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Abstract 25 

Ongoing climatic change and anthropogenic pressure highlight the importance of reliable 26 

assessment of the ecological status of freshwaters. Bioindicators are used widely in 27 

ecological assessments as biotic assemblages reflect the environmental conditions in current 28 

ecosystems. However, the robustness of bioindicators relies on the transferability of indices 29 

and models outside the regions they were derived from. We tested the reliability of stream 30 

diatom assemblages as indicators of water chemistry and climatic factors in a cross-regional 31 

assessment by developing a predictive model with diatom assemblage data from Sweden and 32 

using it to model stream conditions in Finland. The inference models and predictions were 33 

performed using the Boosted Regression Trees (BRT) method, separately in species and 34 

genus levels. The predictive performance of the calibration models in Sweden were good or 35 

moderate for both water chemistry and climatic variables, both at species and genus levels. 36 

The most important climatic (growing degree days, r2 = 0.57) and water chemistry variables 37 

(pH, r2 = 0.65; and total phosphorus (TP), r2 = 0.52) could be inferred from diatom 38 

assemblages relatively well. However, predictive performances of the cross-regional models 39 

were low (r2≤0.13). Nevertheless, water chemistry variables, conductivity (r2=0.13) and TP 40 

(r2=0.12), were predicted the best. The most important diatom indicators for climatic and 41 

environmental variables varied between Sweden and Finland. The study showed that diatom 42 

assemblages can be robust indicators of water chemistry and climatic variables within the 43 

region where the inference models are calibrated. However, their indicator ability may be 44 

weak between regions. The reason for the low transferability of the diatom inference models 45 

may stem from between-region differences in species realized niches, species pools and/or 46 

ecosystems, local adaptation or species identification. Hence, models should only be used 47 

with caution in geographical contexts other than the one where they were developed. The 48 

calibration data should cover as large geographical area as possible to give reliable 49 
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predictions when applied in smaller regions. 50 

 51 

1. Introduction 52 

Water is an essential element for life. However, ongoing climate change and increasing 53 

anthropogenic pressures affect the quality of all kinds of aquatic ecosystems (Foley et al. 54 

2005, Wrona et al. 2006). Freshwater ecosystems are especially threatened (Heino et al. 55 

2009). In order to monitor and predict the changes caused by the changing climate and land 56 

use, robust methods are necessary. Although assessments of water quality using bioindicators 57 

are conducted around the world, many regions do not have a robust system for water quality 58 

assessments (Taylor et al. 2007, Chen et al. 2016, Tan et al. 2017). Furthermore, the potential 59 

effect of climatic factors on bioindicators is typically not integrated in existing biotic indices, 60 

which are calibrated mainly with water chemistry. This may hinder the reliability of these 61 

indices under rapidly changing climatic conditions and in cross-regional assessments. 62 

Bioindicators are widely used to infer the ecological status of ecosystems. The robustness of 63 

bioindicators relies on the known environmental preferences of indicator species (Smol & 64 

Stoermer 2010). Depending on the life-cycles of the studied taxa, biological assemblages 65 

reflect the conditions for a variable period of time rather than reflecting conditions only 66 

during a snapshot like water chemistry sampling does (Sandin & Verdonschot 2006). 67 

Additionally, communities reflect the overall conditions, i. e. the mixture of chemical 68 

compounds, physical environment and biological interactions providing a cost-efficient 69 

method for environmental surveys. In freshwaters and especially in fluvial ecosystems, the 70 

most commonly used bioindicators are macroinvertebrates and microscopic algae, especially 71 

diatoms (Resh 2008). Diatoms (Bacillariophyceae) are microscopic unicellular algae, living 72 

in almost any kind of waters, and can be identified typically to species and variety level by 73 
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their unique siliceous cell wall (Round et al. 1990). Environmental preferences of many 74 

diatom species are known relatively well (Smol & Stoermer 2010) and many species have a 75 

specific range of tolerance for pH or nutrient enrichment, for instance (e.g. van Dam et al. 76 

