
 

Abstract—In this paper, we improve the robustness of the 

Hough transform-based clock skew measurement on the 

occurrence of a jump point. The current Hough transform-based 

skew method uses angle (θ), thickness (ω), and region (β), to create 

a parallelogram that covers the densest part of an offset-set. 

However, the assumption that all offsets are considered to line up 

roughly in only one direction restricts the ability of the current 

method when handling an offset-set in which its densest part is 

located separately, the jump point condition. By acquiring the 

parallelogram from coexisting angle-region tuples at the beginning 

and the ending parts of the offset-set, we completed the ability of 

the Hough transform-based method to handle the jump point. 

When handling the jump point problem, the proposed coexisting 

parallelogram method could reach 0.35 ppm accuracy compared 

with tens ppm by the current methods. 

 
Index Terms—Clock skew, Hough transform, jump point, 

coexisting parallelogram. 

 

I. INTRODUCTION 

LOCK of a device does not only provide time information 

or timestamps. Other parameters of the device’s clock can 

be explored for other purposes. For example, clock skew, or the 

clocking rate difference between two digital clocks, is a 

phenomenon that causes timestamps between one device to be 

different comparing to a reference clock. This phenomenon 

occurs due to the low quality of the clock or the age of the clock 

on a device that makes the clock ticking slower than before.  

Clock skew has become a significant issue on delay 

measurement [4], [19], [21], [34], where when we measuring 

delay through sending packets between transmitter and 

receiver, the timestamps are not pure as they are containing 

clock skew where therefore the effect of clock skew must be 

removed. However, as the value of clock skew is stable over  
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time and they are unique for each device, clock skew can be 

used for device identification [14], [17], [23], [24]. Here, clock 

skew is used as an ID for each device connected to the same 

server. Every time a device is connected to a server, its clock 

skew is measured, and then it is compared with the saved clock 

skew. When the skews are similar or they are both still at a  

certain threshold, the device is called a valid device. Other area 

exploring clock skew are distributed anonymity architecture 

[20], [27], non-cryptography security [28], [35] and wireless 

sensor network [32], [33]. All areas used clock skew depends 

on the accurate value of the measured clock skew. For this, 

many scholars have proposed methods to estimate its value on 

devices with digital clocks [2], [4], [11], [16], [19], [21]. These 

methods initiate the estimation through a measurer that collects 

a target device’s timestamps over a network connection [30]. 

When measuring the skew, the timestamps collection is 

processed in a scatter diagram, like in Fig. 1 for instance, a 

sample from an experiment which would be introduced later in 

Section 4. The x–axis of the scatter diagram is the measurer’s 

timestamp; the y–axis, meanwhile, is offset calculated by 

subtracting the device’s timestamp from the measurer’s 

timestamp [14], [30]. Basically, the skew is the slope of the 

offset-set on the scatter diagram. In the details when finding the 

slope, each method has its own characteristic. Linear regression 

[19], for example, would only be appropriate when the offsets 

gather to form a straight line near the bottom part of the scatter 

diagram [30]. Since the collection process of the timestamps 

involves delays between the device and the measurer [30], only 

a stable environment, a wired communication, for example, can 

produce that kind of data [30]. When the timestamps collection1 

process is implemented in a poorer situation, such as a wireless 

network, many offsets are separated up from the densest part in 

the lower region of the scatter diagram (outliers) [14]. With 

many outliers exist, the slope created by the linear regression 

would deviate to follow the outliers, and leads to an inaccurate 

clock skew [14], [19], [21]. Picking only offsets in the lower 

region of the scatter diagram (minimum offsets) to avoid the 

outliers would be a very promising solution. Paxson [21], Aoki 

[2], and Huang et al. [14] proposed this kind of solution with 

their own scheme. Paxson [21] combines the minimum offsets 
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method with a median technique, Aoki [2], meanwhile, uses 

several windows with similar size, and Huang et al. [14] 

proposed their sliding windows method. Later, Moon et al. [19] 

with their linear programming algorithm (LPA) shows a robust 

method that is unaffected by outliers, just by drawing a line 

below all the offsets. However, when the offsets at the lower 

region of the scatter diagram become unstable caused by the 

presence of the low-outliers, i.e., offsets below the crowded 

offsets [30], the estimation results by the aforementioned 

methods for short-term measurements become inaccurate. The 

Hough transform-based clock skew measurement [30] has 

succeeded to provide a new method for estimating the skew 

accurately both on the classic case of the normal lower bound, 

and for the unstable lower bound as well. 

