles have numerous biomedical appli-
cations [3-6], which can serve as drug delivery carriers or vaccine adjuvants [7]. Among
nanoparticles, carbon nanotubes (CNTs) have unique physico-chemical properties, and
hence, they are amenable as therapeutic nanocarriers [8-10]. CNTs can be single-walled
(SWCNTs) and multiple-walled (MWCNTs), depending on length, diameter, and structure,
and the layers of single CNT the wall is composed of [11].

Human surfactant protein D (SP-D) is a humoral, pathogen pattern recognition
molecule, which is found to be associated with pulmonary surfactant, as well as mu-
cosal surfaces outside the lungs [12,13]. SP-D belongs to the collectin family, a collagen
containing C-type (calcium-dependent) lectin [14]. The primary structure of SP-D com-
prises a cross-linking amino-terminal region, a triple-helical collagen region, a coiled-coil
neck region, and a C-type lectin domain or carbohydrate recognition domain (CRD) as
a trimeric unit [15,16]. SP-D can bind to various carbohydrate and/or charge patterns on
the surface of pathogens and become involved in clearing them by recruiting phagocytic
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cells such as neutrophils and macrophages [15,16]. SP-D can also interact with a range of
cancer cell lines (leukemic, lung, pancreatic, prostate, ovarian and breast). For example,
a truncated form of recombinant human SP-D (rthSP-D), composed of trimeric neck and
C-type lectin domain, has been shown to interfere with tumour progression via apoptosis
induction, invasion, and epithelial-to-mesenchymal transition [17-22]. These studies have
thus suggested that SP-D has an immune surveillance role against tumors.

SP-D can associate with nanoparticles and modulate their uptake by macrophages [23,24].
SP-D can bind efficiently with oxidized (Ox) DWCNTs via their C-type lectin domain [2,25].
SP-D mediated enhancement of nanoparticle uptake by alveolar macrophages and dendritic
cells in mice has been examined using polystyrene, carbon black and silica nanocarriers [23].

CNTs, when opsonized with rfhSP-D, can provoke a differential pro-inflammatory
immune response [26]. Surface modifications of hydrophobic CNTs are used for their good
dispersion via covalent or non-covalent surface coatings [27]. For instance, the dispersion
of MWNTs via oxidation (Ox-CNT), or with carboxymethyl-cellulose (CMC-CNT), has
been reported [27]. Soluble complement components, such as factor H and C1q, opsonize
functionalized CNTs, suggesting that key innate immune molecules can bind CNTs and
alter inflammatory response [27].

This study was aimed at examining the ability of CNT + rfhSP-D to induce apoptosis
using an eosinophilic cell line, AML14.3D10 [28], and a chronic myelogenous leukemia cell
line, K562, to assess if CNT + rfhSP-D nanomaterials are worth testing in animal models.

2. Results
2.1. CNT + 1fhSP-D Treatment Reduces Cell Viability of AML14.3D10 and K562 Leukemic
Cell Lines

First, we analysed and confirmed the stable binding of purified rfhSP-D with CMC-
MWCNTs5, as evident from the SDS-PAGE (Figure 1). Supernatant after centrifugation
was also loaded, which did not show presence of rfthSP-D. rfthSP-D (10 pg/mL), without
the addition of CNT, was used as a positive control. The quantitative analysis of viability
in treated (cells + CNT + rfhSP-D; 5, 10, and 20 pg/mL in serum-free RPMI medium;
cells + CNT as control) leukemic cells was carried out using trypan blue (Figure 2) and
MTT (Figure 3) assays at 24 h time point. Trypan blue exclusion assay revealed a significant
reduction in the cell viability in CNT + rfhSP-D treated cell lines (AML14.3D10: ~48%;
K562: ~56%) at 24 h in a dose-dependent manner (Figure 2). This was confirmed by the
MTT assay: AML14.3D10 (~37%) and K562 (~55%) (Figure 3). As evident by the MTT
assay, rfhSP-D (20 pg/mL) alone was also able to reduce cell viability in both AML14.3D10
(~51%) and K562 (~69%) cell lines.