1994). Currently used diatom indices, such as IPS (Cemagref 1982) or ACID (Andrén & 77 

Jarlman 2008), are based on these known tolerances.    78 

Traditionally, indices are built using simple methods such as weighted averaging (Cemagref 79 

1982, Kelly & Whitton 1995, Coste et al. 2009). A disadvantage of weighted averaging is that 80 

it assumes a unimodal response of species to environment, which often is not the case in 81 

nature. A more novel method would be a machine learning approach such as Boosted 82 

Regression Trees (BRT), which takes into account more complex responses, interactions 83 

between predictors and thresholds above or below which species may occur (Elith et al. 84 

2008).  85 

There are other problems with the accuracy of diatom indices (e.g. Besse-Lototskaya et al. 86 

2011). As a growing number of countries are developing their own indices for water quality 87 

assessment, many still use indices developed in some other geographical region (Taylor et al. 88 

2007, Chen et al. 2016, Tan et al. 2017). Recently, it has been shown that the observed optima 89 

and tolerances of diatom species might vary between geographical regions (Rimet et al. 2007, 90 

Soininen et al. 2019; but see Bennett et al. 2010). This observed variation among species’ 91 

responses indicates that the indices developed in one region may not be transferable across 92 

regions. This is disappointing since the usage of diatoms as indicators (e.g. of water 93 

chemistry) relies on the concept that diatom distributions are ubiquitous and restricted only 94 

by local environmental variables to similar degree across regions (Smol & Stoermer 2010). 95 

Although, this might be the case for many cosmopolitan species, a number of studies suggest 96 

that endemism, local adaptation and dispersal limitation occur among diatom species 97 
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(Vanormelingen et al. 2008, Jüttner et al. 2010). In fact, ultimate factors, such as climate, 98 

geology and land use, can in some circumstances explain more variation in diatom 99 

communities and species distributions than local environmental factors (Pajunen et al. 100 

2016a).  101 

We studied the usefulness of stream diatom assemblages as indicators of water chemistry and 102 

climatic factors across two boreal regions. We developed a predictive model using Swedish 103 

diatom data and used it to model stream conditions in a neighboring country, Finland. A 104 

recent study has shown that diatom assemblages can be good indicators for both local 105 

environmental and climatic factors (Pajunen et al. 2016b); however, the applicability of such 106 

predictive model have not yet been tested outside the regions they were calibrated.    107 

 108 

2. Materials and methods 109 

2.1. Diatom and physico-chemical data 110 

Two extensive data sets of stream diatom assemblages were obtained from the neighboring 111 

countries Sweden (55° – 70° N, 10° – 25° E) and Finland (60˚ – 70˚ N, 20˚ – 32˚ E) in order 112 

to conduct a cross-regional assessment of the reliability of bioindicators (Fig. 1). The 113 

Swedish data set consisted of 571 stream sites (Table 1). The Swedish samples were collected 114 

for the national and several regional routine sampling programs across Sweden during 115 

autumn. Diatoms were sampled by brushing stones with a toothbrush, according to the 116 

recommendations of EU standards ((European Committee for Standardization 2014a; 2014b). 117 

At least five replicate, pebble-to-cobble sized stones (5-15 cm) were selected randomly from 118 

five to 10 cross-stream transects. They were brushed and the diatom suspension was placed in 119 

a small plastic bottle and preserved in ethanol (70%). In the laboratory, organic materials 120 
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were cleaned from diatom samples by wet combustion with hydrogen peroxide and mounted 121 

in Naphrax or Dirax. At least 400 valves per sample were counted using phase contrast light 122 

microscopy (magnification 1000x) and identified to the lowest taxonomic level possible 123 

using the literature in the Swedish standard (Jarlman et al. 2016). Identifications were done 124 

by experts who had previously harmonized their identification routines within the Nordic-125 

