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Tiivistelmä: 

Communication, by nature, is multimodal: it uses various forms (modes) of communication, such as spoken or written 
language, illustrations, and many others to create meaning. Multimodality research is the study of communicative situations 
that rely on such various modes and their combinations. One form of multimodality very commonly seen in everyday life 
comes in diagrams, which can convey complex concepts by combining visual expressive resources (such as illustrations 
or photographs), written language, and diagrammatic elements such as lines and arrows. 

The primary aim of my thesis is to establish whether the linguistic structures of written labels – that is, textual elements – 
in diagrams can inform the decomposition of visual expressive resources. Put simply, I seek to find if said visual elements 
can more accurately be divided into further, more granular units in accordance with linguistic patterns in their accompanying 
textual elements. To answer my main research question, I posit three sub-questions. First, whether certain diagram types 
(macro-structures), such as tables, cycles, or cross-sections co-occur with specific linguistic patterns; second, if different 
rhetorical functions found in diagrams employ different linguistic structures; and third, if these functions are signaled by 
other means in tandem with written language. Answering these questions can help in designing future multimodal corpora 
and their annotation schemata, increasing annotation accuracy and possibilities for their processing. 

I approach diagrams from the perspective of multimodality, highlighting them as discursive artefacts. This is enabled by 
the diagrammatic mode, which establishes how discourse semantics can function in the context of diagrams and how their 
interpretation is dynamic; each element or combination of multiple elements can in turn contextualize or be a part of others 
on a different scale. I discuss the concepts of coherence and cohesion as they relate to multimodal artefacts: different 
elements, even if not linguistic, can combine to create semantically meaningful connections between constituents in such 
an artefact. To exemplify this, I also apply Rhetorical Structure Theory (RST), which formalizes how units of discourse are 
interconnected and form a communicative whole. RST employs rhetorical relations such as ELABORATION and IDENTIFICATION 
to describe how units and their combinations relate to other parts of a discursive whole. 

The data I use consists of two interrelated and complementary multimodal corpora: AI2D and AI2D-RST. AI2D is a 
collection of primary-school textbook science diagrams, annotated for blobs (visual expressive resources), labels, and 
diagrammatic elements, created for question-answering purposes. It also contains the linguistic data in each of the corpus’s 
diagrams. AI2D-RST contains a subset of the diagrams in AI2D, expanding them with additional annotation layers for 
information on macro-structures, visual connectivity, and RST, describing each element’s rhetorical relation in the diagram. 

I computationally find each rhetorical relation containing a label in AI2D-RST, noting its type, the type of the diagram it 
appears in, and fetching the labels’ linguistic content from AI2D. I process each label’s contents with spaCy, a library for 
natural language processing, for linguistic elements such as phrase types, part-of-speech patterns, and average word 
counts. 

There are indeed some differences in how distinct rhetorical relations and macro-groups use language: for example, cycles 
contain the most verb phrases and highest word count, indicating the use of written language to explicate certain 
processes. As linguistic patterns differ across these classes and are contextualized by surrounding elements, approaching 
diagrams from a discursive standpoint may be beneficial for future empirical multimodality research as well as designing 
more intuitive and precise annotation schemata. With larger datasets and further research, sets of rules containing linguistic 
structures and layout information may be developed to increase accuracy in the computational analysis of diagrams. 
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1 Introduction 

1.1 Multimodality and diagrams 

Communication is inherently multimodal – that is, it relies on various intentional combinations 

of spoken and written language, illustrations, photographs, and other “modes” to make and 

exchange meanings. As interest in the study of these modes of communication is increasing, 

multimodality is slowly becoming an emerging discipline (see e.g. Bateman et al., 2017; Wildfeuer 

et al., 2020). Bateman et al. (2017, p. 7) summarize multimodality broadly as “characterising 

communicative situations … which rely upon combinations of different ‘forms’ of communication 

to be effective.” These communicative situations encompass an extremely board range, from 

audiovisual material and face-to-face interaction to newspaper websites and school textbooks, 

to name a few. Just which of these “forms of communication” are used depends on the 

communicative situation. 

 Diagrams are one ubiquitous form of communication in daily life. They are commonly 

used to convey information of various topics in many different ways and can be found 

everywhere from instruction manuals to textbooks and news programs (see e.g. Purchase, 2014; 

Kembhavi et al., 2016; Hiippala et al., 2021). Because diagrams are deployed for communicative 

purposes in so many contexts, it is hardly surprising that they have become a topic of interest in 

various fields such as psychology, artificial intelligence, cognitive and social sciences, human-

computer interaction, as well as applied linguistics (Purchase, 2014; Wildfeuer et al., 2020; 

Hiippala and Bateman, 2021). For example, in the field of applied cognitive psychology, diagrams 

have been used to study the guidance of attention allocation via eye-tracking, highlighting the 

importance of layout for processing and integrating information (Holsanova, Holmberg, and 

Holmqvist, 2009); they have also recently been used to research how knowledge is learned and 

transferred based on different diagrams depicting animal life cycles (Menendez, Rosengren, and 

Alibali, 2020). In order to support empirical research more efficiently in the disciplines in which 

diagrams are used and studied, further attention needs to be directed to the multimodal 

discourse structure of diagrams. 