Unlike the classic methods, the Hough transform-based skew 

method maps the offsets in the scatter diagram into image points 

[30]. Through these image points, a Hough transform-like 

voting scheme is then applied to find a parallelogram-like 

region that bound the densest part of all offsets [30]. When the 

parallelogram-like region represented by angle θ, thickness ω, 

and region β is obtained, the clock skew is next produced from 

the slope of all offsets inside the parallelogram [30]. 

Another robustness criterion of a clock skew measurement is 

it should be able to handle as many as possible situations, that 

occur when a measurer collecting a device’s timestamps [24]. 

Another study related to skew by Huang et al. [14], shows 

conditions when a connected device changes its network 

connection to a measurer can cause what is called the jump 

point. The first type of  jump point, the time gap that is indicated 

by a period with blank packets [14, Fig. 9], will not give any 

problem for the skew measurement by any existing methods 

used. The second type [14, Fig. 7], conversely, a condition of 

offsets that starting to increase or decrease sharply as an effect 

of different delays on distinct transmission medium will cause 

inaccurate estimation by the current methods. Since the current 

version of the Hough trans-form based skew method follows the 

stable over-time concept, i.e., all offsets are considered to line 

up roughly in one direction [30], a weird condition such as the 

jump point where more than one group of offsets occur will be 

detected as one like in Fig. 2 a sample which would be analyzed 

later in Section 4. As a result, the Hough transform-based 

method will produce a large parallelogram-like region that 

covers all the offsets, including the jump point, and finally 

produce an inaccurate skew result. As far as we are concerned 

there is a solution to handle this jump point problem, a method 

called DROML presented in [31]. DROML created a dynamic 

region to cover the densest part of the offsets collection, which 

makes the calculated skew is spared from the effect of the jump 

point.  However, DROML find the densest part of the offsets 

from the beginning of the collection to the end. We found that 

the jump point condition can also be detected through small 

pieces of a parallelogram that coexist in the beginning and 

ending parts of an offset-set that can be lengthened to cover all 

offsets. 

Our contribution in this paper is to build a new technique by 

obtaining coexisting parallelograms in two parts of offsets, the 

beginning and the ending. Since the clock skew has been 

revealed to be stable over time [17], [19], [21], a small piece of 

parallelograms that coexist in the beginning and ending parts 

can be lengthened to cover all offsets. When an offset-set 

contains the jump point, however, no coexisting parallelograms 

will be produced. Hence, we omit the effect of the jump point 

by obtaining the skew from skews of some subsets of the offset-

set which are no longer contain the jump point. Our evaluation 

results show that compared with LPA [20], Aoki’s method [2], 

and the Hough transform based method [31], only the proposed 

method can handle the problem accurately. 

 

 
Fig. 1. An offset-set between a measurer and a device that are connected 

through a wired network. 

 

 
Fig. 2. An offset-set contains a jump point condition 

 

The following section describes in detail the voting scheme 

we used in this paper. This voting scheme is similar to [15, 

Algorithm 1]. Next in Section III, the coexisting parallelogram 

method for handling the jump point problem is explained. 

Evaluation results are shown in Section IV. Finally, we 

summarize our work in Section V. 

II. VOTING METHOD 

Summarized from [30], in obtaining the densest part of an 

offset-set, the Hough transform-based clock skew method maps 

all the offsets into image points. From all the offsets that are 

sorted based on the time of the measurer, the origin of the image 

points is chosen at (t1, omin), where t1 stands for the first 

measurer’s timestamp, and omin is the minimum offsets of the 

offset-set. As illustrated in Fig. 3, for a given angle θ, a line of 

ρ=xcosθ+ysinθ is drawn through (t1, omin). Afterward, many 

regions with an identical thickness ω indexed from β1 to βn are 

then created. Here β is a value when ρ of the line on the origin 

is rounded down to an integer multiple of ω. To mark the 

position of all points, the Hough transform-based voting 

method store the voting information of each point: the angle, 

the thickness, and the corresponding region index, in the form 
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of Votes(θ, ω, β). The more points located in the same angle-

region tuple, the higher the vote’s number of that tuple. Since 

the purpose is to cover the densest part of the offset-set, an 

angle-region tuple with the highest vote’s number that exceeds 

a certain threshold is then used to create the parallelogram. 
 