Baltic Network for Benthic Algae in Freshwater (NorBAF; Kahlert & Albert 2005), meaning 126 

that their counts were as similar as counted replicates, and diatom names were harmonized 127 

according to conventions adopted by NorBAF (Kahlert et al. 2009). Sampling for water 128 

chemistry and other local parameters are part of those routine sampling programs, and water 129 

chemistry values consist of either spot values taken simultaneously with diatom samples or 130 

monthly mean values. Both diatom and other data are stored in the national database 131 

(Department of Aquatic Sciences and Assessment SLU 2010).  132 

The Finnish data set comprised 227 stream sites collected between 1986 and 2004. The sites 133 

were located in the five ecoregions in Finland and covered broad gradients in water chemistry 134 

(Soininen et al. 2004) (Table 1). All sampling was conducted during low flow conditions in 135 

July and August. At the majority of the sites, water samples were taken simultaneously with 136 

the diatom samples and analyzed for total phosphorus (TP), pH, conductivity and water color. 137 

For less than 20% of the sites, water chemistry data were taken from the national water 138 

quality database (Finnish Environment Institute 2019), using results from the nearest 139 

sampling occasion in space and time. Current velocity and stream width were measured and 140 

shading by riparian vegetation was assessed at each site along 10 transects perpendicular to 141 

the flow covering the whole sampling area. Diatom samples were collected and prepared 142 

following standard protocols as in Sweden, with the exception that combustion was done with 143 

acid (HNO3:H2SO4; 2:1) (European Committee for Standardization 2014a; 2014b). For each 144 

sample, 250–500 valves were counted using phase contrast light microscopy. Species were 145 
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identified to the lowest level possible according to Krammer & Lange-Bertalot (1986-1991) 146 

and Lange-Bertalot & Metzeltin (1996) by two analysts who had harmonized their species 147 

identification routines by working together. 148 

The Swedish and Finnish data sets were carefully harmonized by diatom experts following 149 

the NorBAF conventions, involving the merging of subspecies and matching of both data 150 

sets. After harmonization the datasets comprised 878 species in Sweden and 213 in Finland 151 

(see Appendix A, Table A.1). All taxa not found in both data sets (n=699) were removed 152 

keeping the relative abundances of each species as in original full data. Thus, the summed 153 

relative abundances in the Swedish data set ranged from 27.5 to 100 % (md 82.2 %), and in 154 

the Finnish data set from 61.3 to 100 % (md 91.3 %). Additionally, diatom genera data were 155 

generated by merging this new reduced species data into diatom genera. In the end, both 156 

Swedish and Finnish data sets contained the same 196 species and 65 genera.  157 

2.2. Climatic data 158 

Climate data (averages for the years 1979–2013) were obtained from the CHELSA climate 159 

data base (Karger et al. 2017a, 2017b). The data set includes high resolution (30 arc sec ≈ 1 160 

km) climatic data for the earth land surface areas, including monthly mean temperature and 161 

precipitation patterns. Frost degree days (FDD, defined as temperature < 0 ˚C), growing 162 

degree days (GDD, defined as temperature > 5 ˚C), mean annual precipitation (MAP) and 163 

water balance (WAB) were defined for each Finnish and Swedish stream site from the 164 

climatic data rasters. FDD indicates the length and severity of the frozen winter period, 165 

whereas GDD can be seen as a proxy for temperature and overall productivity of the stream 166 

and its catchment. MAP and WAB indicate the amount of atmospheric water supply to the 167 

whole catchment area, potential run-off and flow regime.   168 

2.3. Data analyses 169 
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Covariance between the local and climatic variables was assessed using Spearman’s rank 170 

correlation separately for both countries. Climatic and environmental data exhibited strong 171 

collinearities (≥ |0.70|) between some variables in both data sets (Table A.2). Coordinates (i. 172 

e. latitude and longitude), FDD and MAP were later excluded from the predictions due to the 173 

strong correlations with other variables, such as GDD and WAB. GDD and WAB were 174 

selected as they reflect the overall climatic conditions in the growing season. Overlying 175 

histograms (Fig. A.1) show that the ranges of climatic and environmental variables were 176 

much larger in the Swedish data set than in the Finnish data set. To avoid extrapolation, 177 

