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Abstract

Background

Sleep problems are both symptoms of and modifiable risk factors for many psychiatric disor-

ders. Wrist-worn accelerometers enable objective measurement of sleep at scale. Here, we

aimed to examine the association of accelerometer-derived sleep measures with psychiatric

diagnoses and polygenic risk scores in a large community-based cohort.

Methods and findings

In this post hoc cross-sectional analysis of the UK Biobank cohort, 10 interpretable sleep

measures—bedtime, wake-up time, sleep duration, wake after sleep onset, sleep efficiency,

number of awakenings, duration of longest sleep bout, number of naps, and variability in

bedtime and sleep duration—were derived from 7-day accelerometry recordings across

89,205 participants (aged 43 to 79, 56% female, 97% self-reported white) taken between

2013 and 2015. These measures were examined for association with lifetime inpatient diag-

noses of major depressive disorder, anxiety disorders, bipolar disorder/mania, and schizo-

phrenia spectrum disorders from any time before the date of accelerometry, as well as

polygenic risk scores for major depression, bipolar disorder, and schizophrenia. Covariates

consisted of age and season at the time of the accelerometry recording, sex, Townsend

deprivation index (an indicator of socioeconomic status), and the top 10 genotype principal
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components. We found that sleep pattern differences were ubiquitous across diagnoses:

each diagnosis was associated with a median of 8.5 of the 10 accelerometer-derived sleep

measures, with measures of sleep quality (for instance, sleep efficiency) generally more

affected than mere sleep duration. Effect sizes were generally small: for instance, the larg-

est magnitude effect size across the 4 diagnoses was β = −0.11 (95% confidence interval

−0.13 to −0.10, p = 3 × 10−56, FDR = 6 × 10−55) for the association between lifetime inpatient

major depressive disorder diagnosis and sleep efficiency. Associations largely replicated

across ancestries and sexes, and accelerometry-derived measures were concordant with

self-reported sleep properties. Limitations include the use of accelerometer-based sleep

measurement and the time lag between psychiatric diagnoses and accelerometry.

Conclusions

In this study, we observed that sleep pattern differences are a transdiagnostic feature of

individuals with lifetime mental illness, suggesting that they should be considered regardless

of diagnosis. Accelerometry provides a scalable way to objectively measure sleep proper-

ties in psychiatric clinical research and practice, even across tens of thousands of

individuals.

Author summary

Why was this study done?

• Sleep problems are both symptoms of and risk factors for many mental health

conditions.

• This study aimed to determine how objectively measured sleep differs among individu-

als with lifetime psychiatric diagnoses.

What did the researchers do and find?

• This cohort study of 89,205 individuals from the UK Biobank analyzed 10 accelerome-

ter-derived sleep measures.

• The study found a rich suite of associations with lifetime diagnoses of psychopathology

and psychiatric polygenic risk scores, though effect sizes were generally small.

What do these findings mean?

• Sleep pattern differences are the norm among patients with lifetime psychiatric illness.

• Accelerometry provides a scalable way to objectively measure such differences in psy-

chiatric research and practice.

• Limitations include the use of accelerometer-based sleep measurement and the time lag

between psychiatric diagnoses and accelerometry.
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Introduction

Sleep is fundamental to mental health. Poor sleep is not just a hallmark of psychiatric disor-

ders, but can be a causal risk factor as well [1]. Sleep interventions can lessen depression [2]

and posttraumatic stress disorder [3] symptoms, prevent psychotic experiences [4,5], and

improve psychological well-being and quality of life [6].

In psychiatry, sleep properties are often ascertained via self-report: for instance, self-

reported sleep quality is a component of nearly every depression rating scale, including the

HAM-D [7] and Montgomery–Asberg [8]. However, self-reported measures of sleep do not

always correlate well with direct physiological measurements: prior work has found that a typi-

cal person may overestimate [9,10] or underestimate [11,12] their sleep duration by up to 75

minutes, relative to direct measurement. This divergence may be especially large among psy-

chiatric patients: individuals with depression are less accurate at reporting sleep quality and

duration than healthy controls [13]. Thus, when studying sleep in a psychiatric context, objec-

tive measurement may be a useful complement to self-report. While lab-based polysomnogra-

phy remains the gold standard for sleep measurement, it is ill-suited to long-term or home use,

and spending a night in a sleep clinic with multiple electrodes attached to one’s body may not

be conducive to a good night’s sleep. Wrist-based accelerometry (also called actigraphy) is a

reasonably accurate and much more versatile and scalable alternative [14–19].