 
Fig. 3. Relationship between offsets, ρ, θ, β, and ω on the Hough transform 

based voting method 

 

A. Dynamic-Region Method 

To obtain the parallelogram, a voting method must be 

implemented, here we named the voting method as a dynamic-

region voting method. This method is based on [31, Algorithm 

1]. At first, we refuse of using the rigid pre-defined thickness 

that divides the image points into several fixed-size regions. On 

the contrary, we define regions from ρ of each point that is 

added by some distance d. Fig. 4 illustrates how this method 

works. For a given angle θ, each point has its own line of 

ρ=x*cosθ+y*sinθ. The first region, noted as β1, is from ρ1 to ρ1 

+ d, the second, β2, is from ρ2 to ρ2 + d, and so on until the last 

one, βn-1, is from ρn−1 to ρn−1 + d. Even the size of all regions is 

similar to follow the added distance d, the offsets covered by 

each region are dynamic to follow the distribution of the offsets 

near a certain region. We can equate d with ω in the existing 

voting method. However, while ω creates many fixed-size 

regions that are located rigidly on the image points, 

combination of d with ρ on each point leads us systematically 

into regions that congregate near the densest part sought. With 

regions near the densest part that differ so small, it is like 

tracking the real character of each point with a small step 

whether a point is a portion of the densest part or not. Through 

this method, a close outlier or low-outlier to the densest part can 

be avoided to be a part of the densest part. As a result, an angle-

region tuple with the highest vote’s number represents the real 

densest part without any unwanted outliers or low outliers 

inside it. Since the real thickness of the densest part of an offset-

set is not fixed, the effect of the jitter [30], we can increase the 

distance d to fulfill the need of a wider region caused by a wider 

densest part. Even the regions become larger caused by the 

escalation of d, they still converge near the densest part, 

following the distribution of the offsets. Hence, the accuracy 

can be maintained. 

 
 

Fig. 4. Relationship between offsets, ρ, θ, and d on the dynamic-region voting 

method 

 

B. Pseudo Code of The Dynamic Region Method 

To implement the dynamic-region voting method described 

above, we modify Function OffsetVote() in [30, Algorithm 1] 

into Function DynamicRegion() which is detailed Algorithm 1. 

Since we no longer use a pre-defined thickness when creating 

regions, the thickness ω, its lower bound ωmin, and the thickness 

increment ωinc in [30, Algorithm 1] are no longer used. 

Meanwhile, we keep the other variables:  S, the set of all points; 

θmin and θmax, the boundary of the angles; p, the angle step-size; 

and N, the threshold. Related to the dynamic region, we 

introduce two new variables: d stands for a distance from a 

certain ρ for creating the regions, and dinc which is used to 

increase the distance when necessary.  

For each the scanned angle in the first for loop, the second 

for loop of Algorithm 1 creates a line of ρ=x*cosθ+y*sinθ on 

each point (x, y), which results in an array of many ρ that is 

ordered from its minimum to maximum values. In the next for 

loop, the regions are created by adding d to each ρ. And then, 

we count how many points are located inside each region by 

counting the number of ρ inside it, and store the value in 

Votes(β, θ). Finally, inside the other for loop near the end of the 

algorithm, an angle-region tuple with the highest vote’s number 

that exceeds the threshold N is used to form the parallelogram. 

If there are no candidate regions found, we increase the distance 

(d = d + dinc), and start a new round of voting. 

III. COEXISTING PARALLELOGRAM METHOD 

A. Coexisting Parallelogram Method 

Our solution to handle the jump point problem is as follows. 