Swedish data were chosen to be used as the calibration data to predict Finnish environmental 178 

conditions. Principal component analysis (PCA) was used to further explore the 179 

environmental data of both data sets (Fig. A.2, Table A.3). Environmental variation was 180 

much larger in the Swedish data set than in Finnish data set. This supports the decision to use 181 

Swedish data as the calibration data for the predictions.    182 

 183 

The most important variables for diatom assemblages in the data sets were investigated by 184 

using RDA, both at species and genus level. The strongly correlated variables (coordinates, 185 

FDD and MAP) were removed prior the analyses. To further visualize the relationships 186 

between diatom assemblages and the climatic and environmental variables, we performed 187 

non-metric multidimensional scaling (NMDS) for all data sets (Figs. A.3 and A.4). PCA, 188 

RDA and NMDS analyses were performed in R (version 3.2.2; R Development Core Team, 189 

2016) applying VEGAN package (Oksanen et al. 2015). 190 

 191 

2.4. Calibration and inference models 192 

The prediction models were conducted by using Swedish data as calibration data and Boosted 193 

Regression Trees (BRT) as a modelling approach. BRT is a machine learning method where 194 
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predictions with minimized loss function (such as deviance) are created by a boosting 195 

technique in which a sequence of simple regression trees is progressively grown fitting one 196 

tree at a time to the sequence (Friedman et al. 2000, De’ath, 2007, Elith et al., 2008). All 197 

models were fitted using R software (version 3.2.2; R Development Core Team 2016). 198 

Models were conducted separately for the species and genera data. In model calibration, 199 

GDD, WAB, pH, TP, conductivity and water color were set as response variables and the 200 

diatom abundance of 196 taxa or 65 genera from 571 sites as predictors. The BRT model was 201 

fitted using functions from the gbm package version 2.1.3 (Ridgeway 2017) based on 202 

Friedman’s (2001) gradient boosting machine. The interaction depth in the model was set to 203 

6. The learning rate, determining the contribution of each tree to the growing model, was set 204 

to 0.005 and the maximum number of trees was set to 1000. A Gaussian distribution of errors 205 

was used to model the six variables. Leave-one-out cross-validation (LOO) was used to 206 

assess the performance of the models. Model performance was estimated by the coefficient of 207 

determination (r2) and the root-mean-square error of prediction (RMSEP). The relative 208 

importance of the predictor variables was first estimated according to Friedman (2001) and 209 

then scaled to sum up to 100. The higher value a predictor variable gets, the stronger its 210 

influence on the response variable. Additional calibration models were performed using 211 

Finnish data in order to estimate the relative importance of species and genera in Finland. 212 

Finally, the Swedish calibration models were used to predict climatic and environmental data 213 

for Finnish data.  214 

 215 

Alternative models were conducted to guard against potential differences among calibration 216 

models, datasets and used modelling techniques. Firstly, the performance of calibration 217 

models using Finnish dataset and their predictive ability in Swedish data were tested. 218 

Secondly, a subset of Swedish dataset (n = 396 sites, subsampled to match the ranges in 219 
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Finnish data, see Appendix C, Table C.1) was used as calibration data to infer climatic and 220 

environmental variables for Finnish data. Thirdly, a weighted averaging method was used to 221 

repeat the original calibration and inference models (Swedish data as calibration dataset (n = 222 

571 sites) for sites in Finland). The WA models were fitted using functions from the RIOJA 223 

package version 0.9-21 (Juggins 2019) in R. The performance of the calibration models was 224 

assessed using leave-one-out cross-validation and model performance was estimated by the 225 

coefficient of determination (r2) and the root-mean-square error of prediction (RMSEP).     226 

 227 

3. Results 228 

PCA analyses showed much larger variation in environmental and climatic variables in 229 

