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1.  Introduction
Cold polar and mountainous regions encompass a broad range of frost-driven processes that shape the land-
scape. Characterized by seasonally or perennially frozen ground (permafrost), these so-called periglacial en-
vironments are highly dynamic (French, 2007) and especially sensitive to climate change (Aalto et al., 2017; 
Biskaborn et al., 2019; Hjort et al., 2018). Seasonal ground freezing and thawing in the upper part of the 
ground cause heave and subsidence due to water-to-ice phase change (Bonnaventure & Lamoureux, 2013; 
Thomas et al., 2009). On periglacial slopes, mass wasting processes driven by gravity induce downslope 

Abstract  Periglacial environments are characterized by highly dynamic landscapes. Freezing and 
thawing lead to ground movement, associated with cryoturbation and solifluction. These processes are 
sensitive to climate change and variably distributed depending on multiple environmental factors. In this 
study, we used multi-geometry Sentinel-1 Synthetic Aperture Radar Interferometry (InSAR) to investigate 
the spatial distribution of the mean annual ground velocity in a mountainous landscape in Northern 
Norway. Statistical modeling was employed to examine how periglacial ground velocity is related to 
environmental variables characterizing the diverse climatic, geomorphic, hydrological and biological 
conditions within a 148 km2 study area. Two-dimensional (2D) InSAR results document mean annual 
ground velocity up to 15 mm/yr. Vertical and horizontal velocity components in the East–West plane 
show variable spatial distribution, which can be explained by the characteristics of cryoturbation and 
solifluction operating differently over flat and sloping terrain. Statistical modeling shows that slope angle 
and mean annual air temperature variables are the most important environmental factors explaining the 
distribution of the horizontal and vertical components, respectively. Vegetation and snow cover also have 
a local influence, interpreted as indicators of the ground material and moisture conditions. The results 
show contrasted model performance depending on the velocity component used as a response variable. 
In general, our study highlights the potential of integrating radar remote sensing and statistical modeling 
to investigate mountainous regions and better understand the relations between environmental factors, 
periglacial processes and ground dynamics.

Plain Language Summary  In cold regions, freeze and thaw cycles lead to movement 
in the upper part of the ground. The landscape distribution of these movements depends on several 
environmental conditions, such as the local climate, topography, vegetation, material type and soil 
moisture. Here we mapped millimeter to centimetre mean annual ground velocities using a measurement 
technique based on satellite radar images. We analyzed how the environmental conditions are related to 
the distribution of the ground velocity at the landscape scale. Statistical models were applied to relate the 
ground velocity to environmental conditions at similar locations and showed that the spatial variability of 
the air temperature and the slope inclination are the two main controlling factors. Vegetation and snow 
cover have also an indirect effect due to their link with the ground material and moisture conditions. In 
general, the study contributes to the development of approaches integrating remote sensing and modeling 
techniques to cover large and hard-to-access mountainous regions and provide new insights on the 
processes shaping the landscape in cold environments.

ROUYET ET AL.

© 2021. The Authors.
This is an open access article under 
the terms of the Creative Commons 
Attribution-NonCommercial-NoDerivs 
License, which permits use and 
distribution in any medium, provided 
the original work is properly cited, 
the use is non-commercial and no 
modifications or adaptations are made.

Environmental Controls of InSAR-Based Periglacial 
Ground Dynamics in a Sub-Arctic Landscape
L. Rouyet1,2,3 , O. Karjalainen4 , P. Niittynen5 , J. Aalto5,6 , M. Luoto5 , 
T. R. Lauknes1,2 , Y. Larsen1 , and J. Hjort4 

1NORCE Norwegian Research Centre AS, Tromsø, Norway, 2Department of Geosciences, The Arctic University of 
Norway (UiT), Tromsø, Norway, 3Arctic Geology Department, The University Centre in Svalbard (UNIS), Longyearbyen, 
Norway, 4Geography Research Unit, University of Oulu, Oulu, Finland, 5Department of Geosciences and Geography, 
University of Helsinki, Helsinki, Finland, 6Weather and Climate Change Impact Research, Finnish Meteorological 
Institute, Helsinki, Finland

Key Points:
•	 �Multi-geometry Synthetic Aperture 

Radar Interferometry documents the 
distribution of the ground velocity in 
a periglacial environment

•	 �Coupling remote sensing and 
statistical modeling provides insights 
on the environmental controls of the 
velocity at the landscape scale

•	 �Topo-climatic variables are 
the key factors explaining the 
ground dynamics associated with 
cryoturbation and solifluction 
processes

Supporting Information:
Supporting Information may be found 
in the online version of this article.

Correspondence to:
L. Rouyet,
liro@norceresearch.no

Citation:
Rouyet, L., Karjalainen, O., Niittynen, 
P., Aalto, J., Luoto, M., Lauknes, T. R., 
et al. (2021). Environmental controls 
of InSAR-based periglacial ground 
dynamics in a sub-arctic landscape. 
Journal of Geophysical Research: Earth 
Surface, 126, e2021JF006175. https://
doi.org/10.1029/2021JF006175

Received 25 MAR 2021
Accepted 28 JUN 2021

Author Contributions:
Conceptualization: L. Rouyet, O. 
Karjalainen, J. Hjort
Data curation: L. Rouyet, O. 
Karjalainen, P. Niittynen
Formal analysis: L. Rouyet, O. 
Karjalainen
Funding acquisition: L. Rouyet, J. 
Aalto, M. Luoto, T. R. Lauknes, J. Hjort
Investigation: L. Rouyet, O. 
Karjalainen

10.1029/2021JF006175
RESEARCH ARTICLE

1 of 24

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://orcid.org/0000-0002-5255-8810
https://orcid.org/0000-0003-2429-4595
https://orcid.org/0000-0002-7290-029X
https://orcid.org/0000-0001-6819-4911
https://orcid.org/0000-0001-6203-5143
https://orcid.org/0000-0002-7783-7760
https://orcid.org/0000-0001-6193-4438
https://orcid.org/0000-0002-4521-2088
https://doi.org/10.1029/2021JF006175
https://doi.org/10.1029/2021JF006175
https://doi.org/10.1029/2021JF006175
https://doi.org/10.1029/2021JF006175
https://doi.org/10.1029/2021JF006175
http://crossmark.crossref.org/dialog/?doi=10.1029%2F2021JF006175&domain=pdf&date_stamp=2021-07-20


Journal of Geophysical Research: Earth Surface

movement (Harris, Kern-Luetschg, et al., 2008; Matsuoka, 2001). When considering slow deformation of 
unconsolidated material over flat areas and slopes, periglacial processes are respectively referred to as cry-
oturbation and solifluction (French, 2007). On flat areas covered by thin fine-grained unconsolidated de-
posits and low ice content, the ground typically heaves and subsidies with a millimetric to centimetric 
seasonal amplitude (Gruber, 2020; Matsuoka et al., 2003; Smith, 1987). On slopes, millimetric to centimetric 
solifluction annual rates (net downslope velocities) have been measured in subarctic areas and mid-lati-
tude mountainous regions with seasonal frost or warm permafrost conditions (Ballantyne, 2013; Harris, 
Kern-Luetschg, et al., 2008; Matsuoka et al., 1997; Ridefelt et al., 2009). At local to regional scales, a large 
set of climatic (temperature, precipitation), geomorphic (topography, substrate type), biological (vegeta-
tion type), and hydrological factors (soil moisture/water content) have an influence on the spatio-temporal 
dynamics of the ground (Etzelmüller et  al.,  2001; Guglielmin et  al.,  2008; Harris et  al.,  2003; Hinzman 
et al., 1991). Changing environmental conditions modify the periglacial ground dynamics, which can im-
pact infrastructure and ecosystems (Harris et al., 2009; Hjort et al., 2018; Jorgenson et al., 2001; Nelson 
et al., 2002). However, the complexity of the relations between the environmental conditions (controlling 
factors), the periglacial processes (causes), the ground dynamics and the induced landforms (effects), makes 
the future impacts challenging to assess (Knight & Harrison, 2013).

