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Abstract

One of the key tasks in physics is to perform measurements in order to determine the
state of a system. Often, measurements are aimed at determining the values of physical
parameters, but one can also ask simpler questions, such as “is the system in state A or
state B?”. In quantum mechanics, the latter type of measurements can be studied and
optimized using the framework of quantum hypothesis testing. In many cases one can
explicitly find the optimal measurement in the limit where one has simultaneous access
to a large number n of identical copies of the system, and estimate the expected error
as n becomes large. Interestingly, error estimates turn out to involve various quantum
information theoretic quantities such as relative entropy, thereby giving these quantities
operational meaning. In this paper we consider the application of quantum hypothesis
testing to quantum many-body systems and quantum field theory. We review some of
the necessary background material, and study in some detail the situation where the
two states one wants to distinguish are parametrically close. The relevant error esti-
mates involve quantities such as the variance of relative entropy, for which we prove
a new inequality. We explore the optimal measurement strategy for spin chains and
two-dimensional conformal field theory, focusing on the task of distinguishing reduced
density matrices of subsystems. The optimal strategy turns out to be somewhat cumber-
some to implement in practice, and we discuss a possible alternative strategy and the
corresponding errors.
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1 Introduction

The purpose of this work is to i) introduce and review quantum hypothesis testing for readers
with a background in quantum field theory and many-body theory, ii) develop some new results
in a perturbative setup, and then iii) apply the tools to distinguish in particular two reduced
density matrices in a subsystem of a quantum many-body system.

We begin with some background motivation. An elementary quantum task is to distin-
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guish between two quantum states. Recently there has been much effort to study this question
in quantum field theory and many-body theory, and to develop methods to compute various
quantum information theoretic distinguishing measures analytically. A particularly interesting
case is a large or infinite system in two different global states viewed from a small subsystem.
The problem is then to distinguish the two reduced density matrices (RDMs) resulting from a
partial trace over the complement of the subsystem. For this problem, critical systems mod-
eled by conformal field theories have offered a fruitful arena for analytic progress. Additional
motivation for studying conformal field theories comes from the connections between quan-
tum information and gravity. In this context, a famous issue is the state of Hawking radiation
escaping from an evaporating black hole: how can one detect in subsystems the subtle quan-
tum correlations between radiated quanta at different times, to distinguish a conjectured pure
state of radiation from something resembling thermal radiation?

In quantum field theory and many-body theory, there has been much progress in study-
ing well-known distinguishing measures both analytically and numerically. For example, in
the context of conformal field theory and critical lattice models, there are studies of fidelity
F(ρ,σ) [1, 2], relative entropy S(ρ‖σ) [2–7], generalized divergences [8–13] and trace dis-
tance D(ρ,σ) = 1

2‖ρ − σ‖ [14, 15]. In this work, our focus is instead to distinguish two
states by measurements. We begin with three remarks: i) a rigorous framework for the task
is quantum hypothesis testing, ii) many results obtained for relative entropy and generalized
divergences can be embedded in this framework, giving them an operational interpretation,
and iii) hypothesis testing also suggests an optimal measurement protocol to minimize the
error in distinguishing two states. We are thus lead to study how quantum hypothesis testing
can be implemented in many-body theory and quantum field theory.

Quantum hypothesis testing builds on the classical theory of hypothesis testing, which is a
cornerstone of statistical analysis and the scientific method. Borrowing terminology from the
classical theory, one may want to test whether the system is in a state ρ called the null hypoth-
esis, thought of as the “background”, or in another quantum state σ called the alternative hy-
pothesis, which is the “signal” that one desires to detect. The framework of quantum hypothesis
testing then provides rigorous estimates for the probabilities of the errors of mistaking the two
states in an asymptotic limit of many measurements1. Here, it is important that by “many mea-
surements” we mean simultaneous measurements on many copies of the system, as opposed
to performing a sequence of individual measurements on independent single copies of the sys-
tem. The error probability estimates involve various quantum information theoretic quantities,
which depend on the details of the quantum hypothesis testing protocol. For example, for the
case of so-called asymmetric testing, the error estimate involves the relative entropy as well
as the relative entropy variance between the two states; both measures can be obtained from
generalized divergences. Quantum hypothesis testing has numerous applications in quantum
information science, such as quantum illumination [18–20], entanglement-assisted commu-
nication [21], and the analysis of environment-parametrized quantum channels [22, 23], to
name a few. In particular, there are rigorous studies of particular quantum hypothesis testing
protocols to distinguish states in spin chains, see e.g. [17,24,25].

Here, we are interested in connecting various mathematical results about hypothesis test-
ing to implementations and applications of hypothesis testing in models at criticality with
an emphasis on distinguishing reduced density matrices of subsystems associated to different
global states. For example subsystems of free fermion chains have been extensively studied
in the context of entanglement, because subsystem reduced density matrices are determined
analytically by two-point functions [26–29]. The analytic tractability allows one to study for
example entanglement spectra [30, 31] and entanglement entropies of subsystems [32] (see

1The asymptotic limit is an idealization, in practice one is limited to a finite number of samples. We leave this
“finite blocklength” case [16,17] to a further investigation.
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also [33, 34] for reviews). Distance measures such as relative entropy and Rényi divergences
have also been explored [35,36].

We now summarize the main results of this work, which is divided in two parts. In the first
part of this paper, we consider quantum hypothesis testing for general systems and develop a
perturbative approach to hypothesis testing. Many applications often involve a setup where the
two global states are parametrically close, as functions of one parameter (such as the ambient
temperature). In that case it is natural to use a perturbative expansion to approximate two
neighboring states. After giving a general review of quantum hypothesis testing in section 2,
we study error probability estimates combined with a perturbative approach in section 3. The
relevant error estimates involve the perturbative expansions of relative entropy and relative
entropy variance, with leading terms appearing at second order. To examine the behavior of
the error estimate, we study the relative size of these leading terms. In doing so, we find a
universal result, a lower bound for the ratio of the two terms, applicable for any system in the
perturbative setting. The result also allows us to develop a new joint perturbative bound on
the two types of errors.

In section 4, we discuss and compare different types of measurements. We argue that in-
dependent (i.e. factorized) measurements perform poorly in general. We review the optimal
measurement described in [37], which saturates the theoretical error bound. This measure-
ment turns out to be rather difficult to describe explicitly. As an alternative, we consider a
simpler but suboptimal measurement, the likelihood ratio (or Neyman-Pearson) test, which is
easier to describe and performs rather well.

In the second part of this work, we implement these measurement protocols in quantum
systems of increasing complexity: a single qubit, Gaussian fermion chains and finally two-
dimensional conformal field theories.

We consider the qubit in section 5 and we construct the optimal measurement. Surprisingly,
an explicit description is difficult as it leads to a challenging combinatorial problem, involving
Krawtchouk polynomials and related to the Terwilliger algebra of the Hamming cube. This
motivates the simpler likelihood ratio test, which can be described explicitly, and implemented
with a quantum circuit given in Figure 5. Using numerical methods, we study the optimal
measurement and compare it to the likelihood ratio test.

In section 6, we move on to spinless fermion chains with quadratic Hamiltonians. Mo-
tivated by hypothesis testing, we derive formulas for the relative entropy and the relative
entropy variance in subsystems of free fermions (with only hopping interactions) at different
temperatures. Then we present a prescription to compute overlaps between eigenstates of two
different modular Hamiltonians of the same subsystem. The main technical tool is a general-
ization of Wick’s theorem to correlators that involve Bogoliubov transformations [38,39]. The
resulting overlaps allow the construction of the optimal measurement that distinguishes two
thermal states by a local measurement. We find that in the simplest single fermion subsys-
tem, the likelihood ratio test is optimal for distinguishing any two reduced density matrices,
whereas for a two-fermion subsystem, it is not sufficient in general. In the XY model at finite
temperature, for a two-fermion subsystem, the likelihood ratio test is again optimal.

We finally consider two-dimensional CFTs in section 7. We focus on states for which the
modular Hamiltonian can be written as an integral of the stress tensor [40]. We construct
optimal measurement protocols for subregions, using techniques of boundary CFT [41] to
compute the necessary ingredients. This general framework can be applied to distinguish two
thermal states from a subregion, and we study explicitly the case of the free fermion. We
explain how to implement the optimal measurement, which is difficult to describe explicitly,
and the simpler likelihood ratio test. We also consider the detection of a primary excitation
on top of the vacuum, for which the likelihood ratio test can be implemented with a relatively
simple procedure: by measuring one-point functions of the lightest operator interacting with
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the primary excitation.

We conclude with a discussion and some open questions, and summarize various useful
properties and technical results in the appendices.

After the completion of this paper, related work studying various properties and applica-
tions of relative entropy variance (there called “variance of relative surprisal”) from an infor-
mation theoretic point of view appeared in [43].

2 Review of quantum hypothesis testing

In this section, we give a brief review of quantum hypothesis testing, to provide background for
readers unfamiliar with this theory. In (binary) hypothesis testing, we have to choose between
two hypotheses, the null hypothesis H0 and the alternative hypothesis H1.

In the classical theory, the two hypotheses are associated with two probability distribu-
tions p(X ), q(X ) over the space Ω, and the problem is to discriminate between the two by
a test T : Ω → I . If I = [0,1], the test is randomized, if I = {0, 1}, the test is deter-
ministic. The probability of detection for the hypothesis H1 is then the expectation value
Eq[T] =

∑

x∈ΩQ(x)T (x). If the test is deterministic, it is often expressed as an indicator
function T = 1H = 1 {x ∈ H} over an acceptance subset H ⊂ Ω.

In the quantum theory, H0 and H1 are two quantum states ρ and σ, and the test becomes
an operator T = E1. More precisely the decision is made by measuring observables E0 = A
and E1 = 1− A which form a positive operator-valued measure (POVM), i.e. 0 ≤ Ei ≤ 1 and
∑

i=0,1 Ei = 1. In making a measurement, the probabilities of identifying the two states cor-
rectly are Tr(ρE0) and Tr(σE1), the latter being the probability of detection of the hypothesis
H1. There are two ways to make errors, which are called of type I or type II. Type I error (false
positive) corresponds to identifying H1 while in fact H0 is true. Type II error (false negative,
missed detection) corresponds of choosing H0 while H1 is true. The probabilities of the two
errors are given by

α= Trρ(1− A) (type I) , (2.1)

β = TrσA (type II) .

The objective of hypothesis testing is to find the best measurement which jointly minimizes the
two errors. In this work we focus on the independent and identically distributed (i.i.d.) setting,
and consider a joint measurement A(n) on n identical copies of the system, to discriminate
between the states ρ⊗n and σ⊗n. The error probabilities then become n-dependent, αn and
βn, given by

αn = Trρ⊗n(1− A(n)) (type I) , (2.2)

βn = Trσ⊗nA(n) (type II) .

Quantum hypothesis testing addresses the question of the optimality of a measurement A(n).
The notion of optimality depends on the error optimization strategy. Symmetric testing opti-
mizes the sum of the two errors, while asymmetric testing optimizes the type II error under
the condition that the type I error remains bounded.2 We review these two cases below.

2A third strategy assumes a given exponential decay rate for the type I error.
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2.1 Symmetric testing

In symmetric hypothesis testing, we treat the two types of errors equally and define the sym-
metric error3

Pn =
1
2
(αn + βn) . (2.3)

The optimal measurement is obtained by minimizing Pn over all possible measurements A(n),
where A(n) is a Hermitian operator satisfying 0 ≤ A(n) ≤ 1. We can define the minimum error
as

P∗n =
1
2

inf
A(n)

Tr
�

ρ⊗n(1− A(n)) +σ⊗nA(n)
�

. (2.4)

The asymptotic behavior of this quantity is given by the quantum Chernoff bound [42], which
says that

lim
n→+∞

�

−
1
n

log P∗n

�

= − logQ(ρ,σ) , (2.5)

where the quantum Chernoff distance is defined as

− logQ(ρ,σ)≡ max
0≤s≤1

[− logQs(ρ,σ)] , Qs(ρ,σ) = Trρsσ1−s . (2.6)

We can see that − logQs(ρ,σ) are proportional to the relative Rényi entropies defined by
Petz [44]. As a result, symmetric hypothesis testing gives an operational meaning to these
quantities. More precisely, their maximum for 0 ≤ s ≤ 1 gives the asymptotic exponent of the
symmetric error

P∗n ∼
n→∞

e−n(− logQ) . (2.7)

It is also interesting that Q(ρ,σ) is related to other information quantities [42]. We have

0≤ 1−Q ≤ T ≤
p

1−Q2 , (2.8)

where T = 1
2‖ρ −σ‖1 is the trace norm distance and

Q ≤Qs=1/2 = Trρ1/2σ1/2 ≤ F(ρ,σ) , (2.9)

where F(ρ,σ) = ‖ρ1/2σ1/2‖1 is the Uhlmann fidelity. If one of the states is pure, we have
Q = Trρσ. Q also satisfies the data-processing inequality (B.17).

2.2 Asymmetric testing

In this work, we will be interested in the asymmetric treatment of the two types of errors,
which is the setting which gives an operational meaning to the relative entropy. In asymmetric
testing, we require that the type I error is bounded, αn ≤ ε, and examine the asymptotic
behavior of the type II error βn

4. More precisely, we estimate the asymptotic behavior of the
quantity

β∗n(ε)≡ inf
A(n)
{βn | αn ≤ ε} , (2.10)

where the infimum is taken over Hermitian operators A(n) satisfying 0≤ A(n) ≤ 1.

The asymptotic behavior of this quantity is given by the quantum Stein’s lemma [45, 46]
which is the statement

lim
n→∞

�

−
1
n

logβ∗n(ε)
�

= S(ρ‖σ) , (2.11)

3It is also possible to consider a more general combination of the form Pn = καn + (1− κ)βn and 0 < κ < 1,
with no change to the discussion [42].

4The asymmetric case means that the probability of missed detection (type II error) is seen as more significant
than a false positive (type I error).
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for any 0< ε < 1. The relative entropy S(ρ‖σ) is defined as

S(ρ‖σ) =

¨

Tr [ρ(logρ − logσ)] , supp(ρ) ⊆ supp(σ)
+∞ otherwise

. (2.12)

The quantum Stein’s lemma shows that the type II error decays exponentially at large n with
exponent given by the relative entropy,

β∗n(ε) ∼n→∞
e−nS(ρ‖σ) . (2.13)

The asymptotic formula (2.11) was improved in [37, 47] to subleading order.5 The refined
quantum Stein’s lemma says that

−
1
n

logβ∗n(ε) = S(ρ‖σ) +
1
p

n

Æ

V (ρ‖σ)Φ−1(ε) +O
�

log n
n

�

(2.14)

and involves the relative entropy variance6 defined as

V (ρ‖σ)≡ Tr
�

ρ(logρ − logσ)2
�

− S(ρ‖σ)2 , (2.15)

and the inverse Φ−1 of the cumulative distribution function of the normal distribution,

Φ(x)≡
1
p

2π

∫ x

−∞
d t e−t2/2 . (2.16)

In analogy with the quantum Chernoff distance, one can also define [48] the quantum hypoth-
esis testing relative entropy

DεH(ρ‖σ)≡ − logβ∗n(ε) , (2.17)

for 0 < ε < 1. This quantity is another generalized divergence, satisfying the data-processing
inequality [47]. In the rest of this work we will be focusing on asymmetric testing and the
refinement of the quantum Stein’s lemma (2.14).

The refined quantum Stein’s lemma should be understood as a refined estimate of the
asymptotic error of an optimal measurement. Following [37], it is useful to define the quantity

αn(E1, E2) = inf
A(n)

�

αn | βn ≤ exp(−(E1n+ E2
p

n+ o(
p

n))
	

. (2.18)

This is the best type I error if we require that the type II error exponentially decays with
leading exponent E1 and subleading exponent E2. It is similar to β∗n(ε) in that it measures the
interdependence between the type II and type I errors. It is shown in [37] that an equivalent
way to formulate the refined quantum Stein’s lemma is to say that

lim
n→+∞

αn(E1, E2) =



















0 if E1 < S(ρ‖σ)

Φ

�

E2
p

V (ρ‖σ)

�

if E1 = S(ρ‖σ)

1 if E1 > S(ρ‖σ)

. (2.19)

We see that the relative entropy S(ρ‖σ) acts as a threshold value for the leading exponent E1.
Above the threshold, the type I error becomes uncontrolled and goes to one, while below the

5See also [25] for a generalization to beyond i.i.d. setting and additional discussion.
6The nomenclature varies, other names are “quantum relative variance”, “quantum information variance”, etc,
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~c

~c

~b~b

~b− ~a

~a~a

Figure 1: Geometrical problem for the one-shot optimal measurement of a qubit. We
optimize over a vector ~c in R4 and plot here the coordinates (c1, c2, c4) (suppressing
c3). The condition 0 ≤ A≤ 1 restricts ~c to lie in the gray diamond. Left: Symmetric
testing. This corresponds to minimizing the product (~b − ~a) · ~c. The optimal vector
~c is the point on the black circle that is most opposite to ~b − ~a. Right: Asymmetric
testing. This corresponds to minimizing β = ~b ·~c under the condition α= 1−~a ·~c ≤ ε,
which restricts ~c to be above the green plane. The intersection of this plane and the
boundary of the diamond and is the black circle, on which the optimal ~c must lie. In
both cases, we show the optimal solution in red. The values chosen for these plots
are ~a = (−0.3, 0.3,0, 1),~b = (0.5,0, 0,1) and ε = 0.1.

threshold, it can be made to vanish. The refined asymptotics become relevant when we are
exactly on the threshold. On the threshold, we define

α∗n(E2) = αn(S(ρ‖σ), E2) , (2.20)

and we have

lim
n→+∞

α∗n(E2) = Φ

�

E2
p

V (ρ‖σ)

�

, (2.21)

which varies smoothly from 0 to 1 when E2 ranges from −∞ to +∞.

2.3 Single qubit example

We now consider a toy version of our problem: what would be the optimal measurement for
a single qubit? This example gives a nice illustration of quantum hypothesis testing. Here, we
only take a single copy of the system: we describe the “one-shot” measurement. As we will see,
it can be formulated as a constrained optimization problem which has a simple geometrical
interpretation.

We have a qubit in the two possible states ρ and σ and we would like to find the best
Hermitian operator A with 0 ≤ A ≤ 1 to distinguish between these two states. In symmetric
testing, we are minimizing the error 1

2(α+β). In the asymmetric case, we are minimizing the
type II error β under the condition that the type I error α is less than a given ε.
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This can be formulated geometrically using a parametrization in terms of Pauli matrices.
Defining the four-vector of 2× 2 matrices ~σ = (σ1,σ2,σ3, 1), we write

ρ =
1
2
~a · ~σ , σ =

1
2
~b · ~σ, ~a,~b ∈ R4 , (2.22)

in terms of two four-vectors ~a,~b. From Trρ = Trσ = 1, we have that a4 = b4 = 1. We
parametrize the Hermitian operator A using a four-vector ~c as

A= ~c · ~σ, ~c ∈ R4 . (2.23)

The type I and type II errors take the form

α = 1− ~a · ~c , (2.24)

β = ~b · ~c .

The condition 0≤ A≤ 1 gives 0≤ c4 ≤ 1 and
q

c2
1 + c2

2 + c2
3 ≤min(c4, 1− c4) . (2.25)

This defines a diamond in R4 depicted in gray in Figure 1. Then, we have two different
optimization problems corresponding to symmetric or asymmetric testing.

Symmetric testing. This is depicted in the left of Figure 1. Here, we have to find the vector
~c that minimizes (~b − ~a) · ~c under the condition that ~c lies inside the gray diamond. We can
see that the optimal ~c lies on the circle corresponding to c4 =

1
2 and c2

1 + c2
2 + c2

3 =
1
2 (depicted

in black). We can write down the solution explicitly as

c4 =
1
2

, ci =
1

2|~b− ~a|
(ai − bi), i = 1,2, 3 , (2.26)

which is shown in red.

Asymmetric testing. This is depicted in the right of Figure 1. In this case, we have to find
the vector ~c that minimizes β = ~b · ~c under two conditions: the requirement 0 ≤ A≤ 1 forces
~c to lie inside the gray diamond and the constraint α ≤ ε implies that ~c must lie above the
green plane. The optimal ~c is inside the intersection region where these two inequalities are
saturated (shown in black) and is shown in red. It is also possible to write down explicit
expressions for the optimal vector ~c by solving the quadratic equations that define it.

3 Perturbative hypothesis testing

In this section, we study quantum hypothesis testing in a pertubative regime. We consider the
case where the alternative hypothesis and the null hypothesis states belong to a one-parameter
family, and are perturbatively close. This setting is natural in many applications. We will derive
a new joint bound on the type I and type II errors, and a universal lower bound on the ratio
of the relative entropy variance to the relative entropy, for systems with a finite dimensional
Hilbert space.

