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Abstract: The treatment of retinal diseases by intravitreal injections requires frequent administration
unless drug delivery systems with long retention and controlled release are used. In this work,
we focused on pullulan (≈67 kDa) conjugates of dexamethasone as therapeutic systems for in-
travitreal administration. The pullulan–dexamethasone conjugates self-assemble into negatively
charged nanoparticles (average size 326 ± 29 nm). Intravitreal injections of pullulan and pullulan–
dexamethasone were safe in mouse, rat and rabbit eyes. Fluorescently labeled pullulan particles
showed prolonged retention in the vitreous and they were almost completely eliminated via aque-
ous humor outflow. Pullulan conjugates also distributed to the retina via Müller glial cells when
tested in ex vivo retina explants and in vivo. Pharmacokinetic simulations showed that pullulan–
dexamethasone conjugates may release free and active dexamethasone in the vitreous humor for
over 16 days, even though a large fraction of dexamethasone may be eliminated from the eye as
bound pullulan–dexamethasone. We conclude that pullulan based drug conjugates are promising
intravitreal drug delivery systems as they may reduce injection frequency and deliver drugs into the
retinal cells.

Keywords: pullulan; dexamethasone; conjugate; retinal drug delivery; ocular fluorophotometry;
optical coherence tomography; pharmacokinetics

1. Introduction

Intravitreal injection is the most important mode of drug administration in the treat-
ment of retinal diseases. In particular, anti-inflammatory drugs (e.g., corticosteroids) [1–3]
and anti-neovascular inhibitors of vascular endothelial growth factor (VEGF) (antibodies,
Fab-fragments, soluble receptors and aptamers) are widely used in clinics [4–8]. In general,
intravitreal injections are safe, but frequent injections may result in reduced patient compli-
ance and some rare, but serious, adverse effects (e.g., infection and retinal detachment) [5,9].
Implants with prolonged ocular residence and controlled release have been developed to
prolong injection intervals of dexamethasone (e.g., Ozurdex) [1,3,9]. On the other hand,
delivery systems for trafficking therapeutics to the retinal cells (e.g., intracellularly acting
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peptides, proteins and nucleic acids) are needed. Therefore, nanoparticles and peptide
conjugates have been recently investigated for retinal delivery of dexamethasone and
nucleic acids [10–12].

Modified polysaccharides are promising candidates for the development of ocular
drug delivery systems [13]. For example, pullulan [14], dextran [15], hyaluronic acid [16]
and chitosan [17] have been investigated in this respect. Many polysaccharides can be
chemically functionalized for optimized drug delivery [13,18] and they can be formulated
as macroscopic implants [19,20], gels [21] and nanosized formulations [22]. In most studies,
drugs have been physically encapsulated into the polysaccharide formulations, such as
polymeric micelles or nanoparticles [13,23–25], whereas chemical covalent conjugation
technologies have not been applied for ocular in vivo drug delivery with polysaccha-
rides. Recently, the chemical conjugation through hydrazone bond was used to generate
peptide-dexamethasone and pullulan–dexamethasone conjugates that were investigated
in vitro [10,26]. In contrast to the ocular field, polymeric drug conjugates have been widely
investigated to provide site-specificity and extended drug release in some other medical
indications [27–32].

We have been investigating drug carriers based on pullulan, a fungal extracellular
polysaccharide produced by Aureobasidium pullulans [33,34]. Inexpensive and conveniently
modified pullulan is considered to be a biocompatible polymer. Previously, pullulan
has been used as a backbone in the synthesis of bioconjugates for drug delivery to the
liver and pancreas [14,27,33,35–37]. Conjugation of hydrophobic drugs to pullulan results
in self-assembled colloids with drug molecules oriented to the core of the nanoparti-
cles [27,28,33,35,36].

In this study, we investigated dexamethasone conjugates of pullulan that were ob-
tained with recently published synthetic procedures [26]. Dexamethasone was conjugated
to pullulan through a hydrazone bond that is expected to control drug release under
the acidic intracellular compartments (endosomes or lysosomes). We investigated ocular
safety, retinal distribution and ocular pharmacokinetics of fluorescently labelled pullulan–
dexamethasone after intravitreal injections into mouse, rat and rabbit eyes. Retinal distri-
bution of the conjugates was also investigated using ex vivo retinas of mice and cows.

2. Materials and Methods

Pullulan (67 kDa) was purchased from Hayashibara Biochemical Laboratories, Okayama,
Japan. Dexamethasone (DEX) was purchased from Sigma/Merck KgaA, Darmstadt, Ger-
many. Cyanine3 (Cy3) and bodipy (BDP) were purchased from Lumiprobe GmbH, Han-
nover, Germany.

2.1. Synthesis of Pullulan Conjugates

Cy3-pullulan-DEX and Cy3-pullulan have recently been prepared and characterized
by Kicková et al. [26]. Similar synthetic strategy was applied to prepare versions with green
fluorescent label starting from pullulan-DEX, namely BDP-pullulan-DEX and BDP-pullulan
(Supporting Information, SI-1). The chemical identity of the conjugates (Figure 1) was
confirmed by the NMR spectroscopy (SI-1 and in Kicková et al. [26]).

Stock samples of pullulan-DEX, Cy3-pullulan-DEX, BDP-pullulan-DEX, Cy3-pullulan and
BDP-pullulan were generated by dispersing them in mQ water or phosphate buffered saline.
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Figure 1. Chemical structures of fluorescently labelled pullulan conjugates. Synthetic details can be
found in a recent publication [26] and in Supporting Information SI-1.

2.2. Size and Zeta Potential

Aqueous dispersions of pullulan-DEX, Cy3-pullulan-DEX and BDP-pullulan-DEX
were analyzed by dynamic light scattering (DLS) using the Zetasizer Nano ZS (Malvern In-
strument Ltd., Malvern, Worcestershire, UK). Zeta potentials were analyzed from 1 mg/mL
polymer dispersions in 1 mM phosphate buffer (pH 7.4) at room temperature. All analyses
were performed in triplicate.

