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Abstract: Propensity score methods provide data preprocessing tools to remove se-
lection bias and attain statistically comparable groups – the first requirement when
attempting to estimate causal effects with observational data. Although guidelines ex-
ist on how to remove selection bias when groups in comparison are large, not much is
known on how to proceed when one of the groups in comparison, e.g., a treated group,
is particularly small, or when the study also includes lots of observed covariates (rel-
ative to the treated group’s sample size). This article investigates whether propensity
score methods can help us to remove selection bias in studies with small treated groups
and large amount of observed covariates. We perform a series of simulation studies to
study factors such as sample size ratio of control to treated units, number of observed
covariates and initial imbalances in observed covariates between the groups of units in
comparison, i.e., selection bias. The results demonstrate that selection bias can be re-
moved with small treated samples, but under different conditions than in studies with
large treated samples. For example, a study design with 10 observed covariates and
eight treated units will require the control group to be at least 10 times larger than
the treated group, whereas a study with 500 treated units will require at least, only,
two times bigger control group. To confirm the usefulness of simulation study results
for practice, we carry out an empirical evaluation with real data. The study provides
insights for practice and directions for future research.

Keywords and phrases: causal inference, bias removal, propensity score methods,
matching, experimental and observational study designs.

1. Introduction

Propensity score (PS) methods (Rubin, 1974, 1977, 1978, 1980; Rosenbaum and Rubin,
1983b; Holland and Rubin, 1988; Rosenbaum, 2002; Imbens and Rubin, 2015) are today one
of the most widely applied methods for removing selection bias - a crucial data preprocessing
step in causal inference applications. This preprocessing step is part of the PS methods’
design phase where researchers are required to remove a sufficient amount of selection bias
and obtain statistically comparable groups prior to proceeding with the analysis phase and
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causal effect estimations. Groups are said to be statistically comparable when, for example,
we have a treated and a control group which units are approximately identical with respect
to observed (baseline) covariates and differ only with respect to an applied treatment. The
statistically comparable groups are a required design framework to estimate causal effects
without bias, however, it is important to note here that, if the set of observed covariates does
not cover all confounding covariates, effect estimates cannot warrant causal interpretations.

Preprocessing data with PS methods is known to work well with large samples, but very
little is known about their usefulness when the treated group, or even both groups in com-
parison are small. For example, small treated groups consisting of 10 to 50 units are common
when we are interested in effect heterogeneity across small subpopulations, clusters or sites.
For instance, estimating effects of educational interventions for subpopulations formed by
gender, race and grade, or for each school separately. Small treated groups, are also common
when a target population is small, for example, patients with rare diseases, or when the
treatment is implemented at the cluster level, e.g. schools, districts, or states. Furthermore,
in observational studies with 100 or less treated units, the number of covariates is often
relatively large in comparison to the number of treated units. There is no evidence about the
impact that the number of observed covariates has on removal of selection bias, particularly
when the number of treated units is less than the number of observed covariates. For all the-
ses reasons, an investigation of the role of sample size, when preprocessing data to remove
selection bias, is of great importance.

Some within-study-comparisons (Pohl et al., 2009; Shadish, Clark and Steiner, 2008) sug-
gest that PS methods can successfully remove selection bias when the treated group is small.
However, there is little evidence about the minimum required sample sizes. A few publica-
tions have studied usefulness of PS methods when removing selection bias in small treated
samples Rubin and Thomas (1996), Zhao (2004) and Luellen (2007), but, none of them
studied treated samples of less than 25 units, and none of them studied the impact that the
number of observed covariates has on the removal of selection bias when treated samples are
small, relative to the number of observed covariates. Nonetheless, the studies suggest that
the sample size of the treated group is a vital factor in the process of removing selection
bias and that the guidelines provided for large samples may not be appropriate when the
treated group is small, e.g., recommendations regarding a sample size ratio between a sample
of control and a sample of treated units.

This article reviews the limited research available on this topic and presents a simulation
study with as few as eight treated units. It is the first study that investigates the role of
sample size (for the treated and control group) and the number of covariates in attaining
statistically comparable groups. The study is by no means exhaustive, but it provides a
general insight on important and previously unresearched topics.

We focus on treated samples of eight to 500 units and investigate the required sample size
for the control group in order to obtain statistically comparable groups with respect to a set
of observed covariates. In our simulation study we observe all the confounding covariates,
therefore we can remove all the selection bias, but in practice creating statistically comparable
groups, with respect to a set of observed covariates, removes only overt selection bias. We
cannot remove the selection bias that is induced by unobserved covariates, a so called hidden
bias. Furthermore, the observed covariates can remove the entire bias only if a set of causal
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assumptions1 is met, in particular the strong ignorability assumption.
We show that studies consisting of small treated samples require different guidelines to

remove selection bias than studies with moderately large treated samples.2 The main require-
ment in studies with small treated samples is that the control group has to be significantly
larger than the treated group, meaning that the group ratio, R = nc/nt, with nc and nt de-
noting the sample sizes of the control and treated group, has to be large. A large group ratio
guarantees that each of the few treated units will have a close match in the control group,
and thus enables a satisfactory balance of the groups’ covariate distributions. We show that
the minimum required group ratio, R, depends on: (i) the size of the treated group, (ii)
the number of observed covariates, and (iii) the level of initial covariate imbalances, i.e., an
initial selection bias. The initial selection bias is a consequence of a systematic, nonrandom
selection procedure or a broken randomised experiment. When the initial selection bias is
large, a larger pool of control units is required. The need for control units increases further
with large number of observed covariates and even more so when the treated sample gets
smaller.

The article is organised as follows. Section 2 summarises past research on PS methods
when groups of treated units are small and moderately large. Section 3 provides a brief
overview of PS methods, introduces the notation and provides description of used acronyms
(Table 1). Section 4 introduces the factors investigated in our simulation study, describes the
simulation design, and presents simulation study results. Section 5 empirically evaluates the
simulation results by using real observational data (the within-study comparison of Lalonde
(LaLonde, 1986)). Section 6 provides a summary of the obtained insights, recommendations
for practitioners and future research.

2. Past Research on Removing Selection Bias With Small Treated Samples
Using Propensity Score Methods

In reviewing publications on PS methods for small and moderately large treated samples, we
focus on publications that investigated removal of selection bias theoretically, or by carrying
out simulation studies. Our intention is to learn what impacts the removal of selection
bias in studies with small treated samples. We are particularly interested in the role that
different methods to estimate propensity scores and different PS adjustment methods (PS
matching, PS subclassification and PS weighting) have in the process of removing selection
bias. Furthermore, we are interested in knowing the impact that the number of observed

1Assumptions required for unbiased causal effect estimation:(i) the observed covariates are measured before
units are assigned to a treated or control group; (ii) the observed covariates are simultaneously related to
both: the outcome variable and the indicator variable, i.e., the variable indicating to which group (treated or
control) a unit belongs; (iii) all the relevant covariates are observed regardless of their statistical significance
(Rubin and Thomas, 1996; Rubin, 1997); (iv) probability of being in a treatment group conditional on
observed covariates has to be grater than 0 - often denoted as a positivity assumption; (v) there should be
no interference among the units between the groups in comparison (Cox, 1958; Rubin, 1978); and (vi) only
one form of treatment and control status is applied to each unit (Rubin, 1980). The third and fourth point
present the so called strong ignorability assumption, often denoted also as the unconfoundedness assumption.
The fifth and sixth point present the SUTVA - Stable Unit Treatment Value Assumption (Rubin, 1990).

2Moderately large samples of treated units consist of more than 100 units; small samples of less than 100
treated units.
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covariates has in studies with small treated groups, for example, is removal of selection bias
possible when the number of observed covariates is larger than the number of units in a
treated group, and what role does the size of the control group play.

To our knowledge, only few publications have investigated implications of small and mod-
erately large treated samples on removing selection bias with PS methods. There are three
simulation studies that studied, to some extend, small and moderately large sample prop-
erties of PS methods: Rubin and Thomas (1996), Zhao (2004) and Luellen (2007). These
studies indicate that guidelines established for large data sets might not be appropriate when
treated samples are small. These studies show that not all of the available PS estimation and
PS adjustment methods work well with small treated samples, and that in general, small
treated samples require a much larger control group; meaning, that the group ratio, R, is
required to be much larger than in studies with moderately large treated samples. Although,
the influence of the number of observed covariates on R has never been investigated, their
studies indicate that PS methods are able to remove selection bias when treated samples
are small. The same view is shared by some within-study-comparisons (Pohl et al., 2009;
Shadish, Clark and Steiner, 2008) where causal effect estimates from a randomised experi-
ment are compared to the one obtained from a corresponding non-randomised study design,
i.e., an observational study design. Their estimates have shown to be capable to approxi-
mate results from randomised experiments, indicating that even with small treated samples,
selection bias can be removed (their studies consists of nt > 70).