We are interested in a one-parameter family of states, with the two states related by the
series expansion7

ρ = σ+λρ(1) +
λ2

2
ρ(2) +O(λ3) , (3.1)

7It would be more natural to expand the hypothesis state σ over the null hypothesis ρ, σ = ρ − λρ(1) + · · · ,
our convention is chosen to make it more convenient to use some previous results from the literature. The two
conventions are related by a trivial relabeling.
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where λ is a small parameter. This setting is natural in many applications of hypothesis test-
ing. For example, consider the analysis of environment-parametrized quantum channels [20],
where a system is interacting with an environment whose state is dependent on a parame-
ter with unknown value. As concrete examples, [20] studied thermal and amplifier channels,
where the environment is a thermal state parametrized by the temperature. The problem then
is to distinguish two channels with two nearby temperatures, differing by a small parameter
λ.

Another motivation is to consider CFT reduced density matrices in subsystems in the limit
where the subsystem size is perturbatively small. An example could be the eigenstate ther-
malization hypothesis, in which expectation values of reduced density matrices of high energy
eigenstates appear close to thermal, and it is of interest to study how the system responds to
changes in the ratio of the subsystem size to the global system size. Another setting is to study
global thermal states reduced to a subsystem, and consider the dimensionless ratio of the sub-
system size to the thermal wavelength as a parameter to vary. We study optimal measurements
for such subsystems in section 7.

3.1 A perturbative bound on errors

The quantum Stein’s lemma was derived by first proving a bound [45] and then showing that
it can be achieved [46]. For the first part, the following bound was used:

(1−αn)(− logβn)≤ nS(ρ‖σ) + log 2 , (3.2)

which holds for a general measurement A(n) and any n. This can be seen as a bound on how
good a measurement can be. It characterizes the trade-off between the two types of errors:
αn and βn cannot be made arbitrarily small at the same time.

The bound (3.2) can be seen as a “first order in n” bound that holds for a general mea-
surement. We will now derive a “second order in n” bound that holds for a restricted set of
measurements that are optimal at first order in n. This consists of all the measurements with
errors satisfying the two conditions

αn ≤ ε, βn ≤ e−nS(ρ‖σ)−
p

nE2 , n→ +∞ , (3.3)

for some fixed choice of ε and E2. The refinement of the Stein’s lemma implies that

Φ

�

E2
p

V (ρ‖σ)

�

≤ ε , (3.4)

with saturation for the optimal measurement. In the notation of section 2.2, we have
αn ≥ α∗n(E2) and βn ≥ β∗n(ε), which implies that

logαn logβn ≤ logα∗n(E2) logβ∗n(ε) . (3.5)

We can then use the asymptotic estimate

logα∗n(E2) logβ∗n(ε) ∼
n→+∞

−nS(ρ‖σ) log

�

Φ

�

E2
p

V (ρ‖σ)

��

, (3.6)

to obtain the bound

logαn logβn ≤ −nS(ρ‖σ) log

�

Φ

�

E2
p

V (ρ‖σ)

��

, n→ +∞ . (3.7)
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This is a bound on the measurements satisfying (3.3) and can be interpreted as a second order
in n refinement of (3.2). It also characterizes the trade-off between the two types of errors,
implying that we cannot make both αn and βn too small. Note that this also gives a bound on
the LHS of (3.2) since we have (1 − αn)(− logβn) ≤ logαn logβn. It becomes stronger than
(3.2) for E2 ≥ Φ−1(1/e)

p

V (ρ‖σ)≈ −0.34
p

V (ρ‖σ).

We now consider measurements satisfying (3.3) in the perturbative regime (3.1), taking ε
and E2 to be independent of λ, and we consider the perturbative version of the upper bound
(3.7). As will be shown in the next subsection, the leading terms of both the relative entropy
and the relative entropy variance are quadratic in λ:

S(ρ‖σ) =
λ2

2
S(2)(ρ‖σ) +O(λ3), V (ρ‖σ) =

λ2

2
V (2)(ρ‖σ) +O(λ3) . (3.8)

In the perturbative limit, we see that at leading order

α∗n(E2) =
λ

2

√

√

√
V (2)(ρ‖σ)
πE2

2

exp

�

−
E2

2

λ2V (2)(ρ‖σ)

�

, (3.9)

where we have restricted to E2 < 0 for α∗n(E2) to be close to zero rather than close to one.
Note that α∗n(E2) is non-perturbative in λ, which is a consequence of the fact that the variance
becomes small in the perturbative λ→ 0 limit. Because the estimate for αn is obtained using
the central limit theorem, it has an error of order n−1/2. As a result, we can trust the above
result only in the regime where n is non-perturbatively large:

n� ec/λ2
, (3.10)

where c is some positive constant. We can now consider the perturbative λ→ 0 limit of (3.6)
and we find

logα∗n(E2) logβ∗n(ε) ∼
n→+∞

nE2
2

S(2)(ρ‖σ)
V (2)(ρ‖σ)

+O(λ) . (3.11)

Interestingly, this gives a finite answer in the λ→ 0 limit. This implies the bound

logαn logβn ≤ nE2
2

S(2)(ρ‖σ)
V (2)(ρ‖σ)

+O(λ) , n→ +∞ , (3.12)

which holds on all measurements satisfying the conditions (3.3).

In the next subsection, we will obtain a general lower bound V (2)(ρ‖σ) ≥ 2S(2)(ρ‖σ)
which is saturated when ρ and σ commute at first order in λ. This implies that the above
bound becomes

logαn logβn ≤
nE2

2

2
. (3.13)

It is interesting to note that this bound is universal in the sense that it is independent on the
state. It is saturated for the optimal measurement if and only if ρ andσ commute at first order
in λ.

3.2 Lower bound for the ratio

We will now prove a lower bound on the ratio V (ρ‖σ)/S(ρ‖σ) in the perturbative regime
(3.1). The relative entropy has the perturbative expansion

S(ρ‖σ) =
λ2

2
S(2)(ρ‖σ) +O(λ3) (3.14)
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with no linear term, because S(ρ‖σ) ≥ 0 with saturation at λ = 0. The perturbative relative
entropy S(2)(ρ‖σ) is given by [49]8

S(2)(ρ‖σ) = Tr
�

ρ(1)L
�

, (3.15)

where L is the logarithmic derivative

L= d
dλ

log
�

σ+λρ(1)
�

�

�

�

�

λ=0
= σ−1

�

ρ(1) +
1
2

�

logσ,ρ(1)
�

+
1

12

�

logσ,
�

logσ,ρ(1)
��

+ . . .
�

.

(3.16)
Relative entropy variance has a similar expansion and the linear term vanishes again, since
V (ρ‖σ)≥ 0 with saturation at λ= 0. Then,

V (ρ‖σ) =
λ2

2
V (2)(ρ‖σ) +O(λ3) (3.17)

where the perturbative variance is given by9

V (2)(ρ‖σ) = 2Tr (σL2) . (3.18)

Since perturbative relative entropy and variance have the same behaviours for small λ,
their ratio is finite in the limit λ→ 0:

lim
λ→0

V (ρ‖σ)
S(ρ‖σ)

=
V (2)(ρ‖σ)
S(2)(ρ‖σ)

. (3.19)

Our main result is the following universal lower bound for this ratio:

Theorem 1. Let ρ(λ) be a one-parameter family of density matrices over a finite dimensional
Hilbert space. Given the expansion ρ = σ + λρ(1) + λ2

2 ρ
(2) +O(λ3), the ratio obeys the lower

bound
V (2)(ρ‖σ)
S(2)(ρ‖σ)

≥ 2 , (3.20)

with an equality if and only if
�

σ,ρ(1)
�

= 0.

To prove the theorem, we need an expression for L in the eigenbasis of σ. Let the eigenvalues
of σ be λi . Then a generic function f (σ+ X ) has the following expansion in the eigenbasis of
σ:

f (σ+ X )i j = f (λi)δi j +
f (λi)− f (λ j)

λi −λ j
X i j +O(X 2). (3.21)

Applying this to to log
�

σ+λρ(1)
�

, we can identify

Li j =
logλi − logλ j

λi −λ j
ρ
(1)
i j =

A(λ j/λi)

λi
ρ
(1)
i j , (3.22)

where

A(x) =
log x
x − 1

. (3.23)

If ρ(1)i j is also diagonal with eigenvalues λ(1)i , then L is diagonal with eigenvalues λ(1)i /λi:

Li j =
λ
(1)
i A(λ j/λi)

λi
δi j =

λ
(1)
i

λi
δi j . (3.24)

8The factor of 1/2 difference compared to [49] is due to the factor of 1/2 in the quadratic term in (3.14).
9This follows directly from the definition since 〈∆K〉2

ρ
= S(ρ‖σ)2 = O(λ4) and ∆K2 = λ2L2 +O(λ3) where

∆K = logρ − logσ.
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where we used A(1) = 1. With these ingredients, we can prove theorem 1. We prove that
Tr (σL2) ≥ Tr (ρ(1)L) with an equality if and only if

�

σ,ρ(1)
�

= 0. Applying this inequality
to V (2)(ρ‖σ) = 2Tr(σL2) then proves the lower bound. We emphasize that the proof is
inherently finite dimensional and does not directly apply to infinite dimensional Hilbert spaces.

Proof. Assume
�

σ,ρ(1)
�

6= 0. In the eigenbasis of σ, we can write

Tr
�

σL2
�

=
∑

λi<λ j

λiLi jL ji +
∑

λi>λ j

λiLi jL ji +
∑

λi=λ j

λiLi jL ji (3.25)

=
∑

λi<λ j

A(λ j/λi)ρ
(1)
i j L ji +

∑

λi>λ j

A(λ j/λi)ρ
(1)
i j L ji +

∑

λi=λ j

A(λ j/λi)ρ
(1)
i j L ji , (3.26)

where on the second line, we used (3.22). Using

A(λ j/λi) = (λi/λ j)A(λi/λ j) (3.27)

and relabeling the dummy indices i↔ j, the second term can be written as
∑

λi>λ j

(λi/λ j)A(λi/λ j)ρ
(1)
i j L ji =

∑

λi<λ j

(λ j/λi)A(λ j/λi)ρ
(1)∗
i j Li j , (3.28)

where

ρ
(1)∗
i j Li j =

logλi − logλ j

λi −λ j

�

�ρ
(1)
i j

�

�

2
= ρ(1)i j L ji (3.29)

is symmetric in i, j. Thus the second term in (3.26) can be written as
∑

λi<λ j

(λ j/λi)A(λ j/λi)ρ
(1)
i j L ji . (3.30)

We get
Tr
�

σL2
�

=
∑

λi<λ j

B(λ j/λi)ρ
(1)
i j L ji +

∑

λi=λ j

ρ
(1)
i j L ji , (3.31)

where

B(x) = (1+ x)A(x) =
x + 1
x − 1

log x . (3.32)

We also used A(1) = 1 in the diagonal term. As illustrated in Figure 2, it can be shown that

B(x)> 2, when x > 1 . (3.33)

Because of this and ρ(1)i j L ji > 0, when λi < λ j , we get

Tr
�

σL2
�

> 2
∑

λi<λ j

ρ
(1)
i j L ji +

∑

λi=λ j

ρ
(1)
i j L ji = Tr (ρ(1)L) , (3.34)

where the final equality follows by using the symmetricity of ρ(1)i j L ji . We finally get

V (2)(ρ‖σ)> 2S(2)(ρ‖σ) , (3.35)

when [σ,ρ(1)] 6= 0. Assuming [σ,ρ(1)] = 0, the cross-terms vanish in (3.26) and
V (2)(ρ‖σ) = 2S(2)(ρ‖σ) by A(1) = 1.
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Figure 2: The function B(x) = x+1
x−1 log x . It has a global minimum B(1) = 2 in the

region x > 0.

An interesting question is whether there exists special classes of density matrices for which
there is also a constant upper bound for the ratio (3.19). Such an upper bound would imply
an upper bound for the perturbative variance by perturbative relative entropy. To gain more
intuition, it is useful to study the lower bound (3.20) in explicit examples. At least in the
simple examples studied next, no upper bound appears.10

3.2.1 Single qubit

We consider a single qubit example for which the Hilbert space is two dimensional. A general
initial density matrix σ has two eigenvalues which we parametrize as 1

2 + a and 1
2 − a with

−1
2 < a < 1

2 . Working in the eigenbasis of σ, we consider the following one-parameter family
of states ρ(λ) = σ+λρ(1):

σ =
1
2

�

1+ 2a 0
0 1− 2a

�

, ρ(1) =
1
2

�

0 1
1 0

�

, ρ(λ) =
1
2

�

1+ 2a λ

λ 1− 2a

�

, (3.36)

where a,λ ∈ R. The eigenvalues of ρ(λ) are

p± =
1
2
(1±

p

λ2 + 4a2) (3.37)

and the positivity of p− requires that

λ2 ≤ (1− 2a)(1+ 2a). (3.38)

We can now demonstrate the lower bound (3.20) for the family ρ(λ). The commutator be-
tween the initial state and the perturbation vanishes if and only if a = 0:

[σ,ρ(1)] = a

�

0 1
−1 0

�

. (3.39)

Hence we expect saturation of the lower bound when a = 0. Relative entropy and its variance
can be explicitly computed for the states (3.36), but the expressions are quite complicated.

10An additional example will be presented in section 6.1.3, where relative entropy and its variance are derived
for a spinless fermion chain.
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Figure 3: The variance over entropy ratio (3.43) as a function of −1
2 < a < 1

2 . It
saturates the lower bound (red line) at a = 0 where we have [σ,ρ(1)] = 0.

For a = 0 they are

S(ρ‖σ)|a=0 =
1
2
[(1+λ) log (1+λ) + (1−λ) log (1−λ)] =

λ2

2
+O(λ3) (3.40)

V (ρ‖σ)|a=0 =
1−λ2

4
[log (1+λ)− log (1−λ)]2 = λ2 +O(λ3) (3.41)

so that the lower bound is saturated as expected in this case. For a 6= 0 we can expand the non-
perturbative expressions of S, V or use the perturbative formulas (3.15) and (3.18) directly.
The results agree and are given by

S(2)(ρ‖σ) =
1

4a
log

�

1+ 2a
1− 2a

�

, V (2)(ρ‖σ) =
1

8a2
log2

�

1+ 2a
1− 2a

�

= 2S(2)(ρ‖σ)2. (3.42)

We find that the ratio obeys the lower bound

V (2)(ρ‖σ)
S(2)(ρ‖σ)

=
1

2a
log

�

1+ 2a
1− 2a

�

≥ 2 (3.43)

with an equality if and only if a = 0 as required by Theorem 1. The ratio is depicted in Figure
3.

As an additional application of this example, we demonstrate the vanishing property of the
variance described in Appendix B.2. One can see from (3.41) that V (ρ‖σ) vanishes at three
distinct points when a = 0:

V (ρ‖σ)|a=0= 0, λ= 0,±1. (3.44)

When a 6= 0, only the zero at λ = 0 remains corresponding to V (σ‖σ) = 0. The two extra
zeros at a = 0 are explained by the vanishing theorem which states that

V (ρ‖σ) = 0, ⇔

¨

〈φ|σ|ψ〉= 0, ∀|φ〉 ∈ kerρ, ∀|ψ〉 ∈ (kerρ)⊥

〈ψ1|ρ|ψ2〉 ∝ 〈ψ1|σ|ψ2〉, ∀|ψ1〉, |ψ2〉 ∈ (kerρ)⊥
,

(3.45)
where both of the conditions on the right have to be satisfied at the same time. When ρ is
full-rank (kerρ = {0}), the condition on the right hand side reduces toρ = σ.11 Hence for full-
rank ρ, the variance vanishes if and only if ρ = σ, but there can be additional zeros otherwise.

11The proportionality constant is fixed by normalization to be the same.
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In our qubit example, ρ(λ) is full-rank except when the inequality (3.38) is saturated:

λ= ±
Æ

1− (2a)2. (3.46)

At saturation, kerρ one-dimensional and spanned by the vector (1,−µ)ᵀ where

µ=

p

1− (2a)2

1− 2a
. (3.47)

Then the orthogonal complement (kerρ)⊥ is spanned by (1,µ−1)ᵀ. One can check that the
second condition on the right hand side of (3.45) is satisfied for all a, but the first condition
holds only for a = 0 corresponding to λ= ±1.

3.2.2 Maximally mixed initial state

In the above single qubit example, the lower bound is saturated when σ is proportional to
the identity matrix, or in other words, when σ is maximally mixed. This should hold more
generally for arbitrary perturbations ρ(1) in Hilbert spaces of dimension N ≥ 2, because the
identity matrix commutes with all matrices. So let 1N be the N -dimensional identity matrix
and let σ = (1/N)1N ≡ σmax be maximally mixed. To check saturation of the lower bound
(3.20) we can use the fact that relative entropy and relative entropy variance generally reduce
to von Neumann entropy S(ρ) and capacity12 C(ρ) when σ = σmax:

S(ρ‖σmax) = −S(ρ) + log N , V (ρ‖σmax) = C(ρ) , (3.48)

where ρ is arbitrary. Computing the expansions of von Neumann entropy and capacity explic-
itly using ρ = σmax +λρ(1) +O(λ2), we find

S(ρ) = log N +
λ2

2
S(2)(ρ) +O(λ3), C(ρ) =

λ2

2
C (2)(ρ) +O(λ3) , (3.49)

where13

C (2)(ρ) = 2S(2)(ρ) = 2N Tr
�

ρ(1)
�2

. (3.50)

Combining with (3.48), we get

V (2)(ρ‖σmax)
S(2)(ρ‖σmax)

=
C (2)(ρ)
S(2)(ρ)

= 2 (3.51)

as expected.

3.2.3 Two thermal states

Let us consider two thermal states ρ2 and ρ1 of the form

ρ1 =
e−β1H

Tr e−β1H
, ρ2 =

e−β2H

Tr e−β2H
. (3.52)

When the Hamiltonian H is quadratic in creation/annihilation operators, the states are Gaus-
sian, so the result should reduce to the previously studied case in [20]. With a straightforward
calculation, we obtain

V (ρ2‖ρ1) = (β2 − β1)
2
�

〈H2〉β2
− 〈H〉2β2

�

, (3.53)

12By capacity we mean the quantity C(ρ) = Tr [ρ(logρ)2]−S(ρ)2, which for a reduced density matrix is known
as the capacity of entanglement (other names include for example variance of surprisal and varentropy), see
Appendix B.1. For a thermal state ρβ , it becomes the heat capacity C(β).

13This is of course in agreement with the general definitions for V (2)(ρ‖σmax) and S(2)(ρ‖σmax).
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where all the terms involving logarithms of traces have cancelled. From this equation we
recognize the heat capacity C(β2) of a thermal state and we end up with a simple result

V (ρ2‖ρ1) =
�

1−
β1

β2

�2

C(β2) . (3.54)

In the limit β1 → 0, ρ1 becomes a maximally mixed state, and the relative entropy variance
reduces to the heat capacity,

V (ρ2‖ρ1) = C(β2) . (3.55)

On the other hand, in the limit β2 → ∞, ρ2 reduces to the ground state, and the relative
entropy variance vanishes (along with C(β2)→ 0).14

Clearly, [ρ1,ρ2] = 0 for all temperatures β1 and β2 so that the lower bound (3.20) should
be saturated for temperature perturbations β2 = β1 + λβ (1) +O(λ2). We can check this ex-
plicitly. Relative entropy is given by

S(ρ2‖ρ1) = −(β2 − β1)〈H〉β2
− log

Tr e−β2H

Tr e−β1H
(3.56)

which expanded to second order in λ gives

S(2)(ρ2‖ρ1) =
�

β (1)

β1

�2

C(β1) , (3.57)

where C(β1) is the heat capacity of the initial thermal state ρ1. Because (β2 − β1)2 is second
order in λ, we can just replace C(β2) by its initial value C(β1) to obtain variance of relative
entropy (3.54) at order O(λ2). We get

V (2)(ρ‖σ) = 2
�

β (1)

β1

�2

C(β1) = 2S(2)(ρ‖σ) , (3.58)

which saturates the bound (3.20).
Interestingly, non-perturbative relative entropy variance between two thermal states turns

out to be proportional to the capacity of entanglement (3.54). This might have implications for
thermodynamics of AdS black holes in the AdS/CFT correspondence where the holographic
dual of the capacity of entanglement is known [50, 51]. However, the holographic dual of
relative entropy variance is not yet known, but further results in this direction will be reported
in upcoming work [52].