Traditionally, geomorphological studies and monitoring of periglacial processes are conducted by in-situ 
field mapping and measurements (Harris et al., 2009; Romanovsky et al., 2010; Shiklomanov et al., 2012). 
These observations are often difficult to perform and usually provide sparse and unevenly distributed meas-
urement data. Over the last decades, satellite remote sensing has become a valuable tool to map and mon-
itor periglacial landforms, especially in remote and hard-to-access mountainous areas and Arctic regions 
(Kääb et al., 2005; Westermann et al., 2015). Repeat-pass satellite Synthetic Aperture Radar Interferometry 
(InSAR) enables the quantification of ground displacements over large areas. InSAR allows for measuring 
submillimetre to centimetre sensor-to-ground distance changes derived from the phase differences detected 
between Synthetic Aperture Radar (SAR) images acquired at different times (Massonnet & Feigl, 1998). 
InSAR measurements are along the radar line-of-sight (LOS) and thus intrinsically one-dimensional. The 
Sentinel-1 SAR mission of the European Commission Copernicus Program follows a sunsynchronous polar 
orbit, and observes at an oblique incidence angle toward East (ascending passes) or West (descending pass-
es). Thus, the radar is nearly blind to horizontal North–South displacements, but by combining InSAR re-
sults from the two satellite geometries, 2D information in the vertical E–W plane can be estimated (Eriksen, 
Lauknes, et al., 2017). InSAR has been intensively used to map moving landforms in mountainous regions 
(Barboux et al., 2014, 2015; Dini et al., 2019). Several studies have also analyzed InSAR-detected perigla-
cial ground displacements against environmental variables. They demonstrated that the spatio-temporal 
variability of InSAR results can be related to the air and ground temperature (Bartsch et al., 2019; Strozzi 
et al., 2018), the thickness of the active layer (Liu et al., 2012; Wang et al., 2018), the water/ice content (J. 
Chen, Wu, et al., 2020; Daout et al., 2017), and the surficial geology (Rouyet et al., 2019; Rudy et al., 2018). 
The findings show that InSAR has not only a value to identify moving landforms, but also the potential to 
indirectly document the spatio-temporal patterns of environmental variables controlling periglacial pro-
cesses (Rouyet et al., 2019). However, the strong spatial heterogeneities characterizing mountainous areas 
lead to a large variability and combination of processes over short distances (Haeberli et al., 2010). Relating 
detected moving areas to actual geomorphological processes and their drivers can therefore be a challenging 
task.

To exploit remotely sensed information for the interpretation of environmental controls of ground dynam-
ics, modern empirical techniques are required to analyze large datasets at regional to global scales. This 
has been made possible by the development of advanced statistical methods. Several studies have shown 
the potential of statistical modeling to estimate permafrost distribution (Aalto, Karjalainen, et al., 2018; 
Boeckli et al., 2012; Etzelmüller et al., 2001; Gruber & Hoelzle, 2001) and to capture the multivariate na-
ture of periglacial processes at landscape-scale by documenting how their distribution and dynamics are 
influenced by environmental factors (Hjort & Luoto, 2011, 2013; Hjort et al., 2014; Karjalainen et al., 2019; 
Rudy et al., 2017). By statistically identifying the variables influencing the ground thermal regime and per-
iglacial processes, it becomes possible to better explain their current distribution and predict their future 
evolution based on climate change scenarios (Aalto et al., 2017; Blois et al., 2013; Hjort et al., 2018; Kar-
jalainen et al., 2020). However, previous research has been primarily based on in-situ measurements (e.g., 
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ground temperature from boreholes) or mapped landforms (e.g., inventory of solifluction lobes and palsas) 
and few studies have integrated advanced remote sensing data documenting periglacial activity, such as 
InSAR-based ground velocity.

Here we examine the environmental controls associated with the spatial variability of mean annual ground 
velocities derived from Sentinel-1 InSAR measurements in a sub-arctic landscape. We use statistical multi-
variate modeling to relate the response variables (horizontal, vertical and combined 2D velocities) to seven 
environmental factors represented with geospatial data. To our knowledge, this is the first study to analyze 
InSAR results using spatially explicit statistical modeling. Specifically, we aim to a) document the distri-
bution of ground velocity associated with cryoturbation and solifluction in a mountainous environment 
in Northern Norway, b) examine the relative importance and effects of the environmental factors on the 
periglacial ground dynamics, and c) discuss the limitations and implications of our findings in the context 
of periglacial research.

2.  Study Area
The study area is located in the Gaissane mountain massif in the county of Troms and Finnmark, North-
ern Norway (70°00′N, 26°14′E). The region is part of the subarctic zone, characterized by long cold win-
ters and short cool summers (NCCS, 2021). Northern Norway is affected by a large climatic gradient be-
tween the temperate and humid coasts and the cold and dry continental interior. The permafrost follows 
a similar distribution. The limit of the discontinuous zone, where permafrost is underlying 50%–90% of 
the landscape, is around 1,000 m a.s.l in the North-West and decreases below 400 m a.s.l. toward South-
East (Farbrot et al., 2013; Gisnås et al., 2017). Both direct observations and physical models indicate that 
permafrost in Northern Norway is mainly warm (temperature above −3°C), and variably distributed de-
pending on the vegetation and snow cover (Farbrot et al., 2008; Isaksen et al., 2008). In-situ measurements 
indicate that the permafrost has warmed and degraded (Christiansen et al., 2010; Isaksen et al., 2007), 
and models project that this trend is likely to continue for the next decades (Gisnås et al., 2013; Farbrot 
et al., 2013).

The study area consists of ca. 148 km2 (Figure 1). The topography is characterized by two mountain mas-
sifs (Rásttigáisá at 1,066 m a.s.l and Geaidnogáisá at 1,038 m a.s.l) separated by a 2-km wide and 0.5-km 
deep NW-SE valley. The area has a large altitudinal gradient between 122 m a.s.l and 1,066 m a.s.l. The 
bedrock is composed of Precambrian crystalline rocks and layers of shales (Hyolithus zone), covered by 
peat, fluvial sediments, glacial till and boulder fields (Niittynen & Luoto, 2018). The study area has a mean 
annual air temperature below zero (−0.3 to −5.7°C; 1981–2010) and a mean annual precipitation sum 
between 457 and 669 mm (Aalto et al., 2017). The altitudinal gradient leads to a large spatial variability 
of the mean annual air temperature within the area (Aalto et al., 2017). Due to the complex local topog-
raphy, the snow accumulates unevenly, and the snow persistence pattern is highly variable (Niittynen, 
Heikkinen, et al., 2018). Rásttigáisá-Geaidnogáisá area is part of the circumpolar arctic vegetation zone 
(Olson et al., 2001; Virtanen et al., 2016), at the transition between different main biomes of the northern 
high-latitude environment. The mountain birch forest line is at 250–350 m a.s.l., and thus, trees are only 
present in the lowest valleys.

According to the circum-arctic map of permafrost and ground-ice conditions (Brown et al., 2002), the study 
area is at the interface between the sporadic permafrost zone with medium ground ice content (10%–20%) 
and thick overburden (lowlands, highlands, and intra- and intermontane depressions), and the discon-
tinuous permafrost zone with low ground ice content (0%–10%), thin overburden and exposed bedrock 
(mountains, highlands ridges, and plateaus). Kilometric products based on thermal remote sensing and 
physical modeling also show a large variability of the ground temperature, permafrost probability and active 
layer thickness (typically between 1 and 3 m) (Gisnås et al., 2017; Obu et al., 2019, 2020). Freeze and thaw 
processes lead to the development of a large range of periglacial landforms, such as patterned ground, peat 
plateaus, earth hummocks, and solifluction lobes (Martin et al., 2019; Seppälä, 2011).
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3.  Data and Methods
The study presents an analysis of InSAR-based 2D mean annual ground velocity maps using multivariate 
statistical modeling. 2D InSAR results (response variables, Section 3.1) document the ground dynamics as-
sociated with periglacial processes identified in the study area (field observations, Section 3.2). The response 
variables are related to seven explanatory variables describing the environmental conditions (Sections 3.3) 
using statistical models (Section 3.4). This provides new insights about the factors controlling the horizon-
tal, vertical and combined 2D ground velocities associated with cryoturbation and solifluction (Figure 2).