2.3. Endotoxin Tests

The endotoxins in the pullulan conjugate dispersions were determined using Limulus
Amebocyte Lysate gel-clot endotoxin assessment kit (Bioscience Lonza, Basel, Switzerland)
according to the manufacturer’s instructions. The stock solutions (5 mg/mL) of BDP-
pullulan-DEX and BDP-pullulan were prepared in sterile PBS at pH 7.4. These dispersions
were further diluted 1:1, 1:2 and 1:4 (v/v) with sterile endotoxin-free water as duplicates.
The conjugate samples, endotoxin standards (1.0, 0.5, 0.25, 0.125, 0.06 and 0.03 EU/mL) and
endotoxin-free water were transferred to reaction tubes (100 µL/tube) and reconstituted
with Limulus Amebocyte Lysate reagent (100 µL) in each tube. After one-hour incubation
at 37 ◦C each tube was inverted 180 degrees. Formation of firm gel was considered as an
indication of endotoxin positivity.

2.4. Ex Vivo Retinal Studies
2.4.1. Ex Vivo Mouse Retinal Organ Culture

Six day old (PN6) wild-type mice (C57BL/6) were used in this study. The mice were
housed and bred under standard white cyclic lighting with free access to food and water.
All mouse procedures were approved by the Tübingen University committee on animal pro-
tection (Mitteilung nach §4 Abs. 3 TierSchG Nr. AK 03/20 M) and performed in compliance
with the Association for Research in Vision and Ophthalmology ARVO Statement.

The preparation of organotypic retinal culture and maintenance of the retinal ex-
plants were performed according to published protocols [38–41] (for more details see SI-2).
The tissues were randomly assigned to the following treatment groups: Cy3-pullulan
(1.7 mg/mL), Cy3-pullulan-DEX (0.7, 1.4, and 1.9 mg/mL) and untreated control. The
treatments were carefully applied on the top of the retinal tissues (on the ganglion cell
layer) using volumes of 15 µL. Six retinal tissues were used for each group. The complete
medium (1 mL) under the retina was changed every 48 h and maintained in a humidified
atmosphere of 5% CO2 at 37 ◦C for six days.

The dying cells in the retinal explants were monitored using TUNEL assay with in situ
cell death detection kit based on conjugated fluorescein isothiocyanate [42]. The percentage
of positive cells was derived by dividing the number of positive cells by the total number of
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outer nuclear layer (ONL) or inner nuclear layer (INL) cells. One-way ANOVA method and
Tukey’s multiple comparisons test were selected for the statistical analyses, **** p < 0.0001.

2.4.2. Ex Vivo Bovine Vitreo-Retinal Organ Culture

Fresh bovine eyes were obtained from a local slaughterhouse (HKScan Finland Oy,
Outokumpu, Turku, Finland). The eyes were transported in carbon dioxide-independent
medium at 4 ◦C (GIBCO, Thermo Fisher Scientific, Dreieich, Germany), cleaned from the
connective tissues and dipped shortly into 20% (v/v) ethanol/water solution. The eyes
were kept in carbon dioxide-independent medium at room temperature followed by 10 min
incubation at 37 ◦C prior to dissection.

Vitreo-retinal explants were prepared as reported by Tavakoli et al. [43,44]. The
vitreo-retinal explant with intact inner limiting membrane (1–2 cm2) was placed onto a
Transwell® membrane (75 mm, 0.4 µm pore, Corning Incorporated, Kennebunk, ME, USA)
and the supplemented Neurobasal®-A medium (GIBCO, Thermo Fisher Scientific, Dreieich,
Germany) was added under the membrane. BDP-pullulan-DEX (5 mg/mL) was carefully
injected (100 µL) in the vitreous of the vitreo-retinal explant. Injections were performed
horizontally to prevent retinal damage and avoid crossing the inner limiting membrane.
The vitreo-retinal explant was maintained in a humidified atmosphere containing 5% CO2
at 37 ◦C.

After incubation for 24 h, 20 cryosections of the vitreo-retinal explant were gener-
ated. Immunohistochemistry and imaging were performed according to the previously
published methods [43,44]. Rabbit anti-collagen IV antibody (Abcam plc., Cambridge,
UK) was used for labelling the inner limiting membrane. Hoechst (Thermo Fisher Sci-
entific Inc./Invitrogen™, Carlsbad, CA, USA) stain was used to label the nuclei and
Alexa Fluor 568-labelled goat anti-rabbit secondary antibody (Thermo Fisher Scientific
Inc./Invitrogen™, Carlsbad, CA, USA) was used to label inner limiting membrane. The
images were obtained by confocal microscope (Leica TCS SP8, Leica Microsystems GmbH,
Wetzlar, Germany) using 20× (HC PL APO) and 93× (HC PL APO) objectives.

2.5. In Vivo Animal Studies

Four months old male pigmented rats (HsdOla/LH), twelve-months old female albino
New Zealand White rabbits and two-months old male pigmented mice (C57BL/6J) were
used in these studies. The animals were housed under standard white cyclic lighting with
free access to food and water. All experiments were designed and conducted in accordance
with the guidelines of the ARVO Statement for the Use of Animals in Ophthalmic and Vision
Research. All procedures were approved by the Finnish National Animal Experiment Broad
(ELLA, Regional State Administrative Agency for Southern Finland), performed under
project license (ESAVI-2020-027769) and in compliance with 3Rs principle (replacement,
reduction and refinement) monitored by animal-welfare body of University of Eastern
Finland Lab Animal Center (UEF LAC).

2.5.1. Safety Studies in Mice

Mice were anesthetized with intraperitoneal injection of 60 mg/kg ketamine (Ketaminol®,
50 mg/mL; Pfizer Oy Animal Health, Espoo, Finland) and 0.4 mg/kg medetomidine
(Domitor®, 1 mg/mL; Orion Pharma, Espoo, Finland). The mouse pupils were dilated with
topically applied 0.5% tropicamide (Oftan® Tropicamid, 5 mg/mL; Santen Pharmaceutical
Co., Ltd., Tampere, Finland). Under full anaesthesia, volumes of 1 µL of Cy3-pullulan
(5 mg/mL) or Cy3-pullulan-DEX (5 mg/mL) in PBS (pH 7.4) were injected intravitreally
into mice using Hamilton microinjector (Hamilton Co., Reno, NV, USA). A topical eye
drop (Viscotears®, Alcon, Finland) was applied after intravitreal injections to prevent
dryness of the cornea. Quality of intravitreal injections was confirmed by optical coherence
tomography (OCT) and fundus camera (Phoenix MICRONTM, Berkeley, CA, USA).

After 24 h the mice were sacrificed, the eyes were removed and incubated in a 4% PFA
solution for 2 h. The eyes were stored in 1% PFA solution until further processing of
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organotypic retinal cultures. The following procedures were performed according to
published protocols [38–42] and method described in SI-2.