2.2. Proliferation of AML14.3D10 and K562 Cell Lines Is Reduced following
CNT + 1fhSP-D Treatment

Experiments were carried out to determine whether CNT + rfhSP-D (20 pg/mL) affected
AML14.3D10 and K562 cell proliferation (Figure 4). Mouse anti-Ki-67 antibody staining was
used to measure the percentage proliferation. CNT + rfhSP-D treated AML14.3D10 cells
showed ~29% cell proliferation compared to rfhSP-D alone (20 nug/mL) (~57%) (Figure 4).
However, a higher percentage of cell proliferation was noted in CN'T-treated AML14.3D10 cells
(~88%). In the case of K562 cell line (Figure 4B), approximately ~34% cell proliferation was
noticed following CNT + rfhSP-D treatment (compared to CNT alone; ~107% proliferative
cells stained with Ki-67 antibody), suggesting that cells treated only with CNT continued
to proliferate and grow unhindered. rfhSP-D alone (20 pg/mL) treatment was also capable
of reducing proliferation of AML14.3D10 (~57%) and K562 (~63%) cells when compared to
CNT alone. These data suggested that CNT + rfhSP-D was more effective in reducing cell
proliferation of both AML14.3D10 and K562 cell lines, indicating its therapeutic potential
against acute and chronic leukemic cell lines.
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Figure 1. Purified rfhSP-D (10 pg/mL) or carboxymethyl cellulose-coated carbon nanotubes (rfh-
SP-D-CNTs) coupled-rfhSP-D (10 pg/mL) samples were subjected to an SDS-PAGE (15% v/v).
Lane 1: Supernatant (10 pL/well) taken after centrifugation of rfhSP-D-CNT. Lane 2: purified rfhSP-D.
Lane 3: rfhSP-D-CNT. The original image is available as a Supplementary Materials.

2.3. Apoptosis Induction by CNT + rfhSP-D in AML14.3D10 and K562 Cell Lines

The quantitative analysis of apoptosis induction by CNT + rfhSP-D was performed us-
ing flow cytometry. A significant proportion of AML14.3D10 or K562 (Figure 5) cells treated
with CNT + rfhSP-D (20 ug/mL), or rfhSP-D (20 pg/mL) alone, resulted in increased apop-
tosis induction at 24 h, compared to CNT alone (untreated control). CNT + rfhSP-D was
effective in inducing the maximum apoptosis at 24 h; AML14.3D10 (~71%) and K562 (~66%),
when compared to CNT alone [AML14.3D10 (~12%) and K562 (~7%)]. rfhSP-D (20 ng/mL)
alone was also able to reduce cell viability in both AML14.3D10 (~43%) (Figure 5) and
K562 (~37%) cell lines (Figure 5; Supplementary Materials). This assay is based on the
ability of annexin V/FITC to bind to phosphatidylserine (PS) on apoptosing cells. A higher
percentage of PI positive AML14.3D10 compared to K562 cells appeared to suggest that
these cells were late apoptotic/necrotic. Staurosporine (1 uM/mL), used as a positive
control for triggering apoptosis, brought about ~72% apoptosis at 24 h.

2.4. Up-Regulation of Cell-Cycle Inhibitors by CNT + rfhSP-D Treatment

To further understand the mechanism of apoptosis induced by CNT + rfhSP-D in
AML14.3D10 or K562 cells, we analysed the expression of cell cycle inhibitors by qRT-
PCR. p21 was upregulated in CNT + rfhSP-D treated AML14.3D10 (logg 5.7-fold) and
K562 (logyg 2.7-fold) (Figure 6) [compared to CNT alone: AML14.3D10 (logo 1.2-fold) and
K562 (logyg 1-fold)]. p27 transcripts were also upregulated in CNT + rfhSP-D challenged
AML14.3D10 (logyg 2.5-fold) and K562 (logjg 2-fold) cells. The level of upregulation was
considerably higher compared to CNT or rfhSP-D alone that were negative and positive
controls, respectively, suggesting that coating rfhSP-D on CNTs enhanced rfthSP-D potency
for targeting tumors.
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Figure 2. Cell viability following treatment with CNT + rfhSP-D-CNT in AML14.3D10 (A) and
K562 (B) cell lines via trypan-blue-dye exclusion assay. Cells (0.1 x 10°) were treated with
CNT + rfhSP-D (5, 10, 20 pg/mL), rfhSP-D (20 ug/mL) or CNT alone (20 ug/mL) for 24 h at 37 °C.
The data has been normalized with cells only as 100% of the cell viability. * p < 0.05, ** p < 0.01 and
*** p < 0.001 compared to CNT only group.