First of all, since the skew has been revealed to be constant from 

the beginning to the end of the measurement [12], [13], [14], 

small pieces the parallelogram that coexist in the beginning and 

ending parts of an offset-set can be lengthened to cover all 

offsets. To explain how it works, observe a set of offsets 

(Measurer time, Offset) in Fig. 5: (t1, o1), ..., (tn, on). Let part 

 
line 
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denotes the number of offsets for the beginning and ending parts 

of all offsets. Then, the beginning part that is notated by Sbeg 

contains offsets from (t1, o1) to (tpart, opart); and the ending part 

that is notated by Sen contains offsets from (tn−part, on−part) to (tn, 

on). After the voting process on both parts is done, the 

parallelogram-like region for the whole collection is a 

prolongation of angle-region tuples that occur coexisting in 

both parts, e.g., θ1 and β1 in Fig. 5.  

To implement the method above, we developed Algorithm 2, 

Function CoexistRegion(). In this algorithm, Function 

DynamicRegion() is called twice to process Sbeg and Sen. The 

results of both processes are stored in L1 and L2, for Sbeg and Sen 

respectively. The while loop in Algorithm 2 shows that the 

process will be terminated only when similar angle-region 

tuples are found in both parts. Otherwise, both processes are 

repeated with a higher initial distance value, which is the 

smallest last used distance on both processes. To prevent the 

region grows too large, we define dmax as the upper-bound limit 

of the region size. 

With the region size that is bounded into a maximum size, 

usage of only the beginning and ending parts has an advanced 

benefit that there will be no coexisting angle-region tuples when 

an offset-set contains a jump point because the beginning and 

ending parts are obviously in different regions. To obtain the 

solution of this problem, we developed Algorithm 3 where it 

still uses a three-stage process with major improvements 

comparing with the original three-stage process in [30, 

Algorithm 2]. 

Since the second and third stages only aim to pursue higher 

precisions from the result of the first stage [30], we locate all 

processes of handling the jump point in the first stage. Hence, 

the next two stages will only process the output of the first stage 

without worrying whether the offset-set contains a jump point 

or not. Other than Sbeg, Sen, and the part which are introduced 

before, Algorithm 3 uses SBEG, SEN, and Ltemp to store all the 

corresponding Sbeg, Sen, and L which are resulted by the first-

stage process. Later, all values in SBEG, SEN, and Ltemp are 

processed in the second and third stages. At the end of the 

method, to store the results of the whole process, we defined a 

variable Lfinal. 

 

 
Fig. 5. Usage of coexisting parallelograms that occur at the beginning and 

ending parts of an offset-set on the Hough transform based clock skew 

measurement. 

 

In Algorithm 3, after Sbeg and Sen are created from S, the first-

stage process is started by calling Function CoexistRegion(). If 

this process produces results, that means the offsets collection 

is normal, and the second and third stages will only run one time 

to process SBEG, SEND, and Ltemp in the for loop near the end of 

the algorithm. Otherwise, the offset-set might contain a jump 

point, and the first-stage process must preprocess the offset-set 

to produce several subsets of the offset-set which no longer 

contain the jump point. To do that, two variables are used: 

Ssucceed denotes the number of offsets that have already been 

processed, and Sfailed which stands for the unprocessed part of 

the offset-set. At this point, Ssucceed is zero and Sfailed is the whole 
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collection. If the jump point is located in the middle of Sfailed,  

we only need to divide Sfailed into two parts, and use both parts 

to produce a result. However, most likely the location is not in 

the middle of Sfailed because it depends on the time when the 

device changes its network connection. Inside the while loop, is 

a mechanism to handle the uncertain location of the jump point. 

Here SS stands for a subpart of the processed Sfailed, two parts 

for each Sfailed. For each SS, Sbeg and Sen are created, and then 

Function CoexistRegion() is run. When no results from 

Function CoexistRegion(), SS is then marked as a new Sfailed. 

Otherwise, Sbeg, Sen, and the result L, are stored in SBEG, SEN, and 

Ltemp respectively. To store the information of a successful 

process, Ssucceed is then added by the number of offsets in SS. 