 
 
 

3 
 

 Watanabe and Nagao (1998) suggest that natural language is vital for understanding 

diagrams, as natural language and layout patterns can together communicate information more 

efficiently than either could by itself. They show that different linguistic structures can serve 

different semantic purposes in diagrams: one structure may name a pictured plant, while another 

might indicate an individual part thereof. It seems, then, that written language guides viewers to 

interpret diagrams in certain ways, and therefore cannot be overlooked when discussing the 

communicative potential of diagrams. Watanabe and Nagao (1998) also indicate a need for larger, 

computationally accessible corpora of diagrams for further computational studies. Such corpora 

(see Section 3) were unavailable at the time but can now be found annotated with both linguistic 

and layout data, among others (Kembhavi et al., 2016; Hiippala and Orekhova, 2018; Hiippala et 

al., 2021). The challenge then becomes how to efficiently support the computational analysis of 

corpora that are too large for human analysts. 

To analyze linguistic structures found in diagrams, natural language processing (NLP) can 

be used to computationally extract and process written language for numerous attributes. 

Because written language can be quite explicit in guiding the viewer in its content, structure, and 

layout, it can be a major constituent of coherence in diagrams, and certainly worth researching 

in a discourse-oriented approach to them. In fact, many of the key concepts used in this study 

originate in linguistics, but can be used in multimodal “texts” as well. 

As noted by Hiippala et al. (2021), more recent advances in computer vision and natural 

language processing may assist in the generation and processing of diagrams. Computer vision 

research is driven by photographic media, whereas diagrams and other forms of visual and 

pictorial expression have received less attention. Crucially, diagrams are radically different from 

photographs due to properties such as compositionality – that is, diagrams combine multiple 

forms of communication into discourse organizations. A single diagram may include illustrations, 

text, and connecting lines all in one, which photographic material seldom contains; including 

diagrammatic and linguistic representation in addition to pictorial (see e.g. Greenberg, 2021) 

then requires approaches not limited to purely photographic material. Kembhavi et al., 2016 (p. 

325) also point out that understanding of such “rich” visuals is scarce. 
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There are exceptions as well, however, such as Haehn, Tompkin, and Pfister (2019), who 

encourage further research into machine graphical perception. Because prior research is scarce, 

the structure and semantic functions of possible written language may not have received enough 

attention in the computational processing of rich visual material, either – not to mention how 

written language and other modes are combined in effect. Multimodality theory offers a 

promising framework to approach this problem with, as the discourse relations between 

different modes of expression are a common topic in the emerging field. 

 As diagrams can provide numerous ways to communicate a given concept, their designers 

must choose which ones to use and how if they wish to efficiently convey information. A 

diagram’s discourse structure then reflects its communicative intentions, which highlights the 

potential of the written language found in diagrams as a tool for explicitly guiding viewers to infer 

and further decompose visual elements. Written labels, which are linguistic elements in diagrams, 

often function to describe entire elements or parts thereof; as such, they are particularly useful 

for communicative purposes. Labels can be identified by their proximity and relative placement 

to the element they describe, or by connectivity, in which the label is connected to the described 

element via a diagrammatic element (such as a line or an arrow). Figure 1 shows an example of 

labels describing entire objects, while Figure 2 demonstrates how labels identify individual parts 

of a depicted object. 

 

Figure 1. An example of labels classifying individual elements (types of tree leaves). The labels are located below 
each element, exemplifying consistent proximity. Diagram #4405 from AI2D (Kembhavi et al., 2016; see Section 3). 
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Figure 2. An example of labels describing parts of the element (an illustration of a tree leaf). The labels are 
connected to the described parts of the element via lines. Diagram #3149 from AI2D (Kembhavi et al., 2016). 

As can be seen from Figures 1 and 2, linguistic and diagrammatic elements serve as guides for 

interpreting illustrations, drawings, graphic shapes, and other forms of visual representation in 

diagrams (Tversky et al., 2000). Lines, written language, and their placements clarify the 

information the diagram is attempting to convey and guide viewers in interpreting it. Whether 

viewers interpret labels as describing complete elements or only parts of them may be affected 

by the presence of these attributes. 

1.2 Research questions 

My main research question, then, is as follows: “Can the linguistic structure of written labels 

inform the decomposition of visual expressive resources in diagrams?” More specifically, I seek 

to answer the question above by answering the following questions:  

1. Do different types of diagrams generally use different linguistic structures in their labels? 

2. Do certain linguistic patterns co-occur with specific rhetorical relations between visual 

expressive resources and their labels? 

