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A B S T R A C T   

Forest edges are an increasingly common feature of Amazonian landscapes due to human-induced forest frag-
mentation. Substantial evidence shows that edge effects cause profound changes in forest biodiversity and 
productivity. However, the broader impacts of edge effects on ecosystem functioning remain unclear. Assessing 
the three-dimensional arrangement of forest elements has the potential to unveil structural traits that are scalable 
and closely linked to important functional characteristics of the forest. Using over 600 high-resolution terrestrial 
laser scanning measurements, we present a detailed assessment of forest structural metrics linked to ecosystem 
processes such as energy harvesting and light use efficiency. Our results show a persistent change in forest 
structural characteristics along the edges of forest fragments, which resulted in a significantly lower structural 
diversity, in comparison with the interior of the forest fragments. These structural changes could be observed up 
to 35 m from the forest edges and are likely to reflect even deeper impacts on other ecosystem variables such as 
microclimate and biodiversity. Traits related to vertical plant material allocation were more affected than traits 
related to canopy height. We demonstrate a divergent response from the forest understory (higher vegetation 
density close to the edge) and the upper canopy (lower vegetation density close to the edge), indicating that 
assessing forest disturbances using vertically integrated metrics, such as total plant area index, can lead to an 
erroneous interpretation of no change. Our results demonstrate the strong potential of terrestrial laser scanning 
for benchmarking broader-scale (e.g. airborne and space-borne) remote sensing assessments of forest distur-
bances, as well as to provide a more robust interpretation of biophysical changes detected at coarser resolutions.   

1. Introduction 

Forest fragmentation has a pervasive influence on the composition of 
tropical ecosystems. Under the influence of edge effects, forests expe-
rience accelerated mortality of large trees (Laurance et al., 2000), 
causing shifts in floristic composition within hundreds of meters from 

the fragment edges (Laurance et al., 2006). Fragmented forests have 
more abiotically dispersed plant species and fewer animal-dispersed 
species than continuous forests, and altered tree size distribution 
(Laurance et al., 2018, 2006). These changes have substantial impacts 
on the carbon cycle, leading to an additional emission of 0.34Gt of 
carbon per year, which represents almost one third of the currently 
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estimated annual carbon releases due to deforestation in the tropics 
(Brinck et al., 2017; Silva Junior et al., 2020). 

Disturbances in tropical forest edges are likely to have a substantial 
global impact. Currently, approximately 20% of tropical forests are 
located within 100 m of a forest edge (Brinck et al., 2017). As forest loss 
continues, the size of remaining fragments tends to decline (Hansen 
et al., 2020) and the length of open forest edges to increase (Brinck et al., 
2017).It is estimated that less than 40% of the remaining tropical forests 
have high ecosystem integrity (Grantham et al., 2020). The integrity of 
an ecosystem can be generally defined as a measure of how much a 
system is free from human induced changes of its structure, composition, 
and function (Parrish et al., 2003). 

As deforestation moves landscapes towards more fragmented con-
figurations and increases edge area, it is crucial to clarify how ecosys-
tems will adapt to these new scenarios and define the upcoming 
decisions on the sustainability of tropical forests (Barlow et al., 2018). 
Despite the demonstrated influence of edge effects on floristic compo-
sition and carbon storage (Laurance et al., 2002; Ordway and Asner, 
2020; Silva Junior et al., 2020; Tabarelli et al., 2004), less is known 
about the long-term effects of forest fragmentation on ecosystem func-
tioning, structure, ecological traits and processes. As a consequence, we 
still lack a comprehensive understanding of how fragmentation affects 
ecosystem integrity in tropical regions. 

Important challenges exist in working towards a deeper under-
standing of the broad-scale impacts caused by forest fragmentation, 
including uncertainty in how to quantify them and the sheer size and 
complexity of tropical ecosystems. Approaches based on the remote 
measurement of forest structural characteristics are a promising avenue 
to overcome these challenges, as the individuals of a community can be 
described in relation to their distribution in space (Fahey et al., 2019; 
Schneider et al., 2017). Forest structural metrics, also referred to as 
structural traits (Schneider et al., 2020, 2017; Verbeeck et al., 2019), 
have the potential to provide a spatially continuous description of forest 
structural diversity without the need of site-specific taxonomic infor-
mation (Schneider et al., 2017; Verbeeck et al., 2019), thus allowing 
large scale assessments of forest disturbances. 

Structural traits are strongly linked to different aspects of forest 
functioning, including nutrient fluxes, resource acquisition, competitive 
ability and growth of individuals (Enquist et al., 2009; Silva Pedro et al., 
2017). Plant area and density metrics, such as plant area index (PAI), are 
related to aboveground biomass and land-atmosphere interactions 
(Reich, 2012), whereas canopy height metrics can provide information 
on light interception and canopy hydraulic conductivity (Reich, 2012). 
Structural traits can also be used to derive measures of forest structural 
diversity (Schneider et al., 2017). Here, we evaluate structural diversity 
as a combined measure of the three-dimensional variation in plant 
surface area in the forest. Structural diversity was suggested to be a 
better predictor of key ecosystem functions, such as productivity, en-
ergy, and nutrient dynamics, than biodiversity measures (LaRue et al., 
2019). 

