

Abstract—In this paper, we improve the robustness of the

Hough transform-based clock skew measurement on the

occurrence of a jump point. The current Hough transform-based

skew method uses angle (θ), thickness (ω), and region (β), to create

a parallelogram that covers the densest part of an offset-set.

However, the assumption that all offsets are considered to line up

roughly in only one direction restricts the ability of the current

method when handling an offset-set in which its densest part is

located separately, the jump point condition. By acquiring the

parallelogram from coexisting angle-region tuples at the beginning

and the ending parts of the offset-set, we completed the ability of

the Hough transform-based method to handle the jump point.

When handling the jump point problem, the proposed coexisting

parallelogram method could reach 0.35 ppm accuracy compared

with tens ppm by the current methods.

Index Terms—Clock skew, Hough transform, jump point,

coexisting parallelogram.

I. INTRODUCTION

LOCK of a device does not only provide time information

or timestamps. Other parameters of the device’s clock can

be explored for other purposes. For example, clock skew, or the

clocking rate difference between two digital clocks, is a

phenomenon that causes timestamps between one device to be

different comparing to a reference clock. This phenomenon

occurs due to the low quality of the clock or the age of the clock

on a device that makes the clock ticking slower than before.

Clock skew has become a significant issue on delay

measurement [4], [19], [21], [34], where when we measuring

delay through sending packets between transmitter and

receiver, the timestamps are not pure as they are containing

clock skew where therefore the effect of clock skew must be

removed. However, as the value of clock skew is stable over

Manuscript received January 28, 2021; revised June 29, 2021. Date of

publication October 4, 2021. Date of current version October 4, 2021. The
associate editor prof. Nikola Rožić has been coordinating the review of this

manuscript and approved it for publication.

Authors are with the Electrical Engineering Study Program, Faculty of
Engineering, Universitas Udayana, Bali, Indonesia (e-mails: {putra.sastra,

okasaputra, wiharta}@unud.ac.id).

Digital Object Identifier (DOI): 10.24138/jcomss-2021-0028

time and they are unique for each device, clock skew can be

used for device identification [14], [17], [23], [24]. Here, clock

skew is used as an ID for each device connected to the same

server. Every time a device is connected to a server, its clock

skew is measured, and then it is compared with the saved clock

skew. When the skews are similar or they are both still at a

certain threshold, the device is called a valid device. Other area

exploring clock skew are distributed anonymity architecture

[20], [27], non-cryptography security [28], [35] and wireless

sensor network [32], [33]. All areas used clock skew depends

on the accurate value of the measured clock skew. For this,

many scholars have proposed methods to estimate its value on

devices with digital clocks [2], [4], [11], [16], [19], [21]. These

methods initiate the estimation through a measurer that collects

a target device’s timestamps over a network connection [30].

When measuring the skew, the timestamps collection is

processed in a scatter diagram, like in Fig. 1 for instance, a

sample from an experiment which would be introduced later in

Section 4. The x–axis of the scatter diagram is the measurer’s

timestamp; the y–axis, meanwhile, is offset calculated by

subtracting the device’s timestamp from the measurer’s

timestamp [14], [30]. Basically, the skew is the slope of the

offset-set on the scatter diagram. In the details when finding the

slope, each method has its own characteristic. Linear regression

[19], for example, would only be appropriate when the offsets

gather to form a straight line near the bottom part of the scatter

diagram [30]. Since the collection process of the timestamps

involves delays between the device and the measurer [30], only

a stable environment, a wired communication, for example, can

produce that kind of data [30]. When the timestamps collection1

process is implemented in a poorer situation, such as a wireless

network, many offsets are separated up from the densest part in

the lower region of the scatter diagram (outliers) [14]. With

many outliers exist, the slope created by the linear regression

would deviate to follow the outliers, and leads to an inaccurate

clock skew [14], [19], [21]. Picking only offsets in the lower

region of the scatter diagram (minimum offsets) to avoid the

outliers would be a very promising solution. Paxson [21], Aoki

[2], and Huang et al. [14] proposed this kind of solution with

their own scheme. Paxson [21] combines the minimum offsets

Coexisting Parallelogram Method to Handle

Jump Point on Hough Transform-based Clock

Skew Measurement

Nyoman Putra Sastra, Komang Oka Saputra, and Dewa Made Wiharta

C

JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 17, NO. 4, DECEMBER 2021 297

1845-6421/12/2021-0028 © 2021 CCIS

mailto:wiharta%7d@unud.ac.id
A507
Typewritten Text
Original scientific article

A507
Typewritten Text

method with a median technique, Aoki [2], meanwhile, uses

several windows with similar size, and Huang et al. [14]

proposed their sliding windows method. Later, Moon et al. [19]

with their linear programming algorithm (LPA) shows a robust

method that is unaffected by outliers, just by drawing a line

below all the offsets. However, when the offsets at the lower

region of the scatter diagram become unstable caused by the

presence of the low-outliers, i.e., offsets below the crowded

offsets [30], the estimation results by the aforementioned

methods for short-term measurements become inaccurate. The

Hough transform-based clock skew measurement [30] has

succeeded to provide a new method for estimating the skew

accurately both on the classic case of the normal lower bound,

and for the unstable lower bound as well.