Historically, most accelerometry studies of sleep and mental illness have relied on highly

selected samples of tens to hundreds of individuals [20]. Recently, the UK Biobank collected

7-day accelerometry recordings from over 100,000 participants [21], providing an unprece-

dented opportunity to study the interplay between sleep and mental health across a broad

cross-section of the community. Researchers have used this dataset to determine that circadian

dysrhythmia is correlated with mood disorders and subjective well-being [20] and genetically

correlated with mood instability [22] and that insomnia, chronotype [23], sleep duration [24],

and daytime sleepiness [25] are genetically correlated with lifetime prevalence of several psy-

chiatric disorders.

Yet despite recognition that insomnia and disturbed sleep are transdiagnostic processes

[26,27] that cut across conventional diagnostic boundaries, the relationship between objec-

tively measured sleep and mental health has rarely been studied from a transdiagnostic per-

spective—and even then, often only for a single sleep property at a time and in a small sample.

To illustrate this research gap, we searched PubMed for studies of objectively measured sleep

in a psychiatric context, using the search terms “sleep AND (polysomnography OR accelero-

metry OR actigraphy) AND (depression OR anxiety OR bipolar OR schizophrenia),” and

identified 2,923 articles meeting these criteria. However, after narrowing our search criteria to

studies considering all 4 disorders—“sleep AND (polysomnography OR accelerometry OR

actigraphy) AND (depression AND anxiety AND bipolar AND schizophrenia)”—we identi-

fied only 4 articles: 2 reviews [28,29], a case series of 58 patients [30], and a cohort study of 110

patients also focused on sleep apnea [31].

Here, we address this research gap by performing an “all-by-all” analysis of sleep and men-

tal health across 89,205 UK Biobank participants. Specifically, we investigate the associations

of 10 sleep measures—including bedtime and wake-up time, sleep duration, number of awa-

kenings, and variability in bedtime and sleep duration—with 4 lifetime psychiatric diagnoses

—major depressive disorder, anxiety disorders, bipolar disorder/mania, and schizophrenia

spectrum disorders—as well as polygenic risk scores for major depression, bipolar disorder,

and schizophrenia.
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Methods

This study is reported as per the Strengthening the Reporting of Observational Studies in Epi-

demiology (STROBE) guideline (S1 Checklist). The study did not have a prospective protocol

or analysis plan.

Cohort

Accelerometry recordings were gathered from 103,688 participants in the UK Biobank, a com-

munity-based prospective cohort study, between 2013 and 2015 [21]. Briefly, participants were

provided with an Axivity AX3 triaxial accelerometer by mail and asked to wear it on their

dominant wrist for 7 days, starting immediately after receiving it in the mail. These data have

been made available as Data-Field 90001 of the UK Biobank (“Acceleration data—cwa

format”).

Of these 103,688, participants were excluded if they did not wear the accelerometer for

every one of the 24 hours in a day on at least one of the days (Data-Field 90084, “Unique hours

of wear in a 24 hour cycle (scattered over multiple days)”; N = 4,345); if their accelerometer

was not well calibrated (Data-Field 90016, “Data quality, good calibration”; N = 11); if their

wear period included a DST change (Data-Field 90018, “Daylight savings crossover”;

N = 4,543); if they woke up in the afternoon on an average day (for instance, shift workers;

N = 137); or if fewer than 2 days during the 7-day wear period were valid (see below;

N = 6,020). Due to the inclusion of analyses involving polygenic risk scores, participants were

also excluded if they had greater than 2% genotype missingness (Data-Field 22005, “Missing-

ness”), a mismatch between genetic sex and self-reported sex, sex chromosome aneuploidy, or

were flagged as “Outliers for heterozygosity or missing rate” (Data-Field 22027). Self-reported

white participants (according to Data-Field 21000, “Ethnic background”; N = 86,513) were

used for the primary analysis, with replication in a much smaller number of self-reported non-

white participants (N = 2,692), for a total of 89,205 participants. Replication was also per-

formed stratified by sex, among self-reported white females (N = 48,562) and males

(N = 37,951).