2.5. 1fhSP-D Upregulates p53 Expression in AML14.3D10 Cell Line

P53, a transcription factor, regulates oncogenic responses including DNA damage, cell
cycle arrest, and apoptosis. CNT + rfhSP-D or rfhSP-D alone treated AML14.3D10 cells
showed increased transcript levels of p53 when compared to untreated cells. CNT + rfhSP-D
treated cells showed log;o 8.2-fold increased mRNA levels, compared to rfthSP-D treated cells
(approximately log;g 5.2-fold) (Figure 7). p53 transcripts were not measured in K562 cells as
these cells do not express wild type p53. These data suggest that CNT + rthSP-D treatment
can induce apoptosis in these cell lines regardless of their p53 status.

2.6. Apoptosis Induction in AML14.3D10 and K562 Cells by rfhSP-D-CNT via Intrinsic Pathway

Since apoptosis can be initiated via intrinsic or extrinsic pathways, expression of
caspases was examined in AML14.3D10 or K562 cell lines treated with CNT + rfhSP-D
(20 pg/mL) or rfhSP-D alone (20 pg/mL), using a fluorogenic substrate to detect the
activation of caspase 3 and 7 (Figure 8). Higher levels of caspase 3 and 7 were observed
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in CNT + rfhSP-D treated AML14.3D10 (Figure 8A) and K562 (Figure 8B) cells, when
compared to rfhSP-D or CNT alone-treated cells. There was a time-dependent increase in
caspase 3 and 7 activation, which peaked at 24 h. Cleaved caspase 9 level was observed in
CNT + rthSP-D (or rfhSP-D-treated) AML14.3D10 or K562 cells at 12h, reflecting an intrinsic
pathway (Figure 9).
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Figure 3. CNT + rfhSP-D treatment reduced viability of AML14.3D10 (A) and K562 (B) cells, as
measured by MTT assay. The data have been normalized with cells only as 100% of the cell viability.
Values are means +SEM (n = 3) * p < 0.05, ** p < 0.01 and *** p < 0.001 compared to CNT only group.
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Figure 4. Anti-proliferative effects of CNT + rfhSP-D on AML14.3D10 (A) and K562 (B) cell lines.

Values are means + SD. ** p < 0.01, and *** p < 0.001 compared to CNT group only. The raw data are
available as Supplementary Materials.
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Figure 5. Flow cytometry analysis of apoptosis induction in AML14.3D10 (A) or K562 (B) cell lines
treated with CNT + rfhSP-D. For Annexin V/FITC and DNA /PI staining, 12,000 cells were acquired
and plotted. Values are means &+ SEM (n = 3). ** p < 0.01 and *** p < 0.001 compared to CNT only
group. The raw data are available in the Supplementary Materials.
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Figure 6. CNT + rfhSP-D treatment causes the upregulation of p21 and p27 cell cycle inhibitors
in AML14.3D10 (A) and K562 (B) cell lines. AML14.3D10 or K562 (0.4 x 10°) cells, treated with
CNT + rfhSP-D (20 pg/mL) or rfhSP-D (20 pug/mL), plus untreated control (cells+ CNT) (20 pg/mL),
were used for RNA extraction, cDNA synthesis and RT-qPCR, using 18S as an endogenous control.
The RQ value was calculated using the formula: RQ =2 — AACt. Values represent means = SEM
(n=23).*p <0.05and * p < 0.01 compared to CNT only group.
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Figure 7. CNT + rfhSP-D treated AML14.3D10 cells show upregulation of the mRNA transcript levels
of p53. AML14.3D10 (0.4 x 10°) cells were treated with CNT + rfhSP-D or rfhSP-D alone, along with
an untreated control (cells + CNT) (20 ug/mL each). The RQ value was calculated using the formula:

RQ =2 — AACt. *

p <0.05 and ** p < 0.01 compared to CNT only group.
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Figure 8. Activation of caspase 3/7 in AML14.3D10 (A) or K562 (B) cell lines following
CNT + rfhSP-D treatment. AML14.3D10 or K562 cells (0.1 x 10°) were seeded and challenged
with CNT + rfhSP-D (20 pg/mL) or rfhSP-D (20 nug/mL) Cells + CNT was used as an untreated

control. *** p <0.