2.5.2. Ocular Retention and Safety Studies in Rats

Anesthesia was induced in a box using an inhalation system run at 450–500 mL/min air
flow and ≈4% of isoflurane purchased from Chanelle Pharma (London, UK). The anesthesia
was maintained by 200–250 mL/min air flow containing ≈2% isoflurane. The eye muscles
were relaxed with topical instillation of medetomidine. The pupil was dilated by topical
instillation of tropicamide and phenylephrine (Oftan® Metaoksedrin, 100 mg/mL; Santen
Pharmaceutical Co., Ltd., Tampere, Finland) few minutes before each measurement. The
baseline autofluorescence in fluorophotometry (Ocumetrics, Inc., Mountain View, CA, USA)
and fundus/OCT images of each eye were captured before intravitreal injections. Local
ocular surface anesthesia was induced shortly before intravitreal injections by topical
instillation of oxybuprocaine (Oftan® Obucain, 4 mg/mL; Santen Pharmaceutical Co., Ltd.,
Tampere, Finland).

The injected solutions were prepared in isotonic PBS buffer in a sterile condition.
Intravitreal injections of BDP-pullulan (3 µL, 5 mg/mL) and BDP-pullulan-DEX (3 µL,
10 mg/mL) in PBS (pH 7.4) were performed with a Hamilton syringe (Hamilton Co., Reno,
NV, USA) equipped with a 34 G needle. BDP-pullulan with 2.2% GPU (glucose per unit,
repetition unit in the pullulan chain) modification by BDP (corresponding to 6% w/w)
and BDP-pullulan-DEX with 1.1% GPU modification by BDP (corresponding to 3% w/w)
and 5.2% GPU modification by DEX (corresponding to 10% w/w) were used in these
experiments. Immediately after the intravitreal injections the eyes were topically covered
with carbomer hydrogel (Viscotears®, 2 mg/g; Dr. Winzer Pharma, Berlin, Germany)
to prevent corneal drying. Fundus and OCT images were obtained to check the quality
of injections. The procedures of anesthesia, topical drop, muscle relaxant and pupillary
dilatant applications were used in all measurements.

2.5.3. Fluorophotometric Studies with Rabbits

The rabbits were anesthetized by s.c. injection of 0.5 mg/kg medetomidine and ke-
tamine (25 mg/kg; Ketaminol®, 50 mg/mL; Pfizer Oy Animal Health, Espoo, Finland).
The pupils were dilated by using topical tropicamide eye drop. The baseline autofluores-
cence for each eye was measured before intravitreal injection. Oxybuprocaine was instilled
topically as local anesthetic a few minutes before the intravitreal injections.

The intravitreal injection (50 µL) of BDP-pullulan-DEX (10 mg/mL) solution in PBS
(pH 7.4) was performed with 31 G needle inserted about 4 mm from the limbus trans-
sclerally into the vitreous. Immediately after intravitreal injections, the eyes were topically
covered with carbomer hydrogel to prevent corneal dryness.

The experimental measurements were performed under light sedation at various time
points post-injection. Medetomidine (0.4 mg/kg) was used as a sedative by s.c. injection
and topical tropicamide was used to dilate pupils a few minutes before each measurement.
Atipamezole (0.2 mL/kg; Antisedan®, 5 mg/mL; Orion Pharma, Espoo, Finland) was used
as an antagonist to reverse the sedation by s.c. injection.

The post-injection fluorescence signals were measured from the vitreous and aque-
ous humor. Autofluorescence was subtracted and the resulting values were converted to
BDP-pullulan and BDP-pullulan-DEX concentrations with calibration standards (see SI-3,
Figures S2 and S3). The concentrations were used to determine pharmacokinetic parameters
(clearance, volume of distribution and half-life) with PKSolver software [45]. One com-
partment model with first-order elimination rate was used for curve fitting. The nonlinear
weighting [1/(observed concentration)2] method was used to improve the quality of fitting
for terminal time points. More details on in vivo fluorophotometry and pharmacokinetic
analyses can be found in our earlier publications [10,15].
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2.5.4. Pharmacokinetic Simulations

Pharmacokinetic simulations were performed to estimate the elimination routes of
polymer conjugate. The experimental values for the vitreal clearance and volume of distri-
bution were used to build the model. The simulated in vivo release rate of dexamethasone
was assumed to be similar with the release rate in vitro [26] (SI-4, Figure S4). The simu-
lations for the concentrations of free dexamethasone in the vitreous and aqueous humor
were performed for the rat, rabbit and human eyes. The schematic representation of the
model is shown in Figure 2. The details are shown in SI-4, Table S1 and Figure S5. For
numerical simulations, STELLA® software version. 8.1.1 (isee systems, Lebanon, NH, USA)
was used with fourth order Runge–Kutta algorithm.
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Figure 2. Scheme of the kinetic simulation model. The following parameters were used: Kr (first-
order release rate constant); KpD (elimination rate constant of free dexamethasone posteriorly from
the vitreous); KaD (distribution rate constant of free dexamethasone from the vitreous to the ante-
rior chamber); KvP (distribution rate constant of pullulan–dexamethasone from the vitreous to the
anterior chamber); KaqhP (elimination rate constant of pullulan–dexamethasone from the anterior
chamber) and KaqhD (elimination constant of dexamethasone from the anterior chamber). For detailed
parameter values, see Supporting Information SI-4.

3. Results
3.1. Synthesis and Characterization of Pullulan Conjugates

Pullulan is a water-soluble polysaccharide but conjugation of pullulan with dexametha-
sone (DEX) as a hydrophobic molecule results in an amphiphilic derivative that undergoes
self-assembly to nanoparticles. The self-assembled particles of Cy3-pullulan-DEX and
BDP-pullulan-DEX were smaller than pullulan-DEX particles and all nanoparticles had
negative zeta potentials (Table 1).

Table 1. Intensity based mean sizes (±SD), polydispersity indices (PDI) and zeta potentials of the
pullulan conjugate nanoparticles. The measurements were performed by dynamic light scattering.