Although approaches based on structural traits hold a lot of potential 
for understanding forest disturbances, tools to comprehensively mea-
sure these traits in dense tropical forests have so far been limited and the 
impacts of edge effects on forest structural diversity are not yet fully 
understood. Considerable progress has been made by applying airborne 
laser scanning, as well as portable canopy profiling LiDAR systems 
(PCL), which has led to a better understanding on the impacts of forest 
disturbances on structural characteristics, such as canopy height and 
above ground biomass (Almeida et al., 2019a; Stark et al., 2015). 
Nonetheless, these tools cannot fully capture the three-dimensional (3D) 
arrangement of the canopy. Airborne LiDAR systems typically acquire 
data with pulse densities less than a few tens per meter square and 
footprint sizes one or two decimetre large, which cannot fully resolve 
the structural arrangement of plants in tropical forests (Bazezew et al., 
2018). Furthermore, due to signal occlusion in dense canopies, the re-
turn density decreases rapidly within the forest canopy and airborne 

LiDAR data is unable to describe in details how plant biomass is spatially 
allocated in the understory of tropical forests (Heiskanen et al., 2015), 
even though substantial progress has been made to assess the impacts of 
disturbances on understory vegetation (Andersen et al., 2014; d’Oliveira 
et al., 2012). PCL systems partially fulfil the need for a better assessment 
of vertical distribution of plants. However, PCL data is two-dimensional, 
while the structure of canopies is inherently three-dimensional, with 
basic functions such as energy harvesting and light use efficiency being 
defined by a combination of vertical and horizontal allocation of vege-
tation elements (Fahey et al., 2019). 

These limitations hamper the development of benchmark assess-
ments, which are critical for robustly upscaling analysis at regional and 
global scales. Although airborne and spaceborne LiDAR systems will 
certainly play a central role in mapping forest disturbances at larger 
scales in the future, baseline studies are necessary to understand and 
validate the ecological processes that are happening on the ground 
(Dubayah et al., 2020). 

Terrestrial laser scanning (TLS) holds strong potential for over-
coming these limitations, as it can provide explicit 3D information on 
forest structure from the ground level (Calders et al., 2020). Since 
measurements are taken from within the canopy, TLS data can provide 
much more detailed information on the forest understory, which is 
extremely valuable in dense tropical vegetation. Studies applying TLS 
measurements have become increasingly popular in recent years, as they 
provide novel insights on fundamental ecological theories, and allow a 
more robust exploitation of models and metrics that depend on 3D 
structural information (Calders et al., 2020; Disney, 2019). 

Here, we apply TLS measurements to evaluate structural edge effects 
on Amazonian forests located in the longest running fragmentation 
experiment in the tropics, where forest fragments have been monitored 
for more than 40 years (Laurance et al., 2018, 2011). We quantified 
structural changes in forest edges using high-definition 3D information 
to answer two main questions. Firstly, which forest structural traits are 
persistently affected by edge effects? Secondly, do changes in the three- 
dimensional allocation of plants impact the structural diversity of forest 
edges? 

2. Material and methods 

2.1. Study area 

The study area is located north of Manaus, in Central Amazonia, 
Brazil. We sampled seven transects of 50 m (4 transects) and 100 m (3 
transects) length, located in forest fragments of 1 ha, 10 ha and 100 ha 
(Fig. 1). The fragments are part of the Biological Dynamics of Forest 
Fragments Project Area of Relevant Ecological Interest (ARIE-BDFFP), 
which is a collaborative research effort between the Brazilian National 
Institute for Amazonian Research (INPA) and the Smithsonian Tropical 
Research Institute (Laurance et al., 2018, 2011). The forest fragments 
were intentionally isolated from nearby intact forest in the early 1980s 
and have been monitored for physical and ecological changes approxi-
mately once every five years, aiming to investigate the effects of forest 
fragmentation on the Amazon ecosystem (Laurance et al., 2018, 2011). 
The natural vegetation in all the transects is a non-flooded tropical 
rainforest, which averages 28–35 m in canopy height. At the time of data 
acquisition, the matrix was formed by secondary growth forest with a 
100 m cleared strip surrounding the forest fragments to keep the frag-
ments isolated. 

2.2. Terrestrial laser scanning (TLS) data acquisition 

The TLS data were acquired using a RIEGL VZ-400i instrument. For 
this study, we used a vertical and horizontal scan resolution of 40 mdeg, 
which results in a point spacing of 34 mm at 50 m distance from the 
scanner. The beam divergence of the instrument is 0.35 mrad. The laser 
pulse repetition rate used was 600 kHz, allowing a measurement range 
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of up to 350 m and up to eight returns per pulse. 
To ensure a full 3D representation of the canopy, each transect 

consisted of three scan lines parallel to each other (Fig. 1 and 2a). The 
scans were spaced by 5 m. This spacing is much smaller than the 10–40 
m usually applied in previous studies (Wilkes et al., 2017), to minimize 
data uncertainties due to occlusion in a dense tropical forest, as well as 
to maximize the acquisition of data in the upper canopy. Given that the 
VZ-400i scans within the zenith angle range of 30–130◦, one additional 
measurement was acquired at each sampling position with the scanner 
inclined at 90◦ from the vertical. This resulted in a sampling of the full 

hemisphere in each scan location. No co-registration targets were used 
in the data acquisition and the final co-registration was done in the 
RiSCAN PRO software version 2.9, provided by RIEGL. 

2.3. TLS data processing 

The transmittance T of a medium made-up of randomly distributed 
vegetation elements is commonly described as following an exponential 
attenuation along a path of length δ (Nilson, 1971; Ross, 1981): 

T = e− λ δ (1) 

Fig. 1. Location of the forest fragments within the Biological Dynamics of Forest Fragments Project Area of Relevant Ecological Interest (ARIE-BDFFP) and the seven 
transects used in our study. The transects are marked as Dn, for transects located in the Dimona site, and as Cn, for transects located in the Colosso site, where n is the 
number of the transect. The figure also illustrates a vertical slice of the terrestrial laser scanning data (right column) for each of the transects. 

