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ARTICLE

Forest fragmentation impacts the seasonality of
Amazonian evergreen canopies
Matheus Henrique Nunes 1✉, José Luís Campana Camargo 2, Grégoire Vincent3, Kim Calders 4,

Rafael S. Oliveira 5, Alfredo Huete6, Yhasmin Mendes de Moura7,8, Bruce Nelson 9, Marielle N. Smith10,

Scott C. Stark10 & Eduardo Eiji Maeda 1,11

Predictions of the magnitude and timing of leaf phenology in Amazonian forests remain

highly controversial. Here, we use terrestrial LiDAR surveys every two weeks spanning wet

and dry seasons in Central Amazonia to show that plant phenology varies strongly across

vertical strata in old-growth forests, but is sensitive to disturbances arising from forest

fragmentation. In combination with continuous microclimate measurements, we find that

when maximum daily temperatures reached 35 °C in the latter part of the dry season, the

upper canopy of large trees in undisturbed forests lost plant material. In contrast, the

understory greened up with increased light availability driven by the upper canopy loss,

alongside increases in solar radiation, even during periods of drier soil and atmospheric

conditions. However, persistently high temperatures in forest edges exacerbated the upper

canopy losses of large trees throughout the dry season, whereas the understory in these

light-rich environments was less dependent on the altered upper canopy structure. Our

findings reveal a strong influence of edge effects on phenological controls in wet forests of

Central Amazonia.
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Leaf phenology of Amazonian forests is a key component
controlling the exchange of energy and trace gases—water
vapour, carbon dioxide and volatile organic compounds—

with influences on vegetation feedbacks on regional and global
climates1–5. In the past decade, several studies have demonstrated
from field data and remote sensing that a majority of Amazonian
forests respond to climatic variations2,6. There is also mounting
evidence that evergreen canopies exhibit seasonal variations7–11

with changes in leaf demography and canopy structure12. Long-
term studies have shown that 60–70% of species of humid
Amazonian forests flush new leaves in the dry months12,13 linked
to higher solar radiation4,14, which leads to increases in gross
primary productivity as a result of new young leaves with higher
photosynthetic capacity and water-use efficiency4,15,16. However,
when some Amazonian forests are impacted by water stress, leaf
development is reduced17 and trees shed their leaves10,18, with
significant effects on leaf area dynamics19. To complicate matters
further, leaf phenology also responds to multiple genetic factors,
which have evolved to maximise photosynthetic and water-use
efficiency during the dry season, reduce plant competition for
light and water, and minimise herbivore pressure7,16,20–22.

The impacts of climatic variations on leaf phenology can also
be exacerbated by forest fragmentation23. Forest edges contain a
large abundance of early successional species with resource-
acquisitive strategies that maximise new leaf production and
growth24,25, but may be more vulnerable to climatic variations26.
Forest fragmentation can increase the evaporative demand due to
higher temperatures and wind exposure, and soil moisture can be
lower at fragment edges27, which may cause leaves to drop and
lead to higher branch turnover12,23. However, ground observa-
tions of litterfall in Amazonian forests have shown only mild
seasonality near edges28. Indeed, substantial uncertainty remains
regarding the responses of fragmented forests to climatic sea-
sonality, particularly because drought resistance varies among
species29–31 and surviving trees may acclimate or be adapted to
the drier, hotter conditions near edges32. As the number of
contiguously forested areas is significantly decreasing in the
Amazon33, understanding the effects of forest fragmentation on
phenology is crucial for predicting alterations to canopy function
in fragmented forests.

Seasonal variations in leaf quantity and leaf area across
evergreen Amazonian forests have frequently been considered
negligible or small4,12,21,34. However, these studies are based on
passive optical remote sensing approaches, which cannot detect
potential differences between canopy strata. These approaches

tend to detect only upper canopy trees with deeper roots and
water access30, and that are likely adapted to more stressful
conditions such as high solar radiation, high temperatures and
low air humidity35. Active remote sensing observations from
LiDAR may provide new insights into the interacting biophy-
sical factors controlling phenology since LiDAR pulses penetrate
the vertical canopy. Repeated terrestrial laser scanning (TLS, or
‘terrestrial LiDAR’) measurements can monitor subtle changes
in forest structure36, and provide observations of the balance
between new leaf development (flush of new leaves, plant
growth) and loss to abscission (leaf and branch fall) that can be
separated across forest strata. Furthermore, the detailed and
precise structural measurements offered by this system can help
answer fundamental questions about the three-dimensional
(3D) ecology of trees37 without suffering from potentially con-
founding artefacts present in passive optical satellite images11,34.
Recently, LiDAR-based studies have shown that leaf phenology
in Amazonian forests is stratified over canopy positions, with
understory growth occurring when abscission in the upper
canopy contributes to increased light penetration in the lower
canopy layers19,38.

Here, we investigate the phenology of forests within the
Biological Dynamics of Forest Fragments Project (BDFFP) in
Central Amazonia, the world’s longest‐running experimental
study of habitat fragmentation39. We use terrestrial laser scan-
ning (TLS, or ‘terrestrial LiDAR’) surveys collected every 15 days
spanning the wet and dry seasons to investigate how forest
fragmentation and microclimatic seasonality interact to affect
plant area of the understory and the upper canopy. Using a
combination of 11 repeat TLS surveys, as well as continuous air
temperature and soil moisture measurements in undisturbed
old-growth forests and fragmented forests under edge effects, we
hypothesised that: (1) vertically stratified plant phenology in
undisturbed forests varies with seasonal microclimatic condi-
tions; (2) the understory phenology is dependent on seasonal
variations in the upper layers of the canopy; and (3) plant
phenology is sensitive to disturbances arising from forest frag-
mentation, with the hotter and drier conditions of edges
exacerbating leaf and branch losses during the dry season. To
our knowledge, the work presented in this paper is the first to
analyse tropical forest phenology with high spatial resolution 3D
measurements (Fig. 1) and the first to experimentally demon-
strate the effects of forest fragmentation on the seasonal varia-
tion of leaf area, and its vertical stratification, combined with
microclimate measurements.