3.1.  InSAR Products as Response Variables

InSAR results are based on SAR images from the Sentinel-1 mission of the European Commission Coperni-
cus Program. The selected Interferometric Wide swath Mode scenes were acquired between 2015 and 2018 
(Table 1). A total of 72 scenes were used in ascending geometry (track 14), and 67 in descending geometry 
(track 124). The sensor looks obliquely downward (∼30° between the normal to the Earth's surface and the 
beam; see LOS incidence angles in Table 1), toward ENE for ascending acquisitions and toward WNW for 
descending acquisitions (∼74°N and ∼286°N of compass directions, see LOS orientations in Table 1). The 
observation period lasts 1,236 days (06.03.2015–10.21.2018) but the dataset includes gaps in winter, as only 
scenes with little snow cover have been selected (June–October).

We applied an InSAR technique employing spatial averaging (multi-looking) to reduce noise from scat-
tering mechanisms in nonurban areas (Berardino et  al.,  2002). InSAR results were processed using the 
NORCE GSAR software (Larsen et al., 2005). Single Look Complex (SLC) images were co-registered and 
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Figure 1.  Location of the study area in Troms and Finnmark county (Northern Norway) centered around two mountains: Geaidnogáisá and Rásttigáisá. 
Background: topographical map of the Norwegian territory (NMA, 2020a). Brown lines: 100 m elevation contour lines. Gray-black lines: administrative borders 
(dashed lines in inset: border between Tana and Lebesby municipalities).
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multi-looked using a range/azimuth factor of 8 × 2, providing a ground resolution of ca. 40 m. We chose this 
multi-looking factor as a trade-off for preserving the highest resolution as possible, while avoiding reducing 
the reliability of the coherence estimate that decreases with low factors (Bamler & Hartl, 1998). Interfero-
metric image pairs (interferograms) were generated with a maximal temporal baseline of 360 days, account-
ing for expected low velocities in the study area (mm–cm/year). The pairwise distance between the satellite 
positions at the acquisition times used for generating each interferogram, the so-called spatial baseline, has 
not been restricted. The effective maximal values (210 m for the ascending stack, 136 m for the descending 
stack) are clearly under the limit, for which there is no remaining spatial coherence (critical baseline, ap-
proximately 5 km for Sentinel-1). The small spatial baselines lead to small topographical component, which 
was estimated and removed using a 10 m DEM (NMA, 2016). The noise-level was reduced in all interfero-
grams by applying a spatially adaptive coherence-dependent Goldstein filter (Baran et al., 2003; Goldstein 
& Werner, 1998). The datasets consist of 592 selected interferograms (SAR pairs) in ascending geometry 
and 471 in descending geometry (baseline plots in Supplemental Figures S1 and S2). Strongly decorrelated 
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Figure 2.  Conceptual scheme of the contribution of explanatory statistical modeling to relate ground dynamics 
documented by multi-geometry InSAR to environmental factors and provide new insights on the controls and effects of 
periglacial processes in mountainous landscapes. Dotted arrows show the expected components of the ground velocity 
associated with cryoturbation and solifluction. Solid bold arrows show the components that are measured using multi-
annual 2D InSAR. The acronyms refer to Synthetic Aperture Radar (SAR), line-of-sight (LOS), vertical (V), horizontal 
(H), two-dimensional (2D), mean annual air temperature (MAAT), snow cover duration (SCD), topographic wetness 
index (TWI), and normalized difference vegetation index (NDVI).

SAR 
sensor

Frequency 
band 

(wavelength)

Time intervals 
for interferogram 

generation
SAR mode, track 

number and geometry

Number 
of selected 

scenes
Observation period  

(first-last selected scenes)

LOS 
orientation and 
incidence angle

Sentinel-1 C (5.55 cm) 6–360 days IW, 14, ascending 72 06.03.2015–10.21.2018 (June–October) 74.2°

30.4°

IW, 124, descending 67 06.11.2015–10.05.2018 (June–October) 286.3°

30.4°

Abbreviations: IW, interferometric wide swath mode; LOS, line-of-sight.

Table 1 
Properties of the Sentinel-1 SAR Images Used for InSAR Processing
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interferograms (mean coherence under 0.45) were removed, and pixels affected by layover were masked 
out. Pixels affected by low signal stability due to snow (e.g., perennial patches), water (e.g., lakes, rivers) 
or dense vegetation (e.g., forested areas) in most of the pairs were removed by applying a coherence-based 
filter (above 0.45 in at least 50% of the interferograms) (Berardino et al., 2002). If snow cover dominated in 
one acquisition, the coherence dropped and the interferograms based on that image were discarded. Simi-
larly, if snow at one specific location was affecting too many interferograms in the stack (perennial patches), 
the pixel was discarded. Despite the relatively conservative thresholds, the effect of scattering mechanisms 
in coherent areas must be considered, as the differential propagation of the electromagnetic wave due to 
changing dielectric properties of the ground surface may lead to biased phase estimates. In high-latitude 
environments, one main limitation for InSAR is the snow (Zwieback et al., 2016). If the coherence dropped 
for isolated pixels in a limited amount of image pairs (e.g., early or late summer), wrong estimates may 
have been included in the results. As for snow, phase bias can occur due to volume scattering from ground 
moisture and biomass (De Zan et al., 2014; Zwieback & Hajnsek, 2014; Zwieback et al., 2015). However, the 
large stack and long temporal baseline used in the current study is expected to mitigate these effects (Ansari 
et al., 2020).

The conversion from cyclic to continuous phase differences, so-called unwrapping, is performed using the 
SNAPHU algorithm (C. Chen & Zebker, 2002). Due to the low velocity and good coherence in the study 
area, no major unwrapping errors have been identified in the processed interferograms. InSAR is a spatially 
relative technique, meaning that it must be calibrated to a reference location. The calibration is ideally per-
formed using a point with a known velocity (Eriksen, Bergh, et al., 2017). In a remote environment where 
in-situ measurements are not available or not comparable to the resolution of the InSAR measurements, 
this is unfortunately often not feasible (Antonova et al., 2018). Different reference points were tested and a 
common reference for both datasets was chosen in an area assumed to be stable. It is located in the valley 
between Rásttigáisá and Geaidnogáisá (70°00“15.1”“N 26°11”57.1″E, mapped in Figures 5 and 6), in flat 
terrain (<2° slope angle) with visible rock crop and little soil cover, leading to high InSAR coherence (>0.7 
for both geometries). All InSAR results are spatially relative to this location. We estimated ground dis-
placements using the Small Baseline Subset (SBAS) method (Berardino et al., 2002). The focus is placed on 
spatial distribution, and all results are based on averaged values. The phase inversion was performed using 
a linear deformation model. We solved for the mean annual ground velocity based on a L1-norm-based cost 
function, which is more robust than L2-norm with respect to unwrapping errors (Lauknes et al., 2011). For 
the atmospheric filtering, we used a spatial filter of 2,000 m spatial filter and a temporal filter of 120 days. 
The contribution from the stratified atmosphere was mitigated by a data-driven approach where we study 
the relation between residual phase and topography (Cavalié et al., 2007) using a Digital Elevation Model 
(DEM) at 10 m resolution (NMA, 2016). Based on a redundant set of interferograms, we further solved for 
the stratified delay per scene using a network-based approach (Lauknes, 2011). The initial InSAR ground 
velocity maps from both ascending and descending geometries were compared with results from the freely 
available InSAR Norway ground motion mapping service (Dehls et al., 2019; NGU, 2020). The processing is 
also based on Sentinel-1 images, but applies a Persistent Scatterer Interferometry (PSI) algorithm (Ferretti 
et al., 2001) that allows for preserving the full resolution of the images (5 × 20 m in range × azimuth). PSI 
results are based on different reference points and document another scattering mechanism than SBAS. 
They were used to qualitatively assess the general consistency of our results.