Fig. 2. (a) Sampling strategy for collecting the terrestrial laser scanning data along perpendicular transects to forest edges. The background image shows a canopy 
height model extracted from the TLS data (b) Illustration of the voxel-based approach used for assessing the three-dimensional distribution of plant area density 
(PAD, m2 m− 3) along the transects. 
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where λ (m− 1) is the attenuation coefficient of the medium. The plant 
area density (PAD) (m2 m− 3) is related to λ as follows: 

PAD = λ/G (2)  

where G is the projection coefficient function of unit plant area on a 
plane perpendicular to the light incident direction. 

The PAD for all transects was calculated using a voxel-based 
approach (Fig. 2b). All transects were divided into 1 m3 voxels, and 
the attenuation calculated for each of these voxels. This procedure was 
done in the LIDAR data voxelization software AMAPVox v 1.6.1 (Vincent 
et al., 2017). To compute PAD from attenuation, G was taken equal to 
0.5, assuming a spherical distribution of vegetation elements inclination 
angles (Béland et al., 2011). AMAPVox tracks every laser pulse through 
a 3D grid (voxelized space) to the last recorded hit. The effective sam-
pling area of each laser pulse (or fraction of pulse in case of multiple hits) 
is computed from the theoretical beam section (a function of distance to 
laser and divergence of laser beam) and the remaining beam fraction 
entering a voxel. In case more than one hit is recorded for a given pulse 
then the beam section is equally distributed between the different hits of 
the pulse. This information is combined with the optical path length of 
each pulse entering a voxel to compute the local transmittance or local 
attenuation per voxel. The PAD in each 1 m3 voxel thus comprised every 
structural element of the forest, including non-tree plants such as pals, 
lianas and herbs. 

Different estimation procedures are provided in the AMAPVox soft-
ware (Vincent et al., 2021). In this study we used the free path length 
estimator introduced in (Pimont et al., 2018) which builds on the 
observation that, under the assumption of randomly distributed vege-
tation elements, the lengths of optical free paths, i.e. beam segments that 
are not intersected by vegetation elements, follow an exponential 
random distribution with parameter equal to the attenuation coefficient 
λ. For further details on the calculations please refer to Vincent et al. 
(2021) and Pimont et al. (2018). Currently, there is no clear consensus 
on an optimal voxels size (Grau et al., 2017; Pimont et al., 2018). In our 
case, a voxel space of 1 m3 was considered large enough to capture the 
distribution of leaves and trunks, and small enough to represent the 
forest heterogeneity at canopy level, thus facilitating the ecological 
interpretation of PAD spatial arrangement. To evaluate how the voxel 
size affected out estimates of PAD, we carried out a sensitivity analysis 
with voxel sizes ranging from 0.25 m to 2 m, in an area of 10 m × 20 m of 
intact forest (please refer to supplementary material). 

2.4. Forest structural traits and their ecological significance 

The PAD at each 1 m x1 m voxel was used as base for calculating 13 
forest structural traits: the Plant area index for the whole vertical col-
umn (PAI) and per 5 m height layers from 0 to 30 m height (PAI0–5, 
PAI5–10, PAI10–15, PAI15–20, PAI20–25, PAI25–30); Relative heights 
(RH) as percentiles of the vertical distribution of plant material at 25, 

50, 75 and 98%; the Foliage Height Diversity (FHD); and the Canopy 
Ratio (CR) (Table 1). Each of these structural traits, as well as their 
ecological importance, are described below. 

2.4.1. Plant area index (PAI) for the whole vertical column and per 5 m 
height layers 

PAI is the projected area of plant material per unit of ground area and 
is the combination of leaf area index (LAI) and the area of woody 
components including stems and branches (Vincent et al., 2017). The 
LAI provides an indication of the forest capacity to harvest light, ex-
change gases with the atmosphere and is directly related to forest-level 
productivity (Reich, 2012). The total PAI is, therefore, directly linked to 
the total light interception by plants, and high values may indicate 
decreased light availability under the canopy (Ma et al., 2021). Com-
partmentalizing PAI by vertical layers can reveal the absolute contri-
butions of plant material to light interception and harvesting of light at 
the stratum level. Here, we computed the total PAI as the sum of the PAD 
of all voxels in a column (Almeida et al., 2019b; Vincent et al., 2017). 
Similarly, the PAI per 5 m height layers was calculated as the sum of the 
PAD of the voxels contained in each 5 m layer. 

2.4.2. Relative heights (RH) as percentiles of the vertical plant distribution 
The heights of the plant material distribution along a vertical profile 

of the forest were described using relative heights (RH) (see demon-
stration in Fig. S1 in the supplementary material) (Dubayah et al., 
2010). An RH25 of 10 m, for instance, means that 25% of plant material 
is below 10 m. In this study, we used the PAD in each voxel to create a 
vertical profile of the plant distribution in a 1 m2 column, and retrieved 
the relative heights at the desired quantiles based on linear interpola-
tion. Higher RH values in an ith quantile can indicate 1) a lower allo-
cation of plant material below the ith threshold in comparison with 
forests of similar canopy height (i.e., lower regeneration of the under-
story), 2) a higher allocation of plant material above the ith threshold in 
comparison with forests of similar canopy height (i.e., branching, higher 
canopy packing efficiency) or 3) taller canopy height. RH is sensitive to 
canopy changes such as leaf loss and canopy dieback (Duong et al., 
2008), and is correlated to structural attributes of the vegetation such as 
basal area and aboveground biomass (Drake et al., 2003). Higher canopy 
packing efficiency translates into a larger proportion of the canopy space 
being filled by plant structures and tends to be correlated with higher 
species richness (Jucker et al., 2015). 