The most comprehensive study on sample size and PS methods was performed by Luellen
(2007). He investigated: (i) treated samples of size n1 = 100 and n2 = 500, with a group ratio
of R = 1 and 20 observed covariates; (ii) different methods for estimating PSs, i.e., logistic
regression, classification trees, and ensemble methods such as bootstrap aggregating, boosted
regression and random forest; and (iii) PS adjustment methods such as PS matching, PS
subclassification, and PS weighting, performed independently and in combination with an
additional covariate regression adjustment. His simulation results show, that all the investi-
gated factors impact the removal of selection bias with sample size affecting the performance
of both: the PS estimation and PS adjustment method. With small treated samples, only
logistic regression performed well and only one-to-one PS matching removed all the selection
bias. PS subclassification did not perform well with small treated samples, however, this is
expected, because PS subclassification is meant to be used with large samples. Luellen also
showed that PS weighting performs the worst of all the adjustment methods, regardless of
the sample size. It is important to note here that Luellen’s study simulates real observational
data (drawing samples from a real data set), thus, he was unable to know whether the model,
that he used to estimate PSs is correctly specified. PS weighting requires a correctly specified
PS model in order to estimate treatment effects unbiasedly (Waernbaum (2012), Kang and
Schafer (2007), Stuart (2010)). Luellen further showed that a combination of a PS adjust-
ment method with an additional covariate regression adjustment performed better than any
of the adjustment methods alone. Similar discovery was made already by Rubin (1973), later
confirmed by Rubin (2001, 173-174), Rubin (2006) and Hirano and Imbens (2001).

Rubin and Thomas (1996) theoretically and analytically investigated the role of the group
ratio, R, when using PS matching with one-to-one matching. Their results are based on
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moderately large treated samples. Their findings show that with an initial bias, IB3, of
0.5, 1.0, and 1.5, group ratios of 2, 3, and 6 are required to eliminate differences in covariate
distributions between the groups of units in comparison. Therefore, the greater the difference
in the treated and control groups’ covariate distributions, i.e., the greater the initial selection
bias, the more control units per treated unit are required. Rubin and Thomas noted that
smaller treated samples require even larger group ratios, but without suggesting how large.
They further tested their findings with a simulation study of ellipsoidal data using treated
samples of 25 and 50 units with 5 and 10 observed covariates, group ratios, R, of 2, 5 and
10, and different levels of initial bias, IB of 0.0, 0.25, 0.5, 0.75, 1.0 and 1.5. For the IB = 0.5
their simulation results show that with R = 5 or R = 10 all the initial bias is removed,
whereas for larger IB, these group ratios were not sufficient in removing initial bias.

Zhao’s simulation study (2004) investigated small and moderately large treated samples
in combination with one-to-one PS matching, covariate-Mahalanobis distance matching,
covariate-and-PS matching and covariate-and-outcome matching. The smallest investigated
sample had 100 treated and 400 control units, indicating a group ratio of four. Zhao’s results
show that the one-to-one PS matching removes selection bias the most effectively.

Based on published research and PS theory, we conclude the following: (i) treated samples
smaller than 100 have not yet been sufficiently investigated whereas treated samples consist-
ing of less than 25 units have not been investigated at all; (ii) the importance of the group
ratio, R, in studies with small treated samples, where the amount of observed covariates
is often relatively large compared to the number of treated units, has not been thoroughly
investigated; (iii) estimating PSs with binomial regression methods, such as logistic regres-
sion, is a sensible choice in cases of small samples; (iv) success of PS weighting depends on
knowing either the true model to estimate PSs or the true outcome model which is rare in
practice; (v) PS subclassification requires large data sets, thus it is not suitable for treated
samples consisting of less than 100 units; (vi) one-to-one PS matching is one of the most
promising PS adjustment methods in small treated sample studies; (vii) the combination of
PS adjustment with an additional covariate regression adjustment is highly recommended
to further remove any remaining covariate imbalances, i.e., a remaining selection bias.

3. Propensity Score Methods

PS methods comprise of two separate parts: (i) a design phase which is outcome-free; and
(ii) an analysis phase. In the design phase we use only observed covariates, X, and an
indicator variable, mostly denoted as an assignment mechanism variable, W , to remove
selection bias. The W indicates a group to which a sample unit belongs, e.g., a treated or a
control group. The outcome variable, Y, must be excluded from this phase! Once selection
bias is removed and statistically comparable groups are attained, we enter into the analysis
phase. In the analysis phase we use data on the outcome variable, Y , to estimate desired
statistical quantities, perform additional statistical adjustments, e.g., the covariate regression
adjustment, and sensitivity analyses of causal claims.

3Initial bias, IB, is a measure of a selection bias, calculated by using Mahalanobis distance equation on the
power of two: ((µt − µc)

′ ∑−1
c (µt − µc))

2 where µt and µc denote the covariate mean values of the treated
and control group, respectively, with

∑
c denoting the variance-covariance matrix of the control group.
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This article primarily focuses on the design phase of PS methods, that is, studying factors
that impact removal of selection bias when samples of treated groups are small. However,
we also cover the analysis phase, where we apply covariate regression adjustment on data of
statistically comparable groups, to further remove remaining bias and to estimate an average
treatment effect on the treated, ATT. For this purpose, we briefly introduce a theoretical
foundation of PS methods.

The foundation of PS methods consists of: (i) the Rubin Causal Model, RCM (Holland,
1986); and (ii) a propensity score (Rosenbaum and Rubin, 1983a). The RCM comprises of the
potential outcomes approach and an assignment mechanism - the mechanism that informs
us on how units are assigned to the treated and control group. For more details about
the RCM please refer to: Rubin (2005, 2008); Imbens and Rubin (2015)). The role of the
propensity score (PS) is to summarise information of all the observed (baseline) covariates,
X, with respect to the group status, into a single value between zero and one, i.e., 0 <
PS < 1. Accordingly, the PS is defined as a conditional probability of being treated, i.e.,
belonging to one of the groups in comparison, given the observed covariates, X. Such a PS is
a balancing score, e(X), because the conditional distribution of covariates given the PS is the
same for treated and control units (Rosenbaum and Rubin, 1983a). As a result, treated and
control units with (approximately) the same PS, have (approximately) identical covariate
distributions. The PS thus acts as a principal element in the process of removing selection
bias and making groups in comparison statistically comparable.

The true PSs are known only when dealing with randomised experiments. With obser-
vational data we have to estimate them by using: (i) the observed covariates, X, and (ii)
the indicator variable, i.e., an assignment mechanism, W , denoting to which group a unit
belongs, e.g., treated (W = 1) or control (W = 0). PSs can be estimated by using binomial
regression methods, e.g., a linear probability model, logistic or probit regression, or classifi-
cation methods, such as, classification trees, boosted regression, neural networks or random
forest (Keller, Kim and Steiner (2015); McCaffrey, Ridgeway and Morral (2004); Siroky
(2009); Westreich, Lessler and Jonsson-Funk (2010)). Once PSs are estimated, a PS adjust-
ment method, such as PS matching, PS subclassification or PS weighting (inverse-propensity
score weighting) is used to remove selection bias and attain statistically comparable groups.

Before we apply an adjustment method, we are required to asses a statistical comparability
of groups in comparison. As mentioned earlier, this comparability is assessed only with
respect to observed covariates and based on that provides us with the information about the
magnitude of the initial selection bias. For example, we asses whether there is overlap between
covariate distributions of the groups in comparison in terms of: (i) the common support 4;
and (ii) the shape of covariate distributions 5. The lack of overlap in the shape of covariate
distributions in small sample studies makes the process of attaining comparable groups more
difficult because comparable units are harder to be found when only a limited number of
units is available. On the other hand, the lack of common support reduces sample size due
to deletion of units that do not share a common support. In case of complete absence of the
common support, the attainment of statistically comparable groups becomes impossible and

4The common support is the area where covariate distributions of groups in comparison overlap in terms
of X-axis in two-dimensional Cartesian coordinate system.