InSAR measurements from ascending and descending geometries correspond to one-dimensional (1D) sen-
sor-to-ground distance change along the LOS. By combining both geometries, it is possible to estimate the 
2D velocity in the vertical plane spanned by the ascending and descending LOS orientations, which approx-
imately is E–W (Eriksen, Lauknes, et al., 2017). The results were also decomposed into vertical (Up–Down, 
U–D) and horizontal (East–West, E–W) components (Figure 2). It should be noted that the radar is still blind 
to displacements orthogonal to the LOS plane, which leads to an underestimation of the measurements 
in case of a large North–South (N–S) horizontal component. To avoid misinterpretation when analyzing 
gravity-driven processes such as solifluction, we masked out pixels in areas where a significant horizontal 
component toward N or S is expected (Rouyet et al., 2019). As reported by Matsuoka (2001), the slope an-
gles of documented solifluction landforms can range from 2° to 41°. Based on this information, we masked 
out areas with slope angles over 2° and slope orientations ± 22.5° around 360° (N) and 180° (S) (compass 
directions 337.5°N–22.5°N and 157.5°N–202.5°N) (gray areas in Figure 3). All areas with slope angles below 
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2° were included, assuming that they are mainly affected by a vertical component. All E–W slopes were 
included, assuming that they do not include a significant N–S component.

InSAR processing led to the development of three products, further used as response variables: 1) the hori-
zontal velocity, 2) the vertical velocity, 3) the 2D velocity consisting in the combination of the two previous 
components. Considering the long total observation period (three years) and the relatively small extent of 
the study area (approx. 12 × 12 km), we estimate that the accuracy is well below 1 mm/yr (Supplemental 
Figure S3), assuming that atmosphere is the dominant noise source (Emardson et al., 2003). The closer to 
the reference point, the higher the accuracy. The results document mean velocities in mm/yr that are most-
ly designed for gradual multi-annual processes, such as the net downslope component of the solifluction. 
However, as no winter scenes are included, the InSAR results are mostly representative of the thawing pe-
riods, which emphasize the downward component of the cryoturbation. Prior to statistical modeling, all re-
sults were converted to absolute values to focus on the magnitude of the vertical, horizontal and combined 
2D velocities, instead of their direction. The number of pixels where ground displacement is documented 
is 69,035, corresponding to ca. 74% of the study area (110 km2). They were geocoded using a DEM at 10 m 
resolution (NMA, 2016). The final products have a 40 m ground resolution, documenting the averaged con-
tribution of scatterers within the pixels. Although very fine-scale processes may not be captured by these 
medium resolution products, the results are assumed to be appropriate to assess the relative spatial varia-
bility of the ground dynamics in the study area and discuss their relations with environmental variables.

3.2.  Field Observations of Cryoturbation and Solifluction

The cover of cryoturbation and solifluction (m2) activity within 100 m2 grids was mapped at 674 randomly 
selected field sites across the study area during the 2015–2016 summer seasons. The activity was visually 
estimated using indicators, such as vegetation density, lichen cover and frost disturbance, following the 
methodology presented in Hjort and Luoto (2009). Based on the field observations, the activity was then 
classified as negligible (<20 m2), low (20–40 m2), medium (40–60 m2), and high (>60 m2) for both process-
es. Solifluction is the dominant process in the area (Figure 3a). At 429 locations, the InSAR results overlap 
with field sites (at maximum one per pixel, Figure 3a) and the activity rating has been compared with the 
response variables to assess the relevance of the spatial variability of InSAR-detected ground velocity. A 
quantitative comparison is not feasible due to the differences of measure and spatial resolution between 
the remotely sensed (ground velocity within 40 × 40 m pixels) and field information (qualitative documen-
tation of activity within 10 × 10 m grids). The field observations are however valuable to assess the overall 
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Figure 3.  Field observation of cryoturbation and solifluction activity. (a) The field observation sites (dots) and locations where cryoturbation (blue dots) and 
solifluction (red dots) activity has been qualitatively rated as negligeable, low, medium, or high. Topographical data from NMA (2020a). (b) An example of field 
site with high cryoturbation activity. (c) An example of field site with high solifluction activity.
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consistency of the InSAR spatial patterns at the landscape scale. Additional visual interpretation has been 
performed using 0.25–0.5 m resolution orthophotos from summer 2010, 2016, and 2018 (NMA, 2020b).

3.3.  Environmental Data as Explanatory Variables

Seven environmental datasets, used as explanatory variables, were related to the InSAR products (response 
variables). The explanatory variables represent the climatic, geomorphic, hydrological and biological con-
ditions in the study area (Table 2).

Climatic variables include the mean annual air temperature (MAAT) based on air temperature modeled 
from 942 climate stations in Scandinavia between 1981 and 2010 (Aalto et al., 2017) (Figure 4a) and the 
snow cover duration (SCD) using 1984–2016 Landsat-5, -7, and -8 imagery (Niittynen & Luoto, 2018; Ni-
ittynen, Heikkinen, et al., 2018). InSAR does not document the winter period and the pixels persistently 
covered by snow. However, variable duration of seasonal snow cover prior to InSAR measurements leads to 
variable meltwater input and impacts the thermal transfer between the atmosphere and the ground.

Geomorphic variables include the slope angle based on the ArcticDEM (Porter et al., 2018) and the Norwe-
gian DEM (NMA, 2016) (Figure 4b), as well as two surface geology variables. The Norwegian DEM (original 
resolution 10 m) was used to fill missing data in the ArcticDEM mosaic (∼5% of the study area) by bilinearly 
interpolating the Norwegian DEM to match with the ArcticDEM original resolution (1.857 m) and aggre-
gating the merged product by a factor of six resulting in a final ∼11 m DEM (Niittynen et al., 2020). Surface 
geology variables were extracted from a 2 m resolution land cover map based on field surveys and optical 
images (resolution 0.5–1.4 m) (Niittynen & Luoto, 2018), documenting the distribution of six classes: water 
bodies, fluvial deposits, moraines, bedrock, boulder fields, and peat material (Supplemental Figure S4). The 
binary dataset has been transformed to continuous by calculating the number of 2 m pixels inside 40 m 
pixels. The resulting values represent the percent (0%–100%) of the material covering the pixel surface. In 
order to reduce model complexity and overfitting potential, we included only two surface geology variables, 
hereafter referred to as Peat and Boulder (Table 2). The selection was based on the decrease in explained 
deviance by the models when each variable was omitted in their turn from a model containing all variables. 
Based on averaged deviance reductions over 10 permutations for each modeling technique (see Section 3.4) 
and the three InSAR responses, Peat and Boulder had the highest statistical contributions.

Hydrological and biological variables include the topographic wetness index (TWI) computed in SAGA 
GIS (System for Automated Geoscientific Analyses; Conrad et al., 2015) and the pixel-wise 95% quantile of 
the normalized difference vegetation index (NDVI) computed from 97 mostly cloud-free Sentinel-2 images 
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Figure 4.  Spatial distribution of two explanatory variables. (a) Mean annual air temperature (MAAT) (Aalto et al., 2017). (b) Slope angle (NMA, 2016; Porter 
et al., 2018). Similar maps for the five other selected variables (Table 2) are shown in Supplement (Figure S4).



Journal of Geophysical Research: Earth Surface

June–September 2016–2019. Pixels with adverse conditions (deep shadows, snow, water, or clouds) were 
masked out prior to calculating the quantiles. The 95% quantile was selected over the pixel-wise maximum 
to further limit the possible effects of erroneous pixel values.

All the variables (Table 2) were resampled to 40 m pixel resolution using the “Resample” function in ArcGIS 
10.7.1 (ESRI, 2019) with bilinear sampling to spatially match with InSAR results. After removing pixels 
with no data, there were 68,590 pixels documented both by the InSAR products (response variables) and 
the environmental data (explanatory variables). Maps showing the spatial distribution of SCD, NDVI Peat, 
Boulder, TWI are in Supplement (Figure S4). The distributions of all variable values are shown in Supple-
ment (Figure S5).

3.4.  Explanatory Statistical Modeling

We used statistical modeling to examine the importance and effect of the selected environmental factors on 
InSAR mean annual ground velocities. The model inputs and outputs are floating velocity values expressed 
in mm/yr. The modeling was conducted with the R Statistical Software (R-version 3.6.3). Prior to modeling, 
we explored bivariate Spearman correlations in the modeling dataset (Supplemental Figure S6). Only the 
correlation between MAAT and NDVI (0.70) reached the usually applied |0.70| threshold for multicolline-
arity (Dormann et al., 2013). We additionally applied variance inflation factor (VIF) analysis to test whether 
multicollinearity between the explanatory variables was confounding the modeling. VIF values for each 
variable were <6, which is under the critical threshold value of 10 (Dormann et al., 2013). This suggests 
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Figure 5.  Schematic illustration of the statistical modeling workflow.
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that strong multicollinearity is not present in the dataset. The three InSAR products (see Section 3.1) are 
examined separately as response variables: 1) the horizontal velocity, 2) the vertical velocity, and 3) the 
combined 2D velocity.