3.3 Relation to parameter estimation

The framework of perturbative asymmetric hypothesis testing is related to parameter estima-
tion and quantum Fisher information [53]. Quantum parameter estimation is the problem of
determining the value of a parameter λ appearing in a density matrix ρ(λ) by performing n
independent measurements of an observable E(x). For each measurement, the probability of
the outcome x is

p(x |λ) = Trρ(λ)E(x),
∑

x

E(x) = 1 . (3.59)

Denoting the outcomes of n measurements by x i , which are random variables, an estimator
is a function λest = λest(x1, . . . , xn) used to estimate λ from the data {x i}. Suppose that the
estimator is unbiased so that

〈λest〉 ≡
∫

dn x p(x1|λ) · · · p(xn|λ)λest(x1, . . . , xn) = λ , (3.60)

14In a system with a degenerate ground state, at zero temperature the density matrix reduces to a flat state (all
non-zero eigenvalues are equal), for which the capacity of entanglement is zero [43,51].
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the quantum Cramér–Rao bound then states that

〈(λest −λ)2〉 ≥
1

nFλ
, (3.61)

where

Fλ = Tr (ρ L2
λ) = Tr

�

dρ
dλ

Lλ

�

, (3.62)

is the quantum Fisher information [54]. Here, the symmetric logarithmic derivative operator
Lλ is defined implicitly via

dρ
dλ
=

1
2
(Lλρ +ρLλ) . (3.63)

We focus on states ρ(λ) = σ + λρ(1) with λ � 1 that are perturbatively close to ρ(0) = σ.
Setting λ= 0 in the above equations gives

〈λ2
est〉 ≥

1
nF

, (3.64)

with
F ≡ Tr (σL2) = Tr (ρ(1)L), ρ(1) =

1
2
(Lσ+σL) . (3.65)

The bound (3.64) gives the best accuracy for estimating the small parameter λ.
Quantum Fisher information (3.65) is closely related to perturbative relative entropy15

which has a similar expression (3.15). In the eigenbasis of σ with eigenvalues λi , the sym-
metric logarithmic derivative has the expression

Li j =
2

λi +λ j
ρ
(1)
i j , (3.66)

and can be compared with the expression (3.22) for the logarithmic derivative L . When
[σ,ρ(1)] = 0, the two expressions are equal: we have Li j = Li j = (λ

(1)
i /λi)δi j where λ(1)i

are the eigenvalues of ρ(1) in the eigenbasis of σ. In general, we can prove the following
inequality whose proof is similar to the proof of Theorem 1.

15The definition of quantum Fisher information is not unique and different ones can be found in the literature.
In [55], a divergence-based Fisher information J is introduced and is defined to be exactly equal to the perturbative
relative entropy J ≡ S(2)(ρ‖σ). The same definition is also used in [49].
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Figure 4: Plot of the functions A(x) = log x
x−1 (blue) and B(x) = 2

x+1 (yellow) for
0≤ x ≤ 1. They satisfy the inequality A(x)≥ B(x) in this region.

Theorem 2. Consider the perturbative expansion ρ = σ+λρ(1) + λ2

2 ρ
(2) +O(λ3), we have

F ≤ S(2)(ρ‖σ) (3.67)

with an equality if and only if [σ,ρ(1)] = 0.

Proof. Assuming [σ,ρ(1)] 6= 0, we have

S(2)(ρ‖σ) = Tr (ρ(1)L) =
∑

λi>λ j

A(λ j/λi)

λ j
|ρ(1)i j |

2+
∑

λi<λ j

A(λ j/λi)

λ j
|ρ(1)i j |

2+
∑

λi=λ j

ρ
(1)
i j L ji , (3.68)

where A(x) = log x
x−1 . Using that

A(λ j/λi)

λ j
=

A(λi/λ j)

λi
, (3.69)

and relabeling the dummy indices i↔ j in the second term, we get

S(2)(ρ‖σ) = 2
∑

λi>λ j

A(λ j/λi)

λ j
|ρ(1)i j |

2 +
∑

λi=λ j

ρ
(1)
i j L ji , (3.70)

where we used Lii = Lii in the last term. Applying the inequality

A(x) =
log x
x − 1

≥
2

x + 1
≡ B(x) , (3.71)

which is displayed in Figure 4, we obtain

S(2)(ρ‖σ)> 2
∑

λi>λ j

B(λ j/λi)

λ j
|ρ(1)i j |

2 +
∑

λi=λ j

ρ
(1)
i j L ji = Tr (ρ(1)L) = F , (3.72)

where the inequality is strict. Assuming [σ,ρ(1)] = 0, the cross-terms vanish in (3.68) and
S(2)(ρ‖σ) = F by Lii = Lii .
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We can also combine (3.67) with the lower bound (3.20) to give

2F ≤ 2S(2)(ρ‖σ)≤ V (2)(ρ‖σ) (3.73)

with equality if and only if [σ,ρ(1)] = 0. This shows that both S(2) and V (2)/2 give quantum
Cramér–Rao bounds, although the quantum Fisher information F provides the tightest bound.

The inequality (3.67) provides a heuristic connection between perturbative hypothesis test-
ing and parameter estimation. Suppose that the estimator is asymptotically normal, that is the
probability distribution for the value of the estimator16 is effectively described by a Gaussian
distribution for large n. Then the Cramér–Rao bound (3.64) implies that the optimal proba-
bility distribution for the estimate is

f ∗n (λest)∼ e−n(λ2
est/2)F , n→∞ . (3.74)

This distribution (3.74) is similar to the optimal type II error probability in asymmetric hy-
pothesis testing (2.13) between two perturbatively close states σ and ρ(λ) = σ+λρ(1):

β∗n ∼ e−n(λ2/2)S(2)(ρ‖σ), n→∞ , (3.75)

where λ is fixed here. The inequality (3.67) then implies that

β∗n ® f ∗n (λ), n→∞. (3.76)

This can be interpreted heuristically as follows: the binary problem of distinguishing ρ(λ)
from σ is easier than estimating the exact value of λ.

4 Generalities on measurements

In this section, we compare different measurement protocols in a setting where we have a
large number n of copies of a physical system. We begin by discussing independent measure-
ments on the n copies, and explain why they fail to be optimal. We then turn to optimal
measurements for distinguishing between two states ρ and σ in the context of asymmetric
hypothesis testing. Following section 2.2, we call a measurement optimal if it saturates the
refined quantum Stein’s lemma in the asymptotic limit n → +∞. We would like to under-
stand this optimal measurement in order to apply it in many-body systems in the remainder
of this paper. We also consider the likelihood ratio test, which is optimal among the classical
measurements. Simple examples where these measurements can be described and tested are
then discussed. In Appendix A, we describe and discuss similar measurements for symmetric
hypothesis testing.

We recall that we take n copies of the system so that we have to distinguish between the
states ρ⊗n and σ⊗n in the asymptotic limit n→ +∞. More precisely, we look for a Hermitian
operator A(n) with 0 ≤ A(n) ≤ 1 which minimizes the type II error βn = Trσ⊗nA(n) while
ensuring that the type I error αn = Trρ⊗n(1− A(n)) remains bounded.

4.1 Independent measurements

The likelihood ratio test and the optimal measurement, which are described below, use in a
crucial way correlations between the n copies. In this section, we demonstrate that indepen-
dent measurements perform badly. A trivial but notable exception is the case where ρ is a

16We denote the estimator (a random variable) and its value (an estimate) by the same symbol.
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pure state, for which the optimal measurement is simply the projector onto this pure state on
each copy. This example is discussed in section 4.4.1.

Let’s consider an independent measurement, by which we mean a factorized measurement
of the form

A(n) = A(n)1 ⊗ A(n)2 ⊗ · · · ⊗ A(n)n , (4.1)

and denote
a(n)i = TrρA(n)i , b(n)i = TrσA(n)i , (4.2)

which satisfy 0< ai < 1 and 0< bi < 1. The type I and type II errors are then given by

αn = 1−
n
∏

i=1

a(n)i , βn =
n
∏

i=1

b(n)i . (4.3)

We see that the type I error αn becomes dangerously uncontrolled in the asymptotic limit. To
obtain a bounded type I error, we have to make the a(n)i tend to 1 as n →∞. This implies

that the operators A(n)i should become close to the identity. This will make the b(n)i also close
to one and spoil the type II error βn.

To illustrate this argument, consider the following example. Let’s pick

A(n)i = 1−
1
n

B , (4.4)

where B is some bounded positive Hermitian operator. This ensures that the type I error
remains smaller than 1, since we have

αn = 1−
�

1−
1
n

TrρB
�n

∼
n→∞

1− e−TrρB . (4.5)

However, we see that the type II error is

βn =
�

1−
1
n

TrσB
�n

∼
n→∞

e−TrσB . (4.6)

Thus we see that βn goes to a finite limit as n→∞, instead of decaying exponentially to zero,
as in an optimal measurement. Hence, we expect that in general independent measurements
should be far from optimal.

We can reformulate the independent measurement optimization as follows. Denote

a(n)i = 1− ε(n)i = e−v(n)i . (4.7)

We then have to impose
∑

i v(n)i ≤ − log(1 − ε) while at the same time optimizing
∑

i β
∗
1(ε

(n)
i ) =

∑

i β
∗
1(1− e−v(n)i ). This leads us to consider the function f (x)≡ β∗1(1− e−x). We

need to optimize
∑

i f (v(n)i ) subject to the constraint
∑

i v(n)i ≤ − log(1 − ε). If the function

f (x) is convex, the optimal choice is to choose one of the v(n)i to be equal to − log(1−ε) while
taking the others to be equal to zero. In other words, multiple measurements yield in this case
no improvement over a single measurement.

If, on the other hand, f (x) is concave, then the optimal choice is to choose all v(n)i equal
to each other, and the resulting error is

β∗1(1− (1− ε)
1/n)n , (4.8)

whose detailed form for large n depends on the small ε behavior of β∗1(ε). Of course, if f (x)
is neither concave or convex, a more detailed analysis is required.
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4.2 Optimal measurement

Let’s now describe an optimal measurement which was used in [37] to prove the quantum
Stein’s lemma. Although we will often refer to it as the optimal measurement, it is important
to note that it is not unique.17 We define the modular Hamiltonians K and eK by

K ≡ − logσ, eK ≡ − logρ . (4.9)

We consider n copies of the system with the states σ⊗n and ρ⊗n labeled by i = 1, . . . , n. We
denote by {|E〉} and {|eE〉} the set of normalized eigenstates of σ⊗n and ρ⊗n. They are of the
form

|E〉 = |E1〉 ⊗ |E2〉 ⊗ · · · ⊗ |En〉 , (4.10)

|eE〉 = |eE1〉 ⊗ |eE2〉 ⊗ · · · ⊗ |eEn〉 ,

and are labeled by their eigenvalues of K and eK respectively. We can define the average
modular operators

K(n) = −
1
n

logσ⊗n =
1
n

n
∑

i=1

Ki , (4.11)

eK(n) = −
1
n

logρ⊗n =
1
n

n
∑

i=1

eKi .

We will use the notation |E| and |eE| to denote the eigenvalues of the states |E〉 and |eE〉 for the
average modular operators. In other words,

|E|=
1
n

n
∑

i=1

Ei , |eE|=
1
n

n
∑

i=1

eEi . (4.12)

To describe the optimal measurement, we decompose the state |eE〉 in the {|E〉} basis

|eE〉=
∑

E

〈E|eE〉|E〉 . (4.13)

We then restrict the sum only to the states |E〉 satisfying the acceptance condition |E|− |eE| ≥ E
for some fixed E that we will call the acceptance threshold. This defines the states

|ξ(eE)〉=
∑

E : |E|−|eE|≥E

〈E|eE〉|E〉 . (4.14)

We define the acceptance subspace

HQ = span
eE
{|ξ(eE)〉} . (4.15)

The optimal measurement is then the projection onto this subspace:

A(n) = PHQ
. (4.16)

Unfortunately, explicit constructions of the acceptance subspace and the projection are non-
trivial even in simple applications, as we will see.

17This is especially true since our definition of optimality relies on an asymptotic limit n→ +∞. Any measure-
ment satisfying (2.14) is considered optimal, so it is clear that there will be many optimal measurements.
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To obtain the optimal type II error βn for a bounded type I error αn ≤ ε, the optimal
acceptance threshold is

E = S(ρ‖σ) +

√

√V (ρ‖σ)
n

Φ−1(ε) . (4.17)

As explained in section 2.2, this measurement leads to a bounded type I error αn ≤ ε and a
type II error exponent

−
1
n

logβn ∼
n→+∞

S(ρ‖σ) +

√

√V (ρ‖σ)
n

Φ−1(ε) +O
�

log n
n

�

. (4.18)

The proof of optimality of this measurement is given in [37].

4.3 Likelihood ratio test

The optimal measurement described above is in general rather complicated to implement. In
this section, we review a simpler measurement, which is efficient and becomes optimal in the
classical case, when ρ and σ commute [25]. When ρ and σ are viewed as classical probability
distributions, this measurement is the likelihood ratio (Neyman–Pearson) test which is known
to be optimal in classical hypothesis testing.

In this setup, we consider two probability distributions P and Q on the same probabil-
ity space Ω, and we would like to distinguish them by making a test modeled as a function
A : Ω→ [0,1]. Let’s consider n copies of the system. The task is then to distinguish between
the probability distributions P(n) and Q(n) on Ωn defined as

P(n)(x) =
n
∏

i=1

P(x i), Q(n)(x) =
n
∏

i=1

Q(x i) , (4.19)

with a function A(n) : Ωn→ [0,1]. The optimal type II error is defined as

β∗n(ε) = inf
A(n)

�

EQ(n)
�

A(n)
�

| EP(n)
�

1− A(n)
�

≤ ε
	

, (4.20)

where EP denotes the expected value in the probability distribution P . We are interested in
the asymptotic limit n→ +∞. We have the estimate

−
1
n

logβ∗n(ε) ∼
n→+∞

S(P‖Q) +

√

√V (P‖Q)
n

Φ−1(ε) +O
�

log n
n

�

. (4.21)

The first order in n result was originally obtained by Chernoff and Stein and the second or-
der correction by Strassen [56] (see [57] for a review). In the above expression, the relative
entropy and its variance are defined as the first and second cumulant, in the probability dis-
tribution P, of the log-likelihood ratio log P(x)

Q(x) , i.e.

S(P‖Q) =
∑

x∈Ω
P(x) log

P(x)
Q(x)

, V (P‖Q) =
∑

x∈Ω
P(x)

�

log
P(x)
Q(x)

− S(P‖Q)
�2

. (4.22)

The measurement that achieves optimality (in this classical setting) is the likelihood ratio test.
It is a deterministic test, choosing the function A(n) to be an indicator function

A(n) = 1

�

x ∈ Ωn

�

�

�

�

1
n

log
P(n)(x)
Q(n)(x)

≥ E
�

, (4.23)
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which takes the value 1 on an acceptance subspace, the subset of x ∈ Ωn satisfying the ac-

ceptance condition 1
n log P(n)(x)

Q(n)(x) ≥ E , and 0 otherwise. The optimal choice of threshold E is

E = S(P‖Q) +

√

√V (P‖Q)
n

Φ−1(ε) . (4.24)

To apply this measurement to quantum systems, we need to express it in quantum mechanical
language using the setup described in the previous section. We take the probability space
Ω = {|E〉} to be a basis of eigenstates of K(n) = − 1

n logσ⊗n. The probability distributions are
the ensemble probabilities given by

P(n)(E) = 〈E|ρ⊗n|E〉, Q(n)(E) = 〈E|σ⊗n|E〉 , (4.25)

and we have 1
n logQ(n)(E) = |E| from the definition (4.12). The acceptance condition is

|E|+
1
n

log 〈E|ρ⊗n|E〉 ≥ E , (4.26)

which can also be written more transparently as

1
n

n
∑

i=1

〈Ei|K − eK |Ei〉 ≥ E . (4.27)

We note that this measurement only involves the diagonal part of ρ (defined with respect to
the basis defined by σ), which we denote

ρD ≡
∑

E

〈E|ρ|E〉|E〉〈E| . (4.28)

We can then define the “classical” acceptance subspace

HC = span
§

|E〉
�

�

�

�

|E|+
1
n

log 〈E|ρ⊗n|E〉 ≥ E
ª

. (4.29)

To implement the likelihood ratio test, we then replace the indicator function of the acceptance
subspace by an operator, the projector onto HC :

A(n) = PHC
. (4.30)

When ρ and σ commute, it can be seen that HC = HQ so this is actually the optimal mea-
surement described in the previous subsection. From the relation with classical quantities
S(P‖Q) = S(ρD‖σ) and V (P‖Q) = V (ρD‖σ), we see that the optimal choice of threshold is

E = S(ρD‖σ) +

√

√V (ρD‖σ)
n

Φ−1(ε) , (4.31)

and leads to a bounded type I error αn ≤ ε and a type II error exponent

−
1
n

logβn ∼
n→+∞

S(ρD‖σ) +

√

√V (ρD‖σ)
n

Φ−1(ε) +O
�

log n
n

�

. (4.32)

In general, this measurement is less efficient than the optimal measurement because the mono-
tonicity of relative entropy implies that

S(ρD‖σ)≤ S(ρ‖σ) (4.33)
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since the map ρ 7→ ρD is (completely) positive and trace preserving [58]. Nonetheless, this
measurement achieves an exponentially decreasing type II error for bounded type I error. The
likelihood ratio test with nLRT copies of the system achieves the same accuracy to leading order
as the optimal measurement with nopt copies with

nLRT =
S(ρ‖σ)
S(ρD‖σ)

nopt . (4.34)

In the simple example of a qubit, the likelihood ratio test can be implemented using a quantum
circuit, displayed in Figure 5, and a comparison between the likelihood ratio test and the
optimal measurement is shown in Figure 6.

4.4 Examples

In this section, we describe the optimal measurement in some simple cases.

4.4.1 Pure versus mixed

We consider the simplest possible example. We take ρ to be a pure state and σ to be a general
mixed state

ρ = |ψ〉〈ψ|, σ = e−K . (4.35)

In this case, an optimal measurement is just the projector A = |ψ〉〈ψ|. On n copies of the
system, we take the factorized measurement A(n) = A⊗n. The type I error αn = 0 and the type
II error is given by

−
1
n

logβn = TrρK = S(ρ‖σ) , (4.36)

which indeed saturates the quantum Stein’s lemma. The second order asymptotics in n do not
play a role because

V (ρ‖σ) = 0 , (4.37)

according to the proposition explained in section B.2.

4.4.2 Global thermal states

We consider two thermal states with different temperatures

ρ =
1

Tr e−β2H
e−β2H , σ =

1
Tr e−β1H

e−β1H (4.38)

and we would like to distinguish between them. The modular Hamiltonians are

eK = − logρ = β2(H + F2), K = − logσ = β1(H + F1), (4.39)

where the free energy is defined as Fi = −β−1
i logTr e−βi H for i = 1,2. The relative modular

Hamiltonian is
∆K = K − eK = (β1 − β2)H + β1F1 − β2F2 . (4.40)

The relative entropy and variance are

S(ρ‖σ) = 〈∆K〉ρ = (β1 − β2)E2 + β1F1 − β2F2 , (4.41)

V (ρ‖σ) = 〈∆K2〉ρ − 〈∆K〉2ρ = (β1 − β2)
2(〈H2〉ρ − 〈H〉2ρ) =

�

1−
β1

β2

�2

C(β2) ,
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where E2 = 〈H〉ρ. We are in a situation where ρ and σ commute so the likelihood ratio test
is actually the optimal measurement. It can be described as follows. We consider n copies of
the system and we define the average

∆K(n) =
1
n

n
∑

i=1

∆Ki . (4.42)

Let {|E〉} be a basis of eigenstates of σ⊗n. These are formed from eigenstates of H. Notice that
we are using the actual energies to label the states as opposed to using the eigenvalues of the
modular Hamiltonian. In particular, we denote by |E| the average energy of the corresponding
state

|E|=
1
n

n
∑

i=1

Ei . (4.43)

The measurement is simply the projection onto the states in this basis with the acceptance
condition

〈E|∆K(n)|E〉 ≥ S(ρ‖σ) +

√

√V (ρ‖σ)
n

Φ−1(ε) . (4.44)

This translates into the condition

(β1 − β2)|E| ≥ (β1 − β2)E2 +
β1 − β2

β2

√

√C(β2)
n
Φ−1(ε) . (4.45)

We have to distinguish two cases depending on the sign of β1 −β2. The acceptance condition
is

�

|E| ≥ E∗ β1 > β2

|E| ≤ E∗ β1 < β2
, (4.46)

where the threshold energy is

E∗ = E2 +
1
β2

√

√C(β2)
n
Φ−1(ε) . (4.47)

The measurement is then a projection on the states satisfying the condition

A(n) =
∑

|E|≷E∗

|E〉〈E| . (4.48)

It is interesting to note that the optimal measurement actually doesn’t depend on the value of
β1, but only on whether it is bigger or smaller than β2.

5 Measurements of a qubit

In this section, we consider a simple system to illustrate the measurements that we have been
discussing. The system is just a single qubit in two possible states ρ or σ. We are interested in
the optimal measurement on n copies of the system in the asymptotic limit where n is large.

5.1 Likelihood ratio test

The best classical measurement is the likelihood ratio test and was discussed in section 4.3.
In this section, we will write it explicitly for the case of a qubit. We will also give a quantum
circuit that realizes it.
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5.1.1 Setup

Let {|0〉, |1〉} denote the basis which diagonalizes σ,

σ = p|1〉〈1|+ (1− p)|0〉〈0| , (5.1)

with 0 ≤ p ≤ 1. The likelihood ratio test only involves the diagonal part ρD of ρ, which we
can write as

ρD = q|1〉〈1|+ (1− q)|0〉〈0|. (5.2)

A basis of the Hilbert space for the n copies is given by the states

|E〉= |a1a2 . . . an〉 , ai ∈ {0, 1} , (5.3)

labeled by the bit strings a1a2 . . . an. The acceptance condition for the likelihood ratio test
takes the form

|E|+
1
n

log 〈E|ρ⊗n|E〉 ≥ E . (5.4)

Denoting by n(E) the number of 1s in E (the Hamming weight of the bit string), this is

n(E)≥ n∗ , n∗ ≡









n

log
�

(1−p)q
(1−q)p

�

�

E + log
�

1− p
1− q

��









, (5.5)

where we use the ceiling function d · e so that n∗ is an integer. The optimal value for E is given
in (4.31) in terms of the relative entropy and its variance

S(ρD‖σ) = q(log q− log p) + (1− q) (log(1− q)− log(1− p)) , (5.6)

V (ρD‖σ) = q(1− q)
�

log
�

q(1− p)
p(1− q))

��2

,

and leads to the acceptance threshold

n∗ =

¢

nq+ sign(q− p)

√

√q(1− q)
n

Φ−1(ε)

¥

. (5.7)

The acceptance subspace is

HC = span
E
{|E〉 | n(E)≥ n∗} , (5.8)

and the measurement is the projection onto HC . We can also identify HC with a subset of
{0, 1}n, the complement of the Hamming sphere of radius n∗ − 1 centered at the zero string.