Accelerometry data processing

Accelerometry recordings were temporally segmented into sleep and activity bouts using an

accelerometry software toolkit (github.com/activityMonitoring/

biobankAccelerometerAnalysis) specifically designed for the UK Biobank [32,33]. As

described previously, this segmentation was performed by a machine learning classifier con-

sisting of a random forest, the predictions of which are temporally smoothed by a hidden Mar-

kov model. This classifier was trained on an external, labeled dataset of accelerometer

recordings. For our analyses, we ignored distinctions between activities and classified each

bout as either “sleep” or “wake.” Bouts for times when the accelerometer was not worn were

probabilistically imputed; we labeled these bouts as “sleep” if the imputed probability of sleep

was greater than 0.5, and “wake” otherwise.

While this segmentation is sufficient to determine the start and end time of each sleep and

wake bout, it does not annotate which bouts make up the primary sleep period (usually at

night) and which are just naps. To do this, we used steps 7 to 10 of the Heuristic algorithm

looking at Distribution of Change in Z-Angle (HDCZA) algorithm implemented in the widely

used GGIR accelerometry toolkit [34]: following GGIR, we defined each day’s primary sleep

period as the longest time period containing sleep bouts of at least 30 minutes separated by

gaps of no more than 60 minutes. (While this definition is commonly used in the field, there is

no single correct definition of what should constitute sleep inside versus outside the primary
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sleep period, particularly for individuals with highly fragmented sleep.) A “day” was defined as

the period from 3 PM to the following 3 PM. Days were deemed invalid and discarded if their

primary sleep period crossed one of the 3 PM day boundaries, if all the day’s sleep periods

were less than 30 minutes, or if more than 10% of the day’s data was imputed.

Having defined each day’s primary sleep period, we defined 10 sleep measures based on the

timings and lengths of the sleep and wake bouts inside and outside of this period (Table 1).

These measures are similar to those used in previous accelerometry and polysomnography

studies [35,36]. All measures were quantified as medians (or median absolute deviations, for

the variability measures) across days, to be robust to outliers. To keep the focus on sleep, we do

not include activity features, nor the L5 and M10 measures of circadian rhythmicity used in a

previous study of the UK Biobank [20], which are based on both sleep and activity.

Inpatient psychiatric diagnoses

These 10 sleep measures were tested for association with 4 lifetime inpatient psychiatric diag-

noses from any time before the date of accelerometry: schizophrenia spectrum disorders

(International Classification of Diseases [ICD] codes F20-F29), bipolar disorder/mania (F30,

F31), major depressive disorder (F32, F33), and anxiety disorders (F40, F41). Inpatient diagno-

ses and their dates were derived from the “hesin_diag” table of the inpatient records provided

by the UK Biobank (Data-Field #41234, “Records in HES inpatient diagnoses dataset”).

To mitigate contamination of the control group, we excluded participants with preexisting

primary care diagnoses (available for approximately 45% of the cohort), death record-based

diagnoses, and/or self-reported clinician diagnoses of the same disorder, according to the

“Source of report of [ICD code]” fields provided with the UK Biobank, for instance, Data-

Field 130895, “Source of report of F32 (depressive episode).” We also excluded participants

whose first inpatient diagnosis of the disorder was after the date of accelerometry. For instance,

when computing associations with inpatient major depressive disorder, we excluded partici-

pants with primary care, death record-based, or self-reported major depressive disorder diag-

noses, or whose first inpatient diagnosis of major depressive disorder was after the date of

accelerometry.

Table 1. The 10 sleep features and their definitions. Medians and mean absolute deviations are taken across all valid

days.

Sleep feature Definition

Bedtime Median start time of primary sleep period, expressed in hours since midnight of the

previous day.

Wake-up time Median end time of primary sleep period, expressed in hours since midnight of the

previous day.

Sleep duration Median total duration of sleep bouts during the primary sleep period.

WASO Median total duration of wake bouts during the primary sleep period.

Sleep efficiency Median fraction of the primary sleep period spent asleep, i.e., 1—WASO / (wake-up

time—bedtime).

Number of awakenings Median number of wake bouts during the primary sleep period.

Duration of longest sleep

bout

Median length of the longest sleep bout during the primary sleep period.

Number of naps Median number of >30-minute sleep periods outside the primary sleep period.

Variability in bedtime Median absolute deviation of bedtime across all valid days.

Variability in sleep

duration

Median absolute deviation of sleep duration across all valid days.