Later, after the while loop finish which is indicated by all offsets 

are already processed (Ssucceed = S.length), all SBEG, SEN, and Ltemp 

are processed in the for loop of the second and third stages 

process. It is important to be noted that only Sfailed which is 

longer than twice of part that will be processed. Otherwise, we 

leave that Sfailed unprocessed by adding it to Ssucceed because SS 

from Sfailed in this condition is already shorter than part. 

For a normal offset-set, Algorithm 3 will produce only one 

tuple of Lfinal.θ, Lfinal.DR, and Lfinal.d. When the offset-set 

contains a jump point, however, Lfinal stores many tuples. Each 

of the tuple will result in skew, and finally a median value of all 

resulted skews is then used as the final skew. 
  

IV. EVALUATION RESULTS 

For the coexisting dynamic-region method on handling the 

jump point, the data set was obtained by connecting a client 

device (ASUS A46C Notebook with UBUNTU 14.04 as the 

operating system) to a measurer (IBM server with an OS of 

UBUNTU 12.04) on two different networks. First, we 

connected the client to the measurer through a wired LAN. 

After several packets were transmitted by the client, the wired 

connection was disconnected, and then a multi-hops wireless 

connection was started automatically. For a purpose of 

comparison with other methods, we also derived a normal 

collection of the aforementioned setting, and use it as a 

reference. A relatively close clock skew when comparing the 

result of the jump point with the reference is an indication of 

the success of a measurement method. To show the effect of the 

jump point as well as to confirm the performance of our 

proposed method, three methods were exploited: LPA [8], 

Aoki’s method [10], and the current version of the Hough 

transform-based method [30].  

On each evaluation, the parameters used on Algorithms 1, 2, 

and 3 are: d = 500 µs, dinc = 100 µs, dmax = 2000 µs, N = 50%, 

and part = 500 offsets. 

First of all, Fig. 1 shows the offset-set of the reference skew. 

This offset-set was derived from a wired peer-to-peer 

communication between the aforementioned client and 

measurer. When estimating the skew of this collection, all four 

methods: LPA, Aoki’s method, the original Hough transform 

method, and the proposed method produced almost similar 

skews of 29.23 ppm, 29.25 ppm, 29.21 ppm, and 29.2 ppm, 

respectively. Let use a median value of these four as the skew 

reference, 29.25 ppm. 

 

 

To produce the final skew when measuring the offset-set  

contains a jump point in Fig. 2, eight steps were needed by the 

proposed method as detailed in Table 1. From this table we can 

see that when all the offsets (1–4693) were processed, step–1 

failed to produce results due to the absence of any coexisted 

angle-region tuple in the beginning and ending parts of the 4693 

offsets. After the offset-set was divided into (1–2347), step-2, 

and (2348–4693), step-3, step-3 succeeded to produce a clock 

skew of 29.8 ppm, but step-2 failed. The division process for 

the failed step is then continued, and completed after eight 

steps. From all the processes, three clock skews were produced: 

29.8 ppm on step-3, 29.4 ppm on step-4, and another 29.4 ppm 

on step-6. As the final skew, a median value of 29.6 ppm from 

these three clock skews is then used. 
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To show the effect of the jump point, Fig. 6 illustrates the 

results of the four methods when estimating the skew of the 

offset-set in Fig. 3. We can observe from Fig. 5a and Fig. 5c that 

the slopes, i.e., the skew line of LPA and Aoki’s method are 

inaccurate due to the inability of detecting the presence of the 

jump point. For the original Hough transform method in Fig 5b, 

meanwhile, they just abandon the jump point, the resulted 

parallelogram becomes too big, which results in an inaccurate 

skew as well. On the other hand, our proposed method 

succeeded to produce skews that do not contain the jump point 

anymore. Three densest parts as produced in step-3, step-4, and 

step-6 are depicted with different color in Fig. 5d. When 

compared the result of the proposed method (29.6 ppm) with 

the results of LPA (61.29 ppm), the original Hough transform 

method (70.5 ppm), and Aoki’s method (55.49 ppm), the 

proposed method obtained the closest clock skew to the clock 

skew reference (29.25 ppm), only differ 0.35 ppm. The results 

of this evaluation indicate that the proposed coexisted dynamic-

region method has succeeded to be implemented to handle the 

jump point. 