Unlike the classic methods, the Hough transform-based skew

method maps the offsets in the scatter diagram into image points

[30]. Through these image points, a Hough transform-like

voting scheme is then applied to find a parallelogram-like

region that bound the densest part of all offsets [30]. When the

parallelogram-like region represented by angle θ, thickness ω,

and region β is obtained, the clock skew is next produced from

the slope of all offsets inside the parallelogram [30].

Another robustness criterion of a clock skew measurement is

it should be able to handle as many as possible situations, that

occur when a measurer collecting a device’s timestamps [24].

Another study related to skew by Huang et al. [14], shows

conditions when a connected device changes its network

connection to a measurer can cause what is called the jump

point. The first type of jump point, the time gap that is indicated

by a period with blank packets [14, Fig. 9], will not give any

problem for the skew measurement by any existing methods

used. The second type [14, Fig. 7], conversely, a condition of

offsets that starting to increase or decrease sharply as an effect

of different delays on distinct transmission medium will cause

inaccurate estimation by the current methods. Since the current

version of the Hough trans-form based skew method follows the

stable over-time concept, i.e., all offsets are considered to line

up roughly in one direction [30], a weird condition such as the

jump point where more than one group of offsets occur will be

detected as one like in Fig. 2 a sample which would be analyzed

later in Section 4. As a result, the Hough transform-based

method will produce a large parallelogram-like region that

covers all the offsets, including the jump point, and finally

produce an inaccurate skew result. As far as we are concerned

there is a solution to handle this jump point problem, a method

called DROML presented in [31]. DROML created a dynamic

region to cover the densest part of the offsets collection, which

makes the calculated skew is spared from the effect of the jump

point. However, DROML find the densest part of the offsets

from the beginning of the collection to the end. We found that

the jump point condition can also be detected through small

pieces of a parallelogram that coexist in the beginning and

ending parts of an offset-set that can be lengthened to cover all

offsets.

Our contribution in this paper is to build a new technique by

obtaining coexisting parallelograms in two parts of offsets, the

beginning and the ending. Since the clock skew has been

revealed to be stable over time [17], [19], [21], a small piece of

parallelograms that coexist in the beginning and ending parts

can be lengthened to cover all offsets. When an offset-set

contains the jump point, however, no coexisting parallelograms

will be produced. Hence, we omit the effect of the jump point

by obtaining the skew from skews of some subsets of the offset-

set which are no longer contain the jump point. Our evaluation

results show that compared with LPA [20], Aoki’s method [2],

and the Hough transform based method [31], only the proposed

method can handle the problem accurately.

Fig. 1. An offset-set between a measurer and a device that are connected

through a wired network.

Fig. 2. An offset-set contains a jump point condition

The following section describes in detail the voting scheme

we used in this paper. This voting scheme is similar to [15,

Algorithm 1]. Next in Section III, the coexisting parallelogram

method for handling the jump point problem is explained.

Evaluation results are shown in Section IV. Finally, we

summarize our work in Section V.

II. VOTING METHOD

Summarized from [30], in obtaining the densest part of an

offset-set, the Hough transform-based clock skew method maps

all the offsets into image points. From all the offsets that are

sorted based on the time of the measurer, the origin of the image

points is chosen at (t1, omin), where t1 stands for the first

measurer’s timestamp, and omin is the minimum offsets of the

offset-set. As illustrated in Fig. 3, for a given angle θ, a line of

ρ=xcosθ+ysinθ is drawn through (t1, omin). Afterward, many

regions with an identical thickness ω indexed from β1 to βn are

then created. Here β is a value when ρ of the line on the origin

is rounded down to an integer multiple of ω. To mark the

position of all points, the Hough transform-based voting

method store the voting information of each point: the angle,

the thickness, and the corresponding region index, in the form

298 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 17, NO. 4, DECEMBER 2021

of Votes(θ, ω, β). The more points located in the same angle-

region tuple, the higher the vote’s number of that tuple. Since

the purpose is to cover the densest part of the offset-set, an

angle-region tuple with the highest vote’s number that exceeds

a certain threshold is then used to create the parallelogram.