2.4.3. Foliage height diversity (FHD) 
FHD reflects the number of canopy layers and the evenness of the 

distribution of plant material among them in the vertical profile of the 
vegetation (MacArthur and MacArthur, 1961; Schneider et al., 2017; 
Valbuena et al., 2012). We calculated it by applying the Shannon en-
tropy on vertical PAD profiles as proposed by MacArthur and MacArthur 
(1961): 

FHD = −
∑

i
pi × logepi (3)  

where pi is the proportion of the total plant material that is contained 
within the ith canopy layer. 

FHD increases with increasing number of canopy layers and when 
the distribution of plant material becomes more even among the layers. 
Taking the exponential function of FHD gives the corresponding Hill 
number, which can be interpreted as the effective number of canopy 
layers (Tuomisto, 2017). We defined the layers as 5-m vertical segments 
of the vegetation, so their number is directly related to forest height. 
Higher FHD values have been linked to more diverse niches and have 
been used as an indicator of greater habitat complexity (Schneider et al., 
2017). These metrics have also been found to correlate positively with 
species diversity of birds, mammals and plants (Ehlers Smith et al., 
2017; Lesak et al., 2011), and to be related to bat activities (Froidevaux 

Table 1 
Structural traits analysed in this study.  

Structural trait Acronym Unit 

Plant area index PAI m2 m− 2 

Plant area index from 0 to 5 m PAI 0–5 m2 m− 2 

Plant area index from 5 to 10 m PAI 5–10 m2 m− 2 

Plant area index from 10 to 15 m PAI 10–15 m2 m− 2 

Plant area index from 15 to 20 m PAI 15–20 m2 m− 2 

Plant area index from 20 to 25 m PAI 20–25 m2 m− 2 

Plant area index from 25 to 30 m PAI 25–30 m2 m− 2 

Relative height at 25% RH25 m 
Relative height at 50% RH50 m 
Relative height at 75% RH75 m 
Relative height at 98% RH98 m 
Canopy ratio CR – 
Foliage Height Diversity FHD –  
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et al., 2016) and microclimate variation (Meeussen et al., 2020). 

2.4.4. Canopy ratio (CR) 
CR is the relative difference in the heights below which 98% of the 

plant material (RH98) and 25% of the plant material (RH25) occur, and 
it is calculated as follows. 

CR =
RH98 − RH25

RH98
(4) 

If plant material is uniformly distributed from the ground to the top 
of the canopy, the CR is expected to be close or equal to 0.74, as 25% of 
the plant material would be found between ground level and 25% of 
total canopy height (see demonstration in Fig. S1 in the supplementary 
material). CR values higher than 0.74 indicate a proportionally higher 
concentration of plant material in the lower layers of the canopy (the 
height below which 25% of plant material occurs is less than 25% of 
total canopy height) and CR values smaller than 0.74 indicate a pro-
portionally higher concentration of plant material in the higher layers of 
the canopy. If negatively correlated with RH25, low CR indicates higher 
compactness of the upper strata with optimised use of canopy space 
combined with a less dense understory. 

2.5. Statistical assessment of edge effects on canopy structural traits 

Each canopy structural trait was modelled as a function of distance 
from the edge. We compared linear mixed models containing distance 
from the edge with nonlinear mixed models containing an asymptotic 
component that represents the saturation of the canopy metric with 
distance from the edge. An asymptotic component in the model is more 
ecologically significant to investigate the edge effects on forest structure 
and canopy metrics (Nunes et al., 2021). We developed hierarchical 
models using the lme4 package in R (Bates et al., 2015); and included the 
spatial levels of region of study, forest fragment size (1, 10 and 100 ha 
fragments) within region of study, and transect within fragment size 
treated as random effects to account for the nested spatial non- 
independence of transects. The best model, based on the Akaike Infor-
mation Criterion (AIC) (Akaike, 1974), was a nonlinear mixed model T 
= α* exp(β* D) + θ + γ; where T is the structural trait, D is the distance 
from the forest edge, γ represents the random-effect parameters (region, 
fragment size, and transect location) and α, β, θ are the model co-
efficients. The tested models, as well as the AIC comparison are pre-
sented in the supplementary material, Table S1. 

Finally, we used piecewise linear functions (hockey stick model) to 
identify the edge effect thresholds for those traits significantly influ-
enced by edges based on our nonlinear mixed models. The confidence 
interval used for identifying the breaking points in the hockey stick 
model was 95%. The calculations were performed using the SiZer 
package in R (Sonderegger, 2020). 

2.6. Canopy structural diversity assessment using n-dimensional 
hypervolumes 

The n-dimensional hypervolume concept for the interpretation of 
functional diversity provide a strong foundation for research across 
different fields of ecology (Blonder, 2018; Díaz et al., 2016). Here, we 
evaluated the structural diversity of the forest fragments through the 
concept of n-dimensional hypervolumes, defined by the Euclidean space 
formed by n independent axes (Blonder, 2018). The axes corresponded 
to structural traits obtained using the TLS data. To reduce the dimen-
sionality of the hypervolumes, we used only traits that were shown to be 
most relevant (i.e., traits that were most influenced by edge-effects), 
since high-dimensional spaces can become sparse rapidly, leading to 
hypervolumes with data points that are disjunct. We delineated the 
hypervolumes using one-class support vector machine (SVM) method, 
which is considered insensitive to outliers and better suitable for high- 
dimensional hyperspaces. All calculations were done using the 

hypervolume package in R (Blonder, 2019). For more details on the SVM 
approach for delineating hypervolumes, please refer to (Blonder et al., 
2018). 