WASO, wake after sleep onset.

https://doi.org/10.1371/journal.pmed.1003782.t001
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Polygenic risk scores

The 10 sleep measures were also associated with polygenic risk scores derived from public

genome-wide association study results for major depression [37], bipolar disorder [38,39], and

schizophrenia [40] across self-reported white participants. The UK Biobank’s imputed geno-

types were filtered using version 2.0 of the plink software [41]. Nonautosomal variants, dupli-

cates, indels, and variants with imputation INFO score less than 0.8 were removed, as were

variants with Hardy–Weinberg equilibrium p-value less than 10−10, over 5% missingness,

minor allele frequency below 0.1% across self-reported white participants.

The polygenic risk scores were then calculated. Summary statistics were first harmonized

with the UK Biobank imputed genotypes with respect to reference/alternate allele and strand,

using the allele harmonization framework from munge_sumstats.py in the ldsc software pack-

age [42]. Ambiguous variants (A/T, C/G, G/C, T/A) and variants missing from UK Biobank

were excluded. Summary statistics were then subset to p< 0.05, a threshold found to be most

predictive across self-reported white participants in the UK Biobank (S1 Fig). Frequency-

informed linkage disequilibrium (LD) pruning to r2 > 0.2 across the self-reported white par-

ticipants was then performed using a 500-kb sliding window. The remaining variants consti-

tuted the trait’s polygenic risk score, with the variants’ effect sizes (β coefficients for

educational attainment, log odds ratios for the other 3 case–control studies) constituting the

weights of the score. Finally, polygenic risk scores were scored on each individual in the study

cohort by summing, across the variants in the polygenic risk score, the variant’s weight times

the individual’s number of effect alleles of that variant; missing genotypes were mean imputed.

Association analyses

Association tests were performed by linearly regressing the outcome variable (sleep measures)

on the exposure variable (psychiatric diagnoses or polygenic risk scores). Covariates consisted

of age and season at the time of the accelerometry recording, sex, Townsend deprivation index

(an indicator of socioeconomic status), and the top 10 genotype principal components. Benja-

mini–Hochberg correction [43] was performed at a false discovery rate (FDR) threshold of

5%.

Analyses of self-reported sleep properties

As a secondary analysis, we considered 6 self-reported sleep properties (S1 Table) ascertained

at baseline assessment between 2006 and 2010, approximately a half decade earlier than the

accelerometry. We first assessed the concordance between self-reported sleep properties and

accelerometry-derived sleep measures, by linearly regressing each accelerometry-derived mea-

sure (as the dependent variable) on each self-reported sleep property (as the independent vari-

able) across all 77,232 self-reported white participants with both types of sleep properties,

using the same covariates as above.

Next, we performed the same battery of associations with psychiatric diagnoses and poly-

genic risk scores, with the following differences from the primary analysis. First, we analyzed

all 400,771 self-reported white participants with self-reported sleep properties and genotype

data, not just the 89,205 with accelerometry. Second, we excluded participants with inpatient

diagnoses after the baseline assessment, rather than after the date of accelerometry. Third,

instead of including the age and season of accelerometry as covariates, we include the age at

baseline assessment. Aside from these changes, this secondary analysis was conducted identi-

cally to the primary analysis.
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Ethics statement

This study is a reanalysis of the UK Biobank cohort, which obtained ethical approval and

informed consent from study participants as described in the flagship UK Biobank publication

[44]. This study was conducted under the auspices of UK Biobank application 61530, “Multi-

modal subtyping of mental illness across the adult lifespan through integration of multiscale

whole-person phenotypes.”

Results

Accelerometer-derived sleep measures across 89,205 individuals

We analyzed accelerometry data from 89,205 participants. Our primary analysis used the larg-

est ancestry group, self-reported white (N = 86,513); replication in the much smaller number

of self-reported non-white participants (N = 2,692) and stratified by sex is discussed in the

final subsection of the Results. Characteristics of participants with and without each of the 4

psychiatric diagnoses, for the self-reported white cohort used in the primary analysis, are

shown in Table 2. We derived 10 sleep measures from these accelerometry data (Table 1, Fig

1, S2 Fig): bedtime, wake-up time, sleep duration, wake after sleep onset (WASO; the total

time spent awake between bedtime and wake-up time), sleep efficiency (the fraction of time

spent asleep between bedtime and wake-up time), number of awakenings, duration of longest

sleep bout, number of naps, variability in bedtime, and variability in sleep duration.