5An overlap in the shape of covariate distributions refers to the overlap in distributional forms of observed
covariates of groups in comparison.
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the design phase cannot be completed, i.e., we cannot proceed with the analysis phase.
When assessing statistical comparability of the treated and control group, we can assess

each observed covariate, or the PSs by using (i) the standardised mean difference (SMD)
between sample means of observed covariates or the estimated PSs. In case of PSs, the

equation is the following: (ē(xt)i) - (ē(xc)i) /
√

(s2t + s2c)/2 (Austin, 2009; Flury and Riedwyl,
1986; Rosenbaum and Rubin, 1985), where ē(xt)i and ē(xc)i denote estimated PSs of units
in the treated and the control group with s2t and s2c denoting variances of the estimated PS
for the treated and control group; and (ii) the a variance ratio between PSs of the treated
and control group, s2t/s

2
c (Rubin, 2001) to indicate similarity of their covariate distributions’

variances.
Instead of estimated PSs, it is recommended to use their logits, l̄ = log[(ē(X)i)/(1−ē(X)i)]

(Rubin and Thomas, 1992; Rubin, 2001). By using PS-logits, an absolute value of SMD is

calculated as |l̄t− l̄c| /
√

(s2lt + s2lc)/2 with l̄t and l̄c denoting estimated PS-logits of the treated
and control group, respectively. Such calculation of SMD can also be used as a measure of
a remaining bias, RB (the measure that we use for the RB in our simulation study). With
PS-logits, the variance ratio, V R, is calculated as s2lt/s

2
lc with s2lt and s2lc corresponding to

variances of the estimated PS-logits in the treated and control group.
To assess whether a sufficient amount of initial selection bias is removed (this means that

the remaining bias, RB is considered to be negligible from the perspective that it can be
safely removed further with an additional statistical adjustment in the analysis phase of PS
methods), we use the following recommendations: (i) the V R should be close to one but
not smaller than 0.5 or larger than 2 (Stuart and Rubin, 2007); (ii) the RB should be less
than 0.1 (Austin, 2011; Cochran and Rubin, 1973; Cochran, 1968), however, when this is
the case, an additional covariate regression adjustment is recommended to remove covariate
imbalances further, i.e., the RB (Hirano and Imbens, 2001; Rubin, 2006); (iii) when RB is
bigger than 0.1, but it remains below 0.2, the covariate regression adjustment is required
(Rubin, 1979); (iv) RB of 0.2 or more might be of a concern, meaning that an additional
covariate regression adjustment might not be successful in removing the remaining bias
and it could even introduce an additional bias (Rubin, 2001); (v) removing selection bias
completely, i.e., RB = 0, is rarely possible, therefore, when RB < 0.1 and 0.5 < V R < 2,
it is typically considered that there is a negligible imbalance in observed covariates, i.e, we
have attained statistically comparable groups, with respect to observed covariates.

4. Simulation Study

The aim of the simulation study is to investigate which factors influence removal of selection
bias when the treatment group is particularly small and the number of observed covariates is
large, relative to the size of the treated group. For example, what is the required size of the
control group, n∗

c when the treated group is nt = 8 and the number of observed covariates is
p = 10. In other words, what is the minimum required group ratio, R∗ = n∗

c/nt?
There are three main objectives of this study. First, to determine the minimum required

group ratio, R∗, that reduces selection bias to negligible levels such that RB < 0.156 and

6The reason for using remaining bias, RB, larger than the negligible RB of 0.10 standard deviations is
the following: we aim to determine a minimum required group ratio, R∗, therefore we allow for a bit larger
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Table 1

Description of used acronyms

PS(s) Propensity score(s)
R Group ratio, e.g., nc/nt

R∗ Minimum required group ratio
IB Initial (selection) bias (in the simulation study calculated by

using Mahalanobis distance equation (please refer to footnote 3 for the equation))
RB Remaining (selection) bias, i.e., remaining covariate imbalances
V R Variance ratio
SMD Standardised mean difference
p Number of observed covariates
nc Sample size of a control group
nt Sample size of a treated group
s2t , s

2
c Variance of estimated PS for treated and control group, respectively

l̄t, l̄c Estimated PS-logits of the treated and control group, respectively
MSE Mean square error
MSS Mean sum of square explained
DF Degrees of freedom
method Greedy or optimal matching algorithm
ATT Average treatment effect on the treated
ATE Average treatment effect

SE Simulation standard errors of ÂTT (SE
ÂTT

) designed by using standard deviation

of treatment effect estimates across 1,000 iterations, SE
ÂTT

= s
ÂTT

/
√

1000

0.5 < V R < 2 or more formally, R∗ = min{R : RB(R) < 0.15 and 0.5 <V R(R) < 2}
where RB(R) and V R(R) indicate that the RB and V R are functions of R. Second, to
study how R∗ changes when the number of observed covariates, p, varies. Third, to study
the impact that the strength of the selection mechanism has on R∗, that is, how does R∗

changes with different levels of IB. Furthermore, we also examine the performance of two
popular matching algorithms, i.e., greedy and optimal matching. The greedy algorithm is
a nearest-neighbour matching algorithm concentrating only on well-matched pairs, whereas
the optimal algorithm is concerned with pairs being well-matched also within each group
of comparison (Rosenbaum, 1989). The optimal algorithm is particularly useful when there
is lots of competition for controls (Rosenbaum, 2002), for examples in cases of large group
ratios R > 100.

Our main objectives are addressed by studying factors that are known in the design phase
of PS applications, such as nt, R, p, or estimable in the design phase, e.g. IB. The factors
are presented in Table 2.

RB than a negligible RB. The remaining RB we remove with an additional covariate regression adjustment
in the analysis phase of PS methods, as presented in Section 4.2).
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Table 2

Simulation study design

(.)
Factors known or estimable Factor’s levels Factor’s levels

in the design phase for Small treated for Moderately large
of PS methods sample study treated sample study

Treated sample size - nt {8,10,15,20,25,30,50,100} {200,500}
Group ratio - R {1:100} {1:9}

Number of observed covariates - p {10,15,20,30} {10,15,20,30}
Initial covariate imbalances - IB {0.5,1.0,1.5} {0.5,1.0,1.5}

Method, i.e., matching algorithm {greedy, optimal} {greedy, optimal}
(.)

Full factorial design 8x100x4x3x2 = 19200 2x9x4x3x2 = 432

4.1. Data generation

The simulation design is based on four target populations, one for each investigated number of
observed covariates, p ∈ {10, 15, 20, 30}. Each target population consists of Npi = 1, 125, 000
units from which we draw repeated samples without replacement. Such data generation
design enables us to investigate the influence of p on the minimum required group ratio, R∗.

The observed covariates of each target population, X, are generated as independent, stan-
dard normally distributed variables: X ∼ N(0, 1). The outcome variable, Y , for each target
population is generated as Y = β1X1+...+βpXp+ε with ε ∼ N(0, 1). We assume a treatment
effect of zero, thus, the treatment and control outcomes are identical.

Our four target populations are comparable, with regard to the correlation structure be-
tween the linear combination of X and Y , by calculating beta coefficients for each p as

βp =
√
Q/p where Q denotes a covariance between the outcome variable and the linear

combination of observed covariates: Q = Cov(Y, β
∑
Xi). The factor Q is set to 0.35 and

it represents data that could be observed in practice with a coefficient of determination

between Y and X of R2
Y,X = Q/

√
(Q+ 1)Q= 0.51 (derivation of R2

Y,X can be found in Ap-

pendix B). The following values of the beta coefficients, βp, are obtained based on Q = 0.35:
βp=10 = 0.19, βp=15 = 0.15, βp=20 = 0.13 and βp=30 = 0.11. These coefficients are then used
to generate our target populations, Npi .

7

For each target population, we generate an assignment variable, Wi, by randomly draw-
ing from a Bernoulli distribution with probabilities consisting of the true PSs, e(X) :
Wi ∼ Bernoulli(prob = e(Xi)). These true PSs are calculated for each strength of the
selection mechanism, to create an initial bias, IB, of 0.5, 1.0, 1.5. Consequently, each target
population,Npi , consists of three such populations corresponding to the three levels of the
initial bias.

We end up with three target populations within each of the four target populations, Np.

7The betas of all the observed covariates in the outcome variable equation are the same. For example,
if βp=10 = 0.19 then β1 = β2 = ..... = βp=10 = 0.19. Because our assignment mechanism is ignorable, our
results would not change if betas would vary.
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For example, within a target population consisting of 10 observed covariates, Np=10, we
have Np=10,IB=0.5, Np=10,IB=1 and Np=10,IB=1.5. The true PSs are calculated according to
e(X) = logit−1γ(X1 + ... + Xp) where γ is the coefficient determining the strength of the
selection mechanism enforcing imbalances in covariate distributions between the groups of
units in comparison, i.e., the initial selection bias. Table 3 displays the coefficients used for
different values of IB and p.