Fig. 3. Relationship between offsets, ρ, θ, β, and ω on the Hough transform

based voting method

A. Dynamic-Region Method

To obtain the parallelogram, a voting method must be

implemented, here we named the voting method as a dynamic-

region voting method. This method is based on [31, Algorithm

1]. At first, we refuse of using the rigid pre-defined thickness

that divides the image points into several fixed-size regions. On

the contrary, we define regions from ρ of each point that is

added by some distance d. Fig. 4 illustrates how this method

works. For a given angle θ, each point has its own line of

ρ=x*cosθ+y*sinθ. The first region, noted as β1, is from ρ1 to ρ1

+ d, the second, β2, is from ρ2 to ρ2 + d, and so on until the last

one, βn-1, is from ρn−1 to ρn−1 + d. Even the size of all regions is

similar to follow the added distance d, the offsets covered by

each region are dynamic to follow the distribution of the offsets

near a certain region. We can equate d with ω in the existing

voting method. However, while ω creates many fixed-size

regions that are located rigidly on the image points,

combination of d with ρ on each point leads us systematically

into regions that congregate near the densest part sought. With

regions near the densest part that differ so small, it is like

tracking the real character of each point with a small step

whether a point is a portion of the densest part or not. Through

this method, a close outlier or low-outlier to the densest part can

be avoided to be a part of the densest part. As a result, an angle-

region tuple with the highest vote’s number represents the real

densest part without any unwanted outliers or low outliers

inside it. Since the real thickness of the densest part of an offset-

set is not fixed, the effect of the jitter [30], we can increase the

distance d to fulfill the need of a wider region caused by a wider

densest part. Even the regions become larger caused by the

escalation of d, they still converge near the densest part,

following the distribution of the offsets. Hence, the accuracy

can be maintained.

Fig. 4. Relationship between offsets, ρ, θ, and d on the dynamic-region voting

method

B. Pseudo Code of The Dynamic Region Method

To implement the dynamic-region voting method described

above, we modify Function OffsetVote() in [30, Algorithm 1]

into Function DynamicRegion() which is detailed Algorithm 1.

Since we no longer use a pre-defined thickness when creating

regions, the thickness ω, its lower bound ωmin, and the thickness

increment ωinc in [30, Algorithm 1] are no longer used.

Meanwhile, we keep the other variables: S, the set of all points;

θmin and θmax, the boundary of the angles; p, the angle step-size;

and N, the threshold. Related to the dynamic region, we

introduce two new variables: d stands for a distance from a

certain ρ for creating the regions, and dinc which is used to

increase the distance when necessary.

For each the scanned angle in the first for loop, the second

for loop of Algorithm 1 creates a line of ρ=x*cosθ+y*sinθ on

each point (x, y), which results in an array of many ρ that is

ordered from its minimum to maximum values. In the next for

loop, the regions are created by adding d to each ρ. And then,

we count how many points are located inside each region by

counting the number of ρ inside it, and store the value in

Votes(β, θ). Finally, inside the other for loop near the end of the

algorithm, an angle-region tuple with the highest vote’s number

that exceeds the threshold N is used to form the parallelogram.

If there are no candidate regions found, we increase the distance

(d = d + dinc), and start a new round of voting.

III. COEXISTING PARALLELOGRAM METHOD

A. Coexisting Parallelogram Method

Our solution to handle the jump point problem is as follows.

First of all, since the skew has been revealed to be constant from

the beginning to the end of the measurement [12], [13], [14],

small pieces the parallelogram that coexist in the beginning and

ending parts of an offset-set can be lengthened to cover all

offsets. To explain how it works, observe a set of offsets

(Measurer time, Offset) in Fig. 5: (t1, o1), ..., (tn, on). Let part

line

N. P. SASTRA et al.: COEXISTING PARALLELOGRAM METHOD TO HANDLE JUMP POINT 299

denotes the number of offsets for the beginning and ending parts

of all offsets. Then, the beginning part that is notated by Sbeg

contains offsets from (t1, o1) to (tpart, opart); and the ending part

that is notated by Sen contains offsets from (tn−part, on−part) to (tn,

on). After the voting process on both parts is done, the

parallelogram-like region for the whole collection is a

prolongation of angle-region tuples that occur coexisting in

both parts, e.g., θ1 and β1 in Fig. 5.

To implement the method above, we developed Algorithm 2,

Function CoexistRegion(). In this algorithm, Function

DynamicRegion() is called twice to process Sbeg and Sen. The

results of both processes are stored in L1 and L2, for Sbeg and Sen

respectively. The while loop in Algorithm 2 shows that the

process will be terminated only when similar angle-region

tuples are found in both parts. Otherwise, both processes are

repeated with a higher initial distance value, which is the

smallest last used distance on both processes. To prevent the

region grows too large, we define dmax as the upper-bound limit

of the region size.