3. How are the discursive functions of labels with different linguistic structures signaled for 

viewers to interpret? 

 Finding answers to the presented questions would assist in understanding diagrams as a 

form of communication and aid various diagram research efforts. The specific inherent discursive 

characteristics of diagrams should be considered when creating annotation schemas for 
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multimodal corpora (see Hiippala and Bateman, 2021). Such data could be found useful in both 

crowdsourced and automatic interpretation of diagrams. 

 To answer the questions introduced above, I combine theories and approaches from the 

studies of multimodality, discourse structure, diagrams research, and computational linguistics 

to answer some of these questions. I first establish essential theories and background literature; 

next, I provide an overview of the data; I then go over the methods used to process said data; 

then, I present my analysis; and finally, discuss its further changes and implications for discourse-

oriented diagram research. 

2 Theoretical framework and key concepts 

In this chapter, I will establish the theories and approaches I follow in this thesis. I begin by going 

over multimodality research and facets thereof pertaining to my topic; I then introduce the 

diagrammatic mode, which guides my approach; I follow this by defining the concepts of 

cohesion and coherence; next, I present Rhetorical Structure Theory (RST), which has been 

applied to multimodal material in previous studies; finally, I discuss how different coherence 

relations that hold between elements are signaled. 

2.1 Multimodality research 

Since multimodality is a ubiquitous phenomenon, it has unsurprisingly been studied in diverse 

fields. Multimodality research is the study of multimodal artefacts and situations, as well as the 

communicative phenomena found therein. The emerging field is expanding rapidly due to the 

increasing interest in multimodal communication in various disciplines and contexts. Because of 

the diversity of different approaches to multimodality, there is no single universal theory of 

multimodal communication; the field is as heterogenous and broad as the disciplines it is studied 

within (see e.g. O’Halloran & Smith, 2011; Bateman et al., 2017; Wildfeuer et al., 2020). 

Nonetheless, as O’Halloran and Smith (2011, p. 2) note: 

There has been a clear movement towards the development of generalisations applicable beyond 
the particular concerns of those studying within particular domains of reference or with particular 
academic backgrounds and with application to the study of multimodal phenomena in general. 
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There are, then, approaches to multimodality that are applicable across disciplines and beneficial 

to a diverse range of studies on the topic. As multimodal phenomena are researched in an 

increasing capacity, theories and approaches to their analysis are necessary. Authors such as 

O’Halloran and Smith (2011), Jewitt et al. (2016), Bateman et al. (2017), and Wildfeuer et al. 

(2020) provide possible frameworks for the systematic analysis of communicative situations with 

combined expressive resources, indicating the emergence of multimodality studies as a field. 

 Stöckl (2020, p. 41) proposes that contemporary linguistic and semiotic approaches to 

multimodality are defined by two central tenets, described as “the semiotic dictum that 

communication relies on a whole host of different signing modes and their combination, and the 

linguistic concerns evident since the advent of pragmatics and text linguistics with a gradual 

extension of context.” The first of these tenets then enables different signing modes (such as 

language, illustrations, and music) to be analyzed from the perspectives of pragmatics and 

semiotics. The second establishes that multimodality is characterized by an extension of existing 

topics in pragmatics and text linguistics, such as discourse and related phenomena; these 

phenomena, such as cohesion and coherence (see Section 2.3), are then applied to forms of 

communication other than language. This in turn enables the co-contextualization of such forms 

of communication, wherein each provides additional context for the others. The issue that 

follows, then, is what exactly constitutes such a form of communication – that is, a mode – and 

how they could be distinguished. 

 In order to draw systematic and accurate distinctions between different communicative 

situations, it is essential to establish their material components: such situations can unfold in 

different ways using different materialities. For example, a comic strip and a face-to-face 

discussion are drastically different forms of communication tracing back to the different 

materialities they employ, and as such, a mode is partially defined by its material aspects. 

Bateman et al. (2017) and Bateman (2021, pp. 40–42) classify four dimensions of materiality: 

temporality (static or dynamic), space (two-dimensional or three-dimensional), role (observer or 

participant), and transience (permanent or fleeting). As these dimensions vary, so do the possible 

communicative situations within them. A comic, for example, would be static, two-dimensional, 
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and permanent, which an in-person, face-to-face chat is certainly not; the latter also includes the 

possibility of participation. Because of these vast differences in communicative possibilities, 

materiality is a necessary part of multimodal analysis that can be built on. 