Sample Mean Size ± SD
(nm) PDI Zeta Potential

(mV)

pullulan-DEX 461 ± 30 0.39 ± 0.04 −38.1 ± 0.5
Cy3-pullulan-DEX 299 ± 42 0.22 ± 0.11 −20.3 ± 3.0
BDP-pullulan-DEX 219 ± 15 0.25 ± 0.07 −40.9 ± 1.1

The endotoxin level of formulations was measured. All tested concentrations (2.5,
1.25 and 0.63 mg/mL) of fluorescently labelled BDP-pullulan-DEX showed endotoxin
levels below 0.03 mEU/µL. Thus, endotoxin levels in the formulations used for in vivo
administration are at acceptable levels below 0.2 EU per injection [46,47].
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3.2. Intravitreal Kinetics of Pullulan Conjugates

Intravitreally administered BDP-pullulan and BDP-pullulan-DEX were monitored
by fluorophotometry, fundus camera and OCT in rats. Vitreal elimination of pullulan
formulations followed first-order elimination kinetics and the average vitreal half-life
of both formulations was about 17 h in the rat eyes (Figure 3, Table 2). Fundus images
showed that the formulations retained for about 3–5 days in the rat vitreous (Figure 4). The
apparent volumes of distribution of pullulan conjugates (range of 42–84 µL) were close
to the anatomical volume of rat vitreous (≈50 µL), whereas the vitreal clearance values
(range of 1.8–3.5 µL/h) were lower than the average of aqueous humor flow rate in rats
(21 µL/h) [48].
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Figure 3. Concentrations of fluorescently labelled (A) BDP-pullulan (n = 6 eyes) and (B) BDP-pullulan-
DEX (n = 5 eyes) in the vitreous of rats. One compartment model with first-order elimination rate
constant was used for curve fitting (lines). The derived kinetic parameters are shown in Table 2. Each
line represents the measurement from individual rat eye.
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Figure 4. Full color and green fluorescent fundus images of rat eyes before and after intravitreal
injection (IVT) of (A) BDP-pullulan and (B) BDP-pullulan-DEX. After one day, the labeled compounds
distribute homogeneously in the vitreous. The length of scale bar is 200 µm.
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Table 2. Kinetic parameters of intravitreally injected fluorescently labelled: BDP-pullulan (n = 6 rat
eyes) and BDP-pullulan-DEX (n = 5 rat eyes; n = 6 rabbit eyes) derived from fluorophotometric
measurements.

Material Dose
(µg) Species C0

(µg/mL)
t1/2
(h)

Vd
(µL)

CL
(µL/h)

BDP-pullulan 15 rats 386.4 ± 110.2 17.4 ± 3.9 42 ± 12 1.8 ± 0.7
BDP-pullulan-DEX 30 rats 393.7 ± 134.1 16.7 ± 0.8 84 ± 30 3.5 ± 1.2
BDP-pullulan-DEX * 500 rabbits 539.3 ± 43.1 60.3 ± 4.9 932 ± 72 11 ± 0.4

* The elimination half-life in rabbit aqueous humor was 87.5 ± 7.3 h.

BDP-pullulan-DEX concentrations in aqueous humor and vitreous were evaluated in
rabbits by in vivo fluorophotometry. The vitreal half-life in rabbits (≈60 h) was longer than
in the rats (≈17 h) and the elimination kinetics showed minimal inter-subject variability
(Figure 5, Table 2). The average volume of distribution (932 µL) was close to the anatomical
volume of vitreous humor in rabbits (≈1.5 mL) (Table 2). Moreover, in rabbits, the vitreal
clearance (11 µL/h) was lower than the average of aqueous humor flow rate in normal
albino rabbits (180 µL/h). The concentrations of BDP-pullulan-DEX in the aqueous humor
were consistently about one order of magnitude lower than in the vitreous (Figure 5).
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Figure 5. Concentrations of fluorescently labelled BDP-pullulan-DEX in the vitreous and aqueous
humor of six rabbit eyes. Each line was fitted for the experimental data of one eye at different time
points. One compartment model with first-order elimination rate constant was used for curve fitting.

3.3. Pharmacokinetic Simulations

A kinetic model (Figure 2) was used to simulate the concentrations of pullulan-DEX in
the vitreous and aqueous humor. The simulated results matched the experimental results
from rat and rabbit vitreous, when the model assumes that all elimination takes place
anteriorly (Figure 6A,B). For rabbit eye, the simulated concentrations in the aqueous humor
were remarkably close to experimental values, supporting the dominant role of anterior
route for nanoparticle elimination from the vitreous. The experimental values for aqueous
humor could not be measured accurately with fluorophotometry in the rat eyes. In order to
scale the kinetics of the formulation from preclinical animals to human, the vitreal kinetics
of pullulan conjugate were simulated in humans (Figure 6C). It is evident that the retention
of pullulan conjugates is longer in the human eyes than in the rabbit eyes. Retention in the
rabbit eyes is much longer than in the rat eyes (Figure 6A,B).
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The route of BDP labelled pullulan dexamethasone conjugate elimination in the rabbit
eyes was further explored with Maurice plot that shows the relationship between Ca/Cv
and vitreal half-life (Figure 7) [49]. Location of pullulan conjugate in this plot, next to
the straight line of compounds with anterior elimination route, supports the notion that
the conjugate is mainly eliminated via anterior route. The plot is based on the equation
Ca/Cv = Vv kv/nf, where Ca is the concentration in the aqueous humor, Cv is the concen-
tration in the vitreous humor, Vv is the volume of distribution in the vitreal compartment
(unit: µL), kv is the first order elimination rate constant (i.e., kv = ln2/t1/2) (unit: h−1), f is
the outflow rate of aqueous humor (unit: µL/min) and n is the coefficient that indicates the
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fraction of anterior drug elimination after intravitreal injection. The average experimental
Ca/Cv ratio is 0.072 ± 0.021. Using a literature value of f (3 µL/min) and experimental
values for Vv (932 µL) and t1/2 (60.3 h), we obtained n value of 0.827 or 82.7% elimination
via anterior route. At average rabbit Vv from the literature (1150 µL) [50], we obtained n
value of 1.02 suggesting complete (≈100%) anterior elimination. Calculation based on both
Vv (932 and 1150 µL) reveal anterior route as the main elimination pathway for pullulan
conjugate. In Figure 7, three volumes of distribution (932, 1150 and 1700 µL) were used to
derive the lines, indicating anterior chamber as the only elimination route.
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gate retention in the eye and the published [26] release rate of dexamethasone from dexa-
methasone-pullulan conjugates. The simulated levels of free dexamethasone after intrav-
itreal injection of BDP-pullulan-DEX in rats and rabbits are presented in Figure 8A,B. The 
simulated dexamethasone concentrations in the vitreous remain above the minimal active 
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Figure 7. Maurice plot of intravitreally administered compounds in the rabbit eyes. The plot shows
anteriorly eliminating compounds based on literature data: sucrose (0.342 kDa) [51], FITC-dextran
(FD-10.5, FD-67 and FD-157 kDa) [52,53]. The green, red and blue line are derived from Maurice
equation by assuming 932, 1150 and 1700 µL as vitreal volume of distribution. Location of BDP-
pullulan-DEX NP (~75 kDa) data at close vicinity of the straight lines indicates anterior route of
elimination in the rabbit eyes as the main elimination pathway.