With the region size that is bounded into a maximum size,

usage of only the beginning and ending parts has an advanced

benefit that there will be no coexisting angle-region tuples when

an offset-set contains a jump point because the beginning and

ending parts are obviously in different regions. To obtain the

solution of this problem, we developed Algorithm 3 where it

still uses a three-stage process with major improvements

comparing with the original three-stage process in [30,

Algorithm 2].

Since the second and third stages only aim to pursue higher

precisions from the result of the first stage [30], we locate all

processes of handling the jump point in the first stage. Hence,

the next two stages will only process the output of the first stage

without worrying whether the offset-set contains a jump point

or not. Other than Sbeg, Sen, and the part which are introduced

before, Algorithm 3 uses SBEG, SEN, and Ltemp to store all the

corresponding Sbeg, Sen, and L which are resulted by the first-

stage process. Later, all values in SBEG, SEN, and Ltemp are

processed in the second and third stages. At the end of the

method, to store the results of the whole process, we defined a

variable Lfinal.

Fig. 5. Usage of coexisting parallelograms that occur at the beginning and

ending parts of an offset-set on the Hough transform based clock skew

measurement.

In Algorithm 3, after Sbeg and Sen are created from S, the first-

stage process is started by calling Function CoexistRegion(). If

this process produces results, that means the offsets collection

is normal, and the second and third stages will only run one time

to process SBEG, SEND, and Ltemp in the for loop near the end of

the algorithm. Otherwise, the offset-set might contain a jump

point, and the first-stage process must preprocess the offset-set

to produce several subsets of the offset-set which no longer

contain the jump point. To do that, two variables are used:

Ssucceed denotes the number of offsets that have already been

processed, and Sfailed which stands for the unprocessed part of

the offset-set. At this point, Ssucceed is zero and Sfailed is the whole

300 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 17, NO. 4, DECEMBER 2021

collection. If the jump point is located in the middle of Sfailed,

we only need to divide Sfailed into two parts, and use both parts

to produce a result. However, most likely the location is not in

the middle of Sfailed because it depends on the time when the

device changes its network connection. Inside the while loop, is

a mechanism to handle the uncertain location of the jump point.

Here SS stands for a subpart of the processed Sfailed, two parts

for each Sfailed. For each SS, Sbeg and Sen are created, and then

Function CoexistRegion() is run. When no results from

Function CoexistRegion(), SS is then marked as a new Sfailed.

Otherwise, Sbeg, Sen, and the result L, are stored in SBEG, SEN, and

Ltemp respectively. To store the information of a successful

process, Ssucceed is then added by the number of offsets in SS.

Later, after the while loop finish which is indicated by all offsets

are already processed (Ssucceed = S.length), all SBEG, SEN, and Ltemp

are processed in the for loop of the second and third stages

process. It is important to be noted that only Sfailed which is

longer than twice of part that will be processed. Otherwise, we

leave that Sfailed unprocessed by adding it to Ssucceed because SS

from Sfailed in this condition is already shorter than part.

For a normal offset-set, Algorithm 3 will produce only one

tuple of Lfinal.θ, Lfinal.DR, and Lfinal.d. When the offset-set

contains a jump point, however, Lfinal stores many tuples. Each

of the tuple will result in skew, and finally a median value of all

resulted skews is then used as the final skew.

IV. EVALUATION RESULTS

For the coexisting dynamic-region method on handling the

jump point, the data set was obtained by connecting a client

device (ASUS A46C Notebook with UBUNTU 14.04 as the

operating system) to a measurer (IBM server with an OS of

UBUNTU 12.04) on two different networks. First, we

connected the client to the measurer through a wired LAN.

After several packets were transmitted by the client, the wired

connection was disconnected, and then a multi-hops wireless

connection was started automatically. For a purpose of

comparison with other methods, we also derived a normal

collection of the aforementioned setting, and use it as a

reference. A relatively close clock skew when comparing the

result of the jump point with the reference is an indication of

the success of a measurement method. To show the effect of the

jump point as well as to confirm the performance of our

proposed method, three methods were exploited: LPA [8],

Aoki’s method [10], and the current version of the Hough

transform-based method [30].

On each evaluation, the parameters used on Algorithms 1, 2,

and 3 are: d = 500 µs, dinc = 100 µs, dmax = 2000 µs, N = 50%,

and part = 500 offsets.

First of all, Fig. 1 shows the offset-set of the reference skew.

This offset-set was derived from a wired peer-to-peer

communication between the aforementioned client and

measurer. When estimating the skew of this collection, all four

methods: LPA, Aoki’s method, the original Hough transform

method, and the proposed method produced almost similar

skews of 29.23 ppm, 29.25 ppm, 29.21 ppm, and 29.2 ppm,

respectively. Let use a median value of these four as the skew

reference, 29.25 ppm.