The simulation study is programmed and analysed in R (R Core Team 2015). The R
package MatchIt (Ho et al., 2011) is used for matching treated and control units.

Table 3

Gamma coefficient, γ to calculate true
propensity score, e(X), as a function
of an initial bias, IB, and a number

of observed covariates, p.

IB p = 10 p = 15 p = 20 p = 30

0.5 0.24 0.19 0.17 0.14
1.0 0.35 0.29 0.25 0.21
1.5 0.46 0.37 0.33 0.27

4.2. Data simulation

For each target population, we draw 1000 repeated samples (without replacement). In each
of these 1000 samples we perform one-to-one PS matching (without replacement) on the
logit of the estimated PSs, l̂ = log[(ê(X)i)/(1 − ê(X)i)] (Rubin, 2001). The PS logits are
estimated via logistic regression according to logit(W ) = λo + λ1X1 + ... + λpXp. Matching
is performed with the greedy and optimal matching algorithm.

We summarise the simulated matched data across 1000 iterations by using: (i) the average
RB and V R, and the average of the estimate of the ÂTT 8; and (ii) the standard deviation
of the 1000 simulated replications of ÂTT which we use to construct confidence intervals
of the ATT . The ATT is estimated from the matched data in combination with additional
covariate regression adjustment and calculated as τ̂ = (yt − yc) − β̂d(lt − lc), where the
regression coefficient, β̂d, is obtained from the regression of ydj = ytj − ycj on l̂dj = l̂tj − l̂cj
with ydj being the difference in the outcomes of the matched pairs and l̂dj the differences
in the PS logit of the matched pairs. According to Rubin (1979), such covariate regression
adjustment is the most natural adjustment in pair matching settings and it produces the
least biased treatment effect estimate, particularly when group ratios are large, which is the
case in studies with small treated groups.

8The ÂTT is the average treatment effect estimate for the subpopulation of those units to which treatment
is applied. The ATT is beside the average treatment effect, ATE, one of the two common causal quantities
of interest, frequently more useful than ATE. In cases of small treated samples, ATT can provide a more
reliable results than ATE.
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4.3. Analysis of Simulated data

We perform two different analyses of the simulated data: (i) an analysis of variance - ANOVA
with a remaining bias RB as a dependant variable - to investigate which of the studied factors
nt, R

∗, p, IB, and matching algorithm, has the strongest impact on removing selection bias,
that is, results in the least remaining bias; and (ii) a numerical and graphical descriptive
analyses to show how the studied factors interact.

Because small treated samples in general require large group ratios, we could not perform
ANOVA with our original simulation design (Table 2). The estimation of PSs with very small
treated samples, i.e., nt of 8, 10, 15, 20, 25, and R = 1 resulted in extreme PS estimates of
0 and 1 for all sets of p and in all simulation replications. When ê(X) = 0 or 1, PSs are not
effective balancing scores. Table 4 presents the combination of p, nt and R where PSs are
not effective balancing scores. As we can see from the table, only when R > 7 estimation
of effective PSs is possible with almost all combinations of p and nt except for nt = 8 and
p = 30.

Table 4

A combination of factors and their levels for which estimated PSs are not effective
balancing scores

R = 1 R = 2 R = 3, 4, 5, 6 R = 7, 8, 9, 10, 11, 12
p nt nt nt nt

10 8, 10, 15, 20, 25 / / /
15 8, 10, 15, 20, 25 / / /
20 8, 10, 15, 20, 25 / / /
30 8, 10, 15, 20, 25 8, 10, 15 8, 10 8
Note. Cells denoted with / present cases when estimated PSs are not effective balancing score. p -
number of observed covariates; R - group ratio; nt - treated sample size.

Because some combinations of p, nt and R could not estimate PSs that are effective
balancing scores, i.e., 0 < PS < 1, we excluded those cases from further analysis of simulation
data. As a result we carried out three separate analyses of variance (Table 5): (i) Small treated
sample study 1; (ii) Small treated sample study 2; and (iii) Moderately large treated sample
study. Although these three studies are not fully comparable, they provide reasonable insight
into the most influential factors when removing selection bias in studies with small treated
samples.

4.4. Simulation results

The ANOVA results are presented in Table 5 where the studied factors are sorted by the
influence they have on removal of selection bias in small treated sample studies, that is, by
decreasing order of the mean sum of squares explained (MSS). For example, the first three
factors in Table 5 have the biggest impact on remaining bias, RB.

The summary of descriptive statistics results are presented in Figures 1 - 3, and in Table 8
and 9 in the Appendix, showing the minimum required group ratio, R∗, i.e., the smallest
group ratio for which RB is smaller than 0.15 standard deviations and V R is between 0.5
and 2.



Kolar&Steiner/PROPENSITY SCORE METHODS, SAMPLE SIZE AND CAUSAL INFERENCE 12

4.4.1. Analysis of Variance

The ANOVA analyses consist of the main effects and all the interactions, i.e., up to five-way
interactions. We display the influential factors which have MSS > 0 and are rounded to
two decimal places. Among the top five influential factors in the small treated sample study
1 and 2 (Table 5) are nt, p, IB, R and nt : p. Few other interactions that are related to
the remaining bias in small treated samples are the following: nt : p, nt : IB, p : IB and
R : p. Its interrelatedness is confirmed also with descriptive statistics presented in the next
section. Success of removing selection bias thus primarily depends on the size of the treated
group, the number of observed covariates, the size of initial selection bias and the number
of control units relative to nt (presented with R).

The moderate large treated sample study has the same top five influential factors, but with
one important exception: instead of the two-way interaction nt : p, it has R : IB. This
means that removal of selection bias with moderately large nt does not depend that much
on the number of observed covariates that are studied here, i.e., p = 10, 15, 20, 30, but rather
more on the number of control units, relative to the number of treated units, i.e., R, when
initial selection bias varies. It is safely to assume that the nt : p interaction would become
an important factor also for moderately large treated samples when the number of observed
covariates would be bigger than what we study here.

Furthermore, the method (greedy vs. optimal matching algorithm) is an influential factor
in small sample studies, but not in the moderately large sample study. To clarify this influ-
ence, we compare mean-squared-errors (MSE) of the ÂTT optimal and ÂTT greedy estimates.
The comparison indicates that the optimal algorithm performs slightly better than the greedy
algorithm, but the difference is not statistically significant. Despite the non-significant differ-
ence, the difference is bigger for small treated samples than moderately large treated samples.
Such results are expected, because optimal algorithm is known to perform better in studies
with larger R, i.e., when bigger pools of control units are required (Rosenbaum, 2002).

4.4.2. Descriptive Analyses

The descriptive analysis is performed as explained in section 4.4. The results are presented
with Figures 1 - 3, and in Tables 8 - 9 that can be found in the Appendix A. The results show
that smaller nt require larger R∗, which means that with less treated units a comparatively
bigger pool of control units is required. Furthermore, R∗ for small treated samples with nt <
100, is greatly influenced by p. For instance, when the number of observed covariates increases
from p = 10 to p = 30, R∗ increases by a factor of four for nt = 8 whereas it barely changes
for nt ≥ 100. The relationship between R∗ and p shows a strong exponential functional form,
particularly with nt < 20 (Figure 1). Although initial bias, IB, can be removed with small nt

to negligible levels and such study design can produce reliable estimates in terms of selection
bias removal, studies with smaller nt produce less precise effect estimates of causal effects
than studies with larger nt. For example, with IB = 0.5 and p of 10 or 15, standard errors,
SE

ÂTT
, are almost seven times bigger (0.02/0.003=6.7 - Table 8) for nt = 8 in comparison

to nt of 200 or 500. This ratio of SE
ÂTT

between small and moderately large treated samples
increases further with larger IB or with more p. For instance, when IB = 1.5 and p is 30,
the SE

ÂTT
for nt = 8 is more than ten times bigger (0.027/0.002=13.5 - Table 9) than the
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SE
ÂTT

for nt = 500.
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Table 5

Factor designs and results of ANOVA analyses

Small treated sample study 1

(.gggggggddddd)
Factor design

(.)

nt = {8, 10, 15, 20, 25, 30, 50, 100}
R = {13 : 100}
p = {10, 15, 20, 30}
IB = {0.5, 1.0, 1.5}
method = {greedy, optimal}

Results
(.) Factor DF MSS

nt 7 4.60
p 3 2.53
IB 2 2.37

nt : p 21 0.32
R 87 0.18

nt : IB 14 0.09
p : IB 6 0.03
method 1 0.02
R : nt 609 0.01
R : IB 174 0.01
R : p 261 0.01

Small treated sample study 2 (.)