A mode then has a material stratum: a kind of “canvas” (Bateman et al., 2017, pp. 86–87) 

that can be modified. The canvas is not necessarily literal, but instead describes how multimodal 

artefacts can be perceived and how the materiality can be manipulated for communication; 

materiality, as it relates to multimodality, can then be anything from a digital screen to physical 

actions transpiring over a period of time. A two-dimensional, non-aural materiality such a piece 

of paper can hardly support the same modes of expression as face-to-face communication, which 

relies on body language and sound; films differ noticeably from literature in how they can present 

information due to the properties and restrictions of their corresponding materialities, as a page 

is completely static. Furthermore, as noted by Bateman (2021), it is not uncommon for 

communicative situations to “exhibit highly complex material structures with distinct levels of 

embedding, each of which then requires its own material classification” (p. 42). 

Regarding the further distinction of modes, Kress et al. (2001, p. 43) provide an example: 

[T]he question of whether X is a mode or not is a question specific to a particular community. As 
laypersons we may regard visual image to be a mode, while a professional photographer will say 
that photography has rules and practices, elements and materiality quite distinct from that of 
painting, and that the two are distinct modes. 

What may constitute a mode in one community or context might therefore not be recognized 

similarly in another. This also shows that materiality should ideally be described through both 

how it can be manipulated as well has how it is perceived: even in a given context of perception, 

there may be multiple materialities at play, and a single substrate can carry various modes. In the 

context of diagrams research, cut-outs and photographs may serve distinctly different purposes, 

for example. 

 A materiality can then be manipulated intentionally for communication. Such 

manipulation must consistently follow formal distinctions associated with a given semiotic mode. 

Any such “regularities of form” on a materiality can then develop into expressive resources 

associated with that semiotic mode. As noted by Hiippala and Bateman (2021, p. 3) specifically 
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regarding diagrams, this is “exemplified by differences in form between written language and 

line drawings, which allow us to distinguish between these resources.” That is, written language 

and line drawings have different principles of organization that result in distinct forms and 

patterns thereof. A mode can then make use of a number of different expressive resources 

depending on how its materiality can be manipulated for communicative purposes and what 

properties the materiality possesses – it can be spatial, temporal, two-dimensional, three-

dimensional, static, or dynamic, among others, and all of these properties and their different 

combinations allow for different kinds of communication. It is important to note, however, that 

the attributes of materiality do not necessarily restrict what can be represented by it. As Bateman 

et al. (2017, p. 102) note:  

[W]hile we cannot derive from a particular canvas any statements about what can be represented, 
we can say much about how it might be represented. A particular canvas will only make certain 
material distinctions available and not others, and this is what is available for meaning-making. 

For example, a static materiality such as a piece of paper may still represent movement through 

a sequence of illustrations; these are the kinds of limitations defined by the underlying materiality 

of the semiotic mode. 

Ultimately, the contextual interpretation of different combinations and selections of 

expressive resources is facilitated by discourse semantics, which guide viewers’ interpretation. 

Hiippala and Bateman (2021) give an example from the viewpoint of diagrams by stating that 

“resolving the resulting discourse relations relies on formal cues such as spatial placement of 

elements or connections realised using lines and arrows in combination with world knowledge” 

(p. 4). The above aspects in unison constitute a semiotic mode, as defined by Bateman (2011; see 

also Bateman et al., 2017; Hiippala & Bateman, 2021). 

 Another central aspect of multimodal analysis is the concept of medium. Bateman et al. 

(2017, p. 123) summarize the concept broadly as “a historically stabilised site for the deployment 

and distribution of some selection of semiotic modes for the achievement of varied 

communicative purposes.” Hence, the medium (such as a book or a film) determines what kinds 

of modes can be used therein – although it should be noted that semiotic modes themselves are 

abstractions and not intrinsically bound to any particular medium, but instead can be mobilized 
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within a given medium if it provides a compatible materiality. This results in certain properties of 

multimodal communication being medium-specific: books and films employ distinct 

combinations of semiotic modes in different ways and said combinations can be anticipated from 

an artefact of the corresponding medium. One would hardly expect encountering moving images 

or musical tracks in a book, although they could be represented via other modes, as discussed 

above. 

 The notion of genre is also of importance in multimodal research. Genre ascribes classes 

to certain recognizable patterns of conventions used to achieve an intended communicative 

purpose (see e.g. Bateman et al. 2017 pp. 128–131). Genres enable those who participate in 

communication within them to set certain expectations for them, which also help guide their 

interpretation; examples of genre could then be a crime film, a science textbook diagram, or 

perhaps a master’s thesis. Any multimodal text – that is, a unit resulting in the combination of 

semiotic modes afforded by a medium (Bateman et al., 2017, pp. 131–133) – participates in a 

genre. As Stöckl (2020, p. 65) summarizes: 

Placing multimodal ensembles firmly in the context of a rhetorical situation means to look at them 
as comprising a rhetor’s goal, rhetorical strategies as deliberate choices and combinations of 
semiotic resources, and a recipient’s task-based communicative engagement in the resulting 
multimodal structure. Such a consistently rhetorical approach allocates genre a central role in 
shaping and constraining multimodal discourse interpretation. Any multimodal artifact would then 
first of all be an exemplar instantiating or realizing a genre’s underlying functional, logical, 
structural, and stylistic regime. 