V. DISCUSSION AND FUTURE WORK 

To show more the robustness of the proposed method, here 

we presented the evaluation results on three other datasets 

containing jump points. The three datasets are from different 

client devices: a Macbook Pro, an ASUS ROG, and an IBM 

Thinkpad, connected to the same existing server. The scenario 

is similar where the connections are changed from using a LAN 

into WLAN at a random time point. We named the three 

datasets as Dataset-2, Dataset-3, and Dataset-4. We have also 

measured the reference skews from the three devices connected 

to the server, where the skews are 52.3 ppm, 34.8 ppm, and 20.1 

ppm respectively. 

Table 2 shows the measurement results of the proposed 

method into the three datasets. Dataset-2 and Dataset 3 have 

similar patterns where the proposed method requires 8 steps to 

finish the skew measurement. Meanwhile the proposed method 

only uses two steps to measure Dataset-4. These facts inform us 

that the jump point of Dataset-4 occurs in the middle of the 

dataset, while Dataset-2 and Dataset-3 near the beginning or the 

end of the dataset. 

 

TABLE I. RESULTS OF THE PROPOSED METHOD WHEN ESTIMATING AN OFFSET-SET CONTAINS A JUMP POINT 

 

 

 
Fig. 6. Estimation results on a jump point condition by four different methods. (a) LPA. (b) Hough Transform. (c) Aoki’s method. (d) Proposed method. 
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The position of the jump point of the dataset can cause the 

proposed method to work longer or shorter. Jump point near the 

middle of the dataset takes fewer steps than those near the 

beginning or end, as the method can cover all the datasets 

quicker.  

The number of Part also takes an importance rule as we have 

to choose an adequate value for Part. The bigger Part value 

ensure the more accurate skew, when the dataset is already in 

one densest part. However, when Part is too big, the proposed 

method can miss a jump point, result in no skew can be 

measured. Previous work shows that 500 offsets are enough to 

measure skew accurately, and when we compare to our 

scenario, the jump point of changing connection will not occur 

before 500 offsets are transferred by the client to the server.  

From Table 2, we can see that the median skew of Dataset-2 

is 52.1 ppm, Dataset-3 is 34.7 ppm, and Dataset-4 is 20 ppm. 

These median skews are close to the reference skews of each 

dataset; 52.3 ppm, 34.8 ppm, and 20.1 ppm. The differences are 

no more than 0.2 ppm. From these results, we can conclude that 

the proposed method has succeeded to measure the skews of 

those three datasets containing jump point accurately. 

A Jump point in a dataset can occur by network 

communication change or by NTP synchronization. These two 

factors rarely occur when we connected to a site. NTP synch 

might happen once a day. Change network connection between 

cable and wireless can occur more, but not also frequently 

occur, and the gap between timestamps on cable and wireless is 

quite high where the proposed method can differentiate the 

densest part of that jump from the original. The next challenge 

for the work on clock skew is the condition when client travel 

from one Access Point (AP) to another one in wireless 

connection only. This condition can occur more frequently as a 

lot of APs is available in one area. The other issue is the speed 

between APs is different, which makes the time to send data 

will differ as well, cause the densest part of the data will not be 

in one part or there will be a jump point. However, the jump 

will not be as high as those data caused by a change connection 

between wired and wireless. To detect more jump point in a 

dataset as well as to detect small size of the jump in a dataset is 

the future work that interesting and challenging to solve.  

VI. CONCLUSION 

We have proposed a new coexisting dynamic-region method 

to improve the robustness of the Hough transform-based clock 

skew measurement to find a coexisting parallelogram at the 

beginning and ending parts of the offset-set to handle the jump 

point condition accurately. Experiments results show that the 

proposed coexisting parallelogram method could successfully 

measure the jump point data with 0.35 ppm accuracy compared 

with tens ppm by the current methods. When the experiment 

expanding to three other devices connected to a similar 

server, the proposed method has succeeded to maintain its 

robustness by measuring the skews with an accuracy of 0.2 

ppm comparing to the reference skews. 
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