(.)
Factor design

(.)

nt = {20, 25, 30, 50, 100}
R = {2 : 100}
p = {10, 15, 20, 30}
IB = {0.5, 1.0, 1.5}
Method = {greedy, optimal}

Results
(.) Factor DF MSS

IB 2 2.26
R 98 1.48
nt 4 1.29
p 3 0.96

nt : p 12 0.09
R : IB 196 0.05
nt : IB 8 0.04
R : nt 392 0.04
R : p 294 0.03
p : IB 6 0.02
method 1 0.01

Moderately large treated sample study

(.)
Factor design

(.)

nt = {200, 500}
R = {1 : 9}
p = {10, 15, 20, 30}
IB = {0.5, 1.0, 1.5}
Method = {greedy, optimal}

Results
(.) Factor DF MSS

R 7 4.60
IB 2 2.37

R : IB 21 0.32
nt 87 0.18
p 609 0.01

R : nt 174 0.01

Note. The difference in factor designs between Small treated sample study 1 and 2 is explained in the paragraph after Table 4.
The factors in bold are those that are not among the influential in the moderately large treated sample study.
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Fig 1: Relationship between the number of observed covariates, p, and the minimum required
group ratio, R∗, for different treated samples (presented with lines) when initial bias, IB = 1.

Note. Other IB produce very similar depictions. Treated samples, nt, of 200 and 500 are
presented with the same line (the first line from bottom-top) due to the same values of R∗.

When IB increases, R∗ also increases. For example, in the case of p = 10 and IB = 0.5,
our results demonstrate that we need at least R∗ = 13 for nt = 8. For IB = 1.0 and IB = 1.5
the R∗ should be at least 19 and 27, respectively. (Figure 2).
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Fig 2: A relationship between different initial biases, IB (depicted with lines), and the required minimum group ratio,
R∗, for different treated samples, nt and different number of observed covariates, p.
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4.5. Estimated versus true propensity scores

The PSs need to be estimated when true PSs are not known. The true PSs are usually
known when dealing with randomised experiments, whereas when dealing with observational
data, PSs need to be estimated. The above simulation results reflect situations that could
be observed in real life scenarios when observational data is used and PSs are required to
be estimated. Although, Rubin and Thomas (1992) argue that in settings with normally
distributed covariates, matching on the estimated PSs is preferred even if true PSs are
available, our aim here is to study whether this is the case also when treated samples are
small. In particular, we are interested in knowing whether the required minimum group
ratio changes when true instead of estimated PSs are used. For this purpose we run another
simulation study which is equally framed as our previous simulations, except that now we
use true PSs (the values that were used in our previous simulations to allocate units to the
treated and control group). The results show that there are some major differences in the
rankings of the most influential factors between these two simulation studies (Table 6). The
factors in bold are influential in the study with estimated PSs, but have no importance in
the study with true PSs.

Table 6

ANOVA results for estimated and true PS

Estimated propensity score

(.)
Factor DF MSS

nt 7 4.60
p 3 2.53
IB 2 2.37
nt : p 21 0.32
R 87 0.18

nt : IB 14 0.09
p : IB 6 0.03
method 1 0.02
R : nt 609 0.01
R : IB 174 0.01
R : p 261 0.01

True propensity score

(.)
Factor DF MSS

IB 2 0.40
nt 7 0.05
R 87 0.02

nt : IB 14 0.01

The factor design for both studies is the same as in the Small treated sample study 1
(Table 5). The reason for such discrepancy in influential factors between the study with true
PSs and the study with estimated PSs (Table 6) lies in the estimation process of PSs. In
small treated sample studies, estimated PSs are not as precise as true PSs. Therefore, the
estimated PSs are not as effective as the true PSs in the process of removing selection bias.
The combination of small treated samples and large amount of observed covariates makes the
estimation process even more challenging and sometimes impossible. In other words, as we
can see from Figure 3, when true PSs are available, much smaller group ratios are required
and the number of observed covariates does not have an impact on the minimum required
group ratio. What does this mean for practice? When treated samples are small and there
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is no possibility for a sufficient pool of control units (as recommended in Tables 8-11 in the
Appendix), than a carefully designed randomised experiment is our best option.
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Fig 3: Comparison of the number of observed covariates, p, (presented with lines) versus the treated sample size, nt, and their
correspondingly required minimum group ratio, R∗, with IB = 1. Study with Estimated PSs (left) and study with True PSs
(right).

Note. Other IB produce very similar depictions. For the graph on the right: lines which present each covariate set are on the top of
each other. The p does not have an impact on the R∗ when true PSs are used.
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5. Empirical evaluation of simulation results

The idea of the empirical evaluation is to find out whether our theoretical simulation results
and insights can be reliably applied to practice. To do so, we used an observational data set
that comes with a benchmark estimate from a corresponding randomized experiment. Not
many data sets fulfil this criterion, but the data of Lalonde’s (1986) within-study compari-
son does. Lalonde compares results of a randomised experiment with results obtained from
observational data. In attempt to replicate effect estimates of the randomised experiment,
he uses the following approaches to remove selection bias and estimate effects from obser-
vational data: least squares regressions, an instrumental variable approach and Heckman’s
(1979) two-step procedure. Lalonde does not succeed in replicating results. A decade later,
Dehejia and Wahba (1999) use PS matching as an approach to remove selection bias from
observational data and succeed in replicating effect estimates of the randomised experiment.
For more discussion on this topic refer to: Smith and Todd (2001, 2005) and Dehejia (2005).

The Lalonde data examine the effect of labour market training programmes on earnings
and are available in the R package MatchIt (Ho et al., 2011). His observational data con-
sists of 445 observations with a treated sample nt = 185, a control sample nc = 260 and
measurements on eight observed covariates, p = 8, (half discrete and half continuous), a
continuous earnings outcome, an assignment variable (of having participated in the labour
market programme or not) and an initial selection bias, IB = 0.19.

In order to determine the minimum required group ratios, R∗, when initial bias is 0.19,
we performed an additional theoretical simulation study with data generated as explained
in section 4.1, but with γ = 0.09 in the logistic data generating model in order to obtain IB
of 0.19. The generated data is simulated as explained in section 4.2, optimal PS matching
algorithm is used to create comparable groups. The results of this simulation study (presented
in the left side of Table 7) give us the minimum required group ratio, R∗, which we use in
the simulation study with Lalonde’s observational data. We evaluate whether such R∗ and
small nt can remove selection bias from Lalonde’s observational data so that RB < 0.15 and
0.5 < V R < 2. We are also interested in seeing whether we can obtain an unbiased treatment
effect, ÂTT , that is close to to the treatment effect of the randomised experiment provided
in Lalonde (1986), τ = 1794)).

5.1. Simulation study with Lalonde data

The Lalonde’s observational data, which consists of 445 units, serves as the target popu-
lation in this simulation study from which samples (selected nt and corresponding nc) are
randomly drawn without replacement. Treated samples of the following sizes are selected: nt

ε {8, 10, 15, 20, 25, 30, 50, 100} with R∗ of 11, 8, 5, 4, 4, 3, 3, and 2, respectively as presented
in Table 7). Accordingly, sample sizes of the control groups are the following nc ε {88, 80,
75, 80, 100, 90, 150, 200}. To illustrate this design further: with nt = 8 the assigned R∗ is
11 and the corresponding nc = 88. With nt of 10, the R∗ is 8 and the nc is 80, and so on.