5.1.2 Quantum circuit for the likelihood ratio test

We now describe a quantum circuit that implements the likelihood ratio test. In the language
of quantum computing, our problem can be posed as follows. We are given a blackbox gate V
acting on a pair of qubits producing a state we wish to identify. More explicitly, acting with V
on |00〉 and tracing over the second qubit gives a density matrix ρV for the first qubit, and we
assume that there can be only two possibilities:

ρV = ρ or σ , (5.9)

where ρ and σ are known a priori but we do not know the outcome. Our goal is to determine
which alternative is true by making a measurement on n of these pairs of qubits, and operating
only on the first qubit of each pair.
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|0〉

Ψ

H

...

. . .

H

...

... ...

{

{|0〉⊗(2n+n∗)

{

{|0〉

|0〉

|0〉

|0〉

|0〉

|0〉

V

V

V

V †

|ψ〉 I I I
. . .

... ..
.

V †

V †

{

Circuit that prepares the state Ψ

Swap test to compute the overlap

Figure 5: Quantum circuit for the likelihood ratio test. The input consists of n pairs
of qubits in the state |00〉 and a register in the state |ψ〉. The role of the register is
to count the number of 1s in the first qubits of each pair. This is done by using a
controlled-I gate, where I is an increment operation. Such a gate is activated if and
only if the control qubit (with a black dot) is in the state |1〉. This prepares a state Ψ
in the first part of the figure. The result of the likelihood ratio test is then obtained
by measuring the overlap of the first 2n + n∗ qubits of Ψ with the state |0〉⊗(2n+n∗).
This can be done using a swap test, where we have an ancilla qubit with a series of
controlled-SWAP gates, which swap two qubits (with two crosses) if and only if the
ancilla qubit (with a black dot) is in the state |1〉, as represented in the second part
of the figure.

The likelihood ratio test is the best classical measurement and becomes the optimal mea-
surement when ρ and σ commute. From the previous analysis, the measurement is a projec-
tion PHC

onto the acceptance subspace (5.8). Hence, we would like to compute

Trρ⊗n
V PHC

. (5.10)

If this quantity is close to one, we declare that ρV = ρ while if it closer to zero, we declare that
ρV = σ. Because the state V |00〉 is a purification of ρV , we can rewrite (5.10) as the overlap

Trρ⊗n
V PHC

= 〈0|⊗2n(V †)⊗nPHC
V⊗n|0〉⊗2n , (5.11)

where PHC
only acts on the first qubit on each pair.

This quantity can be computed using the quantum circuit depicted in Figure 5. We start
with n pairs of qubits in the state |0〉 together with a register of n auxiliary qubits in the state
|ψ〉. We first act with V on each pair. We then use a controlled-I gate where I is a “increment”
gate which counts the number of 1s in the register while preserving the superposition.

The register is designed to incorporate the threshold condition associated with the projec-
tion PHC

by measuring the overlap of some of its qubits with some fixed state. For example,
we can take a register of n+ 1 qubits and count the number of 1s as follows. We initialize the
register in the state |ψ〉= |1〉⊗|0〉⊗n and define I to be the cyclic permutation i 7→ i+1 on the
n+1 qubits. If the number of 1s is k, all the qubits in the register are in the state |0〉 except for
a |1〉 in the (k+ 1)-th position. Then, we can see that by measuring the overlap of the first n∗
qubits of the register with |0〉⊗n∗ , we exactly implement the projection PHC

.18 Indeed, all the
states with n(E) ≤ n∗ − 1 are projected out. Measuring at the same time the overlap of the n

18We thank Michael Walter for this idea.
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pairs of qubits with |00〉⊗n precisely gives (5.11). The remaining qubits of the register should
remain unmeasured.

This overlap operation should be implemented using a swap test between the 2n+n∗ qubits
consisting of our n qubit pairs and the n∗ first qubit of the register, with 2n + n∗ auxiliary
qubits in the state |0〉. This allows us to measure the overlap (5.11) to arbitrary precision
using iterations of the circuit. We note that the register can be optimized by using only log n
qubits and storing the number of 1s in binary instead of unary.

5.2 Optimal measurement

We now investigate the optimal measurement for a qubit. Whenρ andσ commute, the optimal
measurement reduces to the likelihood ratio test, which was described in the previous section.
Here, we would like to study the optimal measurement more generally, in a setup when ρ and
σ do not commute. We consider a very simple non-commuting example, taking

σ = e−K , ρ = e−eK , (5.12)

with

K = E0|0〉〈0|+ E1|1〉〈1| , (5.13)
eK = E0|e0〉〈e0|+ E1|e1〉〈e1| ,

where E1 ≥ E0. Moreover, we assume that the change of basis is just a rotation matrix

|e0〉 = cosθ |0〉 − sinθ |1〉 , (5.14)

|e1〉 = sinθ |0〉+ cosθ |1〉 .

In a basis where |0〉=
�

1
0

�

and |1〉=
�

0
1

�

, we have

σ =

 

e−E0 0

0 e−E1

!

, ρ =

 

e−E0 cos2θ + e−E1 sin2θ (e−E1 − e−E0) cosθ sinθ

(e−E1 − e−E0) cosθ sinθ e−E0 sin2θ + e−E1 cos2θ

!

, (5.15)

and we have e−E0 + e−E1 = 1 so it is useful to define p such that

e−E1 = p, e−E0 = 1− p , (5.16)

and we have p ≤ 1
2 . The relative entropy is

S(ρ‖σ) = (E1 − E0)
�

e−E0 − e−E1
�

sin2θ . (5.17)

The basis states of σ and ρ are defined as bit strings

|E〉 = |a1a2 . . . an〉 , ai ∈ {0, 1} , (5.18)

|eE〉 = |ã1ã2 . . . ãn〉 , ãi ∈ {e0,e1} .

We define n(E) to be the number of 1s and n(eE) to be the number of e1s. The acceptance
condition with threshold E takes the simple form

n(E)≥ n∗(eE) , n∗(eE)≡ n(eE) +
nE

(E1 − E0)
. (5.19)

This allows us to define the states that span the acceptance subspace. For every eE, we define

|ξ(eE)〉=
∑

E:n(E)≥n∗(eE)

〈E|eE〉|E〉 . (5.20)
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The optimal measurement is then the projector to the acceptance subspaceHQ = span
eE
{|ξ(eE)〉}.

Formally, we first define the operator

Q =
∑

eE

|ξ(eE)〉〈eE| (5.21)

so that the acceptance subspace HQ is the image of Q. The optimal measurement is the pro-
jector onto it, given by

PHQ
=Q

1
Q†Q

Q† , (5.22)

where G ≡ Q†Q is the Gram matrix of the vectors (5.20): the 2n × 2n matrix of the overlaps
〈ξ(eE1)|ξ(eE2)〉. The above expression is well-defined because the restriction of G to the image
of Q† is invertible, and PHQ

can be extended by zero on the vectors that are annihilated by
Q†. Note that the above expression makes it clear that P2

HQ
= PHQ

. We see that explicit
construction of the projector involves finding the inverse of the Gram matrix G, which is a
challenging computational problem.

Complexity of measurements. It is intuitively clear that the optimal measurement is more
complicated than the likelihood ratio test, since the former involves a more complicated con-
struction of the acceptance space and the projector. It would be interesting to formalize this
intuition by defining various notions of complexity of a measurement. The definitions of com-
plexity could be based on different resources, and could also depend on the algorithm carrying
out the measurement or computing the projector. A simple algorithm independent character-
istic resource is the size of the acceptance subspace, or more precisely, its dimension. If one
of the states to be compared is pure, the optimal measurement involves the projection to the
state. In this simplest case, the acceptance space is smallest with just one state, while its
complement is maximal. Hence, for comparing the complexity different measurements, it is
helpful to define the minimum dimension of the acceptance space and its complement,

dimH<acc ≡min{dimHacc, dimH− dimHacc} . (5.23)

This defines a complexity measure which depends on the predetermined maximum size ε of the
type I error, the number n of identical copies, and the two states ρ,σ through the acceptance
threshold n∗. Once these are given, we can compare the minimum acceptance dimension
dimH<acc of the optimal measurement and the likelihood ratio test. The latter depends on the
volume of the Hamming sphere and its complement, so we have an analytical formula

dimH<acc,C =min

(

n∗−1
∑

k=0

�

n
k

�

,
n
∑

k=n∗

�

n
k

�

)

. (5.24)

For the optimal measurement, finding an analytical formula or at least an estimate for the min-
imum acceptance dimension dimH<acc,Q is a mathematical challenge. We study it numerically

for n up to 14, by performing the Gram–Schmidt orthogonalization of the vectors |ξ(eE)〉 that
span the acceptance space and then counting the number of orthonormal basis vectors. The
(very limited) investigation suggests that dimH<acc,Q grows exponentially with n with a faster
rate than dimH<acc,C .19 This indicates that already at the level of the acceptance spaces the

19Such numerical observations need to be taken cautiously because the Gram-Schmidt algorithm is known to
be unstable: small rounding errors can result in an imprecise estimate for the dimension of the spanned sub-
space [59, 60]. Understand this better would require a more systematic analysis, with a comparison of different
orthogonalization algorithms.
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optimal measurement is “more complex” than the likelihood ratio test. There are additional
levels of complexity involved in computing the Gram matrix and finding its inverse, it would be
interesting to develop rigorous complexity measures taking into account everything involved
in constructing the projection.

Numerical results. The numerical implementation of the optimal measurement and the
likelihood ratio test are done in a Mathematica notebook that we have made publicly avail-
able [61]. We analyze the numerical implementation of the measurements only up to n= 14,
but this already proves sufficient to see some interesting features. For the threshold value E ,
we use the optimal value (4.17). Including the second order term (in n) is necessary because
n is not very large (the second order term brings the ε-dependence). Choosing parameter
values such that the finite n effects are not too strong, we see that the optimal measurement is
better by an order of magnitude. This is depicted in Figure 6. This demonstrates that quantum
hypothesis testing is much more efficient than classical hypothesis testing. The tradeoff is that
quantum hypothesis testing is more complex. The growth of the minimum acceptance dimen-
sion with n is exponential for both measurements, but the growth rate appears to be faster
for the optimal quantum measurement. It would be interesting to carry out a more extensive
numerical investigation and see how generic this feature is.

Some mathematical observations. We finish this section by providing some partial results
to the more challenging problem of constructing the optimal measurement in the general case.
The partial results illustrate interesting connections to combinatorics and coding theory, which
should inspire further study. For the rest of this discussion, we will restrict to the case θ = π

4
where many simplifications occur. In this case, the rotation matrix (5.14) is just the Hadamard
matrix and we have |e0〉= |−〉 and |e1〉= |+〉. In this case, we have a rather explicit description
of the states |ξ(eE)〉:

|ξ(eE)〉=
1

2n/2

∑

E
n(E)≥n∗(eE)

(−1)n0e1(E,eE)|E〉 , (5.25)

where n01(E,eE) is the number of pairs (ai , ãi) which are equal to (0,e1) using (5.18). We now
need to do the Gram-Schmidt procedure for these vectors to obtain a basis of HQ. This requires
to compute the Gram matrix G of overlaps 〈ξ(eE1)|ξ(eE2)〉. The overlaps can be expressed as
partial sums of products of binomial coefficients. Using a generalization of Vandermonde’s
identity, we can re-express the overlap as follows. Define the polynomial

Pn(x) = (1+ x)n(eE1+eE2)(1− x)n−n(eE1+eE2) =
n
∑

k=0

Pn,k xk , (5.26)

where n(eE1 + eE2) is the number of 1s in the the boolean sum (i.e. the sum in the ring Z2) of
eE1 and eE2. The overlap is then obtained as a partial sum of the coefficients Pn,k

〈ξ(eE1)|ξ(eE2)〉 =
1
2n

n
∑

k=n−n∗(eE1,eE2)

Pn,k , (5.27)

where n∗(eE1,eE2) =max(n∗(eE1), n∗(eE2)). We refer to Appendix C for details on the derivation
of this formula. There, it is also shown that Pn,k are related to binary Krawtchouk polynomials
Kk(x; n), and the overlaps of the Gram matrix take the explicit form

〈ξ(eE1)|ξ(eE2)〉 =
1
2n

n
∑

k=n−n∗(eE1,eE2)

(−1)kKk(n(eE1 + eE2); n) . (5.28)
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Figure 6: Optimal quantum measurement (blue) vs. optimal classical measurement
(yellow). We see (left plot) that the optimal measurement gives a type II error β
that is one order of magnitude smaller for n ∼ 14. We also see (right plot) that the
minimum acceptance dimension is much larger for the optimal quantum measure-
ment than for the optimal classical measurement. The curves with the logarithmic
y-axis indicate exponential growth in n with a faster rate for the optimal measure-
ment. These plots are done with the parameters θ = π

3 , p = 0.015,ε = 0.2 using a
Mathematica notebook that we have made publicly available [61].

It is also interesting that this problem seems related to coding theory and combinatorics. In
Appendix C, we show that the Gram matrix is an element of the Terwilliger algebra [62] of
the Hamming cube H = {0, 1}n (see [63, 64]). This is done by identifying the labels ξ(eE) as
subsets of H, given by the supports of the bit strings eE. In this way we obtain the explicit
expansion

G =
n
∑

i, j,t=0

x t
i j M

t
i j , x t

i j =
1
2n

n
∑

k=n−max(i, j)

(−1)kKk(i + j − 2t; n) , (5.29)

in the basis {M t
i j} of the Terwilliger algebra. Identifying the expansion coefficients x t

i j then
allows at least a block diagonalization of G, exploiting the results of [63], which may turn out
to be a useful step towards finding G−1, and for the construction of the projector PHQ

.
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6 Measurements in fermion chains

In this section, we study subsystem measurements in spinless fermion chains. Our goal is to
construct measurements that are optimal in distinguishing between two different states, while
acting only on a small subsystem. We will take these two states to be two thermal states with
different temperatures. We will mostly focus on simpler hopping models, but some of our
results also apply to fermion chains with Hamiltonians being arbitrary bilinears of creation
and annihilation operators. This setup is the discrete analog of the chiral fermion CFT that
will be studied in section 7.2.2. For small subsystem sizes, we will be able to give a more
explicit description of the optimal measurement.

6.1 Spinless fermion chains

We consider spinless fermions on a chain of length L → +∞ with periodic boundary condi-
tions.20 The total Hamiltonian of the chain is

H =
∑

1≤i, j≤L

�

ψ†
i Âi jψ j +

1
2

�

ψ†
i B̂i jψ

†
j −ψi B̂i jψ j

�

�

, (6.1)

and the fermion operators obey the anticommutation relations

{ψi ,ψ
†
j}= δi j , {ψi ,ψ j}= {ψ

†
i ,ψ

†
j}= 0. (6.2)

Here Â is real symmetric and B̂ is real antisymmetric to ensure Hermiticity. In addition, they
are taken to be positive semi-definite so that the total energy is non-negative. The hats are
used to denote L× L matrices supported on the whole chain, to be distinguished with matrices
restricted to a subsystem that we study below.

As an example, the anisotropic XY model can be mapped to a Hamiltonian of the form (6.1)
via a Jordan–Wigner transformation [65]. We will consider the simpler isotropic XY model in
section 6.3.3 below.

6.1.1 Diagonalization of fermion Hamiltonians

The Hamiltonian (6.1) can be diagonalized by the Bogoliubov transformation

ηk =
L
∑

i=1

�

v̂ki + ûki

2
ψi +

v̂ki − ûki

2
ψ†

i

�

, (6.3)

η†
k =

L
∑

i=1

�

v̂ki − ûki

2
ψi +

v̂ki + ûki

2
ψ†

i

�

, (6.4)

where the vectors v̂k, ûk are solutions of the equations
�

Â+ B̂
�

v̂k = Λkûk , (6.5)
�

Â− B̂
�

ûk = Λk v̂k . (6.6)

Then, the Hamiltonian takes the form [65]

H =
∑

1≤k≤L

|Λk|η
†
kηk + constant , (6.7)

20In what follows, there is a possibility of an order of limits issue with the thermodynamic L → ∞ and the
perturbative λ→ 0 limits. To circumvent the issue, we simply take L to be larger than any scale in the problem
and take the perturbative limit λ→ 0 while keeping L fixed. We thank the referee for pointing out this subtlety.
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where the constant sets the zero point energy.21 The operators ηk,η†
k generate a Fock space

of positive energy excitations.
For fermion chains with B̂ = 0, the diagonalization procedure can be made more explicit.

One first solves the eigenvalue problem Â v̂k = Λk v̂k which allows to write

Â= v̂ᵀD̂ v̂ , (6.8)

where D̂ is a diagonal matrix with entriesΛk. Then, performing the Bogoliubov transformation

ak =
∑

k

v̂kiψi , a†
k =

∑

k

v̂kiψ
†
i , (6.9)

the Hamiltonian becomes
H =

∑

k

Λka†
kak , (6.10)

where Λk can be negative. The form (6.7) with absolute values is obtained by performing an
additional particle-hole transformation on ak, a†

k (which is automatically included in (6.4)).
For our purposes, the form (6.10) is sufficient and the Bogoliubov transformation (6.9) is a
special case of (6.4) with û= v̂.

6.1.2 Reduced density matrix of a subsystem

We consider a subsystem V = {1, . . . ,`} containing ` fermions, and place the chain (6.1) in a
global thermal state22

σ̂ =
e−βH

Tr e−βH
. (6.11)

The reduced density matrix (RDM) on V is obtained by tracing over its complement V c and
takes the form

σ ≡ Tr V c σ̂ =
1
Z

e−K , Z ≡ Tr e−K , (6.12)

where the modular Hamiltonian23 K takes the same form as total Hamiltonian of the chain:

K =
∑

1≤i, j≤`

�

ψ†
i Ai jψ j +

1
2

�

ψ†
i Bi jψ

†
j −ψiBi jψ j

�

�

. (6.13)

The matrices A, B are different from the matrices Â, B̂. Indeed, the modular Hamiltonian K ,
which depends on the global state, is not equal to the Hamiltonian H|V of the subsystem.

The matrices A, B in the modular Hamiltonian can be obtained from the following equations
[28,66]

Tr (σψ†
iψ j) = Tr (σ̂ψ†

iψ j), Tr (σψ†
iψ

†
j ) = Tr (σ̂ψ†

iψ
†
j ), i, j ∈ V , (6.14)

which follow from the fact that expectation values of operators supported in the subsystem can
be computed using either the global state or the reduced state. The two-point functions are
sufficient, because higher-order correlators reduce to two-point functions by Gaudin’s theorem
(an extension of Wick’s theorem). Since both σ and σ̂ are exponentials of one-body operators,
these traces can be computed explicitly (see Appendix D) to write the equations in terms of
the parameters appearing in K and H.

21The constant is explicitly 1
2

∑

k

�

Âkk − |Λk|
�

.
22We expect that a similar analysis could go through also for states that are exponentials of one-body operators,

but we restrict our attention to thermal states.
23This is a slight abuse of language since the modular Hamiltonian is usually defined unnormalized, i.e. σ = e−K ,

as in previous sections. Regardless, in this section, we define the modular Hamiltonian implicitly via (6.12).
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For simplicity, we will restrict to free fermion chains with B̂ = 0, so that the Hamiltonian
is

H =
∑

1≤i, j≤L

ψ†
i Âi jψ j . (6.15)

Due to the absence of the pair creation/annihilation terms, the anomalous two-point function
Tr (σψ†

iψ
†
j ) = 0 vanishes. This is reflected in the modular Hamiltonian which has B = 0 [28]:

K =
∑

i, j∈V

ψ†
i Ai jψ j . (6.16)

The partition function Z can now be easily obtained in terms of A as

Z = det (1+ e−A) , (6.17)

where the determinant is taken over the matrix indices.
Let C denote the thermal two-point function restricted to the subsystem

Ci j ≡ Tr (σ̂ψ†
iψ j), i, j ∈ V , (6.18)

determined by the Hamiltonian H. From the first equation in (6.14) it follows that [29]

A= log
�

1− C
C

�

, (6.19)

from which we also obtain an expression for Z in terms of C:

Z =
1

det (1− C)
. (6.20)

Hence for free fermions, the reduced density matrix of a subsystem in a thermal state is simply
given by the thermal two-point function C .