To produce the final skew when measuring the offset-set

contains a jump point in Fig. 2, eight steps were needed by the

proposed method as detailed in Table 1. From this table we can

see that when all the offsets (1–4693) were processed, step–1

failed to produce results due to the absence of any coexisted

angle-region tuple in the beginning and ending parts of the 4693

offsets. After the offset-set was divided into (1–2347), step-2,

and (2348–4693), step-3, step-3 succeeded to produce a clock

skew of 29.8 ppm, but step-2 failed. The division process for

the failed step is then continued, and completed after eight

steps. From all the processes, three clock skews were produced:

29.8 ppm on step-3, 29.4 ppm on step-4, and another 29.4 ppm

on step-6. As the final skew, a median value of 29.6 ppm from

these three clock skews is then used.

N. P. SASTRA et al.: COEXISTING PARALLELOGRAM METHOD TO HANDLE JUMP POINT 301

To show the effect of the jump point, Fig. 6 illustrates the

results of the four methods when estimating the skew of the

offset-set in Fig. 3. We can observe from Fig. 5a and Fig. 5c that

the slopes, i.e., the skew line of LPA and Aoki’s method are

inaccurate due to the inability of detecting the presence of the

jump point. For the original Hough transform method in Fig 5b,

meanwhile, they just abandon the jump point, the resulted

parallelogram becomes too big, which results in an inaccurate

skew as well. On the other hand, our proposed method

succeeded to produce skews that do not contain the jump point

anymore. Three densest parts as produced in step-3, step-4, and

step-6 are depicted with different color in Fig. 5d. When

compared the result of the proposed method (29.6 ppm) with

the results of LPA (61.29 ppm), the original Hough transform

method (70.5 ppm), and Aoki’s method (55.49 ppm), the

proposed method obtained the closest clock skew to the clock

skew reference (29.25 ppm), only differ 0.35 ppm. The results

of this evaluation indicate that the proposed coexisted dynamic-

region method has succeeded to be implemented to handle the

jump point.

V. DISCUSSION AND FUTURE WORK

To show more the robustness of the proposed method, here

we presented the evaluation results on three other datasets

containing jump points. The three datasets are from different

client devices: a Macbook Pro, an ASUS ROG, and an IBM

Thinkpad, connected to the same existing server. The scenario

is similar where the connections are changed from using a LAN

into WLAN at a random time point. We named the three

datasets as Dataset-2, Dataset-3, and Dataset-4. We have also

measured the reference skews from the three devices connected

to the server, where the skews are 52.3 ppm, 34.8 ppm, and 20.1

ppm respectively.

Table 2 shows the measurement results of the proposed

method into the three datasets. Dataset-2 and Dataset 3 have

similar patterns where the proposed method requires 8 steps to

finish the skew measurement. Meanwhile the proposed method

only uses two steps to measure Dataset-4. These facts inform us

that the jump point of Dataset-4 occurs in the middle of the

dataset, while Dataset-2 and Dataset-3 near the beginning or the

end of the dataset.

TABLE I. RESULTS OF THE PROPOSED METHOD WHEN ESTIMATING AN OFFSET-SET CONTAINS A JUMP POINT

Fig. 6. Estimation results on a jump point condition by four different methods. (a) LPA. (b) Hough Transform. (c) Aoki’s method. (d) Proposed method.

302 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 17, NO. 4, DECEMBER 2021

The position of the jump point of the dataset can cause the

proposed method to work longer or shorter. Jump point near the

middle of the dataset takes fewer steps than those near the

beginning or end, as the method can cover all the datasets

quicker.

The number of Part also takes an importance rule as we have

to choose an adequate value for Part. The bigger Part value

ensure the more accurate skew, when the dataset is already in

one densest part. However, when Part is too big, the proposed

method can miss a jump point, result in no skew can be

measured. Previous work shows that 500 offsets are enough to

measure skew accurately, and when we compare to our

scenario, the jump point of changing connection will not occur

before 500 offsets are transferred by the client to the server.

From Table 2, we can see that the median skew of Dataset-2

is 52.1 ppm, Dataset-3 is 34.7 ppm, and Dataset-4 is 20 ppm.

These median skews are close to the reference skews of each

dataset; 52.3 ppm, 34.8 ppm, and 20.1 ppm. The differences are

no more than 0.2 ppm. From these results, we can conclude that

the proposed method has succeeded to measure the skews of

those three datasets containing jump point accurately.

A Jump point in a dataset can occur by network

communication change or by NTP synchronization. These two

factors rarely occur when we connected to a site. NTP synch

might happen once a day. Change network connection between

cable and wireless can occur more, but not also frequently

occur, and the gap between timestamps on cable and wireless is

quite high where the proposed method can differentiate the

densest part of that jump from the original. The next challenge

for the work on clock skew is the condition when client travel

from one Access Point (AP) to another one in wireless

connection only. This condition can occur more frequently as a

lot of APs is available in one area. The other issue is the speed

between APs is different, which makes the time to send data

will differ as well, cause the densest part of the data will not be

in one part or there will be a jump point. However, the jump

will not be as high as those data caused by a change connection

between wired and wireless. To detect more jump point in a

dataset as well as to detect small size of the jump in a dataset is

the future work that interesting and challenging to solve.