0001 versus control group (1 = 3).
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Figure 9. CNT + rfhSP-D treatment upregulates the levels of cleaved caspase 9 on AML14.3D10 (A)
or K562 (B) cell lines at 24 h. AML14.3D10 or K562 cells (0.4 x 10°) were treated with rfhSP-CNT or
rfhSP-D, along with an untreated control (cells + CNT). Values are expressed as mean + SD (n = 3).
**p <0.01, and *** p < 0.001 versus control group.

3. Discussion

The involvement of innate immune mechanisms in cancer progression and resistance
has opened up opportunities for using innate immune molecules as a part of anti-tumour
therapeutic strategies. Immune system, innate as well as adaptive, is a double-edged
sword that can either foster tumour progression via immunosuppression, angiogenesis,
and metastasis, or resist oncogenesis [29,30]. SP-D, especially the trimeric CRDs in its
recombinant form (rfhSP-D), has recently been shown to be protective against a range
of cancer, based on in vitro studies. Coupling rfhSP-D with nanoparticles triggers a dif-
ferential immune response [26]. rfhSP-D-bound CNTs upregulate the pro-inflammatory
response (IL-13, TNF-«, IL-6 and IL-12) in U937 and THP-1 cells [26]. Here, we exam-
ined the ability of CNT + rfhSP-D to act as a potent inducer of apoptosis in leukemic
AML14.3D10 or K562 cell lines. CNT + rfhSP-D treatment reduced the cell viability of
AML14.3D10 and K562 cells and induced apoptosis at 24 h in a dose- and time-dependent
manner, peaking at 24 h and 20 pg/mL. A significant reduction in viability was observed in
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CNT + rthSP-D treated AML14.3D10 (~37%) and K562 (~55%) cells compared to untreated
control (cells + CNT), based on trypan blue and MTT assays.

FACS analysis revealed a significant increase in the percentage of Annexin V-/PI-
positive leukemic cells following CNT + rfhSP-D treatment, characterized by the disruption
of the asymmetric arrangement of the membrane, and appearance of PS on the outer side
of the cell membrane in the cells undergoing apoptosis [31]. Annexin V, a 36 kDa protein,
can bind PS, and also enter the entire plasma membrane in necrotic cells. CNT + rfhSP-D
triggered the maximum apoptosis at 24 h [AML14.3D10 (~71%) and K562 (~66%)], when
compared to CNT alone [AML14.3D10 (~12%) and K562 (~7%)]. However, no significant
difference in terms of cell viability reduction/apoptosis induction was noticed following
rfhSP-D treatment at 48 h in AML14.3D10 and K562 cells, suggesting recovery of the cells
after 24 h. Apoptosis induction in AML14.3D10 and K562 cell lines by CNT + rfhSP-D
may occur through the intrinsic pathway, supported by increased levels of caspase 3, 7
and cleaved caspase 9. This validates earlier studies on AML14.3D10, prostate and breast
cancer cells [20,21,32], and the involvement of a mitochondrial pathway [20,21,32].

We also tried to understand the underlying mechanism of apoptosis induction by
CNT + rfhSP-D and the associated signaling pathways. CNT + rfhSP-D caused increased
transcript level of p53 in AML14.3D10 cell line, probably due to oxidative stress [17,33]. The
upregulation of p53 in CNT + rfhSP-D treated AML14.3D10 cells may downregulate pAkt
pathway, increasing Bad and Bax, which in turn, causes the release of the cytochrome ¢, and
caspase 9 cleavage. In addition, the increased expression of p53 and cell cycle inhibitors
(p21/p27) can cause inactivation of the cyclin B-cdc2 complex, crucial for G2/M cell cycle
transition [17]. The existence of a lack of p53 wild type gene in K562 cell line, and its
increased susceptibility to CNT + rfhSP-D, the protective effects of rfhSP-D bound to CNTs
seem p53 independent. An involvement of cellular receptors expressed by these cancer cell
lines is of paramount importance. SP-D interaction with HMGA1, CD14, CD91-calreticulin
complex, SIRPa, EGFR, and GRP78 has been reported [20-22,33,34]. The presence of rfhSP-
D on CNT as an array of therapeutic molecule is likely to have a clustering effect on these
putative receptors, enhancing the potency of rfhSP-D.