6.1.3 Relative entropy and its variance for free fermions

We introduce a second global thermal state ρ̂ with temperature β̃ . This induces a different
reduced density matrix ρ on the subsystem:

ρ =
1
eZ

e−eK , eK =
∑

i, j∈V

ψ†
i
eAi jψ j . (6.21)

Let us now compute the relative entropy and the relative entropy variance for the two reduced
density matrices. Relative entropy is given by

S(ρ‖σ) = 〈K − eK〉ρ + log
Z
eZ

, (6.22)

where we have
〈K − eK〉ρ =

∑

i, j∈V

(Ai j − eAi j)〈ψ
†
iψ j〉ρ = Tr [(A− eA) eC] , (6.23)

and we used
eCi j = 〈ψ

†
iψ j〉ρ̂ = 〈ψ

†
iψ j〉ρ, i, j ∈ V. (6.24)

The partition functions are given by (6.20):

log
eZ
Z
= logdet

�

1− C

1− eC

�

= −Tr log
�

1− eC
1− C

�

. (6.25)
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As a result, we obtain for the relative entropy

S(ρ‖σ) = Tr
�

(A− eA) eC + log
�

1− eC
1− C

��

, (6.26)

and the relative entropy variance is given by

V (ρ‖σ) = 〈∆K2〉ρ − 〈∆K〉2ρ , (6.27)

which doesn’t depend on the partition functions. The first term can be written as

〈∆K2〉ρ =
∑

i, j,k,l∈V

∆Ai j∆Akl 〈ψ
†
iψ jψ

†
kψl〉ρ , (6.28)

where∆Ai j = Ai j−eAi j . Becauseρ is an exponential of one-body operators, we can use Gaudin’s
theorem to compute the four-point function [67] (see also Appendix D). The result is

〈ψ†
iψ jψ

†
kψl〉ρ = 〈ψ

†
iψ j〉ρ〈ψ

†
kψl〉ρ + 〈ψ

†
iψl〉ρ〈ψ jψ

†
k〉ρ (6.29)

= eCi j eCkl − eCil(δ jk − eCk j) , (6.30)

and we get

〈∆K2〉ρ =
∑

i, j∈V

∆Ai j eCi j

∑

k,l∈V

∆Akl eCkl +
∑

i, j,k,l∈V

∆Ai j∆Akl eCil(δ jk − eCk j) (6.31)

= Tr [∆A eC]2 + Tr [∆A2
eC(1− eC)] . (6.32)

The first term equals 〈∆K〉2ρ which cancels in (6.27) and leaves us with

V (ρ‖σ) = Tr [(A− eA)2 eC (1− eC)] . (6.33)

As far as the authors are aware, the expressions (6.26) and (6.33) for relative entropy and
its variance have not appeared in the literature before. However, sandwiched Rényi relative
entropy between RDMs of a free fermion chain was computed in [35] (see also [36]) and one
can check that the relative entropy (6.26) matches with the first derivative of their expression.
Unfortunately, we did not manage to compute the second derivative to see whether the result
matches with the variance. As an independent consistency check of (6.33), we will see below
that it obeys the lower bound (3.20).

The expressions for S(ρ‖σ) and V (ρ‖σ) can be written explicitly in terms of eigenvalues
and eigenvectors of A, eA. We have

Ai j =
∑

k∈V

Ekvki vk j , eAi j =
∑

k∈V

eEkevkievk j , (6.34)

so that

S(ρ‖σ) =
∑

k

�

∑

l

Ek

1+ eeEl
(vk · evl)

2 −
eEk

1+ eeEk
+ log

�

1+ e−Ek

1+ e−eEk

�

�

, (6.35)

where vk · evl =
∑

i vkievl i is the overlap between the eigenvectors. There is also a similar
expression for the variance.

A further simplification occurs if A and eA commute so that their eigenvectors are the same:

vi · ev j = δi j . (6.36)
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In this case, one obtains simple expressions

S(ρ‖σ) =
∑

k

�

Ek − eEk

1+ eeEk
+ log

�

1+ e−Ek

1+ e−eEk

��

, V (ρ‖σ) =
1
4

∑

k

(eEk − Ek)2

cosh2
�

eEk
2

�

. (6.37)

The vanishing of the commutator of A, eA is equivalent to commutativity of the RDMs [ρ,σ] = 0.
This can be seen by performing Bogoliubov transformations

ψi =
∑

k∈V

vkick, ψ†
i =

∑

k∈V

vkic
†
k ,

ψi =
∑

k∈V

evkieck, ψ†
i =

∑

k∈V

evkiec
†
k , (6.38)

on K and eK respectively. In a similar way the full Hamiltonian was diagonalized using (6.9),
the modular Hamiltonians become

K =
∑

k∈V

Ekc†
kck, eK =

∑

k∈V

eEk ec
†
keck . (6.39)

If (6.36) holds one finds from (6.38) that ck = eck and c†
k = ec

†
k so that [K , eK] = 0. In addition,

one can check that for a perturbative entanglement spectrum of the form eEk = Ek +λE(1)k , the
expressions (6.37) saturate the lower bound (3.20), as expected for commuting RDMs.

6.2 Optimal measurement

In this section, we describe the implementation of the optimal measurement for spinless fermion
chains. This involves computing overlaps between eigenstates of two modular Hamiltonians,
which can be done using the generalized dick’s theorem [38,39]. For free fermions, this gives
a prescription on how the overlaps vi ·ev j between eigenvectors translate into overlaps between
eigenstates 〈EI |eEJ 〉. For completeness, we will consider general modular Hamiltonians of the
form (6.13) with non-trivial A and B. We will restrict to modular Hamiltonians of free fermions
with B = 0 in the end.

6.2.1 Eigenstates of modular Hamiltonians and their overlaps

To unify the computations, we introduce some convenient notation. Let

ψ= (ψ1, . . . ,ψ`)
ᵀ, ψ† = (ψ†

1, . . . ,ψ†
`
)ᵀ , (6.40)

be `-dimensional vectors. We define similarly the `-dimensional vectors c, c† and ec,ec †, and
combine them further into 2`-dimensional vectors as

Ψ =

�

ψ

ψ†

�

, α=

�

c
c†

�

, eα=

�

ec
ec †

�

. (6.41)

Following the analysis for the Hamiltonian of the chain, modular Hamiltonians K , eK of the
form (6.13) are diagonalized by transformations

α=WΨ, eα=fWΨ , (6.42)

where

W =
1
2

�

v + u v − u
v − u v + u

�

, fW =
1
2

�

ev + eu ev − eu
ev − eu ev + eu

�

. (6.43)
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The transformation matrices are obtained by solving equation (6.6) for A and B (and similarly
for ev,eu):

(A+ B)vk = Ekuk , (6.44)

(A− B)uk = Ekvk . (6.45)

The matrices v, u,ev,eu are real and orthogonal so that W,fW real and orthogonal as well.24 They
are thus Bogoliubov transformations, because the real Bogoliubov group is the orthogonal
group (see Appendix D.1).

As a result, the modular Hamiltonians become

K =
∑

k∈V

|Ek| c
†
kck + Evac, eK =

∑

k∈V

|eEk|ec
†
keck + eEvac . (6.46)

The exact values of Evac, eEvac are not important for the upcoming analysis. From these expres-
sions it follows that eigenstates are generated by acting on two quasi-particle vacua |Evac〉, |eEvac〉
with creation operators. The vacua are defined via

ck |Evac〉= 0, eck |eEvac〉= 0, for all k ∈ V , (6.47)

and the eigenstates are

|Ei1...in〉= c†
i1

c†
i2
· · · c†

in
|Evac〉= |a1a2 · · · a`〉 , (6.48)

|eEi1...in〉= ec
†
i1
ec †

i2
· · · ec †

in
|eEvac〉= |ea1ea2 · · · ea`〉 ,

where we used `-bit binary strings to keep track of the occupation numbers of the modes k.
The corresponding eigenvalues are

Ei1...in = Evac + |Ei1 |+ . . .+ |Ein |, eEi1...in = eEvac + |eEi1 |+ . . .+ |eEin |. (6.49)

These eigenvalues are invariant under permutations of {i1, . . . , in} so we assume that the in-
dices in (6.48) are in an increasing sequence i1 < i2 < . . . < in. This choice removes some
additional sign factors in formulas below.

We want to compute overlaps between these eigenstates

〈Ei1...in |eE j1... jm〉= 〈Evac|cin · · · ci1ec
†
j1
· · · ec †

jm
|Evac〉. (6.50)

Standard Wick’s theorem does not directly apply to correlators of this type because ec †
i is not

the Hermitian conjugate of ci . The trick is to realize that the operators α and eα are related via
a Bogoliubov transformation T (orthogonal matrix):

eα= Tα , (6.51)

which is explicitly

T =fWW ᵀ =
1
2

�

evvᵀ + euuᵀ evvᵀ − euuᵀ

evvᵀ − euuᵀ evvᵀ + euuᵀ

�

. (6.52)

We introduce the operator T that implements the Bogoliubov transformation T in the Hilbert
space [38,39]:

eα= T αT −1 = Tα (6.53)

24Reality of for example v follows from the fact that it obeys (A + B)(A − B)vk = E2
k vk where

(A+ B)(A− B) = (A+ B)(A+ B)ᵀ is real and symmetric.

38

https://scipost.org
https://scipost.org/SciPostPhysCore.4.2.019


SciPost Phys. Core 4, 019 (2021)

and we have that T is unitary since T is real. The expression for T in terms of α is not relevant
in what follows. However, if T can be written as an exponential T = e−ΩS , where Ω is the
matrix (D.3) and S is antisymmetric, then T is an exponential of one-body operators [38,39].

It follows that |eEvac〉= T |Evac〉 so that all the eigenstates of the modular Hamiltonians are
related according to

|eEi1...in〉= T |Ei1...in〉 . (6.54)

The overlaps (6.50) are therefore

〈Ei1...in |eE j1... jm〉= 〈Evac|cin · · · ci1T c†
j1
· · · c†

jm
|Evac〉 , (6.55)

and unitarity of T ensures that these overlaps determine a unitary basis rotation in the Hilbert
space.

All the operators in (6.55) are expressed in terms of the annihilation and creation opera-
tors c, c† which allows the use of Wick’s theorem. In Appendix D, we show that the overlaps
involving two operators are

〈Ei|eE j〉

〈Evac|eEvac〉
= (T−1

11 )i j ,
〈Ei j|eEvac〉

〈Evac|eEvac〉
= (T−1

11 T12)i j ,
〈Evac|eEi j〉

〈Evac|eEvac〉
= (T12T−1

11 )i j , (6.56)

where T11 = T22, T12 = T21 are the two ` × ` blocks of (6.52) and the overlap between the
vacua is

〈Evac|eEvac〉= (det T11)
1/2 . (6.57)

The overlaps (6.55) involving more operators can be computed using generalized Wick’s the-
orem [39] and it is non-zero only when n+m= 2t is even. In that case:

〈Ei1...in |eEin+1...i2t
〉

〈Evac|eEvac〉
=

∑

pairings

(−1)P
∏

pairs

(contraction of a pair) , (6.58)

where the sum is over pairings {i1, . . . , i2t} → {(i j1 , ik1
), . . . , (i jt , ikt

)} and P is the signature of
the permutation in . . . i1in+1 . . . i2t → i j1 ik1

. . . i jt ikt
involved in the pairing. The contractions

appearing on the right hand side are the three two-point overlaps (6.56) and we refer to
Appendix D for more details. In other words, all the overlaps (6.55) can be expressed in terms
of the two-point overlaps (6.56) using the generalized Wick’s theorem.

The computation of the contractions (6.56) requires the knowledge of v, u and ev,eu that
determine the block matrices Ti j according to (6.52). These can be computed from (6.45)
knowing A, B and eA, eB which are obtained from two-point functions in the global state accord-
ing to (6.14). Although these equations are in general difficult to solve, they become simpler
for free fermions, because B vanishes and A is directly given in terms of C according to (6.19).
We will demonstrate this below for the XY model.

The power of this approach is that it gives a way to compute the overlaps without the need
of the explicit form of the ground states |Evac〉, |eEvac〉. It can therefore be applied to modular
Hamiltonians of the general form (6.13). However, there is one situation where the above
computation of the overlaps fails: when det T11 = 0 so that T11 is not invertible. This happens
when the two quasi-particle vacua are orthogonal.

6.2.2 Overlaps of eigenstates for free fermions

The above algorithm to compute overlaps simplifies for free fermions since B = eB = 0 which
implies that we can use the Bogoliubov transformations (6.43) with u = v and eu = ev. Hence
all the overlaps are determined by the eigenvectors v,ev of the two-point functions C , eC .
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With B = eB = 0, the modular Hamiltonians are

K =
∑

i, j∈V

ψ†
i Ai jψ j , eK =

∑

i, j∈V

ψ†
i
eAi jψ j . (6.59)

As shown before, they take the diagonal form (6.39) after the transformation (6.38):

W =

�

v 0
0 v

�

, fW =

�

ev 0
0 ev

�

. (6.60)

From these we get

T =

�

evvᵀ 0
0 evvᵀ

�

, (6.61)

which is block diagonal. The overlap between the quasi-particle vacua is then

〈Evac|eEvac〉= (detevvᵀ)1/2 = 1 , (6.62)

where we used the fact that the determinant of evvᵀ ∈ SO(2`) is unity. In this case, the quasi-
particle vacua coincide with the true vacuum |Evac〉= |eEvac〉= |0〉 (annihilated by ψi).

Noting that (T11)−1 = vevᵀ, the only non-zero contractions are

〈Ei|eE j〉= (vevᵀ)i j = vi · ev j . (6.63)

Because of this, the higher order overlaps (6.55) are non-zero if and only if n = m. The
generalized Wick’s theorem (6.58) for t = n gives

〈Ei1...in |eE j1... jn〉=
∑

p∈Sn

sgn (p) 〈Ei1 |eE jp(1)〉 · · · 〈Ein |eE jp(n)〉 , (6.64)

with the sum over permutations p of n elements. Writing I = {i1, . . . , in}, J = { j1, . . . , jm}, the
overlaps can be written compactly as a matrix minor 25

〈EI |eEJ 〉=

(

det
I ,J

vevᵀ n= m

0 n 6= m
. (6.65)

The result (6.65) could have been obtained directly from the correlator (6.50) without refer-
ence to the generalized Wick’s theorem. For example, inverting (6.38) yields

〈Ei|eE j〉= 〈0|ciec
†
j |0〉=

∑

k,k′∈V

vikev jk′〈0|ψkψ
†
k′ |0〉=

∑

k∈V

vikev jk′δkk′ = vi · ev j , (6.66)

with a similar strategy for the higher order correlators. It is for modular Hamiltonians with
B 6= 0 when the generalized Wick’s theorem becomes very useful.

6.3 Examples

We now give explicit examples for the general procedure described above.

25Minor I , J is the determinant of the n× n submatrix formed of elements i, j with i ∈ I , j ∈ J .
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6.3.1 A single fermion subsystem

The simplest possible subsystem contains only a single fermion. For a generic quadratic mod-
ular Hamiltonian (6.13) with ` = 1, the matrix B does not contribute as it is antisymmetric.
Hence modular Hamiltonians of a single fermion at site k = 1 take the form

K = Eψ†
1ψ1, eK = eEψ†

1ψ1 . (6.67)

The two-dimensional Hilbert space of the fermion is spanned by the vacuum state |0〉 and the
state

|1〉 ≡ψ†
1|0〉 , (6.68)

with a fermion occupying site k = 1. In the above formalism, they are eigenstates of the
modular Hamiltonians since we have T = 12×2.

The fermion Hilbert space spanned by |0〉, |1〉 is equivalent to the single qubit Hilbert space
studied in section 5. The two RDMs of the fermion take the form

ρ = (1− q)|0〉〈0|+q|1〉〈1|, σ = (1− p)|0〉〈0|+p|1〉〈1| , (6.69)

with
q =

1

1+ eeE
, p =

1
1+ eE

. (6.70)

We see that the RDMs always commute. As a result, the optimal measurement is given by the
likelihood ratio test described in section 4.3. The acceptance subspace for the RDMs (6.69)
was determined in section 5. Relative entropy and its variance are given by (6.37) and the
acceptance condition becomes

n(E)≥ n∗ ≡

&

n

1+ eeE
+

1
p

n

sgn
�

eE − eeE
�

2cosh
�

eE
2

�

Φ−1(ε)

'

, (6.71)

where n(E) is the number of fermions in the n copies of the subsystem. The optimal measure-
ment is then a projection onto states that contain n∗ or more fermions.

6.3.2 Two fermion subsystem

The situation is more interesting for subsystems containing more fermions. We consider here
a subsystem of two fermions in a free fermion chain, taking the two fermions to be on sites
i = 1, 2. The matrices A, eAhave two eigenvalues E1,2, eE1,2 and eigenvectors which we parametrize
as

v =

�

cosϕ − sinϕ
sinϕ cosϕ

�

, ev =

�

cos eϕ − sin eϕ
sin eϕ cos eϕ

�

. (6.72)

Using the binary string notation for the eigenstates, we have

|Evac〉= |00〉 , |E1〉= |10〉 , |E2〉= |01〉 , |E12〉= |11〉 , (6.73)

|eEvac〉= |e0e0〉 , |eE1〉= |e1e0〉 , |eE2〉= |e0e1〉 , |eE12〉= |e1e1〉 . (6.74)

There is a total of sixteen overlaps. From (6.65), the non-zero overlaps are

〈Evac|eEvac〉= 1, 〈E12|eE12〉= 1 , (6.75)

and

〈Ei|eE j〉=
�

cos (ϕ − ϕ̃) − sin (ϕ − ϕ̃)
sin (ϕ − ϕ̃) cos (ϕ − ϕ̃)

�

. (6.76)

41

https://scipost.org
https://scipost.org/SciPostPhysCore.4.2.019


SciPost Phys. Core 4, 019 (2021)

Thus the unitary rotation
|eEI〉=

∑

J

UI J |EJ 〉 , (6.77)

is given by

U =







1 0 0 0
0 cos (ϕ − ϕ̃) − sin (ϕ − ϕ̃) 0
0 sin (ϕ − ϕ̃) cos (ϕ − ϕ̃) 0
0 0 0 1






, (6.78)

and it acts non-trivially only on the subspace spanned by |E1〉, |E2〉.
The basis rotation (6.78) is effectively the same as the one studied in section 5 where the

optimal measurement on a single qubit is constructed. The eigenstates |E1〉 and |E2〉, with a
single fermion on either site 1 or 2, correspond to the rotation between two states of a qubit. In
addition, we also have an unrotated qubit. As discussed in section 5.2, the explicit description
of the optimal measurement for the one-qubit case is challenging due to the difficult inversion
of the Gram matrix. We will thus describe the suboptimal but simpler likelihood ratio test.

Assuming for simplicity that the two eigenvalues of K are equal
E1 = E2 ≡ Evac + ∆, E12 = Evac + 2∆ with ∆ > 0, and likewise for the tilded values, we
have

− logρ = E0|00〉〈00|+∆(|10〉〈10|+ |01〉〈01|) + (E0 + 2∆)|11〉〈11| , (6.79)

− log eρ = eE0|e0e0〉〈e0e0|+e∆(|e1e0〉〈e1e0|+ |e0e1〉〈e0e1|) + (eE0 + 2e∆)|e1e1〉〈e1e1| ,

where E0 ≡ Evac + log Z and a similar definition of eE0. The eigenstates of ρ⊗n, σ⊗n are

|E〉 ≡ |a1a2 · · · a2n−1a2n〉 , (6.80)

|eE〉 ≡ |ea1ea2 · · · ea2n−1ea2n〉 ,

labelled by 2n-bit strings. The average modular energies are

|E|= E0 +
n(E)

n
∆ , (6.81)

|eE|= eE0 +
n(eE)

n
e∆ ,

where n(E), n(eE) count the number of 1s in the binary strings. The acceptance condition
|E| − |eE| ≥ E becomes

n(E)≥ n∗ ≡
�

n(eE)
e∆

∆
+
(eE0 − E0)n
∆

+
nE
∆

�

. (6.82)

The likelihood ratio test is then the projector

PHC
=

∑

n(E)≥n∗

|E〉〈E| . (6.83)

Note that eE0− E0 cancels in (6.82) with the same term coming from relative entropy once the
threshold E = S(ρD‖σ) + . . . is substituted. It’s also possible to obtain an explicit expression
for S(ρD‖σ) using the overlaps (6.76).

The acceptance space is given by (the complement of) the Hamming sphere of radius n∗
centered at zero in the Hamming cube {0,1}2n. While the likelihood ratio test is in general a
suboptimal measurement, it becomes optimal when the reduced density matrices commute.
The next example gives a situation where this happens.
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6.3.3 Example: XY model at finite temperature

The isotropic XY spin chain has the Hamiltonian [65]

H =
L
∑

i=1

(σx
i σ

x
i+1 +σ

y
i σ

y
i+1) , (6.84)

where σx ,y
i is the Pauli matrix at site i and the boundary conditions are periodic. In the

thermodynamic limit, this Hamiltonian can be mapped to a periodic free fermion chain [65]26

H =
1
2

L−1
∑

i=1

(ψ†
iψi+1 +ψ

†
i+1ψi) =

∑

i, j

ψ†
i Âi jψ j , (6.85)

where

Âi j =
1
2

�

δi, j+1 +δi+1, j

�

. (6.86)

Hence the Hamiltonian is of the form (6.1) with B̂i j = 0 and the eigenvectors v̂k and eigenval-
ues Λk can be found in [65]. Due to translation invariance, the thermal two-point function is
a function of i − j only, and in the thermodynamic limit L→∞, it takes the form

Ci j =
1
π

∫ π

0

dq
cos [q(i − j)]

eβ cos q + 1
. (6.87)

Consider now two fermions at sites i = 1 and i = 1+ r where r is a positive integer. Then the
two-point function has the form

C =

�

a b
b a

�

, (6.88)

where a and b are obtained from (6.87). The eigenvectors of C are

v =
1
p

2

�

1 −1
1 1

�

, (6.89)

which corresponds to ϕ = π/4 in equation (6.72). We see that v is independent of the tem-
perature β and of the distance r. This is true in any translation invariant fermion chain for
which the thermal two-point function is of the form (6.88).