This illustrates how the importance of genre as a guide for the rhetorical interpretation of 

multimodal artefacts cannot be understated (see also Bateman, 2008). 

  The notion of genre helps in the analysis of diagrams more specifically, as well. Different 

types of diagram structures, such as cycles, tables, cross-sections, or exploded views effectively 

function as genres: these various types of diagrams guide viewers towards certain interpretations. 

For example, viewers may infer the cyclical sequence between some of a cycle’s constituents at 

first glance, while this might not be the case with a table. There are then certain conventions in 

place that illustrate functional differences and set viewer expectations for diagrams’ contents. 

In summary, due to the complexity of multimodality, pursuing multimodal analyses 

requires well-defined theoretical concepts set in appropriate relations with each other. Modes 
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and their combinations co-textualize and contextualize one another. This allows for various 

methods of communication, the expressive resources of which are formed by manipulating the 

materiality they are set upon and guided by their corresponding discourse semantics. The 

medium determines the kinds of materialities available for a text of multimodal communication. 

Any combination of semiotic modes for achieving communicative goals is bound to exhibit 

patterns determined by genre, which provides additional context for its construction and 

interpretation. These concepts enable the systematic analysis of multimodal artefacts. 

2.2 The diagrammatic mode 

As modes of expression and their different organizations and combinations form discursive 

wholes and discourse semantics can take place on various levels in multimodal artefacts, exactly 

how far those modes can be decomposed may affect the successful interpretation thereof. 

Discourse semantics thus establishes discourse units, which are compositional in nature: while a 

multimodal artefact can act as a page-level discourse unit, further decomposing such artefacts 

requires viewers to re-apply the appropriate discourse semantics to outline units on a more 

granular level. Just as other forms of multimodal discourse, diagrams organize instances of 

expressive resources into discourse structures, the interpretation of which is supported by the 

stratum of discourse semantics. Diagrams use various elements such as arrows, text and images 

to communicate different things; they can be divided into their component parts, each of which 

functions as a part of the whole diagram. Because proper decomposition can affect the ability 

with which a diagram’s message is interpreted, the question then becomes how diagrams might 

be decomposed more accurately in order to fully comprehend the messages they are trying to 

communicate. 

Discussing sufficient decomposition of diagrams, particularly in the corpora used for this 

thesis (see the Section 3), Hiippala et al. (2021, pp. 663–664) note: 

Establishing an inventory of discourse segments for diagrams is a particularly challenging task, as 
the level of detail needed for segmentation varies from one diagram to another, depending on the 
combination of expressive resources present and the discourse structures they participate in. To 
exemplify, a 2D cross-section of an object, whose structure is picked out and described using 
textual labels, must be decomposed into analytical units to provide a sufficiently accurate 
description of its multimodal structure, whereas an illustration of an entire object does not need 
to be decomposed to the same extent. 
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The dataset contains multiple diagrams whose visual expressive resources have not been 

segmented at the same level of detail as the labels. This begs the question if the granularity of 

labels corresponds with the needed level of detail in visual segmentation. Hiippala et al. (2021) 

follow this by stating that “the written labels are used to pick out parts of the illustration, and to 

achieve a maximally accurate RST analysis of the diagram, the illustration should be decomposed 

into its component parts” (p. 683) and that “these expressive resources must be complemented 

by sufficiently fine-grained descriptions of graphic expressive resources” (p. 684). Because 

effectively uncovering the discursive structure of diagrams necessitates increasingly granular 

identification and analysis of discourse units, it can be argued that the annotation schema used 

to describe the diagrams within the corpora does not capture the structure of diagrams as 

multimodal artefacts appropriately. 

 To address this problem, Hiippala and Bateman (2020; 2021) introduce the diagrammatic 

mode, the purpose of which is to view and analyze diagrams as a semiotic mode (see also 

Bateman et al., 2017, pp. 279–294). The diagrammatic mode is built on a theoretical model of a 

semiotic mode introduced by Bateman (2011). Bateman (2011) proposes a new model of a 

semiotic mode, which consists of three strata: the materiality, which acts as a basis to and defines 

the kinds of resources that can be used; the formally distinct expressive resources created by 

manipulating the materiality in different ways, which can also be selected and combined to 

create broader organizations; and the discourse semantics, which guide readers’ interpretations 

of those expressive resources. Figure 3 shows a visual representation of the strata in said 

theoretical model of a semiotic mode and the diagrammatic mode. 
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Figure 3. A theoretical model of a semiotic mode (left) and the diagrammatic mode (right) with their corresponding 
strata, as illustrated by Hiippala and Bateman (2021, p. 3). Used with permission. 