Canopy height (m
)

0

35

Fig. 1 A view from a Central Amazonian forest understory. Colours depict plants within distinct vertical strata. The high-speed terrestrial laser scanning
(TLS) data acquisition of 500,000 measurements per second provides detailed measurements capable of detecting fine-scale changes in vegetation
structure. We used a scan resolution of 40mdeg in both azimuth and zenith directions, which results in a point spacing of 1.4 cm at a 20m distance from
the scanner. The laser pulse repetition rate used was 600 kHz, allowing a measurement range of up to 350m and up to eight returns per pulse.
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Results
Seasonal climatic trends in Central Amazonian forests. Daily
precipitation estimates indicate the occurrence of a 4-month
period of accumulated rainfall below 200mmmonth−1, and
significant reductions in soil moisture between July and Sep-
tember in Central Amazonia (hereinafter referred to as “dry
season”). The term “dry season” indicates a period of lower water
availability and does not necessarily indicate that forests were
water-limited. This dry season was coincident with a period of
high MODIS-estimated Photosynthetic Active Radiation (PAR,
Fig. 2a) and with significant increases in the locally measured
understory temperature of interior forests and fragment edges
(Fig. 2b, c). Forest fragmentation led to higher local temperatures
in the edges, while water moisture in the soil remained unaffected
by edge effects.

Seasonal PAI variation and fragmentation effects. Repeated
TLS data acquired in two transects of 100 × 10 m and one transect
of 30 × 10 m between April and October 2019 every 15 days
(except between the end of April and early June when the
duration between measurements was 40 days) were used to cal-
culate Plant Area Density (PAD, one-sided area of plant material
per unit of volume in m2m−3). PAD is a combination of the leaf
area and the surface area of woody components, including
branches and trunks. An analysis of the vertical profile of the
vegetation revealed the existence of only two vertical axes of
variation during the dry season, with positive PAD changes below
the height of 15 m above the ground (referred to as understory)
and negative PAD changes above 15 m height (referred to as
upper canopy) (Supplementary Fig. 3). The sum of PADs for each
1 m2 vertical column (X-, Y-coordinate) was then calculated to
obtain PAI, one-sided area of plant material per unit of ground
surface in m2 m−2 (Fig. 3a). Nonlinear mixed models demon-
strated that distance from forest edges has significant effects on
PAI within 35–40 m of forest margins (Supplementary Fig. 2),
and we, therefore, considered edge in this study categorically as
the forests within 40 m of the forest fragment margins and
interior as the forests at least 40 m distant from the fragment
margins. These results demonstrate the existence of vertical and

horizontal within-season trends in phenology that should be
considered when analysing across-season trends.

The TLS time-series revealed a strong vertical variability in the
timing and magnitude of seasonal changes in the PAI of
both structurally undisturbed forests and forests under edge
effects. While transects exhibited similar phenological trends, PAI
differed significantly between them (Supplementary Fig. 4). We
then used linear mixed models to detect the effects of edges on the
seasonality of understory PAI, upper canopy PAI, and total PAI
(understory+ upper canopy PAI), whilst controlling for spatial
effects caused by transect differences by including edge effects
nested within transect identity as random effects. The most
parsimonious model (based on AIC; see Supplementary Table 1)
to predict PAI for both the understory and total PAI was Eq. (1)
which includes the additive effects of season and edge effects on
PAI, both as categorical variables, and their interactive effects.
Eq. (2) was selected for upper canopy PAI, which includes the
effects of edge and an interaction term between edge effects and
season. (Supplementary Table 1; Fig. 3; Supplementary Fig. 5).

PAIi ¼ β0 þ β1 timei þ β2 edge effectsi þ β3 timei ´ edge effectsi
þ ui þ εi

ð1Þ

PAIi ¼ β0 þ β1 edge effectsi þ β2 timei ´ edge effectsi þ ui þ εi;

ð2Þ
where PAIi is the plant area index in transect i, β0 and β1-3 are the
fixed effect parameters, ui is the random intercept for edge effects
nested within transect i (1 | Transects/Edge effects), and ℇi is
residual error. Both time and edge effects (edges versus interior)
were treated as categorical variables.

In forest interiors, losses in the understory preceded the dry
season, while significant losses in the upper canopy occurred at the
end of the dry season (Fig. 3c, Supplementary Fig. 5b and 5d). More
specifically, the PAI of the understory declined rapidly between April
and early June (t=−3.4; P-value < 0.001) and reached a 5.3%
(−0.43m2m−2) decline by late July (t=−4.2; P-value < 0.001). The
PAI then increased to a full recovery (+0.43m2m−2) in September
(t=−1.2; P-value= 0.21). By contrast, the upper canopy layer

Dry season

Edges Interior

PAR total

PAR diffuse

PAR direct

Dry season

Fig. 2 Climatic seasonality in Central Amazonian forests. a Estimated diffuse, direct and total (diffuse+ direct) Photosynthetic Active Radiation (PAR, in
red) estimated from MODIS and accumulated 30 days (monthly) rainfall from NASA POWER (grey area). Each red point represents the monthly average
calculated from daily estimates with error bars representing the 95% confidence intervals. bMaximum daily temperatures in the edge understory (red) and
interior (dark grey) and cmean daily soil moisture (as volumetric water soil content: cm3 water/cm3 soil) measured continuously every 15 min in the edges
(red) and in the interior of fragments (dark grey). Fifth order polynomial models were fit to the microclimate data for visualisation purposes. The shaded
area corresponds to the dry season, defined as the period with accumulated monthly precipitation <200mmmonth−1.
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showed an inverse seasonal pattern to the understory; the upper
canopy PAI remained relatively stable from April–September, but
experienced a 7.6% (−0.25m2m−2) decrease in late September
(t=−3.9; P-value < 0.001).