The simulation study with the Lalonde data uses the same simulation design as our the-
oretical simulation study, but with an important difference: we are not trying to find R∗,
but instead, as described in the previous section, we provide R∗ that are obtained from the
theoretical simulation study for selected nt.
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Table 7

Empirical evaluation with Lalonde observational data set

Theoretical simulation study results
p = 8 and IB = 0.19

nt R∗ RB V R 99%CI SE

8a 11 0.14 1.42 [-0.05,0.08] 0.021
10 8 0.13 1.39 [-0.11,0.02] 0.019
15 5 0.13 1.38 [-0.08,0.02] 0.015
20 4 0.13 1.34 [-0.07,0.02] 0.013
25 4 0.09 1.27 [-0.06,0.02] 0.011
30 3 0.12 1.32 [-0.06,0.01] 0.011
50 3 0.07 1.19 [-0.03,0.02] 0.007
100 2 0.09 1.23 [-0.03,0.01] 0.006
200 2 0.05 1.15 [-0.02,0.01] 0.004
500 2 0.03 1.10 [-0.01,0.01] 0.002

Simulation results of the Lalonde data
p = 8 and IB = 0.19

nt R∗ RB V R ÂTT 99%CI SE ÂTT − τ

8b 11 0.11 1.74 1380 [577,2183] 230 -414
10 8 0.11 1.69 1908 [1314,2501] 183 114
15 5 0.12 1.56 1760 [1400,2121] 121 -34
20 4 0.11 1.50 1807 [1560,2054] 86 13
25 4 0.08 1.30 1767 [1570,1963] 70 -27
30 3 0.11 1.37 1776 [1606,1945] 62 -18
50 3 0.05 1.15 1876 [1770,1982] 40 82
100 2 0.05 1.12 1789 [1723,1855] 25 -5

(.)

a the logistic regression used for estimating PSs resulted in extreme values of 0 and 1 for 0.5% of simulation replications.
b the logistic regression used for estimating PSs resulted in extreme values of 0 and 1 for 32% of simulation replications.
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5.2. Results

The Lalonde data simulation results presented in the right side of the Table 7 are consistent
with the results of our theoretical simulations, meaning that for all nt > 8 the RB is below
0.15, and the V R does not go below 0.5 or above 2. The obtained ÂTT are very close to
the ÂTT of the randomised experiment, τ = 1794. (LaLonde, 1986) and also to the ÂTT
obtained by Dehejia and Wahba (1999), τ = 1788.

The only inconsistency found is with the smallest investigated treated sample, nt = 8.
With this treated sample the simulation results in too many simulation replications (32%)
with estimated PSs not being effective balancing scores, i.e., e(X) = 0 or 1. This was not
the case in the theoretical simulation where the percentage was only 0.5% for nt = 8. Such
inconsistency likely results from the nature of observed covariates (not all the observed
covariates of the Lalonde data are normally distributed as in the theoretical simulation).

6. Conclusion

The results of our simulation studies show that small treated samples require their own
guidelines for a successful removal of selection bias, particularly when the number of observed
covariates is relatively large in comparison to the the number of treated units. Studies with
small treated samples primarily require a control group that consists of significantly more
units. The required sample size ratio depends on: (i) the size of a treated group; (ii) the
number of observed covariates; and (iii) the level of initial selection bias, i.e., the covariate
imbalances between treated and control units. The smaller the treated group, the more
observed covariates and the larger the initial selection bias, the bigger the control group
must be to remove selection bias.

The results show that the influence of the number of observed covariates (p ε {10, 15, 20, 30}),
on the minimum required group ratio is particularly strong for very small treated samples
with nt < 25, whereas negligible for treated samples with nt > 100. The reason that the
number of observed covariates plays such an important role for small treated samples has to
do with the estimation of PSs. The more observed covariates we have and the smaller the
overall sample is, the harder it is to estimate PSs which act as effective balancing scores in
the process of removing covariate imbalances.

Additionally, our simulation results show that the choice of a matching algorithm, i.e.,
greedy versus optimal matching, matters more with small than with moderately large treated
samples. When optimal matching is used with very small treated samples, the required
minimum group ratio tends to be slightly smaller than when greedy matching is used. Also,
the treatment effect’s standard errors are smaller when optimal matching is used, but again
only with very small treated samples. However, none of these differences are statistically
significant in our study. According to Rosenbaum (2002) the optimal algorithm performs
better when group ratios are larger due to a bigger competition among the control units.
Very small treated samples require larger group ratios, thus, the optimal algorithm is a better
choice.

The Lalonde simulation results are consistent with our theoretical simulation results, de-
spite the fact that half of the observed covariates of Lalonde’s data are discrete and the other
half continuous, whereas our theoretical simulation used only continuous covariates. Based
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on these results, the type of a covariate (discrete or continuous) does not play a major role.
Furthermore, our minimum required group ratios for studies with moderately large treated
samples are also consistent with the results obtained by Rubin and Thomas (1996).

Although the focus of our simulation studies were small treated samples, we obtained useful
insights also for studies with moderately large treated samples. For example, whenever the
number of observed covariates is large relative to the number of units in a treated sample,
there will be a demand for a larger group ratio, R. Such demand will be even greater if the
initial selection bias is large.

The simulation results in this paper can be taken as general guidelines for designing
data collection strategies as also to deepen understanding on how PS matching behaves
when attempting to make groups statistically comparable. The insights can be used when
thinking about possible combinations of nt, R and p to remove selection bias. We encourage
practitioners to understand the interrelatedness of these factors when preprocessing data to
remove selection bias, and always aim for a bigger sample, if possible, because each data set
is unique in its own way.

One should never exclude an important observed covariate just because otherwise statisti-
cally comparable groups cannot be obtained. This is particularly important when one’s aim
is to estimate causal effects. It is important to keep in mind that matching methods remove
selection bias only with respect to observed covariates that are included in the PS model. If
some important covariates are not observed, it is impossible to claim that the entire selection
bias was removed and that the effect estimates warrant causal interpretations. Let us em-
phasize that even when statistically comparable groups on observed covariates are obtained,
causal interpretations of treatment effects are warranted only when causal assumptions (as
listed in footnote 1) are met. If uncertainty about unobserved confounders remains, sensi-
tivity analyses that probe the effect estimates robustness to unobserved confounding should
be carried out. If one believes that the causal assumptions are violated, the estimated effect
should be interpreted as a conditional association instead of a causal effect.

Future research should investigate the following: (i) The role of the number of discrete
versus continuous covariates included in the estimation of PSs and its impact on removing
selection bias. (ii) We used only a continuous outcome variable, thus further research could
investigate a discrete outcome variable. (iii) Our scenarios considered only estimation of
constant effects, a scenario where effect heterogeneity is present could also be of interest.
(iv) We used only a linear model to generate the outcome variable. Future research could
investigate also non-linear relations between the covariates and the outcome.
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Appendix A: Tables 8-11

Table 8

Minimum required group ratios for investigated treated samples, nt, initial biases, IB, two
sets of observed covariates, p = 10 and p = 15, and the greedy matching algorithm.

p = 10

nt R∗ RB V R 99%CI SE

IB = 0.5
8 13 0.149 1.57 [-0.08,0.03] 0.020
10 10 0.144 1.46 [-0.03,0.06] 0.017
15 7 0.123 1.38 [-0.02,0.05] 0.014
20 5 0.138 1.40 [-0.03,0.04] 0.013
25 5 0.107 1.31 [-0.03,0.02] 0.010
30 4 0.128 1.35 [-0.03,0.02] 0.010
50 3 0.137 1.35 [-0.01,0.03] 0.008
100 3 0.086 1.24 [-0.01,0.02] 0.005
200 3 0.061 1.18 [-0.01,0.01] 0.003
500 2 0.140 1.33 [-0.01,0.01] 0.003

IB = 1.0
8 19 0.149 1.53 [-0.04,0.06] 0.019
10 15 0.137 1.47 [-0.01,0.08] 0.017
15 10 0.137 1.42 [-0.02,0.05] 0.014
20 8 0.131 1.41 [-0.04,0.02] 0.011
25 7 0.130 1.39 [-0.03,0.02] 0.010
30 6 0.136 1.40 [-0.01,0.04] 0.009
50 5 0.131 1.38 [-0.02,0.02] 0.008
100 4 0.138 1.39 [-0.01,0.02] 0.005
200 4 0.112 1.33 [-0.01,0.01] 0.004
500 4 0.101 1.30 [-0.00,0.01] 0.002

IB = 1.5
8 27 0.149 1.54 [-0.01,0.09] 0.020
10 22 0.146 1.50 [-0.04,0.05] 0.017
15 14 0.149 1.51 [-0.03,0.04] 0.014
20 12 0.137 1.45 [-0.04,0.03] 0.012
25 10 0.141 1.46 [-0.01,0.05] 0.011
30 9 0.142 1.44 [-0.02,0.03] 0.010
50 8 0.124 1.39 [-0.03,0.02] 0.007
100 7 0.149 1.45 [-0.03,0.01] 0.005
200 6 0.134 1.41 [-0.01,0.01] 0.004
500 6 0.121 1.38 [-0.00,0.01] 0.002

p = 15

nt R∗ RB V R 99%CI SE

IB = 0.5
8 22 0.142 1.47 [-0.03,0.07] 0.020
10 15 0.149 1.51 [-0.02,0.06] 0.017
15 9 0.139 1.43 [-0.02,0.05] 0.014
20 7 0.125 1.37 [-0.01,0.05] 0.012
25 6 0.115 1.33 [-0.01,0.04] 0.011
30 5 0.122 1.35 [-0.01,0.04] 0.010
50 4 0.101 1.28 [-0.01,0.02] 0.008
100 3 0.102 1.28 [-0.01,0.02] 0.005
200 3 0.066 1.19 [-0.01,0.01] 0.004
500 2 0.148 1.35 [-0.00,0.01] 0.003