Based on the model by Bateman (2011), the diagrammatic mode is accordingly divided into three 

semiotic strata that correspond to materiality, expressive resources, and discourse semantics of 

a semiotic mode, realized via multimodal aspects. The strata in the diagrammatic mode are, 

respectively, a materiality with two-dimensional extent to support diagrams; semiotic resources 

that require this material (such as layout space and written language); and the mechanics guiding 

the interpretation of said semiotic resources. 

As any fully developed semiotic mode, the diagrammatic mode provides discourse 

semantics, the purpose of which “is to identify candidate interpretations which are then resolved 

dynamically against the context in which the expressive resources appear” (Hiippala and 

Bateman, 2021, p. 3, italics in original). Expressive resources can then allow viewers of a diagram 

(who may have less information or world knowledge of the depicted phenomenon than the 

author) to infer meaning from it. As Bateman (2011, p. 22) states: “discourse semantic rules 

control when and how world knowledge is considered in the interpretation process.” For 

example, without written labels, arrows in a food network would have to be interpreted by 

viewers as replacements for processes such as “eats” or “is eaten by” using their world 
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knowledge (see Alikhani and Stone, 2018), as exemplified by Figure 4. World knowledge is thus 

used by viewers to fill any gaps left in the diagram’s discourse structure. 

 

Figure 4. An example of a food web in which world knowledge is required to interpret the meaning of the 
diagram’s arrows. Diagram #450 from AI2D (Kembhavi et al., 2016; see Section 3). 

As a fully-articulated semiotic mode, the diagrammatic mode provides mechanics that guide 

interpretation (as well as their combinations) on the level of discourse semantics; it can be argued 

that the amount of world knowledge the receiver needs is dependent on the discourse semantics 

used in the diagram. Hiippala and Bateman (2020) establish that 

[t]he contribution of discourse semantics is also not limited to guiding the interpretation of local 

discourse relations that hold between two or more diagram elements, because such local 

interpretations are also always evaluated within the context provided by the global discourse 

organisation, which may as a consequence already nudge a viewer towards particular candidate 

interpretations rather than others (p. 4, italics in original). 

In practice, along with the notion of dynamic interpretation, this means that instead of only 

following a diagram’s structure from each small unit up towards the global representation, 

viewers may – and perhaps should – interpret each element in light of everything else presented 

visibly in the text. 

 The importance of entire diagrams’ rhetorical structure is especially apparent in the 

example shown in Figure 5: although illustrated as a cross-section with numerous regions, the 

image has been annotated in the data as a single element. 
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Figure 5. The annotation of diagram #4210 from AI2D (Kembhavi et al., 2016). The cross-section of the volcano has 
not been decomposed and instead has been annotated as a single blob. 

Seeing as this annotation is insufficient in its decomposition of presented information, Hiippala 

and Bateman (2021) argue that “[t]his information is crucial for understanding what the diagram 

is attempting to communicate but we cannot know that such a decomposition is necessary 

without considering the rhetorical discourse organisation of the diagram as a whole” (p. 10, italics 

in original). The example diagram contains a cycle without it being explicitly signaled using arrows. 

Instead, only some arrows occur, and the rest seems importantly implied by the written language 

present that describes the cycle using entire phrases such as “Metamorphic rocks form from heat 

and pressure”. Hiippala and Bateman (2021) conclude that discourse-oriented segmentation of 

the corpus could be beneficial in terms of further research, which informs my thesis regarding 

the importance of linguistic structure in labels. 

Previous research in the broad field of artificial intelligence and natural language 

processing can offer additional insight into the matter. Watanabe and Nagao (1998) find that 

“[p]attern information and natural language information used together can complement and 

reinforce each other to enable more effective communication than can either medium alone” (p.  

1374) and that inferring the meaning of diagrams can be noticeably more difficult without 

linguistic guidance (see Figure 4). The study uses diagrams of flora, with each diagram consisting 

of illustrations, written language and possibly diagrammatic elements such as lines. Figure 6 

includes a similar example from the AI2D dataset (Kembhavi et al., 2016) used in this thesis (see 

also Figures 1 and 2). 
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Figure 6. An example of a diagram pointing out parts of a flora similar to those used by Watanabe and Nagao 
(1998). Diagram #3118 from AI2D (Kembhavi et al., 2016). 

Watanabe and Nagao (1998) use two kinds of data to determine how semantic 

interpretation is guided in the data: layout and natural language of labels (that is, occurrences of 

written language). For layout, Watanabe and Nagao (1998) examine adjacency and connection: 

a label is connected if it is connected to its corresponding element via a line, and adjacent if it is 

next to its corresponding element, but not connected. In terms of linguistic patterns, the study 

finds five specific phrasal patterns in the data, some of which occur precisely in examples of 

ascribing properties to the flora but not when identifying parts of them (and vice versa). 