To evaluate the changes in structural diversity caused by edge ef-
fects, we divided the combined data from all transects into slices of 5 m, 
from the edge to 50 m inside the forest fragments. The n-dimensional 
hypervolume was then calculated independently for each slice using the 
same dimensionality and parameters to allow a direct comparison of the 
hypervolumes. We then evaluated the similarity between the hyper-
volume of each forest slice and the hypervolume obtained at a distance 
of 50 m from the edge, using the Jaccard similarity index and the Sor-
ensen similarity index, which are used to describe the pairwise overlap 
between hypervolumes. Given two hypervolumes A and B, the Jaccard 
similarity index (J) is calculated as J(A,B) = |A ∩ B|/ |A ∪ B|, and the 
Sorensen similarity index (S) is calculated as S(A,B) = 2 × |A ∩ B|/(|A| 
+ |B|) (Mammola, 2019). Both indices can range from 0, when the 
hypervolumes are fully disjunct, to 1, when the hypervolumes are 
identical (Mammola, 2019). 

2.7. Diameter at breast height (DBH) and tree density distribution 

To complement the interpretation of the canopy structural traits, we 
analysed the tree size distribution in the transects. For that, we 
measured the DBH of all trees with DBH above 5 cm. The DBH mea-
surements were extracted automatically from the TLS point cloud, 
following multiple steps. We first estimated the height of the points from 
the ground and selected the lower 5 m. Next, we defined the stems with a 
multi-step process that segments the point cloud into individual trees. In 
the segmentation we first locate cylindrical subsets that are likely real 
stem sections. Then we expand from the bottom of the point cloud into 
the trees with shortest paths. Finally, the stem sections and the shortest 
paths determine the individual trees. Then for each segmented tree we 
estimated its diameter at 1.3 m by fitting cylinders, using the least 
squares method. However, some segments may still contain multiple 
stems from different trees. To consider these cases, we tried to select 
subsets of points around 1.3 m with highly vertical neighborhoods. In 
some cases, this resulted in multiple separate components, and we fitted 
cylinders for all possible combinations of these components. We fitted 
four cylinders to each case with different weightings to get more reliable 
estimates. We selected the best one of the four cylinders based on the 
reliability of the fits. Next, we determined if cylinders are overlapping 
and for each group of overlapping cylinders selected the most reliable 
one. Finally, we filtered the selected stems using a quality assessment 
metric. More details of the method can be found in the supplementary 
material. 

3. Results 

Our analyses are based on 624 TLS measurements obtained along 
seven transects perpendicular to forest fragments edges (Fig. 3). The 
location and size of fragments, as well as idiosyncratic differences be-
tween transects, accounted for approximately 15% of the observed 
structural trait variability (Table S2, supplementary material). While the 
size of the forest fragments had a negligible effect on the results, the 
location of the transects accounted for approximately 10% of the 
structural traits variability. Hence, variations caused by distance from 
edge were the major driver of the spatial patterns described here. 

When compared to the centre of the forests, we observed a decrease 
in all relative heights in the edges, at distances up to 20 m far from the 
forest edges. Mean RH at 98%, which provides a good representation of 
canopy height, decreased by approximately 4 m from the interior (at 50 
m distance from edge) towards the edge of the forest fragment. The 
decrease in RH was also observed at 25th and 50th percentiles, indi-
cating a relatively higher concentration of vegetation surface density in 
the lower strata of forests in the proximity of edges. 

Edge effects caused an increase in PAI on the lower layers of the 
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Fig. 3. Relative heights (RH) as percentiles 
of the vertical distribution of canopy points 
at 25, 50, 75 and 98%. Blue dots represent 
observed values over 1 m × 1 m columns 
containing the voxels. Boxplots show the 
distribution of observed data aggregated in 
five-meter slices. Solid red line shows the 
trait distribution based on nonlinear mixed 
models and black lines the 95% confidence 
intervals. Dashed red lines show the edge 
effect threshold identified using piecewise 
linear functions, with confidence intervals 
of 95%. (For interpretation of the refer-
ences to colour in this figure legend, the 
reader is referred to the web version of this 
article.)   
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Fig. 4. Plant area index (PAI) per 5 m height layers from 0 to 30 m above ground. Blue dots represent observed values over 1 m × 1 m columns containing the voxels. 
Boxplots show the distribution of observed data aggregated in five-meter slices. Solid red and black lines show the trait distribution based on nonlinear mixed models 
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vegetation strata (between 0 and 10 m above ground) (Fig. 4). This in-
crease can be observed up to 20 m from the edge. The understory 
vegetation PAI on the edges was up to 2.5-fold higher than in the centre 
of the transect (50 m distant from the edge). This pattern starts to change 
at vegetation layers between 10 and 15 m, where no significant trend in 
PAI is observed in the edge-interior gradient. On the top layers, above 
15 m, an inverse pattern is observed, with increasing PAI from the edge 
to the interior of the forest. The mean PAI on the upper layers of the 
canopy (25 to 30 m), can be up to four times higher in the interior of the 
forest (~0.45 m2 m− 2) than in the edge of the forest fragments (~0.11 
m2 m− 2). 