Now when considering thermal states of two different temperatures, leading to two mod-
ular Hamiltonians eK and K , the unitary rotation (6.78) between their eigenstates is trivial:
UI J = δI J . Hence the RDMs of the two fermions commute and the optimal measurement
is the likelihood ratio test. If the fermion chain is not translation invariant this is no longer
true, because then the modular Hamiltonians K , eK do not generally commute. It is interesting
that translation invariance implies commutativity of two-fermion density matrices in global
thermal states.

7 Measurements in conformal field theory

We now turn to the implementation of quantum hypothesis testing in quantum field theory.
We will discuss in detail how the measurements described in section 4 are realized as operators

26Strictly speaking, the Jordan–Wigner transformation also produces an additional interaction term betweenψ1

and ψL in the periodic fermion chain (6.85). However, the interaction produces contributions to Λk and v̂k that
are subleading in the thermodynamic limit L→∞ [65]. Hence we neglect these extra contributions and focus on
the periodic fermion chain (6.85) with translation symmetry.
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acting on states. For simplicity, we restrict to two-dimensional conformal field theory because
the infinite-dimensional group of conformal transformations in two dimensions allows for a
certain flexibility. For an introduction to the subject, we refer to [68].

The physical system we consider will live on a line or on a circle. We will be particularly
interested in distinguishing two different states from an interval subregion. Our main technical
result is the construction of the optimal measurements for special types of states, studied by
Cardy and Tonni [40]. As an illustration, we study the free chiral fermion CFT, which could
be viewed as a continuous limit of the discrete fermion chain studied in section 6.

While we obtain some basic technical results in implementing measurements in confor-
mal field theories, we are merely scratching the surface of a vast number of possibilities in
the choices of theories and states. As our free fermion case will show, there are interesting
analytical challenges when trying to simplify the implementation of efficient measurements.

7.1 Subregion measurements

We now describe the situation where we want to distinguish between two states in a CFT2
while only having access to a subregion. After tracing out over the rest of the system, the two
states are given by two density matrices σ and ρ supported in that subregion.

The measurements described in section 4 are given in terms of the modular Hamiltonians.
In general, the modular Hamiltonian of a reduced density matrix would be a complicated
non-local operator and be difficult to study. For a special class of states in a CFT2, the modular
Hamiltonian is local: it can be written as a suitable integral of the stress tensor. We will restrict
to these types of states in the following two sections, drawing on the results of [40]. We will
first describe the optimal measurement in the generic situation, and then explore in some more
detail the task of distinguishing between two thermal states at different temperatures in the
next section. We will explain how to implement the likelihood ratio test to distinguish between
the vacuum and a primary excitation.

7.1.1 Setup

Let’s now describe the setup. The CFT2 is defined on a line or on a circle and the subregion
we consider is an interval I = [− `2 , `2]. We consider the Euclidean spacetime described by
a coordinate z. We cut out little disks of size ε around the endpoints of I to regulate the
entanglement entropy. The boundary conditions are given by two boundary states |a〉 and |b〉
and they contribute a finite amount to the entanglement entropy via Affleck–Ludwig boundary
entropies [40].

We consider two reduced density matrices σ and ρ defined on the interval I . The corre-
sponding modular Hamiltonians K = − logσ and eK = − logρ are assumed to be local. As a
result, each of them can be viewed as generating a flow along a vector field, as represented on
the left of Figure 7. To define the optimal measurement, we are interested in the eigenstates of
both K and eK , and their overlaps. To obtain a useful description of these states, we will use the
flexibility of two-dimensional CFTs to conformally transform the setup to a simpler geometry
for each state, as represented on the right of Figure 7. In this simpler geometry, the modular
Hamiltonian becomes a dilatation operator, whose eigenstates are easily described.

We first use the conformal map

z 7−→ w= f (z) , (7.1)

which takes the spacetime to an annulus of width W .27 More precisely, the interval is mapped
to w ∈ [−W

2 , W
2 ], and the imaginary part of w is periodic with period 2π. The modular Hamil-

27Not to be confused with the notation W for the Bogoliubov transformation in section 6.2.
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I a b

Iz

u
u = ieiπf(z)/W

ũ = ieiπf̃(z)/W̃

KK̃

L0

a b

a b

I

ũ

L̃0

ρ

σ

Figure 7: The modular Hamiltonians K = − logσ and eK = − logρ are conformally
mapped to dilatation operators in the upper half plane. The entanglement spectrum
is then obtained using radial quantization. The inverse maps give expressions for
K and eK in the original spacetime, giving a way to compute the overlaps of their
eigenstates, as required to implement the optimal measurement. The modular flows
are depicted in blue for K and in orange for eK .28

tonian in these new variables becomes simple: it just generates translations in the imaginary
w direction.

To describe the eigenstates of the modular Hamiltonian, it is useful to consider the universal
cover by allowing the imaginary part of w to be unconstrained. The geometry becomes an
infinite strip. We can then map it to the upper half plane with

w 7−→ u= ieiπw/W . (7.2)

The interval becomes a half unit circle C+, ranging from u= 1 to u= −1. As explained in [41],
the choice of boundary conditions is such that one can extend this to the other half plane and
perform radial quantization on the full plane. The modular Hamiltonian K is simply related
to the generator L0 of dilatations in this geometry:

K =
2π2

W

�

L0 −
c

24

�

+
cW
12

, (7.3)

where c is the central charge and the additive constant ensures that Tr e−K = 1 [40]. We refer
to [69] for a more detailed discussion of this setup. The upshot of all these manipulations is
that we can now relate the spectrum of the modular Hamiltonian to the spectrum of L0 in the
presence of two boundary conditions |a〉 and |b〉. For example, we can choose |a〉 = |b〉 = |0〉
where the Cardy state |0〉 projects onto the vacuum sector of the theory [41], so that the only
states in the entanglement spectrum are the vacuum and its descendants.
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In the u-plane, we obtain from radial quantization the Virasoro generators

Ln =
1

2πi

∮

C
duun+1T (u) =

1
2πi

∫

C+

du un+1T (u)−
1

2πi

∫

C+

dū ūn+1T (ū) , (7.4)

where C is the unit circle. This is then translated to an integral over the original interval I :

Ln = −
W

2π2

∫

I
dz ineinπ f (z)/W T (z)

f ′(z)
+ h.c. (7.5)

The entanglement spectrum of a state σ can then be generated by acting with these operators
on the vacuum.

We can use the same procedure for another state ρ using a different map w= f̃ (z) giving
an annulus of width fW . The spectrum of ρ is then generated by another Virasoro algebra

eLn = −
fW

2π2

∫

I
dz ineinπef (z)/fW T (z)

ef ′(z)
+ h.c. (7.6)

Similarly, the modular Hamiltonian eK = − logρ is them given by

eK =
2π2

fW

�

eL0 −
c

24

�

+
cfW
12

. (7.7)

Since both Virasoro algebras are written on the interval, we can compare them. Their com-
mutators can be computed using the general commutation relation of two stress tensors in a
CFT2:

−i[T (z), T (z′)] = (T (z) + T (z′))∂zδ(z − z′)−
3c

12π
∂ 3

z δ(z − z′) . (7.8)

We can restrict to the vacuum sector by choosing the boundary condition |a〉 = |b〉 = |0〉.
Then, the eigenstates of K are given by the eigenstates of L0 which takes the form

|∆〉= L`1
−1 L`2

−2 . . . |0〉 . (7.9)

Similarly the eigenstates of eK at the eigenstates of eL0 and take the form

|e∆〉= eL
˜̀

1
−1
eL

˜̀
2
−2 . . . |0〉 . (7.10)

The general commutation relation (7.8) can be used to compute the commutators [Ln,eLm],
even though this is difficult in practice. This then gives a way to compute the overlaps 〈∆|e∆〉,
as required to describe the optimal measurement.

7.1.2 Optimal measurement

The optimal measurement can then be implemented in this language, following section 4.2.
Let’s now consider n copies of the system. The eigenstates of σ⊗n and ρ⊗n are respectively
denoted

|∆〉= |∆1〉 ⊗ |∆2〉 ⊗ · · · ⊗ |∆n〉 , |e∆〉= |e∆1〉 ⊗ |e∆2〉 ⊗ · · · ⊗ |e∆n〉 . (7.11)

28The picture makes it look like that the Euclidean modular flows both live in the same Euclidean spacetime,
which is not generally true. It is their Lorentzian versions, which define the operators K and eK , which both live in
the original spacetime.
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Using the formula (7.3), we see that the average modular energies for K and eK are respectively

K(n) =
2π2

W

�

|∆| −
c

24

�

+
cW
12

, eK(n) =
2π2

fW

�

|e∆| −
c

24

�

+
cfW
12

, (7.12)

where the average conformal dimension is denoted

|∆|=
1
n

n
∑

i=1

∆i , |e∆|=
1
n

n
∑

i=1

e∆i . (7.13)

The optimal measurement is then described by first decomposing |e∆〉 in the {|∆〉} basis

|e∆〉=
∑

∆

〈∆|e∆〉|∆〉 , (7.14)

where we have 〈∆|e∆〉=
∏n

i=1〈∆i|e∆i〉. We then restrict the sum over∆ to those satisfying the
acceptance condition K(n) − eK(n) ≥ E which is here:

2π2

W

�

|∆| −
c

24

�

−
2π2

fW

�

|e∆| −
c

24

�

+
c

12
(W −fW )≥ E . (7.15)

This allows us to define the states

|ξ(e∆)〉 ≡
∑

∆ : |E|−|eE|≥E

〈∆|e∆〉|∆〉 . (7.16)

The optimal measurement is the projector onto the subspace

HQ = span
e∆

{|ξ(e∆)〉} , (7.17)

with the choice of acceptance threshold being

E = S(ρ‖σ) +

√

√V (ρ‖σ)
n

Φ−1(ε) . (7.18)

7.1.3 Likelihood ratio test

We will see that the optimal measurement is difficult to describe explicitly. A simpler mea-
surement, which is suboptimal but still performs well, is the likelihood ratio test discussed in
section 4.3. The measurement projects on part of the spectrum of σ⊗n. More precisely, it is a
projection on the acceptance subspace

HC = span

¨

|∆〉

�

�

�

�

�

1
n

n
∑

i=1

〈∆i|K − eK |∆i〉 ≥ E
«

, (7.19)

and the best value of E is given in (4.31). We can rewrite the acceptance condition as

2π2

W

�

|∆| −
c

24

�

−
2π2

fW

�

eL0(∆)−
c

24

�

+
c

12
(W −fW )≥ E , (7.20)

where we define the averages

|∆| ≡
1
n

n
∑

i=1

∆i , eL0(∆)≡
1
n

n
∑

i=1

〈∆i|eL0|∆i〉 . (7.21)

To obtain a more explicit description, we should compute 〈∆|eL0|∆〉, which can be written

〈∆|eL0|∆〉=
∑

∆̃

e∆|〈∆|e∆〉|2 . (7.22)

As a result, a fairly explicit description of this measurement can be given with only the knowl-
edge of the overlaps 〈∆|e∆〉.
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7.2 Thermal states

As a concrete example of the procedure described above, we can consider the problem of
distinguishing two thermal states of different temperatures, having only access to a subregion.
We take the subregion to be an interval I = [− `2 , `2] in the infinite line. Following [70], the
reduced density matrix obtained from a thermal state is associated to the conformal mapping

fβ(z) = log

�

e2πz/β − e−π`/β

eπ`/β − e2πz/β

�

, (7.23)

which allows to obtain the corresponding modular Hamiltonian, as described in section 7.1.1.
We consider two reduced density matrices σ and ρ in the interval I obtain from global

thermal states of inverse temperature β1 and β2. The corresponding modular Hamiltonians
are explicitly

K ≡ − logσ = 2β1

∫ `/2

−`/2
d x

sinh
�

π
β1

�

`
2 − x

��

sinh
�

π
β1

�

`
2 + x

��

sinh
�

π`
β1

� T00(x) + c(β1) (7.24)

eK ≡ − logρ = 2β2

∫ `/2

−`/2
d x

sinh
�

π
β2

�

`
2 − x

��

sinh
�

π
β2

�

`
2 + x

��

sinh
�

π`
β2

� T00(x) + c(β2) , (7.25)

where T00 is the energy density of the CFT and c(β1,2) are normalization constants.

7.2.1 Entropy and variance

In a thermal state at temperature β , the one-point function of the energy density is 〈T00〉=
πc

6β2 .
We can determine the constant c(β) in (7.24), because we know that the entanglement entropy
is

S(β) =
c
3

log
�

β

πε
sinh(π`/β)

�

+ ga + gb , (7.26)

where ε is the UV cut-off and ga, gb are the Affleck–Ludwig boundary entropies originating
from boundary conditions at the entangling points [40]. This allows us to compute the relative
entropy

S(ρ‖σ) =
c
6

�

1−
β2

1

β2
2

�

�

1−
π`

β1
coth

�

π`

β1

��

+
c
3

log
�

β1 sinh(π`/β1)
β2 sinh(π`/β2)

�

. (7.27)

The variance can be computed directly from the formulas (7.24) and the two-point function

〈T00(x)T00(y)〉=
c

4π2

1
(x − y)4

. (7.28)

At leading order in the small interval limit `/β1→ 0, we have

S(ρ‖σ) =
cπ4

540

�

1−
β1

β2

�2� `

β1

�4

+O
�

`

β1

�6

(7.29)

V (ρ‖σ) =
cπ4

162

�

1−
β1

β2

�2� `

β1

�4

+O
�

`

β1

�6

.

We note that we have the ratio

lim
`/β1→0

V (ρ‖σ)
S(ρ‖σ)

=
10
3

, (7.30)

satisfying the lower bound (3.20).29 It turns out that this ratio is an interesting quantity to
study for more general states, and further results on this ratio will be presented elsewhere.

29The lower bound was proven only for finite dimensional Hilbert spaces so it is interesting to see that it also
holds in a field theory example.
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7.2.2 Free fermion

The description of the optimal measurement in section 7.1 is valid for a general CFT2. We can
try to be a bit more explicit by considering the example of the free fermion in two dimensions.
This theory can be seen as a continuum analog of the fermion chain considered in the previous
section. The free boson is very similar and presented in Appendix E.

We consider a free fermion ψ on a circle with antiperiodic boundary conditions (Neveu-
Schwarz sector). It has a mode decomposition

ψ(u) =
∑

n∈Z+1
2

ψnu−n−1/2 . (7.31)

As above, we can compute the Fourier mode

ψn =
in

2
p

iπW

∫

I
dz
Æ

f ′(z) eiπnf (z)/Wψ(z) + h.c. , (7.32)

where we are using the notation

f (z) = fβ1
(z), ef (z) = fβ2

(z) . (7.33)

The anticommutation relation of the field is

{ψ(z),ψ(z′)}= {ψ(z),ψ(z′)}= 2πiδ(z − z′), {ψ(z),ψ(z′)}= 0 . (7.34)

This implies that for the Fourier modes, we have

{ψn,ψm}=
in+m

2W

∫

I
dz f ′(z)eiπ(m+n) f (z)/W + h.c. , (7.35)

from which one can show that {ψn,ψm}= δm+n. For the state ρ, we have similarly

eψn =
in

2
p

iπfW

∫

I
dz
q

ef ′(z) eiπnef (z)/fWψ(z) + h.c. (7.36)

We would like to compute overlaps between the eigenstates of ρ and that of σ. This informa-
tion is contained in the commutator

{ψn, eψ−m}= Anm , (7.37)

where

Anm =
in+m

2
p

WfW

∫

I
dz
q

ef ′(z) f ′(z) ein f (z)/W+imef (z)/fW + h.c. (7.38)

Although explicit, this integral is hard to compute analytically.

The Hilbert space is a Fock space generated by acting on the vacuum with creation opera-
tors. A basis adapted to σ is given by

|∆s〉=ψ−s1
ψ−s2

. . . |0〉 , (7.39)

where s = (sk)k with sk ∈ Z+
1
2 and sk > 0, which we take to be in an increasing sequence.

The conformal dimension (eigenvalue of L0) of such a state is

L0|∆s〉=∆s|∆s〉, ∆s =
∑

k

sk . (7.40)
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Similarly, we can consider a basis adapted to ρ given by the states

|e∆s̃〉= eψ−s̃1
eψ−s̃2

. . . |0〉 , (7.41)

where s̃= (s̃k)k being an increasing sequence.
To describe the optimal measurement, we would like to compute the overlap 〈∆s|e∆s̃〉. We

see that the overlap is non-zero if and only if |s|= |s̃| where | · | denotes the cardinality of the
set s. Moreover, we see that the overlap is simply given by the corresponding minor of the
matrix A

〈∆s|e∆s̃〉= det
ss̃

A≡ Mss̃ , (7.42)

which defines a matrix M . The eigenvalue E of K is related to that of L0 via the relation (7.3).

We now consider n copies of the system to implement the optimal measurement. Following
section 7.1.2, we have the acceptance condition (7.15). This allows us to define the states
|ξ(e∆) using the overlaps computed above. The optimal measurement is then the projector
onto the subspace (7.17) spanned by these states. It is difficult to obtain a more explicit
description of this optimal measurement. The first obstacle is the computation of the integral
(7.38) which is needed to obtain the states |ξ(e∆)〉 more explicitly. Furthermore, even if we
managed to have a simple expression for these states, describing the subspace (7.17) will be
even harder, involving their orthonormalization using for example the Gram–Schmidt process.
This procedure was discussed in section 5.2 in the much simpler case of a qubit, where it
already leads to a challenging combinatorial problem.

It is then of interest to find suboptimal but simpler measurements which still perform
well. A good candidate is the likelihood ratio test discussed in section 4.3 in a general context.
Following section 7.1.3, implementing this measurement in CFT only requires the computation
of the one-point function 〈∆s|eL0|∆s〉. For the free fermion, it can be written as

〈∆s|eL0|∆s〉=
∑

s̃

e∆s̃|〈∆s|e∆s̃〉|2 =
∑

s̃

(Σk s̃k) |Mss̃|2 . (7.43)

This only requires the computation of Anm and its minors, which is much more tractable, as
compared to what is required to describe explicitly the optimal measurement.

7.3 Primary excitation

We now consider a setup consisting of a primary excitation that we wish to distinguish from
the vacuum. We are interested in the case where we have only access to a subregion of the
system. We will take the example of an interval in the circle. Let σ and ρ be the states on
this interval corresponding respectively to the vacuum and to the excitation.30 Considering n
copies of this setup, we would like to distinguish between the two states

σ⊗n and ρ⊗n . (7.44)

The optimal measurement is more difficult to describe because in this case, we do not have
an analytic expression for the modular Hamiltonian of the excitation. Nonetheless, we will be
able to implement the likelihood ratio test, as discussed in section 7.1.3.

Consider a two-dimensional CFT on a circle with circumference L at zero temperature.
The Euclidean space is then an infinite cylinder of circumference L with a complex coordinate

30The excitation is now the null hypothesis ρ in the conventions of section 2. This choice is slightly unnatural,
because normally the excitation is the signal one wants to detect with the vacuum state being the null hypothesis.
However, in the present CFT context, ρ being the excitation is more convenient to analyze. See also footnote 7.
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w = φ + iτ where φ ∼ φ + L is the spatial coordinate and τ ∈ R is the Euclidean time
coordinate. We will study the interval I = [0,`] with 0 < ` < L on the τ = 0 circle. We map
the cylinder to the complex plane using the map

w 7−→ z = e2πiw/L , (7.45)

so that the Cauchy slice τ= 0 is mapped to the |z|= 1 circle. The interval I is mapped to the
circular arc between z = 1 and z = e2πiλ with λ= `/L. Using a primary operator Φ, we create
an excited state |Φ〉 = Φ(0)|0〉 in radial quantization by performing the path integral over
the unit disk with Φ(0) inserted at the origin. The corresponding bra state is then defined as
〈Φ|= 〈0|Φ(0)† where Φ(z, z̄)† = (1/z̄)2h̄Φ(1/z)2hΦ Φ†(1/z̄, 1/z) so that Φ† is inserted at z =∞.

We further perform the conformal transformation

z 7−→ ζ= eiπλ z − 1
z − e2iπλ

, (7.46)

which maps the Cauchy slice |z|= 1 to the real axis with the interval I mapped to the negative
real axis.31 We define two reduced density matrices on I by tracing over its complement:

σ = Tr I c |0〉〈0|, ρ =
1
Z

Tr I c |Φ〉〈Φ| . (7.47)

The vacuum modular Hamiltonian is defined as K ≡ − logσ. In our conventions, K/(2π)
generates counter-clockwise rotations in the ζ-plane.