The PAI time-series of forest edges (Fig. 3b, Supplementary
Fig. 5a and 5c) showed significantly distinct patterns in
comparison with those observed in forests distant from edges
(indicated by the significant time × edge effects interaction term;
Supplementary Table 1). Despite a subtle decline in PAI between
April and July of 3.4% (−0.08 m2 m−2) (Fig. 3b), the PAI in the
edge understory did not show significant seasonal changes
(t=−1.7; P-value= 0.07). However, the upper canopy of edges
had significant PAI losses of 6% (−0.25 m2 m−2) by mid-July
(t= 2.2; P-value < 0.05), nearly 3 months before the upper canopy
of interior forests was significantly affected (Fig. 3c).

The temporal patterns of total PAI in forest edges and forest
interior had patterns that reflected the combination of the
stratified phenological trends. In the forest interior, a decrease of
2.7% (−0.34 m2 m−2) was observed between April and early July
(t=−2.8; P-value < 0.005), and remained relatively stable
throughout the dry season. The phenology of forest edges showed
very similar trends to forest interior when distinct strata were not

considered; the total PAI decreased by 3.2% (−0.25 m2 m−2)
between April and early July (t=−2.2; P-value= 0.03), and
also remained relatively stable throughout the dry season. These
results show that when the seasonal patterns are not vertically
stratified, the PAI trends for the edges versus interiors are
strikingly similar and mainly driven by the understory PAI, where
the majority of the plant area is.

Seasonal variations in forest microclimate and vertically stra-
tified PAI. We also illustrate the significant seasonal variations in
PAI against the microclimatic conditions measured in the edges
of the fragment and in the forest interior (Supplementary Fig. 6
and 7). Losses in PAI of canopies in edges and forest interior
occurred when temperatures were elevated (above 35 °C; Sup-
plementary Fig. 6d). Losses in PAI of upper canopies in the forest
edges preceded canopy losses in the interior by 3 months, which
coincided with temperatures 3–5 °C hotter in edges throughout
the dry season than interior environments (Supplementary
Fig. 6c); this strongly supports the idea that the seasonal
dynamics of Amazonian forests at the upper canopy level is
dependent on temperature, and that fragmentation exacerbates
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Fig. 3 Predicted relative Plant area index (PAI, %) time-series. a Forest phenology acquired using a Terrestrial Laser Scanner (TLS) within the Biological
Dynamics of Forest Fragments Project (BDFFP) was vertically stratified, with the understory (<15 m aboveground) and upper canopy (≥15 m aboveground)
presenting different trajectories of growth during the dry season. However, the vegetation structure and phenology were both significantly altered by edge
effects up to 40m from the forest fragment margins. PAI predictions from linear mixed modelling used measurement date (time), a categorical variable
that indicates whether plots were near an edge (edge effects) and an interaction term time × edge effects as fixed variables. Edge effects nested within
transect identity were included as random variables (Eqs. 1 and 2). Predicted relative PAI of the understory, upper canopy and total PAI (that combined
both vertical strata) in b forest edges and c undisturbed interior forests was calculated as the PAI at any time divided by initial PAI (PAIi) collected in April
2019. Each point (and lines corresponding to linear interpolations between points) represents the mean relative PAI obtained by fitting 200 randomised
permutations of subsets split into 80/20 for calibration and validation, respectively. The shaded areas represent 95% confidence intervals based on
uncertainty in those parameter estimates. While transects exhibited similar phenological trends, PAI differed significantly between transects—thereby we
here show the predicted values. See Supplementary Fig. 4 for measured PAI and Supplementary Fig. 5 for absolute predicted PAI values and model
uncertainty. The shaded area represents the dry season between mid-June and mid-October.
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these effects. On the other hand, the understory of interior forests
had sharp decreases in PAI between April and June, a period
when soil moisture was still high, and maximum temperatures
were relatively low (27.8 ± 0.6 °C, Supplementary Fig. 7b and 7d).
However, the understory PAI of these forests increased with
losses in the upper canopy PAI, even with increases in tem-
perature and high solar radiation (Fig. 2a), and a full recovery in
plant area occurring when the temperatures peaked in September.
These findings support the idea that light is a more important
control of the forest understory than temperature and water
availability.

Relationships between understory and upper canopy seasonal
variations. We then investigate whether decreasing leaf area in
the understory of forest edges and in the forest interior was
synchronised with variation in upper canopy plant area. We
found a strongly negative linear correlation between variations in
PAI of the upper canopy and understory in the forest interior
only (F-value= 54.4; P-value < 0.001; R2= 0.84; Fig. 4). There
was no relationship in edges (F-value= 1.2; P-value= 0.29;
R2= 0.02), which aligns with our hypothesis that fragmentation
changes phenological patterns; in this case, affecting the seasonal
pattern of understory dependency on upper canopy plant area.