VI. CONCLUSION

We have proposed a new coexisting dynamic-region method

to improve the robustness of the Hough transform-based clock

skew measurement to find a coexisting parallelogram at the

beginning and ending parts of the offset-set to handle the jump

point condition accurately. Experiments results show that the

proposed coexisting parallelogram method could successfully

measure the jump point data with 0.35 ppm accuracy compared

with tens ppm by the current methods. When the experiment

expanding to three other devices connected to a similar

server, the proposed method has succeeded to maintain its

robustness by measuring the skews with an accuracy of 0.2

ppm comparing to the reference skews.

REFERENCES

[1] T. E. Abrudan, A. Haghparast, and V. Koivunen, “Time synchronization

and ranging in OFDM systems using time-reversal,” IEEE Trans. Instrum.
Meas., vol. 62, no. 12, pp. 3276–3290, Dec. 2013. DOI:

10.1109/TIM.2013.2272840.

[2] M. Aoki, E. Oki, and R. Rojas-Cessa, “Measurement scheme for one-way
delay variation with detection and removal of clock skew,” ETRI J., vol.

32, no. 6, pp. 854–862, Dec. 2010. DOI: 10.1109/HPSR.2010.5580276

[3] C. Arackaparambil and S. Bratus, “On the reliability of wireless
fingerprinting using clock skews,” Presented at the 3rd ACM Conf.

Wireless Network Security, 2010. [Online]. Available:

https://dl.acm.org/doi/10.1145/1741866.1741894

[4] J. Bi, Q. Wu, and Z. Li, “On estimating clock skew for one-way

measurements,” Comput. Commun., vol. 29, no. 8, pp. 1213–1225, May

2006. DOI: 10.1016/j.comcom.2005.07.023
[5] Z.-H. Chen, A. W. Y. Su, and M.-T. Sun, “Resource-efficient FPGA

architecture and implementation of Hough Transform,” IEEE Trans. Very

Large Scale Integr. (VLSI) Syst., vol. 20, no. 8, pp. 1419–1428, Aug. 2012.
DOI: 10.1109/TVLSI.2011.2160002

TABLE II. RESULTS OF THE PROPOSED METHOD ON THREE DIFFERENT DEVICES CONNECTED TO EXISTING SERVER

Step

Dataset-2 Dataset-3 Dataset-4

Range of offsets Result
Range of

offsets
Result Range of offsets Result

1 1--5004 No Tuple 1--4908 No Tuple 1--3998 No Tuple

2 1--2502 No Tuple 1--2453 Skew = 34.7 ppm 1--1999 Skew = 19.9 ppm

3 2503--5004 Skew = 52.2 ppm 2454--4980 No Tuple 2000--3998 Skew = 20.1 ppm

4 1--1251 Skew = 51.9 ppm 2454--3717 No Tuple

5 1252--2502 No Tuple 3718--4980 Skew = 34.9 ppm

6 1252--1878 Skew = 52.1 ppm 2454--3086 Skew = 34.7 ppm

7 1879--2502 No Tuple 3089--3716 No Tuple

8 1879--2502 S/2 < Part 3089--3716 S/2 < Part

N. P. SASTRA et al.: COEXISTING PARALLELOGRAM METHOD TO HANDLE JUMP POINT 303

https://dl.acm.org/doi/10.1145/1741866.1741894

[6] Y. Chae, L. C. DiPippo, and Y. L. Sun, “Trust Management for Defending
On-Off Attacks,” IEEE Trans. Parallel Distrib. Syst., vol. 26, no. 4, pp.

1178–1191, 2015. DOI: 10.1109/TPDS.2014.2317719

[7] M. Cristea and B. Groza, “Fingerprinting smartphones remotely via ICMP
timestamps,” IEEE Commun. Lett., vol. 17, no. 6, pp. 1081–1083, Jun.

2013.

[8] K. S. Yildrim and A. Kantarci, “Time Synchronization Based on Slow-
Flooding in Wireless Sensor Networks,” IEEE Trans. Parallel Distrib.

Syst., vol. 25, no. 1, pp. 244–253, 2014. DOI: 10.1109/TPDS.2013.40

[9] R. O. Duda and P. E. Hart, “Use of the Hough transformation to detect
lines and curves in pictures,” Commun. ACM, vol. 15, no. 1, pp. 11–15,

Jan. 1972. DOI: 10.1145/361237.361242

[10] P. Hart, “How the Hough transform was invented,” IEEE Signal Process.
Mag., vol. 26, no. 6, pp. 18–22, 2009. DOI: 10.1109/MSP.2009.934181

[11] D.-J. Huang, W.-C. Teng, C.-Y. Wang, H.-Y. Huang, and J. M.