Synthesizing layout and language patterns, the authors establish a step-by-step ruleset that 

accurately helps come to a conclusion of the various semantic relations in the data, but lament 

the lack of computational resources in the process: being able to computationally extract and 

analyze large quantities of diagrams would help establish these rulesets more concretely with a 

larger sample size and save the effort of manually encoding linguistic and diagrammatic elements 

for similar studies. At the time of writing, there were also no large, widely available, and 

annotated multimodal corpora of diagrams fit for the purpose; however, this is now afforded by 

AI2D and AI2D-RST (see Section 3). Given that the data used by Watanabe and Nagao (1988) is 

very similar to some of the diagrams found in the corpora used in this thesis, and the fact that 

the corpora contain annotated information on semantic relations, written language and layout 

of the diagrams’ elements, a similar approach may help identify linguistic patterns that guide 

viewers towards precise segmentation and interpretation. 
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 It therefore seems plausible that written language and the structure thereof can be of 

value to the study, interpretation, and generation of diagrams. Exploring how diagrams are 

structured discursively using expressive resources and the relations that hold between them with 

the aid of NLP and multimodality might provide insight into how much of the information is given 

to viewers and what is left for them to interpret – and whether present written language can 

accordingly guide them to more precise decomposition. 

2.3 Cohesion and coherence 

Discussing diagrams as a semiotic mode allows for approaching them as discursive, multimodal 

artefacts, which in turn enables the application of other concepts developed in multimodality 

theories to them. Being communicative in nature, multimodal artefacts can then be approached 

from the perspectives of cohesion and coherence, which in the context of multimodality aim to 

establish how different modes fit and function together in the multimodal artefact, 

(co-)contextualized by each other and the genres they exhibit. 

Cohesion, coined as a concept by Halliday and Hasan (1976), originates in linguistics. 

Cohesion refers to how the same object is referred to in different ways throughout a text and 

how different elements fit together. As a phenomenon, cohesion is non-structural in nature; that 

is, instead of depending on the structural arrangement of a text, it can be applied within 

individual units or across them, even on the scale of an entire text. In other words, cohesion is 

not dependent on the presence of specific discourse units; instead, it is mostly concerned with 

semantics and subject matter. Cohesive ties can be formed via repetition or referring to the same 

entity or concept in different ways (see e.g. Hiippala, 2015, p. 18). Being non-structural, cohesion 

is readily adaptable in the context of multimodality. To further describe cohesion, specifically 

between text (in the sense of written language) and image, Bateman (2014a) finds: 

This reliance on dependency in interpretation rather than structural configurations requiring 

particular types of diagrammatical elements has made it relatively natural to consider the 

possibility that similar relations might hold even when the elements in a cohesive tie are not 

linguistic elements at all. (p. 165, italics in original) 

 

This suggests that cohesive ties can hold between two multimodal elements, linguistic or not. 

Using specifically captions as an example, Bateman (2014a) states that if the image and text are 
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“designed to operate together” (p. 165, italics in original), it is appropriate to speak of cohesion 

between the two elements, and so also beneficial to view the combination of written language 

and image as a textual unit. Semiotic ties between written language and image in multimodal 

discourse have been established to hold just as well as purely linguistic data (see also Liu and 

O’Halloran, 2009). Bateman (2014b) posits that cohesion is one approach that can help in 

interpreting multimodal coherence but notes that “[a]lthough the ‘cohesive’, non-structural 

approach to analysis certainly allows many connections to be made explicit within any 

multimodal artefact, it is considerably less effective as a tool for engaging critically with [them]” 

(p. 165). 

 Coherence, in turn, is a structural phenomenon. It is created by the segments of a text – 

or in the context of multimodality, instances of different expressive resources or semiotic modes 

– functioning in different coherence relations to one another and forming structures, be they 

informational, genre-specific, or thematic (see e.g. Gruber and Redeker, 2014). Establishing 

coherence is a central task in discourse semantics, and a coherent text creates plausible 

explanations for the relations that hold between a text’s constituents, thus supporting its 

interpretation. According to Gruber and Redeker (2014, p. 2), coherence relations “establish 

semantic or pragmatic relations between units that express (simple or complex) propositions or 

illocutions” and “describe how parts of a discourse combine recursively to form larger chunks 

and eventually the whole structure.” The units then can range in scope from a single element in 

a text to the entire discourse. This idea of recursion is also relevant for the analysis of diagrams, 

as they may contain such “chunks” in a multitude of different organizations. In the following 

section, I introduce one framework for systematically describing coherence relations: Rhetorical 