Discussion
Repeat high density terrestrial LiDAR combined with micro-
climate measurements of a Central Amazonian forest provided a
unique perspective on the seasonal dynamics of vegetation and
the interaction with fragmentation. PAI—as leaf area index (LAI)
and the surface area of woody components—showed inverse
patterns in the understory versus upper canopy. In the structu-
rally undisturbed interior of a large forest fragment, plant area in
the understory decreased by ~5% before the start of the dry
season and fully recovered by mid dry season in September.
Conversely, the upper canopy (>15 m aboveground) of interior
forest maintained its canopy structure throughout most of the dry
season, with the greatest losses (~8%) in upper canopy PAI
occurring from September to mid-October, when the micro-
climate reaches its lowest soil moisture and maximum tempera-
tures are high (above 35 °C). Variations in plant area in the
understory were strongly coordinated with upper canopy changes
in PAI (R2= 84%, Fig. 4), which suggests that leaf flush in the
understory follows increasing light availability as plant area is lost

in the upper canopy. Edge effects, however, changed the pheno-
logical patterns observed in interior forests; while edge effects
exacerbated upper canopy loss throughout the dry season, the
understory was less seasonal. The pattern of higher leaf loss in the
upper canopy, where large trees dominate, is consistent with edge
effects enhancing leaf stress and creating periods of high eva-
porative demand—indeed, temperatures were consistently 3–5 °C
higher and soil moisture levels lower in the dry season in the
forest edges. This study demonstrates the value of repeated ter-
restrial LiDAR surveys, which allow the detection of fine-scale
changes in forests without potential artefacts of passive remote
sensing studies36, and provide a perspective on forest dynamics
and its spatial variability that is difficult to achieve with lower
resolution remote sensing approaches.

Our PAI time-series of interior forests indicated upper canopy
losses that are sensitive to elevated temperatures, whereas the
understory maintains high leaf production under high light
availability mediated by upper canopy dynamics, even during
periods of drier soil and atmospheric conditions during non-El
Niño years. Passive remote sensing and field observations have
demonstrated that Central Amazonian forests “green up” during
the dry season9,11, but with negligible increases in PAI4,12. Our
findings demonstrate, instead, stratified canopy responses to
seasonally mediated environmental conditions and suggest that
large trees may mediate a green up in the lower canopy. We show
that if phenological patterns are not vertically stratified, total
canopy PAI (the combined understory and upper canopy PAI)
tends to reflect the understory PAI (where most of the PAI is).
These results suggest that if differences between strata are not
considered alongside changes in LAI, litterfall production and leaf
demography, predictions of the climatic influences on vegetation
may be undermined or misleading.

Vertical differences in phenology may arise from a direct
response to changing light availability in the understory and from
contrasting functional and hydraulic properties between canopy
and understory trees. Recent studies in Amazonian forests have
shown that leaf area increases in the understory occur under
maximal irradiance conditions when the upper canopy layer is
partially deciduous during the dry season38,40, as diffuse and
direct solar radiation in the understory can increase linearly with
decreasing upper canopy plant area41. The dominant species in
the understory of Amazonian forests are distinct from upper
canopy dominants and are differentiated and more complex in
functional strategies35,42. Understory trees have xylem that is
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Fig. 4 Observed seasonal changes in upper canopy PAI (Plant Area Index, m2 m−2) versus understory PAI. LiDAR-based PAI data measured between
April and October 2019 in Central Amazonian forests were classified as a forest edges, situated within 40m from the forest fragment margins, and as b
forest interior, situated at least 40m from the fragment margins. Black dots represent the mean value of each Terrestrial Laser Scanning (TLS) survey
based on 3480 understory and 3480 upper canopy PAI values in the forest interior and 1653 understory and 1653 upper canopy PAI values in the forest
edges. Model’s R2 and P-value were calculated from simple linear regression (Understory PAI= β0+ β1 Upper canopy PAI). The red line in panel b
represents predicted values by the model, with the shaded grey area corresponding to the two-sided 95% confidence intervals. The highlighted point in red
in panel (a) denotes the first TLS measurement made in April 2019. We excluded this point to further investigate the covariance between strata but found
no significant relationship (Supplementary Fig. 8).
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more embolism resistant and can tolerate more negative water
potentials in the dry season without risking hydraulic failure
compared to upper canopy trees, which tend to be more vul-
nerable to drought-induced embolism30. High embolism resis-
tance of understory trees allows an anisohydric stomatal
behaviour (low degree of regulation) and the maintenance of high
stomatal conductance at the peak of the dry season30. The high
drought tolerance of understory trees is also likely to be a key trait
allowing them to flush new leaves during periods of water stress.
In contrast, canopy trees exhibit lower embolism resistance, high
stomatal sensitivity and significant declines in photosynthesis
during periods of high atmospheric demand and low soil water
availability43. The loss of upper canopy leaves in Amazonian
forests at the end of the dry season is consistent with the
importance of water availability for leaf development38, and
suggests that canopy trees in these forests may be vulnerable to
periods of high evaporative demand2,22. These results challenge
the paradigm of Amazonian large trees being necessarily capable
of accessing deep water and hence being primarily light-
limited44,45.

This study presents a dataset of fine-scale, high-frequency
LiDAR, elucidating the magnitude and timing of forest phenology
and impact of fragmentation from one of the most important
experiments on tropical forest fragmentation (BDFFP). However,
the generality of our findings across years and sites, particularly
across large-scale Amazonian gradients in seasonality, edaphic
properties, and soil moisture, remains to be tested. At a site in the
eastern central Amazon with trees attaining a maximum size
~10 m taller (Tapajós National Forest, Pará46), Smith and col-
leagues found more complex vertically and horizontally stratified
dynamics19. Here, in contrast to our study, the upper canopy
above 20 m increased in plant area towards the end of the dry
season. On the other hand, the sunlit canopy surface zone below
20 m—common in this vertically heterogeneous site with a large
amount of canopy gaps—decreased through the late dry season,
consistent with our upper canopy results. The shaded understory
layer below 20 m increased as the mid-canopy decreased, dis-
playing a strong anticorrelation pattern that could be analogous
to the forest interior understory vs upper canopy relationship that
we observed. The canopy surface near 20 m in the Tapajós could
be more functionally analogous to the upper canopy of the
BDFFP where, indeed, much of the dry season decrease in plant
area occurred between 15 and 25 m height (Supplementary
Fig. 3). However, what explains the contrast in the ‘above 20 m’
Tapajós upper canopy? These sites differ in fertility, mean rainfall,
length of dry season, and other factors47. Upper canopy trees in
the Tapajós access deep soil water30, while more typically wet
forests near Manaus may not root as deeply, potentially because
of smaller tree sizes48 or functional selection49. Overall, these
results suggest that there may be environmental (including
belowground factors) and species-specific trait-linked controls on
canopy structure and phenological climate responses. Better
understanding these controls can help us predict variation in
climate response across the Amazon.