The excited state ρ is computed by a path integral over the ζ-plane with a cut along the
negative real axis and with operator insertions Φ(e−πiλ) and Φ†(eπiλ). We rotate the boundary
conditions above and below the cut to the positive real axis using σ1/2 which gives the Rindler
representation of the density matrix:

ρ =
σ1/2Φ†(eπiλ)Φ(e−πiλ)σ1/2

〈Φ†(eπiλ)Φ(e−πiλ)〉
. (7.48)

Here the vacuum 2-point function 〈 · 〉 = Tr (σ ·) in the denominator ensures that Trρ = 1.32

See [71] for an analogous representation of ρ in higher dimensions.
As in [71], we expand ρ in the short interval limit λ→ 0 using the OPE33

Φ†(eπiλ)Φ(e−πiλ) = 〈Φ†(eπiλ)Φ(e−πiλ)〉
�

1+ (2πλ)∆CO
ΦΦ† O(1) + . . .

�

, (7.49)

where ∆ is the scaling dimension of the lightest primary O of the theory that couples to Φ
(in the sense that the OPE coefficient CO

ΦΦ† is non-zero), which we assume to be spinless and
real for simplicity. Since two-point functions of real primaries are normalized to the Kronecker
delta, we can lower the index in the OPE coefficient CO

ΦΦ† = COΦΦ† .
Based on the OPE, we take the expansion parameter to be (πλ)∆ so that

ρ = σ+ (πλ)∆ρ(1) + . . . (7.50)

with
ρ(1) = 2∆COΦΦ† σ1/2 O(1)σ1/2. (7.51)

We can now start constructing the acceptance subspace. Given an eigenbasis |E〉 of σ⊗n in
H⊗n

A , the optimal classical measurement is determined by an acceptance condition of the form

E+
1
n

log 〈E|ρ⊗n|E〉 ≥ E . (7.52)

31See [2] for more details on this setup.
32The expression (7.48) is Hermitian since the adjoint maps the operator insertions Φ† and Φ into each other.
33Note that

�

eπiλ − e−πiλ
�hO �e−πiλ − eπiλ

�hO = (2πλ)∆ for small λ.
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We first consider the case n= 1 of a single copy, for which we have |E〉= |E〉. From

〈E|ρ|E〉= e−E + (πλ)∆〈E|ρ(1)|E〉+ . . . , (7.53)

we obtain
E + log 〈E|ρ|E〉= (πλ)∆eE〈E|ρ(1)|E〉+ . . . (7.54)

Next, using the above Rindler quantization, we see that

E + log 〈E|ρ|E〉= 2∆(πλ)∆COΦΦ†〈E|O(1)|E〉 , (7.55)

where the states |E〉 now live on the positive real axis in the complex ζ-plane. Rotating the
expectation value 〈E|O(1)|E〉 to the negative real axis and mapping back to the w-cylinder, we
get

E + log 〈E|ρ|E〉=
�

L
2π

�∆

(πλ)2∆ COΦΦ†O(E) , (7.56)

where O(E) ≡ 〈E|O(`/2)|E〉 is the one-point function in the eigenstate |E〉 of the operator O
inserted at the midpoint of the interval I . Hence to determine the acceptance subspace, one
has to compute these one-point functions first. This can be seen as a precomputation that can
be done once and for all for each O that one wishes to use.

Let us now return to the case of n copies using the same notation as in section 4.2. We
denote

|E〉= |E1〉 ⊗ |E2〉 ⊗ · · · ⊗ |En〉 , (7.57)

and eigenstate of σ⊗n and we use |E|= 1
n

∑n
i=1 Ei . The acceptance condition is

E+
1
n

log 〈E|ρ⊗n|E〉 ≥ S(ρD‖σ) +

√

√V (ρD‖σ)
n

Φ−1(ε) , (7.58)

and we have

|E|+
1
n

log 〈E|ρ⊗n|E〉=
�

L
2π

�∆

(πλ)2∆ COΦΦ†O(E) , (7.59)

where we denote the average of the precomputed values

O(E) = 1
n

n
∑

i=1

O(Ei) . (7.60)

In the short interval limit, relative entropy has the expansion34

S(ρ‖σ) =
(πλ)2∆

2
S(2)(ρ‖σ) + . . . (7.61)

Although it might be subtle to properly define ρD in a continuum CFT, we expect that S(ρD‖σ)
has a similar expansion since positivity and monotonicity implies that 0≤ S(ρD‖σ)≤ S(ρ‖σ).
Hence, in the short interval limit, the acceptance condition becomes

COΦΦ†O(E)≥
1
2

�

2π
L

�∆

S(2)(ρD‖σ) . (7.62)

This is a condition on the one-point functions of the lightest primary O which couples to Φ,
inserted at the interval midpoint. The measurement that implements the likelihood ratio test
is then the projection on the eigenstates of σ⊗n satisfying this condition:

A(n) = PHC
, HC = span{|E〉 | (7.62)} . (7.63)

34The explicit expression for S(2)(ρ‖σ) can be found in [72].
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8 Discussion

In this paper we have reviewed some aspects of quantum hypothesis testing and studied a few
applications in quantum many-body systems and two-dimensional conformal field theories.
We have mostly focused on asymmetric testing, with a few comments about the symmetric
counterpart. We believe that we have only scratched the surface of this subject and would like
to conclude by mentioning some possible avenues for future investigation.

We have seen that the error estimates of different types of hypothesis testing involve dif-
ferent interesting quantum information theoretic quantities. One is therefore led to wonder
which notions of distance on the space of states can arise in error estimates of different types of
quantum hypothesis testing, and whether there is a more direct connection between properties
of the distance measure and features of the type of test.

We have also observed that the (non-unique) optimal measurement which saturates the
error bound in the large n limit tends to be rather difficult to implement in practice. For the
case of asymmetric testing, the measurement we studied requires knowledge of the spectra of
eigenstates of the modular Hamiltonians associated to subsystems, which is in general difficult
if not impossible to obtain. An important question is therefore whether there are simpler
testing protocols that one can develop which still do reasonably well in the large n limit. In
this paper we have considered the likelihood ratio test as a possible alternative, but it would
be interesting to explore this question in more detail. From a practical point of view, one
ultimately would like to find the simplest possible protocol whose asymptotic error does not
deviate too much from the optimal one.

An important assumption of quantum hypothesis testing is the ability to perform simul-
taneous (collective) measurements on n copies of the system, for arbitrarily large n. Clearly,
this assumption is not realistic, and the finite n or finite blocklength case has been considered
in [16, 17]. One could imagine applying finite n measurements in cases where one has an
evenly spaced collection of subsystems in a translation invariant state, where the distance be-
tween the subsystems is large enough for the subsystems to be approximately uncorrelated.
But the situation that is most realistic is arguably to make a repeated series of single-shot mea-
surements, i.e. one prepares the systems in a particular state, makes a measurement, and then
repeats this procedure n times. It is not necessarily true that the best strategy in this case is
to repeat the optimal n = 1 measurement n times, it is conceivable that a series of different
measurement protocol yields a better outcome. Such adaptive measurement strategies in sym-
metric testing are known to attain the optimal error probability of collective strategies [73] and
we leave the asymmetric case to future work. There are various closely related questions which
deserve further study, such as distinguishing more than two states through POVM’s [74], and
contrasting these results with continuous parameter measurements and ideas from quantum
metrology.

One important motivation for this work came from quantum gravity and holography. For
example, in [75] a relationship was found between distinguishability measures and bulk re-
construction in entanglement wedges. One could imagine that the quantum hypothesis testing
protocol whose errors are bounded by these measures plays an operational role in the actual
reconstruction process and it would be interesting to explore this in more detail. Many other
questions in quantum gravity center around the issue of whether or not different states can
be distinguished by low energy observers, and if so, whether the necessary measurements are
very complex or not. Translated into the language of quantum hypothesis testing, one would
like to bound the error associated to restricted measurements (e.g. the measurements can only
be made by low energy observers). In particular, can one bound the errors in hypothesis test-
ing as a function of the maximal complexity of the measurements? This question involves the
need to first develop rigorous definitions of complexity of a measurement. We briefly touched
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upon this in section 5.2 by considering the minimum dimension of the acceptance space as
one resource associated with a measurement. More sophisticated definitions would take into
account additional steps involved in the construction of the POVM, and the time and space
associated with the algorithms or circuits executing the measurement. We hope to return to
some of these questions in future work.
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A Measurements for symmetric hypothesis testing

This paper focuses on asymmetric hypothesis testing, where we minimize the type II error β
under the condition that the type I error α is bounded. Section 4.2 describes the optimal mea-
surement for asymmetric testing. In this appendix, we will discuss the optimal measurement
for symmetric testing, where we try to distinguish between ρ⊗n and σ⊗n by minimizing the
combined error

Pn = καn + (1−κ)βn, 0< κ < 1 , (A.1)

where βn = Tr(σ⊗nA) and αn = 1− Tr(ρ⊗nA). In section 2.1, we considered the case κ = 1
2

but the same result holds for any κ with 0< κ < 1. Asymptotically, the optimal error is given
in terms of the Chernoff distance

lim
n→+∞

�

−
1
n

log Pn

�

= − logQ(ρ,σ), Q(ρ,σ) = min
0≤s≤1

Trρsσ1−s . (A.2)

The optimal measurement was obtained in [42] and is the projection on the positive part of

L = κρ⊗n − (1− κ)σ⊗n . (A.3)

This involves diagonalizing the operator L and projecting onto the subspace corresponding
to positive eigenvalues. In general, it is difficult to describe explicitly this measurement. We
consider simplified cases below.

A.1 Classical testing

We use the same notation as in section 4. We take {|E〉} to be the eigenstates of σ and for n
copies of the system, the eigenstates of σ⊗n can be written

|E〉= |E1〉 ⊗ |E2〉 ⊗ · · · ⊗ |En〉 . (A.4)

As in section 4.3, we can define the best classical measurement by the acceptance condition

|E|+
1
n

log 〈E|ρ⊗n|E〉 ≥
1
n

log
� κ

1−κ

�

, (A.5)
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where we recall that |E| ≡ 1
n

∑n
i=1 Ei . The measurement is the projector onto the subspace

spanned by the states |E〉 satisfying this condition. This is also a likelihood-ratio test but with
a different threshold value.

When ρ and σ commute, the acceptance condition (A.5) is precisely the positivity of the
operator L so this is actually the optimal measurement. When ρ and σ don’t commute, we
can define the diagonal part of ρ

ρD ≡
∑

E

〈E|ρ|E〉|E〉〈E| , (A.6)

and the above measurement optimally distinguishes between ρD and σ but doesn’t make use
of the off-diagonal components of ρ. This gives an error

lim
n→+∞

�

−
1
n

log Pn

�

= − logQ(ρD,σ) , (A.7)

and the data-processing inequality for the Chernoff distance implies that

− logQ(ρD,σ)≤ − logQ(ρ,σ) , (A.8)

so this measurement is suboptimal as expected. In conclusion, as in asymmetric hypothesis
testing, the likelihood-ratio test (with a different threshold value) provides a simple measure-
ment for symmetric testing which is the optimal classical measurement.

A.2 Perturbative testing

We now consider the perturbative setting where we have

ρ = σ+λρ(1) +O(λ2) . (A.9)

We define
Li = σ⊗ · · · ⊗σ⊗ρ(1) ⊗σ⊗ · · · ⊗σ , (A.10)

where ρ is in the i-th position and there are n tensor factors. Perturbatively, we have

L = (2κ− 1)σ⊗n +λκ
n
∑

i=1

Li +O(λ2) . (A.11)

We see that perturbative testing is non-trivial only for κ = 1
2 . For κ > 1

2 , L is positive so that
the measurement is the identity while for κ < 1

2 , L is negative so the measurement is zero.
Focusing on the case κ= 1

2 , the measurement is a projection on the positive part of

L =
λ

2

n
∑

i=1

Li . (A.12)

In the case where ρ(1) and σ commute, this reduces to the classical measurement described
in the previous section.

B General properties of the relative entropy variance

The relative entropy variance is a less familiar concept than the relative entropy, and we survey
here some of its properties. Introducing the modular Hamiltonians of ρ and σ,

K = − logσ, eK = − logρ , (B.1)
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we consider the so-called relative modular Hamiltonian

∆K = K − eK . (B.2)

Then, the relative entropy and the relative entropy variance are its first and second cumulants,
i.e. the expectation value and the variance, in the state ρ:

S(ρ‖σ) = 〈∆K〉ρ , (B.3)

V (ρ‖σ) = 〈∆K2〉ρ − 〈∆K〉2ρ . (B.4)

B.1 Relations to other quantities

We give here the relations between the relative entropy variance V (ρ‖σ) and other informa-
tion quantities.

Rényi relative entropies. In the literature there are different generalizations of the relative
entropy. Petz’s defines [44] Rényi relative entropies as

Dα(ρ‖σ)≡
1

α− 1
logTrρασ1−α , (B.5)

with D1(ρ‖σ) = S(ρ‖σ). On the other hand, the sandwiched Rényi entropy or the quantum
Rényi divergence is defined in [76,77] as

eDα(ρ‖σ)≡
1

α− 1
log Tr

��

σ
1−α
2α ρσ

1−α
2α

�α�

. (B.6)

The relative entropy variance can be obtained from both versions of Rényi relative entropy
[21,78],

V (ρ‖σ) = ∂ 2
α [(α− 1)Dα(ρ‖σ)]α=1 = ∂

2
α [(α− 1)eDα(ρ‖σ)]α=1 . (B.7)

It is shown in [21] that the sandwiched Rényi entropy is the minimal quantity that satisfies
the axioms expected from a relative Rényi entropy. In particular, we always have

Dα(ρ‖σ)≥ eDα(ρ‖σ) . (B.8)

Refined Rényi relative entropies. In [11], a refined version of the Rényi relative entropies
was defined as

eSα(ρ‖σ) = α2∂α

�

α− 1
α

eDα(ρ‖σ)
�

, (B.9)

where eDα(ρ‖σ) is the sandwiched Rényi entropy. In AdS/CFT, this quantity was shown to
have a holographic dual when σ is the vacuum state reduced to a spherical subregion. It
is analogous to the refined Rényi entropies defined in [79]. The relative entropy variance is
obtained as

V (ρ‖σ) = ∂αeSα(ρ‖σ)
�

�

α=1 . (B.10)

Higher cumulants. It’s also possible to give an interpretation to the higher α derivatives
of the Petz relative Rényi entropy Dα(ρ‖σ) at α = 1. This is better done in the algebraic
formulation given in section B.4. They correspond to cumulants of the operator − log∆Ψ|Φ,
which are not equivalent to cumulants of∆K .35 Their first and second cumulants are the same
and give the relative entropy and its variance, but the higher cumulants differ. Following [21],
the higher α derivatives of Dα(ρ‖σ) can also be interpreted as classical cumulants of the log-
likelihood of the Nussbaum–Szkola probability distributions associated to ρ and σ. Note that
the higher α derivatives of eDα(ρ‖σ) differ from that of Dα(ρ‖σ) because they are different
functions of α.

35Here, the terminology can be confusing because both operators are called relative modular Hamiltonian in
different contexts, although they are not equivalent.
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Capacity of entanglement. For density matrices in a finite dimensional Hilbert space with
dimH = N , it is simple to derive a relationship between the Rényi entropy and its relative
generalization. Let σmax be the density matrix with uniform spectrum, i.e. proportional to the
unit matrix,

σmax =
1
N

1N . (B.11)

Then the Rényi relative entropy between an arbitrary state ρ and σmax reduces to

eDα(ρ‖σmax) = log N − Sα(ρ) , (B.12)

where

Sα(ρ) =
1

1−α
logTr(ρα) (B.13)

is the Rényi entropy. The relative entropy, respectively, reduces to the von Neumann entropy
by

S(ρ‖σmax) = log N − S(ρ) (B.14)

and, the relative entropy variance reduces to the variance of the entropy, also known as the
capacity of entanglement (see [51] and references therein),

V (ρ‖σmax) = C(ρ)≡ Trρ(logρ)2 − (Trρ logρ)2 . (B.15)

The capacity of entanglement vanishes for a pure state ρψ = |ψ〉〈ψ| and for the maximally
mixed state σmax. It follows that the relative entropy variance vanishes between a pure state
and a maximally mixed state

V (ρψ‖σmax) = C(ρψ) = 0 . (B.16)

We next give necessary and sufficient for the vanishing of the relative entropy variance.

B.2 Vanishing of the variance

The relative entropy variance V (ρ‖σ) is nonnegative. In this section, we consider the condi-
tions for it to vanish, for finite-dimensional Hilbert space. When ρ is full-rank, the variance
vanishes if and only if ρ = σ. More generally, the variance vanishes if and only if ρ and σ
are proportional on the complement of kerρ, where kerρ is the subspace on which ρ van-
ishes. This is explained in [37] and follows from the saturation case of the Cauchy–Schwarz
inequality.

This implies that the relative entropy variance V (ρ‖σ) vanishes when ρ = |ψ〉〈ψ| is a pure
state and σ has no matrix element between |ψ〉 and any other state. For example, the relative
entropy variance vanishes between the vacuum (the ground state) and any thermal state.

B.3 Violation of data processing inequality

The hypothesis testing relative entropy and the relative entropy are generalized divergences
D(ρ‖σ), satisfying the data processing inequality

D(ρ‖σ)≥ D(N (ρ)‖N (σ)) , (B.17)

where N is a quantum channel. The refinement of quantum Stein’s lemma (2.14) gives an
asymptotic expansion for the hypothesis testing relative entropy (2.17), involving the relative
entropy and the relative entropy variance, so it is interesting to note that the latter alone does
not satisfy the data processing inequality. Given a quantum channel N , there is no general
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inequality between V (ρ‖σ) and V (N (ρ)‖N (σ)). This can be seen in a simple two-qubit
system with pure density matrices

ρ = |ψ〉〈ψ|, |ψ〉= |00〉 (B.18)

σ = |χ〉〈χ|, |χ〉=
1
p

3
(|01〉+ |10〉+ |11〉) .

As a quantum channel, consider the partial trace over the second qubit. It produces the reduced
density matrices

ρA = |0〉〈0|, σA =
1
3
(|0〉〈0|+ |0〉〈1|+ |1〉〈0|+ 2|1〉〈1|) . (B.19)

We obtain for the relative entropy36

S(ρ‖σ) = +∞, S(ρA‖σA) = log(3) +
2
p

5
arccoth(

p
5) (B.20)

in agreement with monotonicity that says that S(ρA‖σA) ≤ S(ρ‖σ). For the relative entropy
variance, we obtain

V (ρ‖σ) = 0, V (ρA‖σA) =
4
5

log
�

2

3+
p

5

�2

. (B.21)

This shows that the variance is not monotonous since we have

V (ρA‖σA)> V (ρ‖σ) . (B.22)

B.4 Algebraic formulation

We can also define the relative entropy variance for infinite-dimensional Hilbert space, in the
context of algebraic quantum field theory (we refer to [80] for a review). This allows a rigorous
definition of this quantity in the case of conformal field theory. Araki defined the relative
entropy between two states Ψ and Φ

SΨ|Φ = −〈Ψ| log∆Ψ|Φ|Ψ〉 , (B.23)

in terms of the relative modular operator ∆Ψ|Φ defined with respect to a subsystem for which
Ψ is cyclic and separating. In the finite-dimensional case, ρ and σ are the reduced states of
Ψ and Φ in that subsystem. We recover the usual definition of relative entropy, as can be seen
from the formula

〈Ψ|∆1−α
Ψ|Φ |Ψ〉= Trρασ1−α . (B.24)

This also allows us to write the Petz relative Rényi entropy as

(α− 1)Dα(Ψ‖Φ) = log 〈Ψ|e−(α−1) log∆Ψ|Φ |Ψ〉 , (B.25)

which realizes it as a well-defined UV finite quantity in quantum field theory. In particular,
taking two derivatives gives us an algebraic definition of the relative entropy variance

VΨ|Φ = 〈Ψ|(log∆Ψ|Φ)
2|Ψ〉 − (〈Ψ| log∆Ψ|Φ|Ψ〉)2 , (B.26)

which shows that the relative entropy variance is well-defined in quantum field theory. This
formulation also gives an interpretation for the higher α derivatives of the Petz relative Rényi

36The computation of the logarithms is done by adding a small matrix ε 1 and taking the limit ε→ 0 at the end.
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entropy at α = 1. The Petz relative Rényi entropy is the cumulant generating function of the
operator

KΨ|Φ = − log∆Ψ|Φ . (B.27)

Note that this operator is not equivalent to the operator ∆K defined in (B.2). In particular,
the Petz relative Rényi entropy does not generate the cumulants of∆K . It is however true that
the first and second cumulants of KΨ|Φ and ∆K agree ; they give the relative entropy and its
variance. An algebraic version of the sandwiched relative Rényi entropy has been investigated
in [81].