The variation of the total PAI along the edge gradient indicate an 
overall increase of PAI towards the edge (Fig. 5a). The magnitude of the 
changes is however more subtle when compared to the ones observed in 
separated layers. The mean total PAI at the edge of fragments was 
approximately 11 m2 m− 2, compared to 8 m2 m− 2 at 50 m from the edge. 
These results thus demonstrate that assessments that do not consider the 
height-stratified edge effects on forest canopies can mask more pro-
nounced changes occurring in the edges of fragments. 

FHD only changed in the very edge (0 to 3 m) of the forests (Fig. 5b), 
even though other structural changes were observed up to 20 m from the 
forest edge (Figs. 3 and 4), indicating that these changes are not related 
to the effective number of canopy layers. In particular, vegetation close 
to the forest edge was more bottom-heavy than vegetation in the interior 
of the forests. CR, which quantifies the relative difference in height at 
which the bottom 25% and the bottom 98% of the plant material is 
reached, clearly increased towards the forest interior, especially in the 
first 20 m (Fig. 5c). The mean CR in the first 5 m of the transect was 
approximately 20% higher than in the interior of the forest. 

To evaluate how the changes in structural traits affected the struc-
tural diversity of forest edges, we evaluated the n-dimensional hyper-
volume formed by the traits (Fig. 6). The hypervolumes were 
constructed using the RH at 25, 50, and 98%, as well as PAI 0–5, PAI 
5–10, PAI 20–25 and PAI 25–30 (i.e. n = 7), which were shown to be the 
traits mostly affected by the edge effects. Fig. 6a shows how the struc-
tural traits hypervolume changed from the centre to the edge of the 
fragments. The results show a consistent shift in the similarity of 
hypervolumes from forest interior to edge both with the Jaccard simi-
larity index and with the Sørensen similarity index (Fig. 6b and c). Edge 
effects have thus led to long-term shifts in the forest structural diversity 
and structural niche, up to 20 m distance from the edges. 

Finally, to further understand how tree demography contributed to 
the changes in structural traits, we used the TLS data to carry out an 
exhaustive counting of all trees with DBH above 5 cm along the seven 
transects. We observed an increase in tree density closer to the edges 

(Fig. 7a). The density of trees in the first 10 m of the edge is approxi-
mately 25% higher than in the interior of the fragment, at 50 m from the 
edge. This difference was mostly driven by small trees with DBH smaller 
than 10 cm (Fig. 7b). These results are aligned with the observed 
decrease in canopy height at the edge of forest fragments, indicating that 
the overall canopy structure is dominated by smaller and shorter trees. 

4. Discussion 

High-density TLS data provide a fresh three-dimensional perspective 
on the forest fragmentation effects on Amazonian forests that can be 
separated across vertical strata. These data allowed a detailed charac-
terization of the spatial distribution of plant surface area within the 
canopy, providing an unprecedented insight on how the allocation of 
plant material is affected by edge effects. Furthermore, we demonstrate 
how edge effects disrupt the structural diversity of fragmented forests, 
using a Hutchinson’s n-dimensional hypervolume concept (Blonder, 
2018) applied to TLS derived metrics. Our results show persistent and 
long-term impacts of edge effects in canopy structural traits and struc-
tural diversity in forest fragments established more than 40 years ago. 

The depth of edge effects on individual structural traits varied 
considerably. While changes in the height distribution and layering of 
plant material in the vertical profile were observed only in the first 15 m 
from the edges, significant changes in the overall PAI could be detected 
up to 35 m from the edge (Fig. 5). It is important to note, however, that 
our results are focused on structural attributes. Other attributes, such as 
microclimate (Camargo and Kapos, 1995; Didham and Lawton, 1999), 
floristic composition (Laurance et al., 2007, 2006), and canopy dy-
namics (Nunes et al., 2021), were previously reported to reflect edge- 
effects even deeper on forest fragments, within hundreds of meters 
from the fragment edges. 

Our findings provide an additional contribution to approaches for 
measuring and monitoring forest degradation caused by forest frag-
mentation. While many of the definitions of forest degradation focus on 
the loss of a single property of the forest (e.g. carbon storage) (Gao et al., 
2020), more comprehensive approaches aim at assessing degradation 
through the frame of ecological resilience (Ghazoul et al., 2015). In such 
approaches, if forest functionality and resilience remain unaffected, the 
forest is not considered to be degraded. In other words, if a forest is able 
to recover from disturbance events (e.g. droughts, fires, wind, or edge 
effects), by this definition, it should not be considered as degraded 
(Ghazoul et al., 2015). Our results thus provide evidence that forests at 
the edge of fragments undergo persistent structural changes, adding new 
elements for assessing the degradation of fragmented forests through the 
lenses of ecological resilience. 
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Currently, it is estimated that the total length of forest edges in the 
Amazon basin is approximately 1.5 million km (Silva Junior et al., 
2020). Considering an overall edge effect depth of 20 m, we estimate 
that at least 30,000 km2 of forests are potentially undergoing permanent 
changes in structural characteristics. Future deforestation and new 
processes of forest fragmentation in the Amazon region are likely to 
increase this number. It is also important to consider that the BDFFP 
experiment is established under controlled conditions, i.e., the matrix 
surrounding the fragments consists of stable secondary vegetation. More 
commonly, the lands surrounding forest fragments undergo intensive 
management, which may include, for instance, prescribed fires and 
cultivation of commodity crops, which can increase the penetration 
capacity of edge effects (Didham and Lawton, 1999). For instance, 
studies have shown that surface temperature increase in deforested 
areas converted to large-scale commodity crops can be up to three-fold 
higher than in small-scale farms with less intensive management (Maeda 
et al., 2021), increasing the potential for deeper edge-effects. 