Ground measurements are preferred to study subtle changes in
canopy density in comparison to scans from above the canopy.
Ground measurements are immune to seasonal changes in
vegetation-ground reflectance ratios that may affect the trans-
mittance estimated from airborne and spaceborne LiDAR sys-
tems, and which may otherwise negatively affect LAI estimates10.
Such artefacts may have contributed to the negative correlations
between upper canopy and understory LAI from the Amazonian-
scale IceSat-based estimates presented in Tang and Dubayah38,40.
Although our sampling effort attempted to minimise uncertain-
ties in the PAI estimates, we did not account for (i) changes in
leaf orientation and light transmittance caused by leaf age and

changes in plant water content50,51, or (ii) a potential bias
induced by not separating wood from leaves in the estimation of
PAI, as leaf turnover rates can be different from branch turnover
rates52. However, both (i) and (ii) require an automated separa-
tion of leaves from woody materials, which may contribute to
additional uncertainties that can vary through space and time53.

We observed strong edge effects that changed the phenological
patterns observed in the interior forests. Upper canopy PAI losses
were significantly affected by the dry season in forest edges,
occurring nearly 3 months before upper canopy losses in the
interior forests. Dry season temperatures in forest edges were
3–5 °C higher than in the interior of the fragment, while changes
in soil moisture were small. These higher temperatures may lead
to an increase in vapour pressure deficit (VPD), inducing sto-
matal closure and leaf loss23,43,54,55, as shedding leaves may help
to avoid the desiccating effects of water and heat stress56. On the
other hand, plant area in the understory of forest edges was
unaffected by the seasonal microclimatic changes or losses in
upper canopy leaf area. The aseasonality of plant area in the
understory of edges indicates that leaf production rates were
similar to leaf loss rates during wet and dry seasons. These edges
are dominated by pioneer species25 that thrive under the light-
rich environment caused by lateral light penetration and by the
formation of gaps associated with the mortality of large trees57.
These conditions may disrupt the between strata light-mediated
anticorrelation of leaf area dynamics since edge understories are
less affected by variations in the upper canopy structure.

This study sheds light on the seasonal trends in the plant areas
of Amazonian forests and highlights complex interacting effects
of climate and human disturbance on forest phenology. The total
leaf quantity (LAI) is a key component modulating tree growth58

and net primary productivity59. The consistently higher and
aseasonal understory PAI in these fragment edges may explain
the increased growth rates of understory tree species in these
edges in comparison to the same tree species in interior forests60.
However, the dry season losses in upper canopy plant area near
the edges 3 months earlier compared with interior forests likely
represent a shortening of the photosynthetic-active period of
large trees, potentially reducing photosynthetic carbon fixation
(gross primary productivity; GPP). If CO2 uptake of the upper
canopy is suppressed, this may have negative consequences for
investment in tissue maintenance and defence61, which may, in
turn, increase the mortality of large trees that dominate upper
canopies and contribute to a large reduction in the aboveground
biomass of these forests62. Carbon losses from forest degradation
already exceed those from deforestation in the Amazon63, and
fragmentation is a large contributor to degradation-associated
carbon emissions64. Given the drier and warmer future projected
for the Central and Eastern regions of the Amazon, and extended
dry-season length65, our findings suggest that fragmentation will
exacerbate the negative effects of high temperatures on the upper
canopy of these forests. Considering that fragment edges cover a
total area of 176,555 km2 of Amazonian forests66, the thermal
sensitivity of canopies on the edges of fragmented forests could
translate into a large component of edge-related carbon losses.

Predicting changes in phenology is particularly challenging,
given that the timing of biological events results from an inter-
action of organism functional traits, genetic background and
environmental factors67. Much progress has been made to
understand the seasonality of Amazonian tree species and com-
munities at local and regional levels4,7,9,11,14,31,38. Nonetheless,
our results show that the variability in phenology that arises from
canopy stratification and edge effects has large impacts on plant
area seasonality. The lack of edge effects on the seasonal variance
of total plant area highlights the challenge faced by passive sen-
sors onboard satellite platforms; these systems may suffer from a
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flattened perspective with data strongly influenced by canopy
layers with a denser plant area and little ability to detect sig-
nificant height-stratified forest canopy responses to climate.
Efforts to separate plants occupying different strata and habitats
are needed to address this challenge, which is aligned with recent
debates on the effects of strata on regional patterns of species
dominance and composition in Amazonian forests35. Unoccupied
aerial vehicle-borne laser scanning should be instrumental in this
respect. These systems have the capacity to collect high density
point clouds at a high temporal frequency over relatively large
areas (up to tens of ha) and offers the opportunity to characterise
leafing patterns at the scale of individual crowns68. At landscape
and regional scales, airborne and satellite-based active LiDAR
sensors can also provide a crucial height-stratified perspective
(e.g., NASA’s new GEDI mission)69,70.