Swedish than in Finnish data set (Fig. A.2, Table A.3). The first two components collectively 230 

explained 67% of the variation in Swedish data and 66% in Finnish data. In Swedish data, 231 

latitude, longitude and FDD had high positive and GDD a negative loading on the first 232 

component, while MAP and WAB had high positive and pH a negative loading on the second 233 

component. In Finnish data, latitude and FDD had high negative and GDD a positive loading 234 

on the first component, whereas pH had a high negative loading on the second component. 235 

Based on the RDAs, pH, GDD and TP were the most important factors explaining variation 236 

in diatom species composition of the set of variables tested in Sweden, whereas GDD, 237 

conductivity and TP were the most important factors in Finland (Fig. 2, see also Appendix B, 238 

Table B.1). The most important factors for diatom genera did not differ from those for 239 

species, except that in Finnish data, where TP was slightly more important than conductivity 240 

(Fig. B.1, Table B.2). 241 

 242 
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Within Sweden, the predictive performance of the calibration models was moderate (r2 ≥ 243 

0.27) for all variables (Table 2, Figs. 3 and B.2). The highest coefficients of determination 244 

between observed and diatom inferred values were for pH (r2 = 0.65 with species data and r2 245 

= 0.71 with genus data), GDD (r2 = 0.57 and r2 = 0.53) and TP (r2 = 0.52 with both species 246 

and genus).   247 

 248 

When predicting from Sweden to Finland, the predictive performance of all the models was 249 

low (r2 = 0.002 to 0.13) (Table 2, Figs. 4 and B.3), although evaluation of the prediction 250 

models showed moderate performances for the most important variables, GDD, pH, TP and 251 

conductivity (r2 = 0.31 and 0.33). Nevertheless, water chemistry variables conductivity (r2 = 252 

0.13 (species) and 0.11 (genera)) and TP (r2 = 0.12 and 0.10) were best predicted. On 253 

average, environmental variables could be predicted slightly better using species than genus 254 

models. None of the alternative models showed significant improvement in the model 255 

performances (Tables C.1, C.3 and C.4). The predictive performances of the alternative 256 

models showed moderate to good performance for Swedish data and poor to moderate 257 

performance for Finnish data. The level of model performance did not considerably change 258 

whether a country was used as calibration dataset or being inferred for, i.e. calibration models 259 

using Finnish dataset had poor performance in Finland yet they could infer for Swedish data 260 

reasonably well.    261 

 262 

The most important species and genera as predictors for each variable varied between 263 

Sweden and Finland (Figs. 5 and B.4). In the top ten of the most important species, only two 264 

(for color, conductivity and TP) or three (for GDD, WAB and pH) species were the same in 265 

both countries (Fig. 5). The ten most important genera included four (for conductivity, TP 266 
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and GDD), five (for pH and WAB) or six (for color) genera that were among the ten most 267 

important in both countries (Fig. B.4).     268 

 269 

4. Discussion 270 

The performances of the calibration models within Sweden demonstrated that the most 271 

important climatic and water chemistry variables can be inferred from diatom assemblages 272 

relatively well, both with species and genus level taxonomy. The predictive ability for pH and 273 

TP showed similar or better accuracy than diatom inference models conducted previously in 274 

streams in other regions (e.g. USA (pH and TP; Pan et al. 1996), Finland (pH; Soininen & 275 

Niemelä 2002), Finland (TP; Pajunen et al. 2016b)). GDD was also well-predicted within the 276 

calibration set when compared with inference models created earlier in Finland with the same 277 

method (Pajunen et al. 2016b). These results indicate that diatom assemblages are robust 278 

indicators of both local environmental and climatic variables, when the inference models are 279 

being used in the same geographical region where they have been calibrated.  280 

However, we found only low transferability of our predictive models from Sweden to Finland 281 

for both local environmental and climatic variables. Although some differences among 282 

species responses were expected between the two boreal neighboring countries, such a poor 283 

predictive performance for Finland was surprising even if the performances of the calibration 284 

models were good or moderate. This result is especially unexpected concerning pH and TP, 285 

which are variables typically well-predicted by diatom assemblages (Pan et al. 1996, 286 