Concentrations of free dexamethasone were simulated based on the pullulan con-
jugate retention in the eye and the published [26] release rate of dexamethasone from
dexamethasone-pullulan conjugates. The simulated levels of free dexamethasone after
intravitreal injection of BDP-pullulan-DEX in rats and rabbits are presented in Figure 8A,B.
The simulated dexamethasone concentrations in the vitreous remain above the minimal
active concentration 1 nM (or 0.394 ng/mL) [54] for 3.6, 16.5 and 25.5 days in the rats,
rabbits and humans, respectively (Figure 8A–C). The simulations also reveal that only a
small fraction of injected dexamethasone in the conjugate is released during the residence
time of the polymeric conjugate in the eye (Table 3). Interestingly, the concentrations in the
vitreous and aqueous humor differ more in the rabbits and humans than in the rats.

Table 3. Pharmacokinetic parameters of dexamethasone derived from simulations of intravitreally
injected BDP-pullulan-DEX to rat, rabbit and human eyes. The dose of dexamethasone was 3, 50 and
50 µg per eye for rats, rabbits and humans, respectively.

Parameter Unit Rat Rabbit Human

Cmax Vitreous ng·mL−1 14 58 24
Tmax Vitreous h 5 15 24
Cmax Aqueous Humor ng·mL−1 5 5 6
Tmax Aqueous Humor h 5 15 24
Aqueous humor/vitreous concentration ratio a 0.35 0.086 0.23
Duration above minimal effective concentration day 3.6 16.5 25.5
Dose of BDP-pullulan-DEX per eye µg 30 500 500
Percent of the released DEX in the vitreous % 0.8 2.5 4.7
Percent of the released DEX in the aqueous humor % 0.028 0.05 0.04

a Averaged at pseudo-steady state phase.
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Figure 8. Simulation of released dexamethasone concentration in the vitreous and in the aqueous
humor after intravitreal injection of BDP-pullulan-DEX in rat (A), rabbit (B) and human (C). The
simulated doses of BDP-pullulan-DEX were 30, 500 and 500 µg per eye for rats, rabbits and humans,
corresponding to DEX doses of 3, 50 and 50 µg per eye for rats, rabbits and humans, respectively.
The dotted line (- - -) shows the minimum effective intravitreal concentration of dexamethasone for
inhibiting the expression of VEGF, which is 1 nM (or 0.394 ng/mL) [54].
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3.4. Safety Assessment of Pullulan-Based Formulations

The safety of pullulan-based formulations was investigated ex vivo in mouse retinal
explants and in vivo treated animals.

3.4.1. Safety on Ex Vivo Mouse Retinal Explants

Ex vivo mouse retinal explants were treated with Cy3-pullulan (1.7 mg/mL) or Cy3-
pullulan-DEX (0.7, 1.4 and 1.9 mg/mL) and untreated explants were used as controls. All
three Cy3-pullulan-DEX concentrations significantly reduced the percentage of TUNEL
positive cells in both the inner nuclear layer (INL) and the outer nuclear layer (ONL),
indicating a reduction in the cell death in both layers (Figure 9A,B). This is due to the
neuroprotective effect of DEX in ex vivo mouse retinal explants [55]. Treatment with Cy3-
pullulan alone did not increase TUNEL labelled cells, indicating that the polymer had no
toxic effects. The number of INL and ONL cell rows did not change (Figure 9C,D).
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Figure 9. Ex vivo retinal explants of mice were treated with 15 µL of fluorescently labelled Cy3-
pullulan-DEX (0.7, 1.4 and 1.9 mg/mL) and Cy3-pullulan (1.7 mg/mL). Untreated retina (NT) was
used as control explant. TUNEL-positive nuclei in (A) the inner nuclear cell layer (INL), and (B) the
outer nuclear cell layer (ONL) were counted and plotted as percentage of all nuclei in the INL and
ONL areas. The number of cell rows in (C) INL and (D) ONL are also presented. Bars indicate
standard deviations of means. One-way ANOVA **** p < 0.0001.

To evaluate any inflammatory response due to the conjugates, we visualized the
microglial cell shape and distribution using Iba-1 antibody, an inflammatory marker for
microglia. The microglial cells were observed in ganglion cell layer (GCL) and INL in
all groups, but no microglial migration to the ONL was seen (Figure 10). The conjugates
(Cy3-pullulan, Cy3-pullulan-DEX) were found in all monitored layers, mostly in GCL and
INL, and partially in ONL. The inflammatory response of microglia was not activated, and
the conjugates are well tolerated in the ex vivo retinas.
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In vivo safety of intravitreally injected pullulan formulations was evaluated in mice. 

Healthy status of the vitreous, retina and optic nerve were confirmed by fundus and OCT 
images 24 h after administration of fluorescently labelled Cy3-pullulan and Cy3-pullulan-
DEX (SI-5, Figure S6). The animals were sacrificed, and the eyes were prepared for the 
TUNEL assay analysis that showed normal ONL and INL and no activation of cell death 
(SI-5, Figure S7). 

3.4.3. In Vivo Safety in Rats 
In vivo safety of intravitreally injected pullulan formulations was evaluated in rats. 

Healthy status of the vitreous, retina, and optic nerve was confirmed by fundus and OCT 
images after exposure to BDP-pullulan and BDP-pullulan-DEX the following 3–5 days 
(Figure 11). Two weeks after intravitreal injections to the rat eyes, no visible alterations 

Figure 10. Microglial cells in sections of the ex vivo mouse retina labelled with an antibody against
Iba-1 (green). Untreated retina, retina treated with Cy3-pullulan-DEX (15 µL, 1.9 mg/mL) and
Cy3-pullulan (15 µL, 1.7 mg/mL) are shown. Cy3 fluorescence is shown as red. Nuclei were stained
with DAPI (blue). RG: overlay of red and green channels for microglial cell, nanoparticle or conjugate
colocalization. RGB: overlay of red, green and blue channels. Bar size: 20 µm.