Despite our progress characterizing height and environmen-
tally stratified canopy phenology, the mechanisms that control
phenology at the species level remain elusive. Changes in PAI
may not capture the leaf exchange dynamics as it is unknown
what proportion of species and trees shed their leaves completely
prior to flushing new leaves, and those that go through a more
progressive leaf exchange. A mixture of the above strategies can
produce a stable PAI even in case of strong seasonality in leaf
exchange patterns. We propose that future research on phenology
should continue to untangle the interactions of the environment
with functional and phylogenetic diversity both within and
among species. TLS can be particularly useful in this context; tree
segmentation allows for 3D architectural reconstruction and the
calculation of structural metrics37,71. TLS-based phenological
data at the tree and species levels can help elucidate mechanisms
controlling phenology in the Amazon such as (i) the specific
environmental factors determining phenology, (ii) the molecular
and physiological processes regulating phenology, and (iii) whe-
ther variation in phenology reflects genetic differences (high
interspecific variation) or plastic responses to environmental
heterogeneity (high within-species variation). This may help
resolve outstanding debates concerning the mechanisms by which
species respond to seasonal climatic variations and improve
predictions of plant responses to global changes.

Methods
The study was conducted in Central Amazonian forests (2°20 30 ′S, 60° 05 37W)
within the Biological Dynamics of Forest Fragments Project (BDFFP), the world’s
longest‐running experimental study of habitat fragmentation39. The region has
seen notable carbon and biodiversity losses due to forest fragmentation effects25,66

and is predicted to be markedly impacted by climatic changes72. The pioneering
BDFFP project sites are composed of forest fragments originally isolated in 1980 by
converting mature forest into cattle pastures. Currently, the ‘matrix’ between the
forest fragments is dominated by secondary growth forests, but a 100 m strip
surrounding the forest fragments is cleaned regularly by cutting vegetation
regrowth to maintain their isolation (Supplementary Fig. 1a). As an experimental
control that minimises additional anthropogenic influences such as illegal logging,
hunting, fire penetration and pollution, the project offers insights into ecological
and environmental changes in fragmented forests. We selected a 100-ha forest
fragment to investigate phenological responses within transects varying in distance
from the fragment edges (0–500 m). At the community level, the forest edges of our
study are dominated by a high density of early successional, fast-growth species,
because of the elevated tree mortality near forest edges and seed dispersion from
degraded neighbouring habitats, while the centre of the fragment comprises
undisturbed primary forest25,39.

Terrestrial laser scanning: data acquisition, registration and PAI estimation.
The TLS data were acquired using a RIEGL VZ-400i system between April and
October 2019 every 15 days, except between the end of April and early June when
the duration between measurements was 40 days (we clarify in the analysis section
how we addressed artefacts attributed to sampling effort). We used a scan reso-
lution of 40 mdeg in both azimuth and zenith directions, which results in a point
spacing of 34 mm at 50 m distance from the scanner. The laser pulse repetition rate
used was 600 kHz, allowing a measurement range of up to 350 m and up to eight
returns per pulse. The scans covered two transects of 100 × 10 m near the fragment
edges and perpendicular to the forest fragment margins measured 11 times and one

transect of 30 × 10 m length in the centre of the forest fragment measured ten
times. The transect in the centre lies 500 m from any fragment margin to ensure
sampling of forest interior in the absence of edge effects on the canopy structure
(~40 m73). This sampling strategy covered a total area of 0.52 ha, which included
274 trees with diameter at breast height (DBH) ≥ 10 cm, lianas, shrubs, saplings,
seedlings and acaulescent palms that were repeatedly measured 11 times.

To ensure a full 3D representation of the upper canopy (35 m in height), each
transect consisted of three scan lines parallel to each other with scans spaced at 5 m
intervals within and between lines (Supplementary Fig. 1b). The distance between
scanning positions was smaller than the 10–40 m usually applied in previous
studies to minimise data uncertainties due to occlusion in dense tropical forests
and maximise data acquisition in the upper canopy74. Given that the RIEGL VZ-
400i has a zenith angle range of 30–130°, an additional scan was acquired at each
sampling location with the scanner tilted at 90° from the vertical position. A total
of 276 scans across all transects each time resulted in a complete sampling of the
full hemisphere in each scan location (Supplementary Fig. 1c). All scans were later
co-registered into a single point cloud per transect using the RiSCAN PRO software
version 2.9, provided by RIEGL. Given that the RIEGL VZ-400i uses onboard
sensor data with an algorithm to align scans without the use of reflectors, automatic
registration was done before a final adjustment of scans.

We used the LAStools (rapidlasso, GmbH; Gilching, Germany) suite of
computational tools to process the data. To minimise errors in the fusion of the
repeated scans, we first created a common digital terrain model (DTM) at 0.5 m
resolution using a combination of ground returns from the first survey. Using an
inverse distance weighting algorithm in the function grid_terrain from the “lidR”
package in R, a common DTM was constructed from LiDAR ground returns. Plant
area density (PAD) for all transects was then calculated using a voxel-based
approach (with a 5 m buffer around each transect to maximise the PAD data). The
volume occupied by vegetation within each transect was divided into 1 m3 voxels,
and the PAD calculated for each of these voxels (Supplementary Fig. 1d). This
procedure was done in the LiDAR data voxelization software AMAPVox75,76.
AMAPvox tracks every laser pulse through a 3D grid (voxelised space) to the last
recorded hit. The effective sampling area of each laser pulse (or fraction of pulse in
case of multiple hits) is computed from the theoretical beam section (a function of
distance to laser and divergence of laser beam) and the remaining beam fraction
entering a voxel. In case more than one hit is recorded for a given pulse, the beam
section is equally distributed between the different hits of the pulse. This
information is combined with the optical path length of each pulse entering a voxel
to compute the local transmittance or equivalently the local attenuation per voxel.
Different estimation procedures are provided in the AMAPVox software. We used
the Free Path Length estimator first developed for single return TLS in Pimont and
colleagues76 and later extended to the multiple return case77. The common
assumption made for all estimation procedures in AMAPvox is to consider
vegetation elements as randomly distributed within a voxel (thereby neglecting
within voxel clumping) and to express the directional gap probability (or
directional transmittance) as a function of the optical path length of laser pulse
through a voxel and the local extinction coefficient78. The extinction coefficient is
the product of the Plant Area Density and the projection function G(θ), which is
the ratio of plant area projected in direction θ to actual area:

Pðθ; lÞ ¼ expð�λθ ´ lÞ; ð3Þ
where P(θ,l) is the probability of non-interception of a light beam of zenith angle θ
(i.e. directional gap probability) along a path of length l, λθ (m−1) is the directional
attenuation coefficient, and l is the optical path length (m).

The PAD (m2m−3) is related to λ as follows:

PAD ¼ λθ=GðθÞ ð4Þ
G(θ), the plant projection function, is taken equal to 0.5, assuming a spherical

distribution of leaf inclination angles79. This function is likely to be spatially
variable in complex forest canopies.

In total, the number of voxels was 230,609, which were monitored 11 times
during seasonal changes. We then calculated the sum of PADs for each 1 m2

vertical column (X-, Y-coordinate) to obtain the PAI, which is a combination of the
leaf area index and the area of wood components, including branches and trunks.

Albeit restricted in their spatial extent, our densely sampled repeated terrestrial
laser scans likely provide more accurate and robust measures of PAI than any other
method previously used to monitor seasonal changes in plant areas of Amazonian
forests. Measurement accuracy is enhanced by the extremely high sampling density
and multiple return capacity of the laser system, and multiple view angles reducing
the area occluded to the sensor36; fast-to-operate single return laser profilers such
as portable ground LiDAR as used by Smith and colleagues19 while having high
pulse density may have more limited accuracy80.

Determining edge effects and number of forest strata. To test the hypotheses
that (1) fragmentation has significant effects on the structure of the vegetation in
the BDFFP experiment—following Almeida and colleagues73—and (2) that edge
effects impact phenology, we related PAI collected during the 11 TLS campaigns
with distance from the edge using a nonlinear mixed model. The Eq. (5) included
the term exp(−x), as an asymptotic component that represents the saturation of PAI
with distance from the edge, denoted by x in the model, and transect as a random
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variable, allowing us to include any idiosyncratic differences between transects.

PAI ¼ β0 þ β1*exp
ð�β2*xÞ þ ui þ εi ð5Þ

where β0 to β2 are the model parameters, ui is the random intercept for transect i,
and εi is the normally distributed residual error.

This approach has been used to investigate edge effects on forest structure and
dynamics23,81. The model was fitted using the function nlme in R. The results from
this model indicates that the effects of transect account for 6.5% of the total PAI
variability only, and that most of the variance (93.5%) is explained by the within-
transect variability, including the distance from edge and seasonal variations
(Supplementary Fig. 2). A hockey-stick model consisting of two linear segments
was also implemented with the R package “SiZer” using the function piecewise
linear. This model identified a “distance from edge” threshold, dividing voxels from
the two transects near the fragment margins into edge and interior groups. We
demonstrate the edge effects on PAI within 37 m of forest margins (Supplementary
Fig. 2). These results corroborate a previous study in the same forest fragments
showing edge effects of up to 40 m on canopy height73. Therefore, we considered
edge in this study as the forests within 40 m of the forest fragment margins, which
resulted in two edge transects (2 × 40 m) and three interior transects
(2 × 60 m+ 1 × 30m).

We also tested the hypothesis suggested by Smith and colleagues19 that the
lower and upper strata of the vegetation have asynchronous changes in plant area
during the dry season by comparing PAD on October 16th with PAD on June 24th

in these strata. Species, functional and phylogenetic composition of the understory
are distinct from the upper canopy in Central Amazonian forests30,35. While the
understory is comprised of lower branches, seedlings, shade-tolerant and embolism
resistant trees and shrubs, lianas, acaulescent palms and saplings of young adult
trees, the upper canopy is made up of adult predominantly shade-tolerant species,
including tall and emergent trees and lianas. We then calculated the changes in
PAD during the dry season to investigate shifts in the vertical profile of vegetation
to elucidate the seasonal responses of specific strata (Supplementary Fig. 3a, 3b).

We observed consistent positive PAD changes below the height of 15 m above
the ground and negative PAD changes above 15 m height (Supplementary Fig. 3b).
Thus, given the existence of only two axes of variation along the vertical profile of
the vegetation, we utilized this height to define understory (<15 m aboveground)
and upper canopy (≥15 m aboveground) in this study. This is consistent with a
prior study in the Amazonian forest, which also demonstrated distinct seasonal
responses in leaf area above and below a height of 15 m19. The sum of all the
understory PADs and the upper canopy PADs are referred to as understory PAI
and upper canopy PAI, respectively. Our analysis comprises 5133 PAI values for
the understory and 5133 PAI values for the upper canopy, each monitored 11 times
during the seasonal climatic variations. The understory accounts for 62+ 1.1% of
the total PAI in the forest interior and 68+ 0.4% of the total PAI of forest edges
throughout the period of measurement (Supplementary Fig. 3a).

Climatic variables to elucidate the timing in PAI seasonal changes. PAI
changes may be controlled by changes in micro and macroclimatic
conditions19,38,40. We demonstrate below how we estimated solar radiation and
accumulated rainfall at the landscape level, and continuously measured air tem-
perature and soil moisture in the understory of forest edges and interior of forest
fragments to examine the synchrony between these factors and the PAI time-series
in the understory and canopy.