Soininen & Niemelä 2002, Pajunen et al. 2016b). The failure of the cross-regional predictions 287 

could be caused by several reasons: 1) between-region differences in species realized niche 288 

brought about by competition or stressors, 2) different species pools and ecosystems in the 289 

study regions, or 3) identification differences and the effect of data selection. Below, we 290 
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discuss these aspects in more detail. 291 

4.1. Fundamental vs realized niche  292 

The poor predictive performance could result from different realized niches for species in 293 

Sweden and Finland. A species has a fundamental ecological niche, which is often described 294 

as an optima and range of tolerance for environmental conditions (Hutchinson 1957). 295 

However, in the presence of competition or environmental stressors, a species is forced to use 296 

only a part of its range of tolerance (Hutchinson 1959, Soberón & Peterson 2005, Peterson 297 

2011). As the size and composition of regional species pool, environment and the dominance 298 

of competitive species may differ among geographical regions, the realized niches of species 299 

may vary among different regions (Soberón & Peterson 2005, Pearman et al 2008). This 300 

creates a problem in species based inference models as species’ fundamental niches can 301 

seldom, or never, be fully covered in natural environments (Jackson & Overpeck 2000, 302 

Jiménez et al. 2019). In contrast, the observed niches of diatom species in nature are typically 303 

the realized niches in a certain geographical area. Thus, the inference models are most likely 304 

to perform better in the region they have been calibrated than outside the calibration region.  305 

The differences in the realized niches between the regions influence the optima and 306 

tolerances of species used in diatom indices. In fact, many studies have found a discrepancy 307 

in the indicator values of some diatoms species. For example, Potapova & Charles (2007) 308 

pointed out that some studies have reported low nutrient optimum for Ulnaria ulna (Kelly & 309 

Whitton 1995, Soininen & Niemelä 2002), yet some have found it to indicate high-nutrient 310 

conditions (Rott et al. 1997). Such differences in species’ responses to environmental 311 

variables between regions may be caused by the variable degree of biotic interactions, local 312 

adaptation, or different environmental conditions, but then, these differences may also stem 313 

from identification problems (see section 4.3). Also, the ranges of environmental variables in 314 
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the datasets influence the derived values of species’ optima and tolerances. Models calibrated 315 

from larger geographical areas may perform better as they include wider ranges of 316 

environmental variables and may thus be able to detect the species’ realized niche more 317 

reliably. Additionally, mean values of temporal environmental measurements can reflect more 318 

robustly the environmental conditions affecting species than snapshot water chemistry 319 

measurements. On the other hand, environmental interactions, interspecific interactions or 320 

even microevolution may increase the noise in such datasets, which again could reduce the 321 

performance of models based on these datasets.    322 

4.2 Different species pools and ecosystems 323 

Differences in the species pools and environmental conditions between the regions where the 324 

calibration and inferred data sets originated may decrease the predictive ability of diatom 325 

inference models. Here, Swedish and Finnish data sets consisted of the same 196 species, 326 

which generally represented the majority of individuals in sites in both countries (median 327 

coverage in Finland was 91.3% and in Sweden 82.2% of the individuals). However, in some 328 

sites the species assemblages were dominated by species not occurring in the original data set 329 

of the neighboring country. This indicates a difference in species pools between these two 330 

neighboring countries, yet also, the variation in species assemblages may stem from 331 

environmental differences (Table 1, Fig. A.4) between Sweden and Finland. Based on the 332 

RDA results, the most influential water chemistry variable for Finnish diatom communities 333 

was conductivity, whereas in Sweden, pH was the most important environmental factor. This 334 

shows that the main drivers of diatom community composition differ between the two 335 

countries indicating different environmental settings and limiting resources. The poor 336 

performance of Finnish calibration models (Table C.1) compared to earlier studies using the 337 

same data set with full species data (Pajunen et al. 2016b) indicate that the subset of Finnish 338 
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diatom assemblages used in this study lack the ability to indicate environmental conditions in 339 