Hellerstein, “Clock skew-based node identification in wireless sensor
networks,” Presented at the IEEE Global Telecommun. Conf.

(GLOBECOM), 2008. [Online]. Available: https://ieeexplore.ieee.org/

document/4698138
[12] D.-J. Huang and W.-C. Teng, “A defense against clock skew replication

attacks in wireless sensor networks,” J. Network and Comput. Applicat.,

vol. 39, pp. 26–37, Mar. 2014. DOI: 10.1016/j.jnca.2013.04.003
[13] D. Huang, W. Teng, and K. Yang, “Secured flooding time synchronization

protocol with moderator,” Int. J. Commun. Syst., vol. 26, no. 9, pp. 1092–

1115, 2013. DOI: https://doi.org/10.1002/dac.2614
[14] D.-J. Huang, K.-T. Yang, C.-C. Ni, W.-C. Teng, T.-R. Hsiang, and Y.-J.

Lee, “Clock skew-based client device identification in cloud

environments,” Presented at the 26th IEEE Int. Conf. Advanced Inform.
Networking and Applicat. (AINA), Mar. 2012. [Online]. Available:

https://ieeexplore.ieee.org/document/6184915

[15] S. Jana and S. Kasera, “On fast and accurate detection of unauthorized
wireless access points using clock skews,” IEEE Trans. Mobile Comput.,

vol. 9, no. 3, pp. 449–462, Mar. 2010. DOI: 10.1109/TMC.2009.145

[16] H. Khlifi and J. Gr´ egoire, “Low-complexity offline and online clock
skew estimation and removal,” Comput. Networks, vol. 50, no. 11, pp.

1872–1884, Aug. 2006. DOI: 10.1016/j.comnet.2005.08.009

[17] T. Kohno, A. Broido, and K. Claffy, “Remote physical device
fingerprinting,” IEEE Trans. Dependable and Secure Computing, vol. 2,

no. 2, pp. 93–108, 2005. DOI: 10.1109/SP.2005.18
[18] X. Mei, D. Liu, K. Sun, and D. Xu, “On feasibility of fingerprinting

wireless sensor nodes using physical properties,” Presented at the 27th

IEEE Int. Symp. Parallel and Distributed Process. (IPDPS), May 2013, pp.
1112–1121. [Online]. Available: https://ieeexplore.ieee.org/abstract/

document/6569889

[19] S. Moon, P. Skelly, and D. Towsley, “Estimation and removal of clock
skew from network delay measurements,” Presented at the INFOCOM

Conf., 1999. [Online]. Available: https://ieeexplore.ieee.org/document/

749287
[20] S. Murdoch, “Hot or not: revealing hidden services by their clock skew,”

Presented at the 13th ACM Conf. Computer and Communications

Security, 2006. [Online]. Available: https://dl.acm.org/doi/10.1145/1180
405.1180410

[21] V. Paxson, “On calibrating measurements of packet transit times,”

Presented at the ACM SIGMETRICS Conf., 1998, pp. 11–21. [Online].
Available: https://dl.acm.org/doi/10.1145/277851.277865

[22] L. Polc´ ak, J. Jir´ asek, and P. Matousek, “Comment on "Remote Physical

Device Fingerprinting",” IEEE Trans. Dependable and Secure
Computing, vol. 11, pp. 494–496, 2014.

[23] S. Sharma, H. Saran, and S. Bansal, “An Empirical study of clock skew

behavior in modern mobile and hand-held devices,” Presented at the 3rd
Int. Conf. Commun. Syst. and Networks (COMSNETS), Jan. 2011.

[Online]. Available: https://ieeexplore.ieee.org/document/5716494

[24] S. Sharma, A. Hussain, and H. Saran, “Experience with heterogenous
clock-skew based device fingerprinting,” Presented at the LASER

Workshop, 2012. [Online]. Available: https://dl.acm.org/doi/10.1145/

2379616.2379618
[25] M. B. Uddin and C. Castelluccia, “Toward clock skew based wireless

sensor node services,” Presented at the 5th Annu. ICST Wireless Internet

Conf. (WICON), 2010. [Online]. Available: https://ieeexplore.ieee.org/
document/5452689

[26] H. Bagci, I. Korpeoglu, and A. Yazici, “A Distributed FaultTolerant

Topology Control Algorithm for Heteregeneous Wireless Sensor
Networks,” IEEE Trans. Parallel Distrib. Syst., vol. 26, no. 4, pp. 914–

923, 2015. DOI: 10.1109/TPDS.2014.2316142

[27] S. Zander and S. Murdoch, “An improved clock-skew measurement
technique for revealing hidden services,” Presented at the 17th Conf.