To gain insight into the distributions of these sleep measures, we tabulated percentiles of

each measure (Table 3) across participants with and without a history of any of 4 common

inpatient psychiatric diagnoses from before the date of accelerometry: major depressive disor-

der, anxiety disorders, bipolar disorder/mania, and schizophrenia spectrum disorders.

(Depression, anxiety, schizophrenia, and bipolar disorder are the 4 mental health conditions

with the greatest global disease burden according to the Global Burden of Disease Study 2019

[45]). The medians (50th percentiles) of these measures were similar between those with and

without psychiatric diagnoses: a marginally later bedtime of 11:29 PM instead of 11:19 PM and

wake-up time of 7:41 AM instead of 7:24 AM, an identical 99% sleep efficiency, a single awak-

ening, and so on. Differences were larger at one or both extremes, at least for some measures:

for instance, the 99th percentile of bedtime was 2:33 AM for those without psychiatric diagno-

ses, but 4:47 AM for those with diagnoses, while the 99th percentile of wake time was 9:57 AM

for those without diagnoses but 10:52 AM for those with.

Association of accelerometer-derived sleep measures with psychiatric

diagnoses

We associated these 10 accelerometry-defined sleep measures with 4 ICD-code-based inpa-

tient psychiatric diagnoses (Table 4). Three trends were especially striking.

First, sleep pattern differences were ubiquitous across diagnoses. Having any psychiatric

diagnosis was significantly associated with differences in every sleep measure except for total

sleep duration, and each individual psychiatric diagnosis was associated with a median of 8.5

of the 10 sleep measures, though effect sizes were generally small. For instance, the largest mag-

nitude effect size across the 4 disorders was β = −0.11 (95% confidence interval −0.13 to −0.10,

p = 3 × 10−56, FDR = 6 × 10−55) for the association between lifetime inpatient major depressive

disorder diagnosis and sleep efficiency.

Second, almost all significant associations with accelerometer-derived sleep measures and

18 significant associations with self-reported sleep properties had the same effect size direc-

tions: toward later bedtime and wake-up time; shorter duration of longest sleep bout; lower
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sleep efficiency; higher WASO and number of awakenings; more naps; and more variable bed-

time and sleep duration. The one exception was sleep duration, which was significantly shorter

among participants with lifetime major depressive disorder diagnoses (β = −0.02, 95% confi-

dence interval −0.04, −0.01, p = 0.003, FDR = 0.003) but significantly longer among partici-

pants with lifetime schizophrenia spectrum disorder diagnoses (β = 0.02, 95% confidence

interval 0.01 to 0.04, p = 0.0008, FDR = 0.001).

Third, despite this relative homogeneity, certain sleep properties were associated to a

greater extent than others with lifetime psychopathology. In particular, across diagnoses,

Table 2. Cohort information.

Major depressive disorder

(F32-F33)

Anxiety disorders (F40-F41) Bipolar disorder/mania

(F30-F31)

Schizophrenia spectrum

disorders (F20-F29)

Cases

(N = 1,476)

Controls

(N = 77,840)

Cases

(N = 810)

Controls

(N = 80,856)

Cases

(N = 123)

Controls

(N = 86,193)

Cases

(N = 71)

Controls

(N = 86,341)