IB = 1.0
8 32 0.149 1.53 [-0.07,0.03] 0.020
10 23 0.144 1.51 [-0.06,0.03] 0.017
15 13 0.142 1.46 [-0.04,0.03] 0.014
20 10 0.137 1.42 [-0.04,0.02] 0.012
25 8 0.143 1.43 [-0.04,0.01] 0.011
30 7 0.139 1.41 [-0.02,0.04] 0.009
50 6 0.114 1.34 [-0.03,0.02] 0.007
100 5 0.101 1.30 [-0.01,0.01] 0.005
200 4 0.119 1.34 [-0.02,0.01] 0.004
500 4 0.104 1.30 [-0.02,0.00] 0.002

IB = 1.5
8 47 0.149 1.52 [-0.08,0.02] 0.020
10 33 0.149 1.52 [-0.06,0.03] 0.017
15 20 0.149 1.50 [-0.03,0.04] 0.014
20 15 0.149 1.49 [-0.03,0.03] 0.012
25 13 0.138 1.45 [-0.03,0.03] 0.010
30 11 0.143 1.46 [-0.04,0.01] 0.010
50 9 0.130 1.41 [-0.01,0.02] 0.007
100 7 0.135 1.41 [-0.01,0.02] 0.005
200 6 0.140 1.42 [-0.00,0.02] 0.004
500 6 0.127 1.39 [-0.00,0.01] 0.002
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Table 9

Minimum required group ratios for investigated treated samples, nt, initial biases, IB, two
sets of observed covariate, p = 20 and p = 30, and the greedy matching algorithm method.

p = 20

nt R∗ RB V R 99%CI SE

IB = 0.5
8 33 0.149 1.50 [-0.10,0.01] 0.026
10 23 0.144 1.46 [-0.06,0.04] 0.022
15 13 0.147 1.45 [-0.04,0.03] 0.017
20 9 0.134 1.39 [-0.02,0.04] 0.015
25 7 0.134 1.39 [-0.02,0.03] 0.013
30 6 0.130 1.37 [-0.02,0.04] 0.011
50 4 0.136 1.37 [-0.02,0.02] 0.009
100 3 0.118 1.32 [-0.02,0.01] 0.006
200 3 0.076 1.22 [-0.00,0.01] 0.004
500 3 0.051 1.16 [-0.00,0.00] 0.002

IB = 1.0
8 45 0.149 1.47 [-0.05,0.06] 0.021
10 32 0.143 1.48 [-0.04,0.05] 0.018
15 19 0.137 1.44 [-0.04,0.04] 0.014
20 13 0.143 1.43 [-0.04,0.02] 0.012
25 10 0.146 1.44 [-0.04,0.01] 0.011
30 9 0.136 1.41 [-0.02,0.02] 0.010
50 6 0.139 1.40 [-0.01,0.02] 0.008
100 5 0.115 1.33 [-0.01,0.01] 0.005
200 4 0.131 1.37 [-0.01,0.00] 0.004
500 4 0.111 1.32 [-0.01,0.00] 0.002

IB = 1.5
8 65 0.147 1.50 [-0.06,0.05] 0.021
10 48 0.149 1.52 [-0.04,0.05] 0.018
15 27 0.144 1.46 [-0.05,0.02] 0.014
20 18 0.149 1.48 [-0.02,0.04] 0.011
25 15 0.144 1.45 [-0.01,0.05] 0.010
30 13 0.140 1.43 [-0.02,0.03] 0.010
50 9 0.141 1.43 [-0.03,0.02] 0.007
100 7 0.144 1.44 [-0.02,0.01] 0.005
200 6 0.147 1.44 [-0.00,0.02] 0.004
500 6 0.129 1.40 [-0.00,0.01] 0.002

p = 30

nt R∗ RB V R 99%CI SE

IB = 0.5
8a 58 0.149 1.43 [-0.09,0.04] 0.049
10a 45 0.149 1.46 [-0.04,0.07] 0.033
15 22 0.145 1.46 [-0.07,0.00] 0.023
20 14 0.139 1.41 [-0.03,0.03] 0.019
25 10 0.141 1.41 [-0.03,0.03] 0.018
30 8 0.142 1.41 [-0.03,0.02] 0.016
50 5 0.133 1.37 [-0.02,0.01] 0.011
100 4 0.087 1.25 [-0.01,0.02] 0.007
200 3 0.093 1.26 [-0.00,0.01] 0.005
500 3 0.058 1.18 [-0.00,0.01] 0.003

IB = 1.0
8a 79 0.157 1.45 [-0.07,0.07] 0.027
10a 65 0.140 1.39 [-0.05,0.04] 0.019
15 31 0.148 1.47 [-0.01,0.07] 0.014
20 20 0.145 1.45 [-0.03,0.04] 0.013
25 15 0.140 1.42 [-0.02,0.04] 0.011
30 12 0.141 1.43 [-0.04,0.01] 0.010
50 8 0.129 1.39 [-0.01,0.03] 0.008
100 5 0.145 1.42 [-0.02,0.01] 0.005
200 4 0.149 1.42 [-0.00,0.01] 0.004
500 4 0.113 1.33 [-0.01,0.01] 0.002

IB = 1.5
8a 98 0.148 1.42 [-0.11,0.03] 0.027
10a 75 0.149 1.45 [-0.08,0.03] 0.020
15 43 0.149 1.45 [-0.05,0.03] 0.014
20 29 0.146 1.45 [-0.04,0.02] 0.012
25 22 0.143 1.44 [-0.03,0.02] 0.011
30 18 0.142 1.44 [-0.02,0.03] 0.010
50 12 0.136 1.42 [-0.02,0.02] 0.008
100 8 0.139 1.42 [-0.01,0.02] 0.005
200 7 0.127 1.39 [-0.01,0.01] 0.004
500 6 0.133 1.40 [-0.01,0.01] 0.002

a The logistic regression used for estimating PSs resulted in extreme values of 0 and 1 for 30% of
simulation replications. The minimum required group ratio for these cases should be even larger.
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Table 10

Minimum required group ratios for investigated treated samples, nt, initial biases, IB, two sets of
observed covariate, p = 10 and p = 15, and the optimal matching algorithm.

p = 10

nt R∗ RB V R 99%CI SE

IB = 0.5
8 13 0.141 1.56 [-0.07,0.03] 0.020
10 10 0.135 1.45 [-0.03,0.06] 0.017
15 6 0.143 1.44 [-0.02,0.05] 0.013
20 5 0.127 1.38 [-0.02,0.04] 0.012
25 5 0.147 1.42 [-0.02,0.04] 0.010
30 4 0.117 1.34 [-0.02,0.03] 0.009
50 3 0.127 1.34 [-0.01,0.03] 0.007
100 3 0.079 1.23 [-0.01,0.03] 0.005
200 3 0.056 1.17 [-0.01,0.00] 0.003
500 2 0.139 1.33 [-0.00,0.01] 0.002

IB = 1.0
8 18 0.148 1.54 [-0.01,0.08] 0.018
10 14 0.146 1.48 [-0.05,0.04] 0.017
15 9 0.148 1.46 [-0.01,0.06] 0.013
20 8 0.124 1.39 [-0.01,0.04] 0.010
25 7 0.122 1.38 [-0.01,0.04] 0.010
30 6 0.129 1.39 [-0.02,0.04] 0.008
50 5 0.125 1.37 [-0.01,0.02] 0.007
100 4 0.135 1.39 [-0.02,0.02] 0.005
200 4 0.110 1.32 [-0.01,0.00] 0.003
500 4 0.101 1.30 [-0.00,0.01] 0.002