Security Symp., 2008. [Online]. Available: https://dl.acm.org/doi/10.5555

/1496711.1496726
[28] K. Zeng, K. Govindan, and P. Mohapatra, “Non-cryptographic

authentication and identification in wireless networks,” IEEE Wireless

Commun., vol. 17, no. 5, pp. 56–62, 2010. DOI: 10.1109/
MWC.2010.5601959

[29] L. Zhang, Z. Liu, and C. H. Xia, “Clock synchronization algorithms for

network measurements,” Presented at the INFOCOM Conf., 2002.
[Online]. Available: https://ieeexplore.ieee.org/document/1019257

[30] K. O. Saputra, W.-C. Teng, and T.-H. Chen, “Hough Transform Based

Clock Skew Measurement Over Network,” IEEE Trans. Instrum. Meas.,
vol. 64, no. 12, pp. 3209–3216, Dec 2015. DOI: 10.1109/TIM

.2015.2450293

[31] K. O. Saputra, W.-C. Teng, and T. Nara, “Hough Transform-Based Clock
Skew Measurement by Dynamically Locating the Region of Offset

Majority,” IEICE Trans. Inf. and Syst., vol. E99-D, no. 8, pp. 2100–2108,

Aug. 2016. DOI: 10.1587/transinf.2016EDP7011
[32] N. P. Sastra, W. Wirawan, G. Hendrantoro, “Energy efficiency of Image

Transmission in Embedded Linux based Wireless Sensor Network”, J. of

Commun Soft and Sys, Vol. 11, No. 3, Sept 2015. DOI:
10.24138/jcomss.v11i3.103.

[33] H. Wang, F. Yu, M. Li and Y. Zhong, "Clock Skew Estimation for

Timestamp-Free Synchronization in Industrial Wireless Sensor
Networks," IEEE Transactions on Industrial Informatics, vol. 17, no. 1,

pp. 90-99, Jan. 2021, DOI: 10.1109/TII.2020.2975289.

[34] K. Karthik and R. S. Blum, "Robust Clock Skew and Offset Estimation
for IEEE 1588 in the Presence of Unexpected Deterministic Path Delay

Asymmetries," IEEE Transactions on Communications, vol. 68, no. 8, pp.

5102-5119, Aug. 2020, doi: 10.1109/TCOMM.2020.2991212.
[35] J. Zhou, G. Xie, S. Yu and R. Li, "Clock-Based Sender Identification and

Attack Detection for Automotive CAN Network," IEEE Access, vol. 9, pp.

2665-2679, 2021, doi: 10.1109/ACCESS.2020.3046862.

Nyoman Putra Sastra received the B.Eng. and

M.Eng. degree in Electrical Engineering from Institut
Teknologi Bandung (ITB), Indonesia, in 1998 and

2001, respectively. In 2015 he receivied his Ph.D.

degree from Institut Teknologi Sepuluh Nopember
(ITS), Surabaya. Since 2001, he joined with

Universitas Udayana, Bali as lecturer. His research

interests include wireless multimedia sensor networks

and multimedia signal processing.

Komang Oka Saputra received his Ph.D. degree in
Computer Science and Information Engineering from

National Taiwan University of Science and

Technology, Taipei, Taiwan. Since 2008 he has been a
Faculty Member with the Department of Electrical and

Computer Engineering, Udayana University, Bali,

Indonesia. His current research interests include
computer network, software engineering, e-learning,

and e-exam.

Dewa Made Wiharta. received the B.Eng. and
M.Eng. degree in Electrical Engineering from Institut

Teknologi of Sepuluh November (ITS), Indonesia, in
1996 and Gajah Mada University (UGM) in 2003,

respectively. In 2016 he receivied his Ph.D. degree

from Institut Teknologi Sepuluh Nopember (ITS),
Surabaya. Since 1997, he joined with Universitas

Udayana, Bali as lecturer. His research interests

include wireless multimedia, multimedia signal

processing and robotic technology.

304 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 17, NO. 4, DECEMBER 2021

https://ieeexplore.ieee.org/document/4698138
https://ieeexplore.ieee.org/document/6184915
https://ieeexplore.ieee.org/abstract/document/6569889
https://ieeexplore.ieee.org/document/749287
https://dl.acm.org/doi/10.1145/1180405.1180410
https://dl.acm.org/doi/10.1145/277851.277865
https://ieeexplore.ieee.org/document/5716494
https://dl.acm.org/doi/10.1145/2379616.2379618
https://ieeexplore.ieee.org/document/5452689
https://dl.acm.org/doi/10.5555/1496711.1496726
https://ieeexplore.ieee.org/document/1019257