In order to account for the potential uncertainties related to single models, we used four techniques. The 
generalized boosting method (GBM, R package dismo; Elith et al., 2008) is the main method used to discuss 
the findings, while three others are applied to assess the results' consistency (Supplement Text S0). GBM 
was run with a learning rate of 0.001, a bag fraction of 0.75, and a tree complexity of 5 (Elith et al., 2008). 
A slow learning rate was chosen to ensure that single trees would not have an overly high contribution to 
the final model. We also made sure that 1,000 trees at minimum and 3,000 trees at maximum were fitted 
and used the gbm.step function (Elith et al., 2008) to determine the optimal number of trees in order to 
minimize holdout deviance.
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Figure 6.  Initial InSAR datasets. (a and b) Mean annual ground velocity maps along the line-of-sight (LOS). Black arrows show the LOS orientations (the 
labels indicate the incidence angles). Negative values indicate a decrease of the sensor-to-ground distance, positive values an increase of the sensor-to-ground 
distance. (a) Velocity [mm/yr] along the ascending (asc) LOS. (b) Velocity [mm/yr] along the descending (desc) LOS. (c and d) Directional velocity after 2D 
decomposition. (c) Horizontal East–West velocity. Negative values: toward West (W). Positive values: toward East (e). (d) Vertical Up–Down velocity. Negative 
values: upwards (U). Positive values: downwards (d). Black star: InSAR reference point. Semi-opaque dark gray layer: areas masked out in further analysis 
(North-/South-facing slopes, see Section 3.1).
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The models were fitted using all the selected seven environmental variables (see Section 3.3) in order to 
allow comparisons between variable contributions for each response. The procedure follows the workflow 
illustrated in Figure 5. In total, the InSAR mapping yielded 69,035 pixels across the study area. The high 
density of measurements can lead to a problem of spatial autocorrelation, that is, nearby observations are 
likely to be more similar with each other than those further away (Legendre, 1993). Spatial autocorrelation 
can affect modeling by overfitting some random spatial patterns in variables and underestimating predic-
tion errors. It may produce unrealistic responses and increase Type I errors in statistical testing, that is, a 
variable is selected to the model even if it should not be (false positive) (Dormann et al., 2007). To ensure 
that the spatial autocorrelation is not causing bias to model estimates, we first selected 500 random sam-
ples of 1,000 InSAR pixels and fitted exponential variograms to average semi-variances calculated from 
the prediction residuals of a generalized additive model based on the entire dataset (Supplements Text S0 
and S7). Among the three responses, the average distance at which spatial autocorrelation dissipated was 
289 meters. We then used this distance to select 200 random samples, that is, modeling datasets, from all 
InSAR measurements using the “Create random points” tool in ArcMap (ESRI, 2019). Thereby, on average 
1,110 pixels were selected in each dataset with distributions similar to that of all InSAR measurements 
(Supplemental Figure S8).

Model evaluation was performed by using 90% of the spatially independent InSAR pixel values in each 
modeling dataset to calibrate the models and the remaining 10% to evaluate their performance. A high 
calibration proportion was used to maximize the representativeness of the calibration datasets of all InSAR 
observations. Based on the 200 runs, we computed means and confidence intervals of coefficient of deter-
mination (R2, i.e., the proportion of explained variance), root mean square error (RMSE, in mm) and mean 
absolute error (MAE, in mm).

The relative importance of each environmental variable in the models was estimated by calculating a meas-
ure of variable importance (Thuiller et al., 2009). The variable importance value is the inverse Pearson's 
correlation between predictions that are produced with the previously calibrated models for two distinct 
datasets; one with intact seven variables, and another where one variable is randomized:
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Name Description Unit Data source

Native 
resolution 

[m] References

MAAT Mean annual air temperature °C Weather stations and topo-climatic modeling 10 m Aalto et al. (2017)

SCD Snow cover duration Days Landsat-5, -7, and -8 30 m Niittynen, Heikkinen, 
et al. (2018) and 
Niittynen and 
Luoto (2018)

Slope Slope angle Degrees ArcticDEM and Norwegian Mapping authority 11.142 m Porter et al. (2018) and 
NMA (2016)

Peat Surface geology class “Peat” Unitless (%a) Pleiades imagery 2 m Niittynen and 
Luoto (2018)

Boulder Surface geology class “Boulder” Unitless (%a) Pleiades imagery 2 m Niittynen and 
Luoto (2018)

TWI Topographic wetness index Unitless ArcticDEM and Norwegian Mapping authority 11.142 m Böhner et al. (2002), 
Conrad et al. (2015), 

and NMA (2016)

NDVI 95% quantile of normalized difference 
vegetation index

Unitless Sentinel-2 10 m Rouse et al. (1974)

Abbreviations: MAAT, mean annual air temperature; NDVI, normalized difference vegetation index; SCD, snow cover duration; TWI, topographic wetness 
index.
aUnit after binary to continuous transformation.

Table 2 
List of Explanatory Variables and Properties of the Initial Datasets
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   intact variables one variable randomizedVariance importance 1 Prediction ,Predictionr� (1)

where r is the Pearson product-moment correlation. The closer the variable importance is to 1, the higher 
its individual contribution to predicted velocity. Each modeling technique was run using the 200 modeling 
datasets for each response with each variable randomized separately.

Lastly, we plotted response curves based on GBM results averaged over the 200 runs. We used the calibrated 
200 models to predict the InSAR velocities for the 68,590 common pixels, in which each explanatory var-
iable in turn was kept intact while the others were fixed to their mean. This way, we obtained 200 values 
depicting the response of the velocity components to each realized value of an explanatory variable over 
the entire range of the InSAR velocities. We then computed the average and standard deviation of these 200 
values to plot response curves for each variable across their range in the entire dataset.

4.  Results
4.1.  InSAR Results

The initial InSAR results along LOS from both the ascending and descending geometries show expected 
velocities toward the sensor on slopes facing the radar, and away from the sensor on back-facing slopes 
(Figures 6a and 6b). Pixels with no data correspond to areas with radar layover or shadow due to steep to-
pography, forested areas in the south-eastern part, lakes/ponds or persistent snow (InSAR coherence under 
the chosen threshold, see Section 3.1). Ascending and descending SBAS results are compared to the PSI 
maps from the InSAR Norway mapping service (see Section 3.1). Similar velocity ranges (mm/yr to cm/yr) 
and spatial distribution are found (Supplemental Figure S9), which can be considered as an indicator of the 
results' validity.

After 2D InSAR calculation and decomposition, the results show that the vertical and horizontal compo-
nents of the velocity are differently distributed. On slopes, mass wasting processes lead to a combination 
of horizontal and vertical velocities, while the flat areas are affected by vertical velocities, especially on 
mountain tops (Figures 6c and 6d). Before conversion to absolute values, we analyze the relevance of the 
directional patterns for both the horizontal and vertical components. The average velocity at the InSAR 
reference point (black star in Figures 5 and 6) is −0.23, 0.20, and 0.30 mm/yr for the horizontal, vertical 
and 2D velocity, respectively. As expected, westwards horizontal velocities (negative values) are located on 
west-facing slopes, while eastwards (positive values) are on east-facing slopes (Figure 6c). Horizontal veloci-
ty has a mean of 0.44 mm/yr with a higher number of positive pixels (eastwards). This may indicate a minor 
shift of the velocity values due to a westward velocity at the InSAR reference point, but also represent the 
natural higher proportion of east-facing slopes in the area. The vertical values are mostly positive (>80%) 
(Figure 6d), corresponding to a subsidence, which is expected when using mean velocity measurements 
based on observations during the thawing periods. Among the pixels with negative (upwards) trend, over 
75% are between 0 and –0.5 mm/yr and less than 1% are under −1 mm/yr. These values are part of the 
overall dataset variability. They are likely due to phase bias (sources introduced in Section 3.1 and further 
discussed in 5.3), but may also represent a natural trend.