Age: 43–49 100 5,269 48 5,531 10 5,924 9 5,929

Age: 50–59 437 21,121 226 22,140 43 23,721 35 23,767

Age: 60–69 671 34,835 359 36,219 50 38,520 21 38,594

Age: 70–79 268 16,615 177 16,966 20 18,028 6 18,051

Sex: female 989 42,784 529 44,756 72 48,367 38 48,471

Sex: male 487 35,056 281 36,100 51 37,826 33 37,870

Townsend: least-deprived

quintile

226 15,775 142 16,240 18 17,248 6 17,278

Townsend: second-least

deprived quintile

245 15,717 139 16,264 14 17,251 8 17,276

Townsend: middle

quintile

278 15,614 139 16,199 23 17,241 11 17,275

Townsend: second-most

deprived quintile

294 15,579 180 16,167 20 17,252 13 17,276

Townsend: most deprived

quintile

433 15,155 210 15,986 48 17,201 33 17,236

2 valid days 25 1,179 14 1,213 4 1,297 0 1,304

3 valid days 40 1,714 33 1,765 7 1,904 3 1,905

4 valid days 74 2,963 34 3,119 6 3,336 5 3,338

5 valid days 155 6,487 72 6,787 16 7,279 9 7,294

6 valid days 343 17,380 175 18,088 21 19,337 10 19,360

7 valid days 839 48,117 482 49,884 69 53,040 44 53,140

Latest inpatient visit: <6

months ago

187 – 117 – 11 – 2 –

Latest inpatient visit: <1

year ago

341 – 212 – 24 – 6 –

Latest inpatient visit: <2

years ago

592 – 352 – 37 – 17 –

Latest inpatient visit: <5

years ago

1,053 – 613 – 73 – 29 –

Latest inpatient visit: <10

years ago

1,315 – 738 – 101 – 48 –

Latest inpatient visit: <20

years ago

1,476 – 810 – 123 – 71 –

Number of cases and controls for each of the 4 disorders in each bracket of age, sex, Townsend deprivation index (a measure of socioeconomic deprivation), and

number of valid days of accelerometry (Methods), as well as the time between the most recent inpatient visit for the disorder and the date of accelerometry (only defined

for cases). 7,197 participants were excluded from the major depressive disorder analysis, 4,847 for anxiety disorders, 197 for bipolar disorder/mania, and 101 for

schizophrenia spectrum disorders (Methods).

https://doi.org/10.1371/journal.pmed.1003782.t002
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measures of sleep quality were more strongly associated than mere sleep duration. In

particular, WASO, sleep efficiency, and number of awakenings were each associated with

every tested disorder. In contrast, sleep duration was only significantly associated with major

depressive disorder and schizophrenia spectrum disorders (see previous paragraph), and its

effect size for major depressive disorder was several times smaller than for the other 9 sleep

measures.

Association of accelerometer-derived sleep measures with polygenic risk

scores

To ascertain genetic influences on sleep patterns, we next associated each of the 10 acceler-

ometer-derived sleep measures with polygenic risk scores for major depression, bipolar dis-

order, and schizophrenia (Table 4). Given the imperfect nature of polygenic risk scores, the

effect sizes for these associations were generally smaller than for the psychiatric diagnoses;

but since every individual in the cohort has a polygenic risk score (even though most lack

psychiatric diagnoses), many were nonetheless significant, particularly for major depression

and schizophrenia. As with the psychiatric diagnoses, all significant associations were in the

direction of later wake-up time; shorter duration of longest sleep bout; lower sleep efficiency;

higher WASO and number of awakenings; more naps; and more variable bedtime and sleep

duration. Bedtime and sleep duration were not associated with any of the 3 polygenic risk

scores.

Fig 1. Distributions and exemplar individuals for various sleep measures. Each row’s middle panel shows a 100-bin histogram and Gaussian kernel density

estimate of a particular sleep measure across the self-reported white participants. For each measure, 2 exemplar individuals were chosen: one at the 5th

percentile (plotted to the left of the histogram), and one at the 95th percentile (plotted to the right of the histogram). The blue (left) and red (right) lines on the

histograms denote the 5th and 95th percentiles, i.e., where these 2 exemplar individuals are located on the distribution. In the exemplar plots, blue/red blocks

indicate sleep bouts, and black lines with bars indicate each day’s primary sleep period. Days of the week are ordered differently for different exemplars

because some people started the accelerometry on different days.

https://doi.org/10.1371/journal.pmed.1003782.g001

Table 3. Percentiles of sleep measures across individuals with and without prior psychiatric diagnoses (psych. diagn.).