In conclusion, CNT + rfhSP-D nanomaterial seems to be an attractive and novel thera-
peutic approach for targeting intracellular signaling cascades. There is a clear therapeutic
potential of rfhSP-D against tumour cells. The advantage here is that the enhanced glycosy-
lation of oncogenic targets can evade natural or therapeutic antibodies. Having established
the specific nature of interactions between CNT + rfhSP-D and receptors found on leukemic
cancer cells, we can hope to investigate host response in the murine models of cancer using
wild type and SP-D knock-out mice.

4. Materials and Methods
4.1. Cell Culture

AML14.3D10 and K562 cells (ATCC) were cultured in RMPI media containing 10%
v/v fetal calf serum (FCS), 2 mM L-glutamine, and penicillin (100 U/mL)/streptomycin
(100 pg/mL) (ThermoFisher Scientific, Oxford, UK). Cells were grown at 37 °C under 5%
v/v CO, until 80-90% confluency was reached.

4.2. Dispersion and Functionalization of CNTs

The CNTs used in this study were characterized and functionalized as previously
described [26,27]. Briefly, CNTs (diameters 10-20 nm, length 5-20 pm; Arry Nano) were
dispersed using CNT sulfuric acid /nitric acid (3:1 ratio) via sonication and functionalized
using CMC (Sigma-Aldrich/Merck, Dorset, UK) in a 1:2 mass ratio [26,27].

4.3. Expression and Purification of rfhSP-D

A recombinant fragment of human SP-D (rfthSP-D) was expressed and purified as
described previously [17,32]. Affinity purified rfhSP-D was then subjected to endotoxin
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level measurement using QCL-1000 Limulus amebocyte lysate system (Lonza, Slough, UK);
the endotoxin levels were found to be ~5 pg/ug of rfhSP-D.

4.4. Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis (SDS-PAGE)

The binding of 1thSP-D to CMC-CNT5s was assessed via SDS-PAGE (12% v/v). CNT + rthSP-D
samples were boiled in a treatment buffer containing SDS and [3-mercaptoethanol at 95 °C for
10 min before loading on to the gel. The SDS-PAGE gel was stained for 2 h using brilliant
blue stain containing methanol (50% v/v) and acetic acid (10% v/v). This followed sub-
mersion of the stained gel with gentle shaking with de-staining solution (staining solution
without brilliant blue).

4.5. Trypan-Blue-Dye Exclusion Assay

AML14.3D10 or K562 cells (0.1 x 10°) were seeded in a 12-well plate in complete RPMI
complete medium overnight under 5% CO, at 37 °C. Next, the cells were washed with
PBS and treated with CNT + rfhSP-D (5, 10 or 20 pg/mL), or rfthSP-D alone (20 pg/mL),
in serum-free RPMI for 24 h. Cells + CNT and Staurosporine (1 tM/mL) were used as
an untreated /negative and positive control, respectively. Cells were then washed, detached
using 5mM EDTA, and centrifuged (1200 g). The cell pellet, re-suspended in RPMI, was
treated with Trypan blue (10 uL) (60%), and viable cells were counted using hemocytometer
in 5 different optical fields with a threshold value of 200 cells per field.

4.6. MTT Assay

MTT [3-(4,5-dimethylthiazol-2-y1)-2,5-diphenyltetrazolium bromide] (Sigma-Aldrich,
Dorset, UK) assay was performed to assess the cell metabolic activity (cells + CNT + rfhSP-D;
cells + CNT). AML14.3D10 or K562 cells (0.1 x 10°) were seeded in 96-well plates in
RPMI complete medium until 85% confluency, and treated with CNT + rfhSP-D (5, 10 or
20 ug/mL), or rfthSP-D (20 ug/mL), in serum free RPMI medium for 24 h. MTT (50 pug/uL)
per well was added for 4h at 37 °C. 25 pL. medium per well was then mixed with 50 uL
DMSO (10’, 37 °C), and the absorbance was read at 570 nm using an ELISA plate reader.

4.7. Flow Cytometry

For apoptosis assays, AML14.3D10 or K562 cells (0.4 x 10°) were seeded in culture
petri dishes (Nunc) in complete RPMI medium for 24 h and treated with CNT + rfthSP-D
(20 ug/mL), or rthSP-D (20 pug/mL), in serum-free RPMI medium for 24 h. Other controls
were used as described above. Detached, centrifuged and PBS washed cells were incubated
with Alexa Fluor 488 (1:200) (Sigma-Aldrich/Merck, Dorset, UK) (15°, RT) in dark, and
the extent of apoptosis was measured using Novocyte Flow Cytometer. Compensation
parameters were acquired using unstained, untreated FITC stained, and untreated PI-
stained samples for all the cell lines.