Solar radiation and accumulated rainfall. Leaf flushing in Central Amazonian
forests coincides with peaks in PAR (W/m2) during periods of low rainfall4,14,38.
PAR varies significantly within forest canopies and changes over time due to
variations in the incident solar flux density and solar direction41. Incident solar
PAR contains two components: direct PAR and diffuse PAR—and the latter is
mostly controlled by scattering of particles and cloud cover in the atmosphere82.
The photosynthetic efficiencies of direct and diffuse PAR are different in forests,
with positive effects of diffuse light on photosynthetic rates83 and atmospheric CO2

assimilation84 in comparison to plants under direct light conditions. To examine
the synchrony between PAR and seasonal PAI changes, we derived solar radiation
from the product MCD18A2 V6 (https://lpdaac.usgs.gov/products/mcd18a2v006/).
This product uses the bands of the visible spectrum (400–700 nm) of both sensors
(Terra and Aqua) from the Moderate Resolution Imaging Spectroradiometer
(MODIS) to estimate daily PAR at a 5-km pixel resolution85. Daily mean rainfall
estimates were also derived from NASA’s POWER (Prediction of Worldwide
Energy Resources) data with a spatial resolution of 0.5° latitude by 0.5° longitude
(55 × 55 km). Meteorological parameters are derived from NASA’s GMAO
MERRA-2 assimilation model (https://gmao.gsfc.nasa.gov/reanalysis/MERRA/)
and GEOS FP-IT (https://gmao.gsfc.nasa.gov/news/geos_system_news/2016/FP-
IT_NRT_G5.12.4.php). We then integrated the daily rainfall estimates to accu-
mulated monthly (30 day period) rainfall and classified dry season as the period
with running 30-day rainfall below 200 mm as in Maeda and colleagues86.

Microclimate variables. Soil moisture and maximum temperatures are key drivers
of species’ distributions and affect how species respond to climatic variations87,88.
We measured air temperature (°C) and electrical conductivity of soil moisture

(time-domain transmission; TDT) across a network of 22 data loggers varying in
distance from the forest fragment margins (0 and 520 m). Temperature-Moisture-
Sensor (TMS) data loggers measured air temperature at 15 cm above the ground
and TDT at 8 cm below ground, and all the data retrieved using TMS Lolly
manager software (Tomst, Czech Republic)89. TDT values were transformed into
volumetric soil moisture following calibration curves in Wild and colleagues89

using as input data soil texture (50% clay, 25% sand and 25% silt contents) and
mean soil density of 1100 kg/m3 measured by Camargo and Kapos90 in the same
forest fragments of our study. Data loggers were shielded from direct solar
radiation and recorded data every 15 min. Microclimate data were recorded
between 27th April 2019 and 16th October 2019, resulting in a total of 435,798
coupled temperature and volumetric soil moisture readings. TMS device measures
microclimate variables affecting many ecological processes, including those related
to water and energy balance. We calculated mean daily soil moisture and max-
imum daily soil moisture to investigate their synchrony with the PAI time series.

Phenology modelling for interior and edge forests. We used a linear mixed-
effects (LME) model of understory PAI, upper canopy PAI and a combination of
both strata (total PAI) measured from TLS in each transect as a function of time of
measurement (time). We also included an interaction term with the plot category
of location near an edge or in the forest fragment interior (edge effects) following
Qie and colleagues81. The time × edge effects interaction represents how edge
effects caused by forest fragmentation influence the seasonal variation in PAI. We
compared this LME model with other LME models that contained the variables
time and edge effects as additive terms to examine the significance of seasonality
and fragmentation on PAI variation. Model explanatory power was assessed in
terms of AIC (Supplementary Table 1). The LME model was fitted using the lme
function in the “nlme” R package. Variations in transect area and monitoring
period can influence PAI trends, and thus we used varIdent weights function to
account for the noise attributed to sampling effort91. Performance of the final
models was evaluated using an 80/20 split of the data for calibration and validation,
respectively, over 200 randomised permutations of the dataset. These analyses
generated a distribution of model coefficients and allowed an assessment of model
stability and uncertainty of predictions. We calculated 95% confidence intervals
from the 2.5% and 97.5% quantiles of the distribution of model coefficients.

If increasing upper canopy PAI contributes to lower light interception in the
lower stratum of the vegetation, we may expect a decreasing leaf development in
the understory of forests in the interior of fragments38,41. However, we may also
expect that such an effect on understory PAI by increasing upper canopy PAI is
reduced or absent near fragment edges, with the loss of tall trees and lateral light
from forest edges exposing the understory to more direct sunlight92. We tested this
by averaging the community-level PAI in understory and upper canopy strata for
each census, and then using linear models (lm function in R) to examine the
relationships of PAI between the understory and upper canopy.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The repeated PAI data collected in Central Amazonia using a terrestrial laser scanner
(TLS) between April and October 2019 and generated in this study have been deposited
in the national Finnish Fairdata services database under accession code https://
etsin.fairdata.fi/dataset/e488f81b-b927-4bbd-a6f7-2f532f434b2b. PAR estimates were
obtained from https://lpdaac.usgs.gov/products/mcd18a2v006/ and meteorological data
from https://gmao.gsfc.nasa.gov/reanalysis/MERRA/. Microclimate measurements
collected in the field during the current study are available from the corresponding
author on reasonable request within 10 days.

Code availability
There is no particular code or mathematical algorithm that is considered crucial to the
conclusions. All relevant R-functions that were used are referred to in the Method section
(see package vignettes for details).
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