3.4.2. In Vivo Safety in Mice

In vivo safety of intravitreally injected pullulan formulations was evaluated in mice.
Healthy status of the vitreous, retina and optic nerve were confirmed by fundus and OCT
images 24 h after administration of fluorescently labelled Cy3-pullulan and Cy3-pullulan-
DEX (SI-5, Figure S6). The animals were sacrificed, and the eyes were prepared for the
TUNEL assay analysis that showed normal ONL and INL and no activation of cell death
(SI-5, Figure S7).

3.4.3. In Vivo Safety in Rats

In vivo safety of intravitreally injected pullulan formulations was evaluated in rats.
Healthy status of the vitreous, retina, and optic nerve was confirmed by fundus and OCT
images after exposure to BDP-pullulan and BDP-pullulan-DEX the following 3–5 days
(Figure 11). Two weeks after intravitreal injections to the rat eyes, no visible alterations
were seen (i.e., no conjunctival bleeding, cataracts, retinal detachment, swelling, clouding,
changes in retinal morphology, cell debris or aggregation in the vitreous). No visual
disturbance was detected since the vitreal clarity was confirmed by fundus imaging.
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Figure 11. Fundus and optical coherence tomography (OCT) images of rat vitreous and retina. The
figures are before and after intravitreal injections (1, 3 and 5 days) of BDP-pullulan (A) and BDP-
pullulan-DEX (B). The length of scale bar for fundus images are 200 µm. In the case of OCT, vertical
and horizontal scale bars in OCT are 110 and 130 µm, respectively.

3.5. Retinal Penetration and Distribution
3.5.1. Ex Vivo Studies

Distribution of pullulan-based formulations was studied in ex vivo mouse retinal
explants (Figures 10 and 12). The conjugates, Cy3-pullulan and Cy3-pullulan-DEX, were
present in GCL, INL and ONL layers. The formulations were visualized in radial sections
(red punctas, Figures 10 and 12) through retinal layers overlapping with the Müller cells
(Figure 12). Interestingly, the pullulan-based materials followed the route of Müller glial
cells from the GCL to the distal part of the ONL, close to the retinal pigment epithelium
(RPE) (Figure 12, 3D visualization in Supplementary Materials). Thus, this finding suggests
that the pullulan-based conjugates may bypass the inner limiting membrane (ILM) via
Müller cell phagocytosis in mouse retinal explants.
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Figure 12. Müller glial cells in sections of the ex vivo mouse retina labelled with an antibody
against glutamine synthetase (green). Untreated retina, retina treated with Cy3-pullulan-DEX (15 µL,
1.9 mg/mL) and Cy3-pullulan (15 µL, 1.7 mg/mL) are shown. Cy3 fluorescence is shown as red.
Nuclei were stained with DAPI (blue). RG: overlay of red and green channels for Müller glial cell,
nanoparticle or conjugate colocalization. RGB: overlay of red, green and blue channels. Bar size:
20 µm.

The retinal distribution of pullulan conjugates was also studied in ex vivo bovine
retinal explants. In this tissue model, the nanoparticles were mainly localized at ILM.
However, several sections showed a few signals (green punctas) from BDP-pullulan-DEX
in GCL of the retina (Figure 13).
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Figure 13. Retinal distribution of BDP-pullulan-DEX (100 µL, 5 mg/mL) in the vitreo-retinal ex
vivo bovine explant 24 h after intravitreal injection. Representative confocal microscopy images of
cryosections display the penetration of BDP-pullulan-DEX in the retinal layers (green). The inner
limiting membrane (ILM) was labelled with rabbit anti-collagen type IV antibody (Col-IV ab, red).
The vitreous can be seen as transparent layer in transmission imaging which is well aligned along
the ILM while it appears in bright green color due to the high load of BDP-pullulan-DEX in merged
channel mode. Nuclei are stained with Hoechst (blue). The white bar on the right bottom corner
of each picture indicates the bar size: 50 µm. Abbreviations indicated in image: ganglion cell layer
(GCL), inner plexiform layer (IPL), inner nuclear layer (INL), outer plexiform layer (OPL), outer
nuclear layer (ONL), overlay of red/green/blue channels (RGB).
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3.5.2. In Vivo Mouse Experiments

Two-months old mice were injected intravitreally with Cy3-pullulan-DEX. The results
show localization of injected material across the retina, from inner to outer nuclear layers,
mostly following Müller glial cells (Figure 14). This is in line with the ex vivo observations
(Figure 12). Many particles accumulated in the cell bodies of Müller glial cells in the inner
nuclear layer, but this was not seen in the other parts of the retina.
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Figure 14. Images of retinal sections from two-months old mice after intravitreal injection (1 µL)
of 5 mg/mL Cy3-pullulan-DEX (cyanine3, red). Müller glial cells were labelled with an antibody
against glutamine synthetase (green). Nuclei were stained with DAPI (blue). RG: overlay of red and
green channels for Müller glial cell and nanoparticle colocalization. RGB: overlay of red, green and
blue channels. Bar size: 20 µm.

In adult mice, the presence of ILM in vivo and the penetration of pullulan material was
detected as red dots in the Apotome microscopic images through GCL, INL and slightly in
ONL layers (SI-5, Figures S8 and S9). The red fluorescently labelled pullulan samples were
detected mostly in the GCL, inner plexiform layer (IPL) and INL layers and few dots were
slightly visible in outer plexiform layer (OPL) and ONL (Figure 14).

4. Discussion

Elimination kinetics. The intravitreal pharmacokinetics and safety of pullulan–dexamethasone
conjugates were investigated in detail. The results indicate that the conjugates are safe after
intravitreal injections to the rodent eyes. Furthermore, they show prolonged retention in
the rabbit eyes and retinal distribution via Müller glia cells in mouse eyes.