For the exploratory statistical modeling, absolute values are considered, to focus on the movement magni-
tude instead of its direction. InSAR detects velocity up to 11 mm/year eastwards and westwards (horizontal 
component), up to 14 mm/yr vertically and up to 15 mm/yr when combining both components into a 2D 
information (Figure 7). The distribution is right-skewed, with clearly a higher proportion of low values (Fig-
ure 7d). Despite the low velocity in average, the results show a clear spatial pattern, with higher velocities 
on slopes and mountain tops (Figure 6 and S10). At the 429 locations where InSAR results overlapped with 
field observations (see Section 3.2), the activity rate is overall higher in areas where InSAR detected high ve-
locities, that is, on slopes and mountain tops (Figures 7 and 8). The InSAR 2D velocity from locations rated 
with high activity is overall higher than those with negligible, low and medium activity (Supplemental Fig-
ure S11). Detailed maps show highly active areas where patterned ground (Figures 8a–8f) and solifluction 
lobes (Figures 8b–8e, 8g, and 8h) can be seen on aerial imagery.
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4.2.  Statistical Modeling

GBM results highlight contrasted model performance (Table 3). The model performed better based on the 
vertical component (47% of the explained variance), compared to the horizontal component (24% of the ex-
plained variance). Prediction errors for each velocity component were slightly higher for evaluation datasets 
and the variations explained by the models decrease sharply when predicted over independent evaluation 
datasets. The modeling datasets have similar distributions compared to the 69,035 InSAR measurements 
shown in Figure 7d (Supplemental Figure S8).

On average, Slope and MAAT (Figure 4) are the most important variables contributing to the variation of 
InSAR velocity (Figure 9a). Clear differences between the responses are visible. Horizontal velocity depends 
foremostly on slope angle, while MAAT exerts the highest influence on vertical velocity. NDVI and SCD 
have also notable importance, but dissimilar effects on the horizontal and vertical components. Horizontal 
velocity is more affected by SCD than vertical velocity, which is more influenced by NDVI. Considering 
the 2D velocity, which combines the horizontal and vertical components, MAAT, Slope and NDVI can be 
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Figure 7.  Absolute 2D InSAR mean annual ground velocity results used as response variables. (a) Horizontal component of the velocity [mm/yr]. (b) Vertical 
component of the velocity [mm/year]. (c) 2D combined velocity [mm/year]. (a–c) Black star: InSAR reference point. Semi-opaque dark gray layer: areas masked 
out in further analysis (North-/South-facing slopes, see Section 3.1). Black squares: detailed areas shown in Figure 8. (d) Distribution (kernel densities) and 
statistics of the response variables: horizontal, vertical and 2D combined velocity for the 69,035 available InSAR pixels.
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retained for their importance. Despite its importance for the horizontal component, SCD has lower relative 
significance for the combined 2D velocity. The importance of the remaining variables (Peat, TWI, and Boul-
der) is low (<0.1) for all responses, albeit all three variables present a higher influence on the horizontal 
component. The three complementary modeling methods (Supplementary Text S0) yield similar relative 
importance values among the variables (Supplemental Figure S13).
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Figure 8.  Detailed areas comparing 2D InSAR mean annual ground velocity (see locations 1–4 in Figure 7) and aerial orthoimagery (NMA, 2020b). a–h: 
Orthophoto view at a smaller extent with visual expression of cryoturbation (a, d, f) and solifluction (b, c, e, g, h) features (patterned ground and solifluction 
lobes) associated with the detected velocities.
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The response curve for the slope angle (Figure 9b) shows that it has a positive influence on the velocity, 
with a clear increase when slope angle exceeds 10°. Despite the difference of importance (higher for the 
horizontal component), the shape of the curve is similar for the three responses. The relationship between 
MAAT and the mean velocity is also nonlinear but more ambiguous: the vertical velocity tends to decrease 
with higher MAAT values, while the horizontal velocity is highest where MAAT is around −2°C. The re-
sponse curve for the 2D velocity highlights the combined effect of the two previous elements, influencing 
differently the horizontal and vertical components. NDVI has a U-shaped response with the vertical and 
2D components; the velocity tends to increase where NDVI is either lowest (<0.2) or highest (>0.6). SCD 
response curve shows the clearest trend for the horizontal component, with a positive impact of snow cov-
erage duration on the velocity.
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R2 RMSE MAE

Calibration Evaluation Calibration Evaluation Calibration Evaluation

Horizontal 0.24 ± 0.04 0.08 ± 0.08 0.68 ± 0.03 0.74 ± 0.10 0.52 ± 0.02 0.56 ± 0.05

Vertical 0.47 ± 0.04 0.28 ± 0.13 0.66 ± 0.03 0.75 ± 0.13 0.47 ± 0.02 0.51 ± 0.05

2D 0.38 ± 0.04 0.21 ± 0.10 0.82 ± 0.04 0.90 ± 0.13 0.60 ± 0.02 0.65 ± 0.06

Note. The values (averages  ±  one standard deviation) are based on 200 resampling rounds for calibration (90% of 
observations in each sample) and evaluation datasets (10%). Evaluation results for the three complementary models 
are listed in Figure S12.

Table 3 
Generalized Boosting Method (GBM) Modeling Performance in Terms of Coefficient of Determination (R2), Root Mean 
Square Error (RMSE) and Mean Absolute Error (MAE) and for Each Response Variable

Figure 9.  Variable importance and response curves based on generalized boosting method (GBM). (a) The bars represent the mean relative importance of the 
seven environmental variables over 200 resampling rounds and the whiskers depict the 95% confidence intervals. Variables are ordered based on their average 
importance for the three velocity components. (b) Response curves depict the modeled mean annual ground velocity (Y-axis) across the range of variables 
values in their original scale (X-axis). Thin curves represent one standard deviation from average response over 200 permutations. Response curves for the 
three least important variables are presented in Supplemental Figure S14. The acronyms refer to mean annual air temperature (MAAT), normalized difference 
vegetation index (NDVI), snow cover days (SCD), and topographic wetness index (TWI).
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5.  Discussion
5.1.  Ground Dynamics in Rásttigáisá-Geaidnogáisá Area

The combined 2D InSAR product indicates values up to 15 mm/year. Ground dynamics in the study area 
is spatially variable, with higher velocities on slopes and mountain tops. The detected ground velocity is 
assumed to be primarily associated with cryoturbation and solifluction processes considering the periglacial 
context, the field and orthophoto observations (Figures 3 and 8), the low velocities (Figures 6 and 7) and 
the sloping but gentle topography (predominantly <30° slope angle, Figures 1 and 4b). The presence of 
rockslides and deep-seated gravitational slope deformation has to our knowledge not been documented in 
the area but can nevertheless not be excluded. Surface run-off, erosion and transport of weathered material 
by meltwater on steep slopes may also have a local significance.

Ground ice formation and melting associated with active layer freeze and thaw leads to frost heave and thaw 
subsidence (Morgenstern & Nixon, 1971; Rempel, 2007). The cryoturbation activity is typically associated 
with differential movement due to the variability of the frost-susceptibility and the ground water content 
(Peterson & Krantz, 2008; Van Vliet-Lanoë, 1991; Wilson & Sellier, 1995). Although complex mixing and 
convection are known to have a significant impact on the dynamics of cryoturbated ground and the re-
distribution of organic material (Bockheim, 2007; Van Vliet-Lanoë, 1991), these subsurface mechanisms 
are expected to have a negligible effect in this study due to the surface measurements. Small magnitude 
and heterogenous deformation over small surfaces are in addition likely to remain undetected when docu-
menting ground velocities with 40 m resolution InSAR pixels. The InSAR results emphasize the downward 
component of the cryoturbation due to the use of SAR images during the thawing seasons. Millimetric to 
centimetric seasonal amplitude is in the expected range in mountainous and subarctic areas, characterized 
by discontinuous permafrost, thin fine-grained unconsolidated deposits and low ice content (Gruber, 2020; 
Matsuoka et al., 2003; Smith, 1987). In this study, however, the seasonal component is underestimated due 
to the use of mean annual products.