IB = 1.5
8 27 0.147 1.52 [-0.02,0.08] 0.019
10 21 0.147 1.52 [-0.07,0.01] 0.016
15 14 0.144 1.49 [-0.03,0.04] 0.013
20 12 0.131 1.44 [-0.02,0.04] 0.011
25 10 0.136 1.45 [-0.01,0.04] 0.010
30 9 0.137 1.43 [-0.02,0.01] 0.009
50 8 0.120 1.38 [-0.02,0.01] 0.007
100 6 0.148 1.44 [-0.02,0.02] 0.005
200 6 0.133 1.41 [-0.02,0.00] 0.004
500 6 0.121 1.38 [-0.00,0.01] 0.002

p = 15

nt R∗ RB V R 99%CI SE

IB = 0.5
8 21 0.143 1.49 [-0.02,0.08] 0,019
10 15 0.141 1.49 [-0.03,0.05] 0,016
15 9 0.131 1.41 [-0.05,0.04] 0,013
20 7 0.117 1.35 [-0.02,0.04] 0,011
25 5 0.148 1.43 [-0.02,0.03] 0,010
30 5 0.113 1.33 [-0.02,0.03] 0,009
50 4 0.093 1.27 [-0.02,0.02] 0,007
100 3 0.095 1.27 [-0.01,0.01] 0,005
200 3 0.062 1.19 [-0.01,0.01] 0,003
500 2 0.147 1.35 [-0.00,0.01] 0,002

IB = 1.0
8 32 0.146 1.50 [-0.07,0.03] 0.023
10 22 0.146 1.52 [-0.07,0.01] 0.020
15 13 0.136 1.44 [-0.05,0.01] 0.016
20 10 0.131 1.40 [-0.04,0.02] 0.013
25 8 0.136 1.42 [-0.03,0.02] 0.012
30 7 0.132 1.40 [-0.02,0.02] 0.011
50 5 0.149 1.43 [-0.02,0.02] 0.008
100 4 0.148 1.42 [-0.02,0.02] 0.005
200 4 0.118 1.34 [-0.01,0.01] 0.004
500 4 0.103 1.30 [-0.01,0.00] 0.002

IB = 1.5
8 47 0.149 1.48 [-0.06,0.05] 0.020
10 33 0.147 1.49 [-0.05,0.04] 0.017
15 20 0.146 1.48 [-0.03,0.04] 0.013
20 15 0.146 1.47 [-0.03,0.03] 0.011
25 12 0.149 1.48 [-0.03,0.03] 0.010
30 11 0.139 1.45 [-0.02,0.03] 0.009
50 8 0.149 1.47 [-0.02,0.02] 0.007
100 7 0.133 1.41 [-0.01,0.02] 0.005
200 6 0.140 1.42 [-0.01,0.01] 0.003
500 6 0.126 1.39 [-0.01,0.01] 0.002
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Table 11

Minimum required group ratios for investigated treated samples, nt, initial biases, IB, two sets of
observed covariate, p = 20 and p = 30, and the optimal matching algorithm method.

p = 20

nt R∗ RB V R 99%CI SE

IB = 0.5
8 33 0.148 1.49 [-0.10,0.01] 0.021
10 22 0.146 1.46 [-0.06,0.03] 0.017
15 13 0.142 1.43 [-0.03,0.04] 0.013
20 9 0.127 1.38 [-0.03,0.03] 0.012
25 7 0.126 1.38 [-0.03,0.03] 0.011
30 6 0.122 1.36 [-0.03,0.02] 0.010
50 4 0.130 1.36 [-0.02,0.02] 0.007
100 3 0.113 1.31 [-0.02,0.01] 0.005
200 3 0.073 1.21 [-0.01,0.01] 0.003
500 3 0.050 1.15 [-0.00,0.01] 0.002

IB = 1.0
8 45 0.149 1.43 [-0.06,0.04] 0.021
10 31 0.148 1.48 [-0.04,0.05] 0.017
15 18 0.145 1.44 [-0.03,0.03] 0.013
20 13 0.138 1.41 [-0.03,0.03] 0.011
25 10 0.140 1.42 [-0.04,0.02] 0.010
30 9 0.131 1.40 [-0.04,0.01] 0.009
50 6 0.134 1.39 [-0.02,0.03] 0.007
100 5 0.112 1.33 [-0.02,0.02] 0.005
200 4 0.129 1.37 [-0.01,0.01] 0.003
500 4 0.110 1.32 [-0.01,0.01] 0.002

IB = 1.5
8 65 0.149 1.45 [-0.06,0.11] 0.021
10 46 0.147 1.47 [-0.08,0.06] 0.017
15 26 0.148 1.46 [-0.04,0.06] 0.013
20 18 0.147 1.47 [-0.03,0.05] 0.011
25 15 0.141 1.44 [-0.04,0.04] 0.010
30 13 0.137 1.42 [-0.03,0.04] 0.009
50 9 0.138 1.42 [-0.01,0.04] 0.007
100 7 0.143 1.43 [-0.02,0.02] 0.005
200 6 0.146 1.44 [-0.01,0.01] 0.003
500 6 0.129 1.40 [-0.01,0.01] 0.002

p = 30

nt R∗ RB V R 99%CI SE

IB = 0.5
8a 58 0.149 1.43 [-0.08,0.05] 0.025
10a 45 0.149 1.46 [-0.05,0.05] 0.019
15 22 0.145 1.46 [-0.06,0.01] 0.013
20 14 0.139 1.41 [-0.03,0.03] 0.011
25 10 0.141 1.41 [-0.03,0.03] 0.010
30 8 0.142 1.41 [-0.02,0.03] 0.009
50 5 0.133 1.37 [-0.02,0.01] 0.007
100 4 0.087 1.25 [-0.01,0.01] 0.005
200 3 0.093 1.26 [-0.00,0.01] 0.004
500 3 0.058 1.18 [-0.00,0.01] 0.002

IB = 1.0
8a 79 0.157 1.45 [-0.07,0.07] 0.028
10a 64 0.140 1.39 [-0.05,0.04] 0.019
15 31 0.148 1.47 [-0.02,0.05] 0.014
20 19 0.145 1.45 [-0.02,0.04] 0.012
25 14 0.140 1.42 [-0.03,0.03] 0.010
30 11 0.141 1.43 [-0.03,0.02] 0.009
50 8 0.129 1.39 [-0.02,0.02] 0.007
100 5 0.145 1.42 [-0.01,0.01] 0.005
200 4 0.149 1.42 [-0.01,0.01] 0.004
500 4 0.113 1.33 [-0.00,0.01] 0.002

IB = 1.5
8a 98 0.148 1.41 [-0.10,0.04] 0.019
10a 81 0.147 1.38 [-0.10,0.01] 0.013
15 44 0.145 1.42 [-0.04,0.03] 0.012
20 29 0.149 1.44 [-0.05,0.01] 0.011
25 21 0.140 1.42 [-0.02,0.03] 0.009
30 18 0.133 1.41 [-0.02,0.03] 0.007
50 12 0.138 1.42 [-0.02,0.02] 0.005
100 8 0.127 1.39 [-0.01,0.01] 0.003
200 7 0.132 1.40 [-0.01,0.01] 0.002
500 6 0.148 1.31 [-0.01,0.00] 0.019

a Approximately 30% of simulation replications where logistic regression for estimating propensity
scores results in extreme values of zero and one, thus, the minimum required group ratio in these

cases should be even larger.
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Appendix B: Derivation of R2
Y,X

B.1. Derivation of Q - the numerator of R2
Y,X

The Q denotes the covariance between the outcome variable and the linear combination of
observed covariates: Q = Cov(Y, β). With normally distributed observed covariates, Xi, ε ∼
N(0, 1), and the outcome variable, Y =

∑
βXi+ε, it follows that Y = β

∑
Xi+ε. Accordingly,

the covariance structure between a linear combination of Xi, X = β
∑
Xi, and Y is:

Cov(Y, β
∑

Xi) = Cov(β
∑

Xi + ε, β
∑

Xi)

= Cov(β
∑

Xi, β
∑

Xi) + Cov(ε, β
∑

Xi)

= β2Cov(
∑

Xi,
∑

Xi) + 0

(1)

Cov(ε, β
∑
Xi) = 0 due to the independence of the error term. But because the observed

covariates are independently normally distributed, Xi ∼ N(0, 1), it follows:

Cov(
∑

Xi,
∑

Xi) = V ar(
∑

Xi)

= V ar(
∑

Xi)

=
∑

V ar(Xi)

= p

(2)

As a result:
Cov(Y, β

∑
Xi) = β2p

= Q
(3)

B.2. Derivation of
√

(Q + 1)Q - the denominator of R2
Y,X

The denominator denotes the square root variance of the outcome variable, V ar(Y ) times
the variance of β

∑
X, V ar(

∑
X). The 1 +Q is hence derived from V ar(Y ) as follows:

V ar(Y ) = V ar(β
∑

Xi + ε)

= β2V ar(
∑

Xi) + V ar(ε)

= β2
∑

V ar(Xi) + 1

= β2p+ 1

= Q+ 1

(4)
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