Non-modified pullulan behaves as a random coil of individual polymeric chains with
diameters of few nanometers [13,33]. In this study, we used conjugates of pullulan with
hydrophobic compound DEX and BDP. Pullulan conjugate with BDP was used since it
allows direct and non-invasive monitoring of the particle kinetics after intravitreal injections.
A roughly two-fold size difference was seen between pullulan-DEX and BDP-pullulan-
DEX, but this should not cause kinetic differences since even several fold changes in
liposome diameter (from <50 nm to >200 nm) did not change diffusivity in the vitreous [56].
These conjugates self-assemble to nanoparticles that showed similar retention times (half-
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lives ≈2.5–6.0 days) in the rabbit vitreous as macromolecules (e.g., antibodies and FITC-
dextrans) [15], but shorter than the retention of some polymeric micelles and polymersomes
(half-lives ≈9–31 days) [12]. Based on particle size, longer half-lives would be expected
for pullulan conjugates, but the pullulan conjugates are structurally different systems
than polymeric micelles and polymersomes. Furthermore, pullulan conjugates showed
even distribution in the rat vitreous already at one day after injection, suggesting fast
diffusion of the pullulan conjugates in the rat vitreous. The reasons for the described kinetic
profile of pullulan conjugates are not known, but could involve biological interactions or
particle disassembly. Disassembly of the particles to individual polymer conjugates might
explain the results, but particle exposure to homogenized vitreous did not indicate particle
disassembly in our previous study [26]. In vivo studies of nanoparticle disassembly and
other mechanisms in the vitreous are methodologically challenging and the molecular
mechanisms of pullulan-DEX elimination remain open for the time being.

In order to elucidate the elimination route of pullulan conjugates from the vitreal cavity,
we performed kinetic simulations by assuming that all polymer is eliminated to the anterior
chamber at the experimental elimination rate from the vitreous and further eliminated
from the anterior chamber at the rate of aqueous humor outflow. The simulated particle
concentrations in the aqueous humor were close to the experimental values, indicating
that practically all pullulan conjugates are eliminated from the vitreous via anterior route.
Moreover, the Maurice plot (Cv/Ca vs. vitreal half-life) derived estimates of anterior
elimination suggested that the major fraction (at least 82.7%) of intravitreally injected
pullulan conjugate is eliminated via anterior route [49]. An anterior elimination route has
been shown earlier for soluble macromolecules (e.g., antibodies) [57,58], but we have shown
here for the first time that this route dominates the vitreal elimination of nanoparticles.

According to the observed kinetics of pullulan-DEX in rats and rabbits, the vitreal
elimination half-life was longer in the rabbits. This is in line with our previous data
with FITC-dextrans in rats and rabbits [15]. The current data shows that similar species
difference is seen also with nanoparticles. A bigger size of the rabbit eye explains the longer
half-life in rabbits, since it takes longer time for material transfer from the vitreous to the
anterior chamber [58]. In humans, the volume of vitreous is about three times (≈4.5 mL)
bigger than in rabbits (≈1.5 mL) [59], leading to even longer retention. Possible effects of
inflammation on the vitreal kinetics of pullulan conjugates are not known. Based on the
literature it is not likely that clearance of released dexamethasone would change due to
inflammation [60]. But infiltrated macrophages due to ocular inflammation [61] might take
up the particles [62], leading to faster drug release in the lysosomal conditions in the cells.

Interplay of polymer conjugate retention and drug release. In this study, we used dexametha-
sone conjugate of pullulan, but did not measure concentrations of free pharmacologically
active dexamethasone in the vitreous. We simulated free dexamethasone concentrations
in the vitreous and aqueous humor before designing and performing labor intensive,
expensive and analytically demanding in vivo studies to determine free and bound dexam-
ethasone concentrations in the eye. Kinetic simulations were based on experimental kinetics
of pullulan conjugates and in vitro release of dexamethasone from the conjugates [26]. For
the first time in scientific literature, these simulations integrate the drug release rate and
pharmacokinetics of particulate intravitreal drug delivery system. The results demonstrate
that longer effective residence of dexamethasone in the rabbit vitreous (up to 16.5 days in
rabbits and 25.5 days in humans) is clearly longer than the half-life of the delivery system
(3.6 days) in the rabbit vitreous. This is possible because the residual nanoparticles still
release dexamethasone that is active at small concentrations. At the threshold limit of
dexamethasone activity (0.394 ng/mL) [54], the simulated amount of free drug in the eye
is in the range of 1–4 ng in rabbit and human eyes. This is only less than 0.001% of the
injected dexamethasone dose within the pullulan conjugate. Overall, this demonstrates the
power of controlled release technology in intravitreal drug delivery and possibilities for
further optimization.
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The minimum effective dexamethasone concentration may be different at different
pathological conditions. Here we chose 1 nM as the minimum therapeutic concentra-
tion [54]. This concentration of dexamethasone should inhibit expression of vascular
endothelial growth factor in the human vascular smooth muscle cultured cells. The con-
centration of endogenous cortisol is 14 nM in the human vitreous [63]. Since the anti-
inflammatory potency of dexamethasone is about 25 times higher than that of cortisol [64],
dexamethasone should be anti-inflammatory at 1 nM concentration. After administration
of dexamethasone implant (dose 700 µg) to the vitreous of rhesus monkeys, the levels of
dexamethasone remained above 1 nM for 3 months, but the efficacy may be extended even
at lower levels of dexamethasone [65]. Thus, efficacy of pullulan conjugates may extend
beyond 25 days as reported here, and this technology may be further developed for more
extended ocular retention.

Interestingly, our simulations on retention and release revealed that a major fraction of
the conjugated dexamethasone dose will be eliminated from the eye as pullulan conjugate
form (>99%), yet the drug action may be significantly prolonged. Ocular exposure to the
released drug can be defined as intraocular bioavailability. Intraocular bioavailability of
the released drug could be improved by increasing drug release rate (e.g., modification
of chemical linker) and prolonging polymer-conjugate retention in the vitreous (e.g., in-
creasing binding with vitreal components and molecular weight of polymer). The release
and retention profiles of pullulan conjugated dexamethasone are very different from the
intravitreal dexamethasone implants (e.g., Retisert). The implants release all the drug
payload in the eye and thereafter a ‘ghost matrix’ remains in the eye. Interplay of delivery
system retention, drug release and ocular pharmacokinetics has not been discussed in the
literature. The presented simulation models provide useful tools for drug developers who
optimize intravitreal drug delivery systems towards target product profiles.