%ile Psychiatric

diagnoses

Bedtime Wake-up

time

Sleep

duration

WASO Sleep

efficiency

# awakenings Longest sleep

bout

# naps Bedtime

variability

Sleep duration

variability

1st No 8:10 PM 4:38 AM 4:21 0:00 89% 0 2:15 0 0:01 0:03

Yes 8:14 PM 4:31 AM 2:48 0:00 85% 0 1:40 0 0:00 0:04

10th No 10:05 PM 6:09 AM 6:33 0:00 95% 0 4:03 0 0:06 0:11

Yes 10:00 PM 6:15 AM 5:50 0:00 93% 0 3:14 0 0:07 0:13

25th No 10:44 PM 6:47 AM 7:15 0:00 97% 0 5:15 0 0:12 0:18

Yes 10:46 PM 6:57 AM 7:00 0:00 96% 0 4:27 0 0:14 0:21

50th No 11:19 PM 7:24 AM 7:54 0:04 99% 1 6:42 0 0:21 0:30

Yes 11:29 PM 7:41 AM 7:53 0:06 99% 1 6:03 0 0:26 0:36

75th No 11:57 PM 8:01 AM 8:32 0:12 100% 1 7:41 1 0:37 0:46

Yes 12:18 AM 8:24 AM 8:44 0:18 100% 2 7:30 1 0:45 0:58

90th No 12:37 AM 8:36 AM 9:11 0:24 100% 2 8:19 1 0:59 1:08

Yes 1:22 AM 9:11 AM 9:32 0:33 100% 2 8:24 2 1:15 1:24

99th No 2:33 AM 9:57 AM 10:45 0:50 100% 4 9:21 2 2:01 2:02

Yes 4:47 AM 10:52 AM 11:34 0:56 100% 4 9:52 3 2:34 2:24

Percentiles were tabulated across the 86,513 self-reported white participants with accelerometry.

WASO, wake after sleep onset; %ile, percentile.

https://doi.org/10.1371/journal.pmed.1003782.t003
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Replication across ancestries and sexes

Finally, we confirmed replicability of the associations between sleep measures and psychiatric

diagnoses across ancestries and sexes (S4 Table). Due to the relatively low numbers of self-

reported non-white participants in the sample, we restricted ourselves to replicating the “Any

psychiatric diagnosis” row from Table 4. We found that, of the 10 accelerometer-derived sleep

measures with significant associations among self-reported white participants, 3 measures rep-

licated in self-reported non-white participants; 6 of the 7 associations that failed to replicate

(all except for sleep duration) nonetheless had the same effect directions as in self-reported

white participants. Replication among self-reported white males and females was better pow-

ered: all 10 significant associations with accelerometer-derived sleep measures replicated in

both males and females, with comparable effect sizes to the non-sex stratified analysis.

Comparison with self-reported sleep properties

As a secondary analysis, we considered 6 self-reported sleep properties—sleep duration, ease

of morning awakening, chronotype, daytime napping, insomnia, and daytime dozing (S1

Table)—ascertained at baseline assessment between 2006 and 2010, approximately a half

decade earlier than the accelerometry. We found that self-reported sleep properties were

broadly concordant with their closest self-reported equivalents (S2 Table)—though not

completely so, as expected given the known discordance between subjective and objective

sleep measures, differences in the definitions of the 2 types of measures, and the half-decade

time lag between the two. Among notable associations, self-reported sleep duration was most

strongly associated with accelerometry-derived sleep duration (β = 0.40, 95% confidence inter-

val 0.39 to 0.42, p = 0, FDR = 0); self-reported ease of morning awakening with accelerometry-

derived wake-up time (β = −0.53, 95% confidence interval −0.54 to −0.51, p = 0, FDR = 0);

self-reported chronotype (higher values indicate one is more of an “evening person” than a

“morning person”) with accelerometry-derived bedtime (β = 0.69, 95% confidence interval

0.67 to 0.70, p = 0, FDR = 0) and wake-up time (β = 0.73, 95% confidence interval 0.72 to 0.75,

p = 0, FDR = 0); and self-reported daytime napping with accelerometry-derived number of

naps (β = 0.38, 95% confidence interval 0.37 to 0.40, p = 0, FDR = 0).

Next, we performed the same battery of associations with psychiatric diagnoses and poly-

genic risk scores on these self-reported sleep properties (S3 Table) as for the accelerometry-

derived sleep measures. Despite much stronger statistical significance due to the increased

sample size, effect sizes were not substantially larger than for the primary analysis (Table 4).

For instance, the largest magnitude effect size across the 4 disorders was β = −0.12 (95% confi-

dence interval −0.12 to −0.11, p = 6 × 10−258, FDR = 6 × 10−257) for the association between

lifetime inpatient major depressive disorder diagnosis and ease of morning awakening, essen-

tially identical to the largest effect size for the accelerometry-derived measures (β = −0.11 for

the association between major depressive disorder and sleep efficiency, as mentioned above).