Solifluction is the dominant process (Figure  3) due to the sloping terrain of the study area (Figures  1 
and 4b). Solifluction combines the effect of the needle ice and frost creep (heave normal to the inclined 
surface followed by vertical settlement) and the gelifluction (shear deformation associated with water con-
tent from the seasonal thawing of ground containing excess ice) (Harris et al., 1997; Harris & Davies, 2000; 
Harris, Kern-Luetschg, et al., 2008; Matsuoka, 2001). The net movement is downslope, which explains why 
2D InSAR detects a combination of horizontal and vertical components in these areas. Millimetric to cen-
timetric solifluction annual rate (net downslope velocities) is in the range of subarctic areas and mid-lat-
itude mountainous regions with seasonal frost or warm permafrost conditions (Ballantyne, 2013; Harris, 
Kern-Luetschg, et al., 2008; Matsuoka et al., 1997; Ridefelt et al., 2009). Decimetric to metric annual rates 
have also been reported but are generally associated with high frequency freeze-thaw cycles or deep freeze-
thaw penetration in fine frost-susceptible material (Matsuoka, 2001).

At the regional scale, the results show that InSAR is valuable in studying the distribution of the ground 
velocity over large areas and locating the most active parts of the landscape, at a scale and resolution hard 
to achieve by other techniques. However, as also discussed by other studies (Daout et al., 2017; Eckerstor-
fer et  al.,  2018; Eriksen, Lauknes, et  al.,  2017; Reinosch et  al.,  2020; Rouyet et  al.,  2019), relating these 
measurements to actual processes to further interpret their controls is the major scientific challenge of the 
exploitation of InSAR technology in periglacial environments. The ground type (grain size influencing the 
frost susceptibility), the ground moisture, the topography and the snow/vegetation distribution have an 
impact on the local variability of movement magnitude but the respective influence of each factor is still not 
fully understood. This is why the combination of InSAR and statistical modeling can positively contribute to 
further understand the links between ground dynamics and environmental conditions.

5.2.  Factors Controlling InSAR Ground Velocity

The Slope and MAAT variables (Figure 4) are the key factors contributing to the spatial variability of the 
ground velocity, but they have different importance and effects on both components of the 2D mean veloc-
ity (Figure 9). The high importance of slope angle for the horizontal component matches the theoretical 
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expectation that the solifluction rate increases with the slope inclination (Harris et  al.,  1997; Matsuo-
ka, 2001). However, the response curves indicate that there is an upper limit for the effect, as just under 30° 
the curves begin to flatten. This suggests that steeper slopes are less favorable for solifluction occurrence 
(Matsuoka, 2001). Too steep slopes do not allow for thick layer of soil to hold, and may lead to high water 
drainage and little snow accumulation, detrimental for solifluction to occur (Matsuoka, 2001). A similar 
leveling off effect has been found by Hjort and Luoto (2011) and Hjort et al. (2014) who showed good con-
cordance with hypothetical response curves. It should be noted, however, that the flat curves after ∼32° are 
also affected by the relatively small amount of observations in the randomly sampled modeling datasets, as 
suggested by the distribution of the values in all available InSAR pixels (Supplemental Figure S5). The air 
temperature is the second most important factor, controlling primarily the vertical component of the ground 
velocity (Figure 9a). Interestingly, the response curves show that MAAT has a two-sided effect, impacting 
the two velocity components differently (Figure 9b). For the vertical component, the negative relationship 
suggests that low temperatures in the high-altitude parts of the study area promoting frost action, which 
concurs with conclusions from Hjort (2014). For the horizontal component, the relationship is nonlinear 
and positive. This seems reasonable as well-developed soils including fine sediments promote solifluction at 
low altitudes characterized by relatively high MAAT. Frost-susceptible silt-rich soils are typically expected 
to be more favorable to frost creep (Harris et al., 1995). The peak of horizontal velocity in areas with MAAT 
around −2°C (Figure 9b) likely represents the footslopes that include a relatively large horizontal compo-
nent due to solifluction in low-inclined terrain. Longer thawing seasons and warmer ground conditions also 
tend to increase the amount of liquid water into the ground and promote the gelifluction component of the 
solifluction. Low temperatures may delay and decrease the length of the thawing season, thus decreasing 
the solifluction activity. It concurs with other studies showing that solifluction rates increase with higher 
MAAT (Matsuoka, 2001; Ridefelt et al., 2009).

Despite their more ambiguous importance and effects, NDVI and SCD have notable contributions in the 
models. NDVI mostly influences the vertical component (Figure 9a). The response curve shows a nonlinear 
and complex relationship (Figure 9b), indicating that sparsely vegetated surfaces (typically rocky terrain at 
high-altitude) tend to be associated with high velocities recorded at the tops and upper slopes of the moun-
tains in the areas affected by subsidence. Solifluction lobes at the mountain footslopes are covered by low 
vegetation to a varying degree. Near the mountain tops, only lichen is found on rocky surfaces while the 
underlying finer material is sparsely or not vegetated. The effect of the vegetation on the velocity is in line 
with the MAAT and partly related to their high mutual correlation. Both variables reflect the prominent 
altitudinal gradient in the study area (>900 m), which strongly controls the preconditions for frost activity. 
However, NDVI also allows for examining additional indirect factors affecting ground movement. High 
NDVI can indeed be associated with high velocity, a positive effect visible both on the response curves for 
the vertical and horizontal components. The two-sided and apparently contradictory relationship between 
vegetation cover and periglacial processes have also been discussed in previous studies related to cryotur-
bation and solifluction activity. Peterson et al. (2003) show that vegetation cover may have a constraining 
effect on cryoturbation, especially in the presence of insulative plant communities. The biogeomorphic 
model on solifluction lobes from Eichel et al. (2017) also highlights that dense vegetation acts to stabilize 
the ground. On the other hand, high NDVI coincides with areas where the soil is well-developed allowing 
for cryoturbation and solifluction to occur due to water accumulation and fine-grained frost-susceptible 
sediments. Earth or turf hummocks showing strong frost action can for example, be covered by abundant 
low-stature vegetation (Grab, 2005; Kojima, 1994). On solifluction lobes, Eichel et al. (2017) showed that 
vegetation growing in wet areas can be associated with high amplitude of cryotic deformation. Positive 
relationship between NDVI and solifluction are similarly found in Ridefelt et al.  (2009, 2010) and Hjort 
et al. (2014). The presence of vegetation may also influence the snow distribution, leading to variable water 
content and thus promoting differential frost heave (Daanen et al., 2008; Nicolsky et al., 2008). In general, as 
discussed by Hjort (2014) and Hjort and Luoto (2009), the vegetation is mostly an indirect factor for perigla-
cial activity and encompasses a variety of species with different habits, which can have contrasting impacts 
on ground stability. This complexity may explain the ambiguous relationship with the response variables. 
It should also be noted that the positive effect of high NDVI to the vertical component can also correspond 
to an artifact. Even in areas where the InSAR coherence is over the chosen threshold, scattering mecha-
nisms related to herbaceous vegetation may affect the results (Ansari et al., 2020). Birefringence through the 
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plant elements, phenological and interannual variations in plant height may lead to biased displacement 
estimates (Zwieback & Hajnsek, 2014). SCD positively influences the horizontal component (Figure 9b). 
This concurs with conclusions from several studies, showing that uneven distribution of snow leads to dif-
ferential ground movement and melting of prolonged snow patches raises the ground moisture content of 
the thawed layer, which promotes gelifluction (Jaesche et al., 2003; Matsuoka, 2001). Early and deep snow 
patches can also prevent ground freezing in nivation hollows and provide entry points for groundwater 
seepage further downslope (Harris, Kern-Luetschg, et al., 2008).