Finland.  340 

The differences between species pools in Sweden and Finland could also reflect some 341 

dispersal limitation due to dispersal barriers (e.g. the Baltic Sea). Additionally, both countries 342 

may contain some peculiar ecosystems, such as heavily polluted, acidic or brownificated 343 

streams, not found in the other country (or at least not covered in the data set), and these 344 

ecosystems may cover such environmental conditions and gradients that harbor specialist 345 

taxa. For instance, the relative abundances of the indicator species used in the models covered 346 

only 27.5% out of the total abundance (500 cells) in the site with the highest water color (535 347 

mg Pt L-1) in Sweden. This indicates that the dominant species in this site is especially 348 

tolerant of high water color, and its absence in Finnish data set may be due to the smaller 349 

range of water color in the Finnish data set.  350 

Generally, one reason for the models’ poor ability to infer environmental variables may be the 351 

lack of specialized species in the data sets. Therefore, the indication ability of the 352 

assemblages is weak due to the lack of joint indicator species between the data sets. Many 353 

good indicator species are rare as they have a clear optima for a certain environmental 354 

variable and a narrow range of tolerance. However, integrating these rare species into 355 

inference models is problematic as their low occurrence can cause noise and instability to the 356 

models. In this study, rare species were not systematically left out, since the species data from 357 

Sweden and Finland were matched to consist of all the species present in both data sets. Thus, 358 

keeping all the species in the models would probably enhance the predictive ability of the 359 

calibration set, but not the inference model.  360 

4.3 Problems in identification or data selection  361 

In addition to cryptic species, diatom models can also suffer from other problems in species 362 
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identification (Kahlert et al. 2012, Werner et al. 2016). The identification process is very 363 

detailed and the accurate interpretation of complex structures is in the end subjective. 364 

Therefore, the probability of differences in identification is greater when more analysts have 365 

participated in the species identification. However, such differences can be minimized by 366 

identifying diatoms to genus level only. In this study, the differences between the predictive 367 

ability of species and genera based models were only minor, indicating that our 368 

harmonization efforts had been successful and species identification did not seem to cause 369 

major problems in this study. The similar performance of the two models may also indicate 370 

that the whole diatom genera responded to environment quite similarly and/or that the use of 371 

genus level in identification overall decreased the between-analyst differences in species 372 

identification, and models performed well even if the sensitivity of genus level to indicate 373 

environmental conditions may be somewhat lower than the species level.   374 

Finally, we note that the inconsistencies in observed species optima and the range of 375 

tolerance between different geographical areas can be caused by differences in ranges of 376 

environmental variables in each data set. It has been shown that the relative importance of an 377 

environmental variable for diatom community depends on its range of variation in the data set 378 

(Potapova & Charles 2002). Moreover, in streams, environmental conditions can fluctuate 379 

rapidly, and thus, a snapshot measurement of a water chemistry variable may not reflect the 380 

actual conditions faced by the biota accurately enough. This may have partly caused the poor 381 

predictive ability of environmental variables in Finland as the water chemistry values in 382 

Finnish dataset were based on snapshot measurements whereas the Swedish environmental 383 

data consisted of mean values from different sampling occasions. Furthermore, the 384 

unidirectional flow may increase the potential mass effects, i.e., a constant dispersal of 385 

species from high-quality patches to sink habitats (Pulliam 1988, Terui et al. 2014, Jamoneau 386 

et al. 2018). Therefore, species may occur at a site that does not match their preferences 387 
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because of such metapopulation dynamics.  388 

 389 

5. Conclusions 390 

The present study shows that diatom assemblages are reliable indicators of water chemistry 391 

and climatic variables within the region where the inference models are calibrated, yet their 392 

indicator ability shows low transferability across regions. The underlying reasons for the 393 

weak performance of the diatom inference models may be related to between-region 394 

differences in species realized niche, species pools and/or ecosystems, local adaptation or 395 

species identification. These findings highlight the importance of being careful when using 396 

models based on regional datasets in a different geographical context.  397 
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TABLE 1. Summary (minimum, maximum, range, median and standard deviation (Sd)) of the measured variables from 571 stream sites in 1 