Discussion

In this work, we analyzed the structure of sleep and its association with lifetime psychopathol-

ogy across nearly 90,000 individuals. In a departure from previous studies analyzing only a sin-

gle sleep property or a single disorder, we take an “all-by-all” approach, associating 10

accelerometer-derived sleep measures with 4 inpatient psychiatric diagnoses and 3 psychiatric

polygenic risk scores. On the whole, accelerometer-derived sleep measures were concordant

with self-reported sleep properties, and both were richly associated with psychiatric diagnoses

and polygenic risk scores, and these associations replicated across ancestries and sexes. To our
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knowledge, this is the first large-scale transdiagnostic study of objectively measured sleep and

mental health.

The same sleep pattern differences tended to recur across disorders: each diagnosis was

associated with a median of 8.5 of the 10 sleep measures, almost always in the direction of

worse sleep quality. However, effect sizes were generally quite small. Note that these numbers

are with respect to lifetime diagnoses; the extent of sleep disruption would presumably be

greater during an active episode of depression, mania, or psychosis [19].

Across diagnoses, metrics pertaining to sleep quality were more strongly associated than

mere sleep duration. Strikingly, the accelerometry-defined duration of an individual’s longest

sleep bout was much more strongly associated with most psychiatric diagnoses and polygenic

risk scores than total sleep duration. Given the intimate relationship between sleep bout length

and sleep quality [46,47], this suggests that sleep quality may be more disturbed than sleep

length across psychopathologies. These findings undergird the importance of assessment of

sleep quality in addition to sleep duration. However, we note that effects on sleep may vary

greatly across disease subtypes (for instance, atypical versus nonatypical depression) or states

(for instance, manic episode versus depressive episode versus euthymia), and these effects may

be obscured when lumping together subtypes and states, as we do here.

Most prior studies of sleep and mental illness have focused on white individuals, and a key

differentiating factor of our work is its replication across diverse ancestries, including those

historically underrepresented in medical research [48]. In addition to this trans-ethnic replica-

tion, we also confirm that males and females display similar sleep alterations across lifetime

psychopathologies. Even so, our results should be interpreted in the context of the UK Bio-

bank’s well-characterized “healthy volunteer” selection bias [49] and its consequent underas-

certainment of individuals with psychiatric diagnoses [50].

This study has several key limitations. First, it relies on linked inpatient medical records, which

may not capture all participants with clinically significant psychopathology, thus compounding

the “healthy volunteer” bias mentioned in the previous paragraph. Second, the (often years-long)

time lag between psychiatric diagnoses and accelerometry (Table 2) obscures whether participants

were in an active manic, depressive, or psychotic episode at the time of their accelerometry. Third,

the study’s cross-sectional design limits the ability to make inferences about causality. Fourth,

accelerometer-based sleep measurement is not as precise as polysomnography, the gold standard

in sleep research. The algorithm used for sleep/wake segmentation [32,33] was trained on accel-

erometry data annotated from head-mounted video and sleep diaries, rather than direct measures

of sleep/wake, which could result in the misclassification of certain awake-in-bed periods (for

instance, short awakenings or periods prior to sleep onset where the individual is motionless) as

sleep. This may also account for the relatively high median sleep efficiency, low wake time after

sleep onset, and long sleep bout durations seen in this study relative to polysomnography-based

studies [51]. Also, accelerometry alone cannot accurately distinguish between rapid eye move-

ment (REM) sleep and the various stages of non-REM sleep [52,53]. However, these limitations

should be weighted against the population-scale, pan-diagnostic scope that accelerometry-based

sleep measurement enables. Moreover, certain of our sleep metrics may indirectly capture aspects

of sleep stage: for instance, high numbers of awakenings or low duration of longest sleep bout

may indicate insufficient REM sleep [46,47,54].

A key clinical implication of this work is that sleep pattern differences are a transdiagnostic

feature of psychopathology. Alterations in sleep parameters—particularly those impacting

sleep quality and not merely duration—should be considered regardless of which psychiatric

conditions a patient presents with. Future transdiagnostic studies of sleep and psychopathol-

ogy should employ a longitudinal design to more precisely examine how sleep parameters vary

across phases of mental illness.
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In sum, we find that alterations in objectively measured sleep parameters are the norm

among patients with lifetime psychiatric illness. Our findings provide a rich clinical portrait of

the ways in which sleep can be disrupted across individuals with lifetime mental illness. This

work showcases the capacity of accelerometry to provide detailed, objective sleep measure-

ments at scale, even across cohorts of tens of thousands of individuals.
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