Considering the conclusions of other studies about the controls of cryoturbation and solifluction processes, 
the low contributions of the surface geology (Peat, Boulder) and hydrological (TWI) factors may seem sur-
prising. In this study, we hypothesize that the low importance of these variables is related to the thin and/
or coarse sediment cover, little frost-susceptibility and low–medium ice content (see Sections 2 and 3.2) that 
lead to the low detected velocities in the area. It is also likely due to the characteristics of the products/in-
dexes used for documenting the spatial variability of the two factors. The ground type, in terms of grain size 
and frost susceptibility, is expected to have an impact on the movement amplitude (Konrad, 1999; Van Vli-
et-Lanoë, 1991). However, the variables Peat and Boulder are based on relatively coarse products (Figure S4) 
that do not fully allow for documenting the frost susceptibility at the resolution of the analysis. Similarly, 
water availability is expected to contribute to the differential distribution of frost-related ground move-
ment (Harris et al., 1995; Hjort, 2014; Jaesche et al., 2003). The fact that TWI has a negligible importance 
may indicate that this index is not the most adapted at the considered resolution despite its documented 
potential in explaining measured fine-scale (1 m2) variability of soil moisture in a similar sub-arctic envi-
ronment (Kemppinen et al., 2018). In the context of ground dynamics, this could be because TWI is a purely 
topographically-based surface water distribution index that does not consider soil properties, influencing 
infiltration or runoff conditions, as well as ground ice formation. These elements show the challenge of 
studying ground freeze-thaw processes due to the highly variable water content, ice and sediment distribu-
tion at very fine-scale; an issue that has been further discussed in several other studies (Cable, et al., 2018; 
Gruber, 2020; Schuh, et al., 2017; Shiklomanov et al., 2010). It highlights the need for including alternative 
data in future studies and considering the properties of the ground material to document the effective sig-
nificance of soil moisture on ground movement.

In general, the limitation of a potential scale discrepancy must be considered when considering any geosci-
entific study based on remote sensing. Low to medium resolution satellite products have the advantage to 
document large areas with near-continuous coverage, but the drawback of averaging information at a scale 
that is, not fully representative. The conclusions about the relative spatial variability of the measurements 
and their relations with environmental variables at similar resolution are valid, but inferred links between 
remotely sensed measurements and ground processes must always be treated carefully.

5.3.  InSAR and Statistical Modeling: Potential and Limitations

We acknowledge that due to the low magnitude of the InSAR velocities and the right-skewed distribution of 
the values, the results are sensitive to small bias of displacement estimates. The main InSAR error sources 
are 1) the uncorrected atmospheric effects (Zebker et al., 1997); 2) the bias due to changes of surface prop-
erties and their effects on scattering mechanisms, in relation with snow, moisture and vegetation (De Zan 
et al., 2014; Zwieback et al., 2015, 2016; Zwieback & Hajnsek, 2014); and 3) a potential shift of the velocity 
due to a wrong assumption of stability at the location of the reference point (Antonova et al., 2018). The 
procedure to mitigate these three elements have been presented in Section 3.1 and we estimated that the 
accuracy is below 1 mm/yr (Supplemental Figure S3). It should, however, be noted that the impact of the 
scattering mechanisms on SBAS results are not fully understood yet and thus difficult to assess quantitative-
ly. Understanding the physical sources of the potential bias and modeling the complex effects of the mois-
ture, snow and biomass changes is a dedicated on-going research topic (Ansari et al., 2020). It should also be 
reminded that this study focuses on the relative spatial distribution of the ground velocities and that the use 
of a multi-annual averaging and a linear deformation model does not allow for documenting the seasonal-
ity of the processes. Comprehensive time series analyses should be considered in future studies combining 
InSAR and statistical modeling. Due to the unavailability of complementary displacement measurements 
in the area, this study does not provide a quantitative validation of the InSAR results. However, several 
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qualitative indicators have been used to assess the results' validity (see Section 4.1). First, the amplitude 
and distribution of the results are generally consistent with the PSI results from the InSAR Norway ground 
motion mapping service. Second, the spatial variability of the velocity follows expected patterns, with east-
wards/westwards horizontal velocities on respectively east- and west-facing slopes, and with higher veloci-
ties on slopes and mountain tops. This is overall consistent with field observations of the cryoturbation and 
solifluction activity. Third, results from 2D InSAR calculation do not show any major shift of the velocity 
indicating that the choice of the InSAR reference point was adapted.

The relatively low model performance (Table 3) in this study can be explained by a) the overall low mag-
nitude of ground movement across the area; b) the complex and indirect relation between environmental 
variables and the ground velocities, as well as the scale discrepancy between measurements and processes; 
and c) the relatively small number of observations in the calibration sets (on average 1,100) that may not 
cover the entire gradient of environmental conditions in the study area. Contrary to the previous studies 
applying modeling based on field-mapped processes and landforms (Hjort, 2014; Hjort & Luoto, 2009; Hjort 
et al., 2007), the responses here represent ground velocity regardless of the underlying processes. The un-
explained variation by the models is arguably attributed to the frost susceptibility of ground material, fine-
scale soil moisture, and microclimatic conditions (e.g., solar radiation, wind processes) (Aalto, Scherrer, 
et al., 2018), which could not be accounted for at optimal thematic or spatial resolution. A central aspect 
that may have affected our ability to accurately predict the mean velocity is the scale mismatch between the 
InSAR resolution (40 m) and the assumed ground processes (Luoto & Hjort, 2006; Walsh et al., 1998). We 
argue that examination of frost-related ground movement would benefit from a higher spatial resolution in 
both InSAR and geospatial data on environmental conditions. Our results show a notably higher amount 
of explained variation for the vertical component compared to the horizontal velocity. We suggest that it is 
more complicated to explain the horizontal component because eastwards/westwards movement can less 
directly be related to a specific process. A slope affected by solifluction typically includes both a vertical and 
a horizontal component, and flat areas are dominated by vertical patterns. While the vertical downward 
trend documented by the InSAR averaged measurements can be related to the melting of the ice in the 
seasonally thawing layer of the ground, the horizontal component is a more complex interaction of the frost 
action (needle ice and frost creep) and the gelifluction (shear deformation).

Despite the discussed challenges, the results of the statistical modeling of 2D InSAR measurements in Rást-
tigáisá-Geaidnogáisá area provide interesting insights on the environmental controls of periglacial ground 
dynamics. This study is a first contribution toward integrating InSAR and statistical modeling in periglacial 
research. Other strategies based on similar techniques could be investigated in the future. Better model 
performance may be reached by focusing on one previously inventoried landform type and clearer response 
curves may be found by selecting areas where movement magnitude is expected to be higher. The exploita-
tion of time series can be considered to analyze the seasonal progression of the displacement. InSAR maps 
could also be used as a variable among others to explain the distribution of specific landforms.

6.  Conclusion
We mapped mean annual ground velocity in a mountainous landscape in Northern Norway using Sentinel-1 
Synthetic Aperture Radar Interferometry (InSAR). The 2D InSAR products were used as response variables 
in statistical modeling based on a set of seven climatic, geomorphic, hydrological and biological variables.

Based on the results, four main conclusions can be drawn:

1.	 �The study area is affected by mm/yr to cm/yr mean annual ground velocities, with values up to 15 mm/
yr. The horizontal and vertical components of the 2D velocity are distributed differently over flat areas 
and slopes and highlight the areas affected by active cryoturbation and solifluction.

2.	 �The statistical models showed contrasted performance depending on the velocity component (R2 be-
tween 0.24 and 0.47). The unexplained variance may be attributed to the low velocities, the discrepancy 
between the spatial resolution of the remote sensing products and the studied processes, as well as the 
complex relationships between environmental variables, periglacial processes and documented respons-
es (ground velocities).
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3.	 �The slope angle and the mean annual air temperature are the key factors contributing to the spatial var-
iability of the ground velocity in the study area. The amount of vegetation and the snow cover duration 
have also notable contributions in the models and are interpreted as indirect proxies of ground material 
and moisture conditions.

4.	 �The relative importance of the environmental factors on both components of the 2D velocity vary sig-
nificantly. The vertical velocity is mostly influenced by the air temperature and the vegetation, while the 
main variable controlling the variability of the horizontal component is the slope angle, followed by the 
air temperature and the snow coverage. These results are attributed to the different characteristics of 
cryoturbation and solifluction processes, operating differently over flat areas and slopes.

As a first attempt of coupling InSAR and explanatory statistical modeling in periglacial landscapes, our 
study highlights the potential to integrate both techniques for a better understanding of the environmental 
factors controlling ground dynamics and suggest novel ways to characterize extensive and hard-to-access 
cold environments.

Data Availability Statement
Model inputs (response and environmental variables) and outputs (calibration/evaluation model perfor-
mance and predictions) are openly available. Data is available in Zenodo repository (https://doi.org/10.5281/
zenodo.4173256). Additional data sources used in this study are listed in the references, included in the fig-
ures and tables, or in the Supporting Information associated with this publication.
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