Sweden and 227 stream sites in Finland.  2 

 3 

                  Sweden                  Finland 

 

Variable 

 

Unit 

 

Min 

 

Max 

 

Range 

 

Median 

 

Sd 

 

Min 

 

Max 

 

Range 

 

Median 

 

Sd 

Growing degree days  

(GDD) 

 

 

 

450.9 

 

1680.1 

 

1229.2 

 

1352.0 

 

253.2 

 

450.1 

 

1349.1 

 

899.0 

 

1143.1 

 

252.8 

Frost degree days (FDD)  0 1818.1 1818.1 243.6 429.3 337.1 1811.0 1473.9 893.3 396.3 

Precipitation (MAP) mm 415.5 997.2 581.7 611.8 93.3 371.7 732.9 361.2 612.3 71.7 

Water balance (WAB) mm 102.4 784.0 681.6 255.9 98.5 126.5 441.4 314.9 274.9 48.3 

Total phosphorus (TP) µg L-1 1.0 332.0 331.0 23.0 38.1 2.0 190.0 188.0 21.0 32.1 

Conductivity  µS cm-1 0.7 143.0 142.3 7.6 15.9 0.9 36.6 35.7 4.0 7.9 

pH   3.6 9.2 5.6 7.0 0.8 4.5 8.2 3.7 6.9 0.6 

Water color  mg Pt L-1 3.5 535.0 531.5 100.0 84.2 5.0 400.0 395.0 80 71.2 

 4 

 5 

 6 

 7 
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Table 2. Summary of model performances shown as the model predictive ability (i.e. how 1 

well the model was transformed from Sweden to Finland) (r2). The results of the model 2 

evaluations (r2), i.e. the performances of the calibration models (in Sweden), are shown in 3 

parenthesis.   4 

 Species  

 

Genera 

 

GDD 

 

 

0.05 (0.57) 

 

0.02 (0.53) 

WAB 

 

0.00 (0.33) 0.02 (0.30) 

pH 

 

0.01 (0.65) 0.01 (0.71) 

TP 

 

0.12 (0.52) 0.10 (0.52) 

Conductivity 

 

0.13 (0.31) 0.11 (0.33) 

Water color 

 

0.04 (0.29) 0.01 (0.27) 

 5 
 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 
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Figure legends 1 

Figure 1. Locations of the stream sites in Sweden (n=571, 55° – 70° N, 10° – 25° E) and 2 

Finland (n=227, 60˚ – 70˚ N, 20˚ – 32˚ E) Finnish (n=227), in northern Europe.   3 

 4 

Figure 2. The ordination plots of Redundancy Analysis (RDA) on the species data using the 5 

climatic and environmental variables for 571 stream sites in Sweden and 227 stream sites in 6 

Finland. Total phosphorus (TP), conductivity and water color were log-transformed. The 7 

other abbreviations stand for growing degree days (GDD) and water balance (WAB). The 8 

circles represent stream sites. 9 

 10 

Figure 3. Relationships between observed and diatom species inferred values for climatic and 11 

local environmental variables in the calibration models (i.e. within Sweden). Models were 12 

conducted using Boosted Regression Trees (BRT) method. Each plot shows the coefficient of 13 

determination (r2) and root-mean-square error of prediction (RMSEP).  14 

 15 

Figure 4. Relationships between observed and diatom species inferred values for climatic and 16 

local environmental variables in Finland using the Swedish calibration models for prediction. 17 

Models were conducted using Boosted Regression Trees (BRT) method. Each plot shows the 18 

coefficient of determination (r2) and root-mean-square error of prediction (RMSEP). 19 

 20 

Figure 5. The ten most important species for each climatic and environmental variable in 21 

Sweden and Finland. The importance of each species is shown as relative importance (%), 22 

which are estimated by using Boosted Regression Trees (BRT) method.  23 
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