For proliferative studies, AML14.3D10 or K562 cells (0.4 x 10°) were washed with
PBS, probed with anti-mouse Ki-67 (BioLegend, San Diego, CA, USA) diluted in permeabi-
lization reagent of the FIX&PERM kit (Fisher Scientific), and incubated for 30 min at room
temperature (RT). Goat anti-mouse-FITC conjugate (1:200) (Fisher Scientific) was used as
a probe at RT in the dark for 30 min. Cells (12,000) were acquired for each experiment and
compensated before plotting the acquired data.

For caspase 9 and 8 studies, AML14.3D10 or K562 cells (0.4 x 10°) were treated with
CNT + rfhSP-D or rfhSP-D (cells + CNT as a control) for 24 h at 37 °C, and probed with
rabbit anti-human cleaved caspase 9 or 8 (Cell Signaling Technology, Danvers, MA, USA)
(1:200) for 1 h at RT. Cells were washed in PBS, incubated with Alexa Fluor 488 (1:200)
(Sigma-Aldrich) at RT in dark for 30 min, acquired and compensated (12,000) prior to
plotting the data.
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4.8. Caspase-3/7 Analysis

AML14.3D10 or K562 cells (0.1 x 10°) were seeded in 96 well plates in RPMI com-
plete medium until 80% confluency. The cells were then treated with CNTs, as described
above, in serum-free RPMI medium containing CellEvent™ Caspase-3/7 Green Detec-
tion Reagent (5 uM; Thermo-Fisher) (0, 10, 20, 30 or 40 h). Cells + CNT was used as
an untreated /negative control. CellEvent™ Caspase-3/7 Green Detection Reagent is
a fluorogenic substrate for activated caspases 3 and 7 in cells undergoing apoptosis. The
plates with treated and untreated samples were incubated at 37 °C with 5% CO; to detect
the levels of Caspase 3/7 using a Clariostar plus microplate reader (BMG Labtech, Cary,
NC, USA).

4.9. Quantitative RT-PCR

AML14.3D10 or K562 cells (0.5 x 10°) were incubated with CNT + rfhSP-D (20 ug/mL)
or rfhSP-D (20 pug/m in serum-free RPMI medium for 18 h and RNA was isolated us-
ing GenElute Mammalian Total RNA Purification Kit (Sigma-Aldrich) and treated with
DNase I. 2 pg of total RNA was used for cDNA synthesis using High Capacity kit (Ap-
plied Biosystems/ThermoFisher, Abingdon, UK). Primer sequences were designed using
Primer-BLAST software (Table 1). Each PCR reaction, carried out in triplicates, contained
SYBR Green (5 pL) MasterMix (Applied Biosystems), primers (75 nM), and cDNA (500 ng)
(7900HT; Applied Biosystems). The cycle involved 2'/50 °C and 10’ /95 °C, and 40 cycles
(15s/95°C; 1'/60 °C). Human 18S rRNA was used as a housekeeping gene control. Rel-
ative quantification (RQ) value and formula: RQ = 2 — AACt were used to calculate the
relative expression of each target. Cells + CNT was used as an untreated /negative control.

Table 1. Target genes and terminal primers used in the RT-qPCR analysis.

Target Gene Forward Primer Reverse Primer
18S 5'-ATGGCCGTTCTTAGTTGGTG-3' 5'-CGCTGAGCCAGTCAGTGTAG-3’
P53 5'-AGCACTGTCCAACAACACCA-3 5'-CTTCAGGTGGCTGGAGTGAG-3
p21 5-TGGAGACTCTCAGGGTCGAAA-3/ 5'-CGGCGTTTGGAGTGGTAGAA-3
p27 5'-CCGGTGGACCACGAAGAGT-3 5'-GCTCGCCTCTTCCATGTCTC-3'

4.10. Statistical Analysis

The graphs were generated using the GraphPad Prism 6.0 software. A one-way ANOVA
test was carried out for statistical significance analysis. values less than 0.05 were considered
as statistically significant.
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