C Optimal measurement of a qubit

We discuss here the optimal measurement in the case of a qubit and give the derivations of
the formulas of section 5.2. We focus on the case θ = π

4 which appears to be the simplest case
when ρ and σ don’t commute and we want to describe the optimal measurement. It is useful
to write

σ =
�

1
2
+ q
�

|1〉〈1|+
�

1
2
− q
�

|0〉〈0| , (C.1)

so that 1
2 + q = e−E1 = 1− e−E0 . As a result, the optimal threshold value for ε = 1

2 gives

n∗(eE) = n(eE) + qn . (C.2)

We recall that |E〉 and |eE〉 are binary strings

|E〉 = |a1a2 . . . an〉 , ai ∈ {0,1} , (C.3)

|eE〉 = |ã1ã2 . . . ãn〉 , ãi ∈ {−,+} ,

where we used the fact that |e0〉 = |−〉 and |e1〉 = |+〉 for θ = π
4 . It is useful to introduce the

notation nss̃(E,eE), with s ∈ {0, 1} and s̃ ∈ {−,+}, counting the number of pairs (ai , ãi) which
are equal to (s, s̃). We then have

|ξ(eE)〉=
1

2n/2

∑

E
n(E)≥n∗(eE)

(−1)n0+(E,eE)|E〉 . (C.4)

Let’s now compute the overlap of two states |ξ(eE1)〉 and |ξ(eE2)〉. We can write

〈ξ(eE1)|ξ(eE2)〉 =
1
2n

∑

E
n(E)≥n∗(eE1,eE2)

(−1)n0+(E,eE1)+n0+(E,eE2) , (C.5)

where we introduced the notation

n∗(eE1,eE2) =max(n∗(eE1), n∗(eE2)) . (C.6)

We also denote ns̃1 s̃2
for the number of overlapping pairs (s̃1, s̃2) in (eE1,eE2) and nss̃1 s̃2

for the
number of overlapping pairs (s, s̃1, s̃2) in (E,eE1,eE2). We have the relations

n0s̃1 s̃2
+ n1s̃1 s̃2

= ns̃1 s̃2
, (C.7)

and we have
n(E) = n− (n0−− + n0−+ + n0+− + n0++) . (C.8)
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Hence, the acceptance condition is

n0−− + n0−+ + n0+− + n0++ ≥ n− n∗ . (C.9)

We can rewrite the sum over E as a sum over the four integers n0±± with the combinatorial
factor

�

n++
n0++

��

n+−
n0+−

��

n−+
n0−+

��

n−−
n0−−

�

, (C.10)

counting the number of basis state |E〉 for a given choice of n0±± . We then have

〈ξ(eE1)|ξ(eE2)〉 =
1
2n

∑

E
n(E)≥n∗(eE1,eE2)

(−1)n0+(E,eE1)+n0+(E,eE2) (C.11)

=
1
2n

∑

n0−−,n0−+,n0+−,n0++
n0−−+n0−++n0+−+n0++≥n−n∗

�

n++
n0++

��

n+−
n0+−

��

n−+
n0−+

��

n−−
n0−−

�

(−1)n0+−+n0−+ .

It is convenient to define

Pn,k =
1
2n

∑

n0−−,n0−+,n0+−,n0++
n0−−+n0−++n0+−+n0++=k

�

n++
n0++

��

n+−
n0+−

��

n−+
n0−+

��

n−−
n0−−

�

(−1)n0+−+n0−+ , (C.12)

so that we have

〈ξ(eE1)|ξ(eE2)〉 =
1
2n

n
∑

k=n−n∗(eE1,eE2)

Pn,k . (C.13)

It can be noted that Pn,k are coefficients of the polynomial

Pn(x) = (1+ x)n++(1+ x)n−−(1− x)n+−(1− x)n−+ =
n
∑

k=0

Pn,k xk . (C.14)

This follows from expanding each factor using the binomial theorem. Note that we can write

Pn(x) = (1+ x)n(eE1+eE2)(1− x)n−n(eE1+eE2) =
n
∑

k=0

Pn,k xk , (C.15)

where eE1+eE2 denotes the boolean sum. This follows from the fact that n(eE1+eE2) = n+++n−−.
This second expression gives an alternative representation of the coefficients Pn,k as

Pn,k =
k
∑

m=0

(−1)m
�

n(eE1 + eE2)
m

��

n− n(eE1 + eE2)
k−m

�

. (C.16)

Let us introduce binary Krawtchouk polynomials Kk(X ; n) which can be defined via the gen-
erating relation

(1+ x)n−X (1− x)X =
∑

k≥0

Kk(X ; n)xk . (C.17)

These are discrete orthogonal polynomials related to the binomial distribution which have
many applications [82,83]. From the definition for Pn,k in (C.15), we see that

Pn,k = (−1)kKk(n(eE1 + eE2); n) . (C.18)

As a result, we can express the overlap as

〈ξ(eE1)|ξ(eE2)〉 =
1
2n

n
∑

k=n−n∗(eE1,eE2)

(−1)kKk(n(eE1 + eE2); n) . (C.19)

This relation might be useful since many combinatorial identities involving Krawtchouk poly-
nomials are known [84,85].
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Relation to the Terwilliger algebra. The Hamming cube Hn = {0, 1}n is the set of binary
strings of length n with Hamming distance as the metric. The Terwilliger algebra of the Ham-
ming cube [62, 64] is an algebraic structure which is useful in combinatorics and coding the-
ory (see [63] and references therein). We proceed as in [63], and identify the binary strings
a1a2 · · · an with their support, the subset X of labels i for which the bit ai in the string takes
value 1. There are 2n possible such subsets, in other words every X is an element of the power
set P(Hn) of the Hamming cube. We then define a P(Hn)×P(Hn)matrix M t

i j whose coefficients
are

(M t
i j)X1,X2

=

¨

1 if |X1|= i, |X2|= j, |X1 ∩ X2|= t

0 otherwise
, X1, X2 ∈ P(Hn) , (C.20)

where we are using |X | to denote the number of elements in X (the number of 1s, the Hamming
weight of the binary string). The Terwilliger algebra is defined as the set of matrices of the
form

n
∑

i, j,t=0

x t
i j M

t
i j , x t

i j ∈ C , (C.21)

which is closed under matrix multiplication. To the state |ξ(eE)〉, we can associate the element
X ∈ P(Hn) by writing eE as a binary string and identifying it with its support X . Then we
have |X | = n(eE). The Gram matrix of the set of vectors {|ξ(eE)〉} can be represented by an
P(Hn)× P(Hn) matrix G such that

GX1X2
= 〈ξ(eE1)|ξ(eE2)〉 , (C.22)

where X1 and X2 are the elements of P(Hn) associated to eE1 and eE2. Let’s denote

|X1|= i, |X2|= j, |X1 ∩ X2|= t . (C.23)

We have
n∗(eE1,eE2) =max(i, j), n(eE1 + eE2) = i + j − 2t , (C.24)

so that the Gram matrix element is

GX1X2
=

1
2n

n
∑

k=n−max(i, j)

(−1)kKk(i + j − 2t; n) . (C.25)

Because this coefficient depends only on i, j and t, we can write the Gram matrix as an element
of the Terwilliger algebra

G =
n
∑

i, j,t=0

x t
i j M

t
i j , x t

i j =
1
2n

n
∑

k=n−max(i, j)

(−1)kKk(i + j − 2t; n) . (C.26)

From this observation, we could attempt to use the techniques of [63] to diagonalize the matrix
G, and construct the optimal measurement.

D Overlaps in fermion chains

The purpose of this Appendix is to review the tools used in the computation of overlaps in
section 6.2.1. We review Bogoliubov transformations, generalized Wick’s theorem and the
computation of correlators that contain insertions of Bogoliubov transformations. Then we
show how the results lead to the overlaps presented in the main text.
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D.1 Bogoliubov transformations

Let c = (c1, . . . , c`)ᵀ and c† = (c†
1, . . . , c†

`
)ᵀ and similar definitions of ψ,ψ†. Define the 2`-

dimensional vectors

α=

�

c
c†

�

, Ψ =

�

ψ

ψ†

�

(D.1)

whose elements αµ are denoted by Greek indices.
We assume that both α and Ψ obey the canonical anticommutation relations:

{αµ,αν}= Ωµν, {Ψµ,Ψν}= Ωµν , (D.2)

where

Ω=

�

0 1`×`
1`×` 0

�

. (D.3)

Consider a linear transformation W between these sets of operators

α=WΨ. (D.4)

This transformation is called a Bogoliubov transformation if it preserves the canonical anti-
commutation relations (D.2) which requires

WΩW ᵀ = Ω. (D.5)

In addition, since c†,ψ† are the Hermitian conjugates of c,ψ, we must have (here (α†)µ = α†
µ

and ∗ is complex conjugation)
α† =W ∗Ψ†. (D.6)

Since α† = Ωα and Ψ† = ΩΨ, we get the condition

ΩWΩ=W ∗. (D.7)

The set of Bogoliubov transformations form a group and for real transformations W ∗ =W , it
is simply the orthogonal group:

W ᵀW = ΩW−1ΩW = ΩW−1WΩ= Ω2 = 12`×2` (D.8)

with W ᵀW = 12`×2` following similarly. Restricting to the component that includes the identity
transformation, we get the special orthogonal group.

D.2 Generalized Wick’s theorem as a limit of generalized Gaudin’s theorem

Let σ be a density operator that satisfies

αµσ = σ
∑

ν

Mµναν (D.9)

for some matrix M . Operators of the exponential type (such as reduced density matrices of
subregions of spinless fermion chains)

σ =
1
Z

exp
�

1
2
αᵀSα

�

, Z = Trσ, (D.10)

belong to this family with M given by [38,39]

M = e−ΩSA , (D.11)
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where SA is the antisymmetric part of S. However, not all σ that satisfy (D.9) can be written
as exponentials (D.10).

Let T be the operator that implements a real Bogoliubov transformation T on the Hilbert
space:

T αT −1 = Tα . (D.12)

Since T is real, this equation implies that T −1 = T † is unitary. In addition, we do not assume
that T can be written as an exponential of one-body operators.

The generalized Gaudin’s theorem states that [39]

〈αµ1
· · ·αµn

T αν1
· · ·ανn

〉σ
〈T 〉σ

=
∑

pairings

(−1)P
∏

pairs

(contraction of a pair). (D.13)

There are three different types of contractions that can appear on the right hand side:

G(1)µν =
〈αµανT 〉σ
〈T 〉σ

, G(2)µν =
〈αµT αν〉σ
〈T 〉σ

, G(3)µν =
〈T αµαν〉σ
〈T 〉σ

(D.14)

and they are categorized based on the location of the pairs. Equation (D.13) generalizes
Gaudin’s theorem [67] by including insertions of Ti in the expectation value.37

Generalized Wick’s theorem is analogous to equation (D.13), but with the expectation
values in the quasi-particle vacuum state |Evac〉 which is a pure state. It is obtained as a limit
of (D.20) by sending σ to |Evac〉〈Evac|. For this, we take σ to be of the exponential type (D.10)
with (this would correspond to a free fermion Hamiltonian)

S =

�

0 s
−s 0

�

, (D.15)

where s = diag (si) and S is antisymmetric so that

M = e−ΩS =

�

es 0
0 e−s

�

. (D.16)

The exact form of S is not important and we have chosen it in such a way that the {si} →∞
gives the quasi-particle vacuum state. To see this, write

σ =
1
Z

exp
�

−
∑

i

sic
†
i ci

�

, Z =
∏

i

(1+ e−si ) . (D.17)

It has eigenstates |Ei1...in〉 and eigenvalues (1/Z)exp [−(si1 + . . .+ sin)] generated by acting on
the quasi-particle vacuum |Evac〉 with creation operators. Hence it is

σ =
1
Z

�

|Evac〉〈Evac|+
∑

i

e−si |Ei〉〈Ei|+ . . .

�

(D.18)

and the limit {si} →∞ produces a pure state

lim
{si}→∞

σ = |Evac〉〈Evac|. (D.19)

The generalized Wick’s theorem is then

〈Evac|αµ1
· · ·αµn

T αν1
· · ·ανn

|Evac〉
〈Evac|T |Evac〉

=
∑

pairings

(−1)P
∏

pairs

(contraction of a pair) (D.20)

and the three types of contractions appearing on the right hand side are the lim{si}→∞ G(1,2,3)
µν .

We will next compute the contractions.
37Gaudin’s theorem is a generalization of Wick’s theorem to expectation values in mixed states. Its proof is based

on the cyclicity of the trace and the identity (D.9).
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D.3 Computation of contractions

We start with the simple 2-point function 〈αµαν〉σ = Tr (σαµαν) in a mixed state σ that obeys
the relation (D.9). Using the canonical anticommutation relations and (D.9), we can write

〈αµαν〉σ = ΩµνTrσ− 〈αναµ〉σ = ΩµνTrσ−
∑

λ

Mµλ〈αλαν〉σ. (D.21)

From this the 2-point function is solved

〈αµαν〉σ = Trσ [(1+M)−1Ω]µν. (D.22)

Let Ti=1,2,3 be operators that implement three different Bogoliubov transformations Ti:

Ti αT −1
i = Ti α. (D.23)

Thus the operators Ti obey the relation (D.9) with M = T−1
i . We consider real Bogoliubov

transformations that are orthogonal Tᵀi = T−1
i and for which T † = T −1 is unitary.

Consider the expectation value

〈T −1
1 αµT3ανT2 〉σ = 〈αµ T3αν〉T2σT −1

1
, (D.24)

where we used cyclicity of the trace. Using

T3αν =
�∑

λ

(T3)νλαλ
�

T3, (D.25)

we get
〈T −1

1 αµT3ανT2〉σ =
∑

λ

(T3)νλ 〈αµαλ〉bσ , (D.26)

where we have defined bσ ≡ T3T2σT −1
1 which obeys the relation

αµbσ = bσ
∑

ν

(T−1
3 T−1

2 M T1)µναν , (D.27)

so that
〈αµαλ〉bσ = Tr bσ [(1+ T−1

3 T−1
2 M T1)

−1Ω]µν. (D.28)

Noting that
Tr bσ = 〈T −1

1 T3T2〉σ, (D.29)

we get
〈T −1

1 αµT3ανT2〉σ
〈T −1

1 T3T2〉σ
= [(1+ T−1

3 T−1
2 M T1)

−1ΩTᵀ3 ]µν. (D.30)

The quasi-particle vacuum expectation values are obtained by focusing on exponential σ
with M = e−ΩS and taking the limit {si} →∞:

〈Evac|T −1
1 αµT3ανT2|Evac〉

〈Evac|T −1
1 T3T2|Evac〉

= lim
{si}→∞

〈T −1
1 αµT3ανT2〉σ
〈T −1

1 T3T2〉σ
. (D.31)

We focus our attention to the following 2-point functions that appear in the computation of
the overlaps:

〈Evac|T αµαν|Evac〉
〈Evac|T |Evac〉

= lim
{si}→∞

[(1+M T−1)−1Ω]µν (D.32)

〈Evac|αµT αν|Evac〉
〈Evac|T |Evac〉

= lim
{si}→∞

[(1+ T−1M)−1ΩT−1]µν (D.33)

〈Evac|αµανT |Evac〉
〈Evac|T |Evac〉

= lim
{si}→∞

[(1+ T−1M)−1Ω]µν. (D.34)
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The other limits were not given in [39], but we can compute them using the identity

lim
{si}→∞

[(1+Q−1M P)−1Ω]µν =

�

Pᵀ22 Pᵀ12
Pᵀ21 Pᵀ11

��

(Q11Pᵀ22 +Q12Pᵀ21)
−1 0

0 0

��

Q12 Q11
Q22 Q21

�

. (D.35)

The results are

〈Evac|T αµαν|Evac〉
〈Evac|T |Evac〉

=

�

0 1
0 T21T−1

11

�

(D.36)

〈Evac|αµT αν|Evac〉
〈Evac|T |Evac〉

=

�

0 T−1
11

0 0

�

(D.37)

〈Evac|αµανT |Evac〉
〈Evac|T |Evac〉

=

�

T−1
11 T12 1

0 0

�

. (D.38)

The normalization factor is computed in [38,39]:

〈Evac|T |Evac〉= lim
{si}→∞

〈T 〉σ = (det T22)
1/2 . (D.39)

D.4 Overlaps of eigenstates

Overlaps of eigenstates of two modular Hamiltonians are

〈Ei1...in |eE j1... jm〉= 〈Ei1...in |T |E j1... jm〉= 〈Evac|cin · · · ci1T c†
j1
· · · c†

jm
|Evac〉. (D.40)

Generalized Wick’s theorem states that

〈Ei1...in |eE j1... jm〉

〈Evac|eEvac〉
=
〈Evac|cin · · · ci1T c†

j1
· · · c†

jm
|Evac〉

〈Evac|T |Evac〉
(D.41)

expands to a sum over products of contractions. The contractions are obtained from the gen-
eral formulae above:

〈Evac|T c†
i c†

j |Evac〉

〈Evac|T |Evac〉
= (T21T−1

11 )i j (D.42)

〈Evac|ciT c†
j |Evac〉

〈Evac|T |Evac〉
= (T−1

11 )i j (D.43)

〈Evac|cic jT |Evac〉
〈Evac|T |Evac〉

= (T−1
11 T12)i j (D.44)

with the normalization given in (D.39). This leads to the formula (6.58) presented in the main
text.

E Optimal measurement for the free boson

In this appendix, we consider the free boson CFT and attempt to describe the optimal subsys-
tem measurement that distinguishes between two thermal states, using the setup of section
7.2.

Let φ(z) be a free boson and define j(z) = ∂ φ(z). We have the modes

αn =
1

2πi

∮

0

du un j(u) =
1

2πi

∫

C+

duun j(u)−
1

2πi

∫

C+

dū ūn j(ū) . (E.1)
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We obtain

αn =
1

2πi

∫

I
dz ineinπ f (z)/W j(z) + h.c. (E.2)

In this case, the commutation relations are

[ j(z), j(z′)] = ∂z[φ(z),∂ φ(z
′)] = −2πi ∂zδ(z − z′) . (E.3)

Using the above formula, we can check that [αn,αm] = nδm+n as expected. We now consider
the state ρ with

eαn =
1

2πi

∫

I
du ineinπef (z)/fW j(z) + h.c. . (E.4)

To obtain the overlaps between the eigenstates of ρ and that of σ, we need to compute the
commutator [αn, eα−m]. After some manipulations, we find

[αn, eαm] =
in+mn
2W

∫

I
dz f ′(z)eiπ(nf (z)/W+mef (z)/fW ) + h.c.≡ Anm , (E.5)

which appear difficult to compute explicitly. A basis of normalized eigenstates for K is labeled
by k= (k1, k2, . . . ) with

|∆k〉=
1

p

Nk
α

k1
−1α

k2
−2 . . . |0〉 , (E.6)

where the normalization is Nk =
∏

i≥1 iki ki! and we have

L0|∆k〉=∆k|k〉, ∆k =
∑

i≥1

iki . (E.7)

Similarly, for eK , we have ek= (k̃1, k̃2, . . . ) and

|e∆
ek〉=

1
p

N
ek

eα
k̃1
−1eα

k̃2
−2 . . . |0〉 . (E.8)

The overlap 〈∆k|e∆ek〉 is non-zero only if N =
∑

i ki =
∑

i k̃i . Is is given as

〈∆k|e∆ek〉= perm(Mkek) , (E.9)

where Mkek is the N ×N matrix constructed by starting with the matrix Ai j and replacing each
entry (i, j) by a ki × k̃ j block where all the elements are equal to Ai j . Here, perm denotes
the permanent which is similar to the determinant, but with only plus signs in the sum over
permutations.

We will now attempt to describe the optimal measurement for the free boson, where we
have two global thermal states as described in section 7.2. To compute the overlaps, it is
convenient to change variable to w= f (z) so that

Anm =
in−mn
2W

∫ W/2

−W/2
dw eiπ(nw/W−mF(w)/fW ) + h.c. , (E.10)

where F(w) = ef ( f −1(w)). Unfortunately, this quantity is hard to compute analytically. It can
be probed in the small L expansion. At first order, we get

Anm =















n m= n
πL

log( L
ε )
(T2 − T1)

mn
m− n

+O(L2) m+ n is odd

O(L2) otherwise

. (E.11)
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As a result, we see that |∆k〉 and |e∆
ek〉 can have a non-zero overlap at first order only if they

differ in less than one place. We can write

k= k0 +δa, ek= k0 +δb , a+ b odd, a 6= b , (E.12)

where δi means a one in position i. We compute

〈∆k|e∆ek〉=
Nk0

Aabka k̃b
p

NkN
ek

+O(L2) . (E.13)

We have NkN
ek = N2

k0
aka bk̃b so we get for a+ b odd

〈∆k|e∆ek〉=
πL

log( L
ε )

Æ

ab ka k̃b

b− a
(T2 − T1) +O(L2) . (E.14)

Following section 7.1.2, we can also define perturbatively the states |ξ(e∆k)〉 which span the
acceptance subspace HQ. Although it’s possible to write explicit perturbative expressions, this
is not enough. Indeed, to understand this subspace and define the measurement, we would
need them to do a Gram-Schmidt procedure to orthonormalize these vectors. To do this, we
will have to go beyond the perturbation theory in L and we don’t expect to be able to obtain
analytical results using this approach. In conclusion, the optimal measurement seems to be
difficult to describe explicitly, even in simple examples. An alternative is to use the likelihood
ratio test following section 7.1.3, which will be more tractable to implement here, because it
requires only the knowledge of the overlaps.
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