Our results also show that structural changes in forest edges have a 
strong vertical heterogeneity. We observed opposite PAI patterns in the 
lower and top layers of the forest - i.e. forest edges have higher PAD in 
the understory and lower PAD in the upper canopy than forest interior 
does. As a result, metrics that integrate structural properties over the 
entire vegetation column (e.g. PAI or LAI) can behave as if there were no 
structural effects of the disturbances along the gradient from forest edge 
to interior. For example, remote sensing assessments of forest distur-
bances are often based on LAI (or LAI proxies, such as NDVI) estimated 

from satellite imagery. Such indices may not be able to capture the 
signal of vertically stratified horizontal heterogeneity in plant material 
distribution, which may lead to underestimating the extent of disturbed 
forests. 

The lower PAD in the upper layers of forest edges is explained by a 
smaller number of large trees (Fig. 7). The high mortality of large trees in 
forest edges has been linked to a higher exposure to wind turbulence and 
greater desiccation stress (Laurance et al., 2006). Trees larger than 60 
cm in diameter were shown to die approximately three times faster near 
edges than in forest interiors (Laurance et al., 2000). Changes in the light 
regime in gaps opened by the death of large trees, added to increased 
lateral light penetrating near edges, create favourable conditions to the 
recruitment of new individuals, mainly pioneer trees, as well as accel-
erated growth rates of trees and lianas that dominate the understory 
(Nascimento and Laurance, 2004), contribute to the higher PAI values in 
the edge understories. 

Changes in structural traits associated with forest height (i.e. RHs) 
were less pronounced than those linked to PAD distribution. Changes in 
RH at all quantiles could only be observed up to 15 m from the edges, 
while changes in PAI were evident up to 35 m from the edges. Canopy 
height is generally easier to be measured in comparison with understory 
density, as it can be reliably assessed, for instance, using airborne laser 
scanning (Asner and Mascaro, 2014) and, more recently, spaceborne 
sensors (Dubayah et al., 2020). Given this fact, added to the information 
that a high mortality of large trees is expected in disturbed forests (Gora 
and Esquivel-Muelbert, 2021; Laurance et al., 2000), canopy height is 

Fig. 6. Shifts in canopy structural diversity from edge to forest interior. (a) The hypervolume values for each five meters slice. Differences in the hypervolume 
between each forest slice of five meters, in comparison with the forest interior (i.e. forests with at least 50 m distance from edges), are measured using (b) the Jaccard 
similarity index, and (c) the Sørensen similarity index. The blue lines show conditional mean estimates using local polynomial regression fitting. The grey bands show 
the 95% confidence intervals. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 7. (a) Number of trees with DBH > 5 cm identified within all seven transects, divided into slices of 5 m. The boxplots show the 25th and 75th percentiles. The 
red dots and lines show the mean and 95% CI, respectively. (b) Distribution of tree diameters (DBH > 5 cm) for two transect slices, one at 0 to 10 m from forest edge 
and the other, 40 to 50 m from the edge. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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frequently used as a proxy for forest disturbances (Jucker et al., 2018). 
Nonetheless, our results show that, to avoid an underestimation of 
structural changes caused by disturbance, canopy height should not be 
used alone. Having said that, changes in the RH in forest edges were 
consistently observed in our results, and the stratification of relative 
heights can also provide a useful overview on changes in the spatial 
allocation of plants in the forest edges. 

Our results were based on very high-resolution TLS data, providing 
the most detailed representation of structural changes in Amazonian 
forest edges to date. These characteristics serve at least two important 
purposes. First, it provides a benchmark in the characterization of 
structural changes in Amazonian forest edges, as the three-dimensional 
forest representation provided by the TLS allows a detailed character-
ization of both understory and upper canopy. Second, it identifies 
important metrics for monitoring structural characteristics of forests 
affected by edge effects, leading to approaches for upscaling disturbance 
assessments using airborne or spaceborne sensors. This is particularly 
timely, given the recent advent of the Global Ecosystem Dynamics 
Investigation (GEDI) mission (Dubayah et al., 2020). 

GEDI was launched and installed on board the International Space 
Station in December of 2018. The mission is expected to sample about 
4% of the Earth’s land surface, providing an unprecedented overview on 
the structure and biomass of forests (Dubayah et al., 2020). Nonetheless, 
to take full advantage of these data, it is crucial for GEDI estimates to be 
benchmarked with ground data, particularly in dense tropical forests, 
where the characterization of understory structure by spaceborne sen-
sors is challenging. Our approach used similar structural variables as the 
ones provided by GEDI level 2 and 3 products, thus providing strong 
evidence that GEDI data, combined with ground-based TLS data, holds 
large potential to be applied for assessing forest disturbances linked to 
edge effects. GEDI has currently collected thousands of samples 
throughout the Amazon basin. The sampling characteristics of GEDI (i.e. 
along track beams spaced by 60 m), as well as its footprint of 25 m, do 
not allow a transect-based design as presented in this study. However, 
the multiple overpasses are likely to cover a large range of representa-
tive conditions, including different distances from edges and degrees of 
disturbances. 