Retinal permeation. The inner limiting membrane (ILM) is a mechanical and electrostatic
barrier that limits access of nanoparticles into the retina. The ILM includes a negatively
charged network of collagen and glycosaminoglycans [66]. Retinal delivery of materials
with the molecular weights ≤ 100 kDa are not limited by ILM [67]. However, the electric
charge of the materials can make a difference: FITC-dextrans of 20 kDa and 500 kDa per-
meated through ILM, but cationic poly-L-lysine (20 kDa) did not [68]. Recently, liposomes
(≈50 nm) with negative charge and PEG-coating were shown to permeate across bovine
ILM that is considered a close model for human ILM [44]. However, larger liposomes
of about 100 nm in diameter were not able to cross the ILM barrier in bovine retina. In
this study, pullulan conjugates (particle size 200–400 nm) were permeating only to the
ganglion cell layer of the bovine ex vivo retina, but not further into the retina. Ganglion
cells are an important drug target, especially in the treatment of glaucomatous retinal
degeneration [69]. Limited ILM permeation is also an obstacle in the field of retinal gene
therapy with viral vectors and, for this reason, retinal gene therapy is performed using
subretinal injections [70]. Better understanding of the ILM and other contributing factors
will help in development of intravitreal treatments of retinal diseases. In various retinal
disorders and upon ageing, ILM may become thinner and presents pores thereby become
leakier to the nanoparticles [60].

Retinal permeation of pullulan was also investigated with organotypic mouse retinal
explant that can be maintained as biologically active even for one month [71]. This model
is useful in mechanistic pharmacological studies [1,2,72–75]. ILM in mouse retina is thinner
and leakier than in the bigger eyes, potentially giving optimistic views on retinal permeation
of particles [44]. However, this study showed qualitatively distinct retinal distribution:
pullulan conjugates did not cross ILM, but they were taken up by the Müller cells that may
not be as active in the isolated bovine retina. The pullulan–dexamethasone nanoparticles
showed protective effects in the retina, suggesting drug release from the conjugates in
the retina.

Delivery of pullulan conjugates to Müller cells can be explained on the location and
properties of these cells. Müller cells are glial cells capable of phagocytosing cell bodies,
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fragments of retinal cells and particles [76–78]. The cell bodies of Müller glia are located
in the inner nuclear layer with its two stem processes extending in opposite directions
and spanning the entire retina. Therefore, it is likely that intravitreal particles could be
phagocytosed by Müller cells and carried into the inner retinal layers. In this study, the
cultured retinal explants from wild-type mice were exposed to pullulan-based particles from
the ganglion cell layer side on the retina. Colocalization with glutamine synthase antibody
(Müller glia marker) confirmed particle localization in Müller cells and the particles were
visualized in radial sections (red punctas, Figure 12) through all retinal layers in a linear
distribution similar to the Müller cells extension (from the ganglion cell layer until reaching
the distal part of the outer nuclear layer (Figure 12, and 3D visualization in Supplementary
Materials). This indicates that the pullulan-based particles were phagocytized by the Müller
cells, thereby overcoming the barrier of inner limiting membrane.

Müller glial cells are a major type of macroglial cells in the neural retina [79–83]. The
close interactions that Müller cells have with other cells are crucial in the actions of antiox-
idants, neurotrophic factors and growth factors in the retina [80]. In this respect, Müller
cells are an important cell target in retinal drug development and targeted localization of
pullulan conjugates to the Müller cells opens possibilities to deliver drugs to these cells in a
targeted manner. Furthermore, biocompatibility of the materials was confirmed in more
detail in ex vivo studies with mouse organotypic retinal explants.

Pullulan conjugates as potential intravitreal drug delivery systems. The preclinical results
showed that pullulan is a safe polymeric backbone for intravitreal drug delivery and
capable of extending dexamethasone retention in the eye.

Previously, polymeric drug conjugates have been widely investigated as drug delivery
systems for cancer treatment [84–86]. For ocular treatments, polymeric drug conjugates
have been only sparsely studied [59,66,67]. In principle, polymeric conjugates provide
major advantages: (1) large molecular size prevents elimination across blood–ocular barri-
ers and slows diffusion to the anterior chamber, thereby prolonging drug residence in the
eye; (2) covalent conjugation of drugs to the polymer backbone enables controlled drug
release from soluble free polymer conjugates and self-assembled nanoparticles. Control of
drug release is particularly significant because non-covalent drug loading to nanosystems
results often in relatively fast drug release. Furthermore, covalent links allow generation of
site-specific drug release in retina [10] or even in sub-cellular compartments [87].

Furthermore, OCT and fundus imaging showed no opacity in the vitreous after intrav-
itreal pullulan conjugate injection, representing another advantage compared to implants,
suspensions and microspheres [88]. Dexamethasone could be delivered as a water solution
of polymeric conjugate without any visual disturbance. Further, the conjugated drug would
not permeate to the lens, thereby decreasing the risk of corticosteroid cataract. Long-term
exposure of dexamethasone may also cause higher intraocular pressure through increasing
the stiffness of the trabecular meshwork [89]. Low dexamethasone dose (50 µg) and only
partial release (<2.5 µg) from pullulan-DEX (50 µg) within the eye should reduce free drug
exposure to the lens and trabecular meshwork to negligible levels as compared to the
exposure after intravitreal administration of Ozurdex implant (700 µg) and dexamethasone
suspension (50 µg). This factor may reduce the incidence of ocular adverse effects. The
small needle size is another potential advantage of intravitreal polymeric conjugates. Com-
pared to the 22 G Ozurdex needle the required needle size (31–32 G) for polymer conjugate
is minimal thereby reducing the invasiveness of the treatment.

5. Conclusions

Delivery of intravitreally administered drugs may be improved with innovative drug
delivery systems enabling more patient compliant administration, prolonged drug retention
in the eye, controlled release and delivery to the retinal target cells. This research work
demonstrates that dexamethasone conjugates of pullulan have such features. Pullulan–
dexamethasone nanoparticles were safe in the preclinical animal models, distributed to the
ganglion cells and Müller cells and showed prolonged ocular retention. Pharmacokinetic



Pharmaceutics 2022, 14, 12 20 of 24

models and simulations demonstrated important aspects in the interplay of ocular retention
and drug release. These models will be useful tools in the field of ocular drug delivery
system development. Overall, pullulan-based drug conjugates are a promising drug carrier
platform for the intravitreal drug delivery.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/pharmaceutics14010012/s1. SI-1 and Scheme S1: Synthesis of pullulan-DEX conjugates; SI-2
and Figure S1: Ex vivo mouse retinal organ culture; SI-3 and Figures S2 and S3: Calibration curve
for in vivo fluorophotometry measurements; SI-4, Figures S4 and S5 and Table S1: Pharmacokinetics
simulations; SI-5 and Figures S6–S9: Safety on in vivo mice model; 3D visualization available online.
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