Given that the retrieval of forest structural traits with TLS can be 
done without carrying out a floristic inventory of the forest, this 
approach has potential to be upscaled to other areas in Amazonian 
forests. In our study, the region where the data was collected, and the 
size of the fragments, accounted for a small fraction of the variability in 
our results (less than 3% on average) (Table S2 in the supplementary 
material). However, the importance of the biogeographical region in 
explaining structural trait variability is likely to increase when areas 
outside Central Amazonia are considered, as metrics such as canopy 
height and mean PAI vary strongly across the Amazon basin (Gorgens 
et al., 2021). Hence, expanding this approach to other geographical 
regions will need to account for this natural variability, requiring, for 
instance, a normalization of the traits. It is, however, feasible to assume 
that over dense evergreen forests, the overall characteristics of distur-
bances on canopy structure will remain similar. For instance, even 
though mean canopy height varies substantially across the Amazon 
(Sawada et al., 2015), we expect that, due to the higher mortality of 
larger trees, forests under the influence of edge effects will have rela-
tively lower canopy height in comparison with adjacent forests distant 
from edges (Almeida et al., 2019a, 2019b; Silva Junior et al., 2020). 
Likewise, although the mean plant area does vary significantly 
throughout the Amazon, it is expected that changes in the light regime 
and floristic composition in forest edges lead to a consistent relative 
increase in the understory plant density. 

5. Conclusions 

In this study, we evaluated structural traits of fragmented Amazo-
nian forests based on 624 terrestrial laser scanning measurements, 

providing a detailed overview on the impacts of fragmentation on the 
three-dimensional distribution of forest plant material. We report 
changes in the structural diversity of forest edges formed 40 years ago, 
demonstrating persistent impacts of edge effects on metrics closely 
linked to energy harvesting and light use efficiency. Although most 
forest structural metrics showed edge effects, traits related to plant 
material allocation were more strongly affected than traits related to 
canopy height. The vertically integrated plant area index (PAI) showed 
strong edge effects, but we demonstrated that the use of this metric for 
assessing forest disturbance can be deceptive, given the divergent 
response from the forest understory (higher PAI closer to the edge) and 
the upper canopy (lower PAI closer to the edge). We also show that 
Foliage Height Diversity (FHD), which reflects the effective number of 
canopy layers, was lower at the very edge of the forest but soon returned 
to values similar to the forest interior, even though the actual vertical 
distribution of plant material continued to change. To allow a more solid 
interpretation of the changes in structural traits, we analysed the tree 
size distribution along the studied transects, showing a large increase in 
the number of trees (DBH ≥ 5 cm) close to the edges. This increase was 
driven by a larger number of small trees (5 ≤ DBH < 10 cm). Finally, our 
results provide a benchmark for assessing regional and pan-tropical 
disturbances caused by fragmentation, as the approach based on struc-
tural traits present large potential for being upscaled across other 
biogeographical regions. By clarifying the long-term impacts of edge 
effects on structural vegetation properties, our results contribute to a 
broader understanding of ecosystem resilience in forest edges, leading to 
a more robust interpretation of disturbances in fragmented ecosystems. 
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ing leaf area distribution in savanna trees from terrestrial LiDAR measurements. 
Agric. For. Meteorol. 151 (9), 1252–1266. 

Blonder, B., 2018. Hypervolume concepts in niche- and trait-based ecology. Ecography 
(Cop.). 41, 1441–1455. https://doi.org/10.1111/ecog.03187. 

Blonder, B., 2019. hypervolume: High Dimensional Geometry and Set Operations Using 
Kernel Density Estimation, Support Vector Machines, and Convex Hulls. 

Blonder, B., Morrow, C.B., Maitner, B., Harris, D.J., Lamanna, C., Violle, C., Enquist, B.J., 
Kerkhoff, A.J., 2018. New approaches for delineating n-dimensional hypervolumes. 
Methods Ecol. Evol. 9, 305–319. https://doi.org/10.1111/2041-210X.12865. 

Brinck, K., Fischer, R., Groeneveld, J., Lehmann, S., Dantas De Paula, M., Pütz, S., 
Sexton, J.O., Song, D., Huth, A., 2017. High resolution analysis of tropical forest 
fragmentation and its impact on the global carbon cycle. Nat. Commun. 8, 14855. 
https://doi.org/10.1038/ncomms14855. 

Calders, K., Adams, J., Armston, J., Bartholomeus, H., Bauwens, S., Bentley, L.P., 
Chave, J., Danson, F.M., Demol, M., Disney, M., Gaulton, R., Krishna Moorthy, S.M., 
Levick, S.R., Saarinen, N., Schaaf, C., Stovall, A., Terryn, L., Wilkes, P., Verbeeck, H., 
2020. Terrestrial laser scanning in forest ecology: expanding the horizon. Remote 
Sens. Environ. 251, 112102 https://doi.org/10.1016/j.rse.2020.112102. 

Camargo, J.L.C., Kapos, V., 1995. Complex edge effects on soil moisture and 
microclimate in central Amazonian forest. J. Trop. Ecol. 11, 205–221. https://doi. 
org/10.1017/S026646740000866X. 

Díaz, S., Kattge, J., Cornelissen, J.H.C., Wright, I.J., Lavorel, S., Dray, S., Reu, B., 
Kleyer, M., Wirth, C., Colin Prentice, I., Garnier, E., Bönisch, G., Westoby, M., 
Poorter, H., Reich, P.B., Moles, A.T., Dickie, J., Gillison, A.N., Zanne, A.E., Chave, J., 
Joseph Wright, S., Sheremet Ev, S.N., Jactel, H., Baraloto, C., Cerabolini, B., 
Pierce, S., Shipley, B., Kirkup, D., Casanoves, F., Joswig, J.S., Günther, A., 
Falczuk, V., Rüger, N., Mahecha, M.D., Gorné, L.D., 2016. The global spectrum of 
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