Structure Theory (see Section 2.4) first established by Mann and Thompson (1988). Coherence 

relations can also be signaled in various ways; in purely linguistic material, a common method for 

this is the use of connectives, but other markers are able to signal these relations as well (see 

Section 2.5). 
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2.4 Rhetorical Structure Theory (RST) 

Seeing as discursive ties hold between different modes, a model for the analysis of multimodal 

discourse can be applied. Rhetorical Structure Theory (Mann and Thompson, 1988), henceforth 

referred to as RST, is one prominent framework for analyzing discourse structures. Although 

initially developed in the field of linguistics, RST has been successfully applied to multimodal 

material across varying scales, from individual modes to entire documents (see e.g. André and 

Rist, 1995; Bateman, 2008; Bateman 2014; Bateman et al., 2017; Hiippala and Orekhova 2018; 

Hiippala et al. 2021; Taboada and Habel, 2013). 

RST is concerned with discourse structure; it seeks to explicate how discourse units are 

related to each other and how they work towards a shared communicative goal. Smaller-scale 

units may participate in coherence relations, which can then participate in further, higher-level 

relations. For example, there may be a relation between two units, which then together as a 

discourse unit participate in a relation with another unit. Examples of such relations are 

ELABORATION, BACKGROUND, ENABLEMENT, SEQUENCE, and RESTATEMENT; the distribution of these 

relations varies by application. Depending on the context in which RST is applied, further relations 

may arise, such as IDENTIFICATION and PROPERTY-ASCRIPTION (Bateman 2008) or CYCLIC SEQUENCE 

(Hiippala et al., 2021) in multimodal analysis. RST defines two types of discourse relations, which 

Bateman and Delin (2006, p. 591) summarize as follows: 

[T]here are two kinds of rhetorical relations: asymmetric relations, where one of the related 

rhetorical units is singled out as the rhetorical head, or nucleus, and symmetric relations, also 

termed multinuclear, where all of the related units are of equal status. 

The nucleus of an asymmetric rhetorical relation is considered more central for the text, which 

its satellites support and enhance by providing, for example, elaboration or enablement. In 

symmetric relations, each segment is equally needed for coherence. In multimodal artefacts, the 

same discourse unit may also simultaneously participate in multiple relations, which offer 

different perspectives to said unit (see Bateman, 2014, pp. 219–220; Hiippala et al., 2021). 

 Crucially, Mann et al. (1989, p. 15) posit that RST relations are to be considered plausibility 

judgments instead of certainty – in other words, they are judgments made by the analyst based 

on the text about what the author or designer of a text plausibly intended to communicate to its 
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intended audience. Such inferences about communicative intent are made based on different 

aspects in the text that imply certain discursive functions, the scrutiny of which discourse 

semantics facilitates. 

2.5 Signaling coherence relations 

Different types of coherence relations can be signaled by different markers: often in linguistic 

material, connectives (that is, connective expressions) such as conjunctions can signal coherence. 

Certain cues can be more explicit in signaling specific relations, although there is no universally 

applicable model of correspondence between cues and relations. The frequency and types of 

connectives also vary by genre and level of discourse from an individual element (such as phrase) 

to the entire text (see e.g. Gruber and Redeker, 2014). 

Das and Taboada (2019) approach signaling via discourse markers and relation semantics 

(that is, connections between parts of discourse). The study uses RST and shows that while some 

relations can be inferred through explicit discourse markers, they can be ambiguous enough that 

combined signals are needed to glean meaning in many cases. In essence, multiple signals 

working simultaneously can strengthen coherence. Although not venturing beyond written 

language, the study demonstrates the value in scrutinizing multiple signals in unison to infer 

coherence relations. 

Multimodal artefacts include numerous co-operating signals and can be approached from 

the viewpoint of coherence relations. Therefore, an approach regarding multimodal signaling of 

coherence relations in the context of diagrams and their various more specific genres can be 

beneficial for approaching them as a form of discourse. Alikhani and Stone (2018) find that arrows 

function discursively in diagrams very much like verbs in natural language, while Watanabe and 

Nagao (1998) demonstrate how layout information can be used to assess the discursive purpose 

of written labels more accurately. These studies show that diagrammatic elements and layout 

can contribute to coherence, and thus serve as signals for coherence relations in diagrams just 

as much as written language and illustrations. 

This concludes the discussion of contemporary theories of multimodality and their 

application to diagrams. In what follows, I discuss the data used in this thesis, how the relevant 
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corpora were compiled, how they are structured, and how they relate to the theories and 

approaches shown here. I also further examine their annotation schemata. 

3 Data 

In this section, I introduce two recent corpora of diagrams: AI2D and AI2D-RST. The corpora are 

interrelated, as the diagrams present in AI2D-RST are a subset of AI2D. The two corpora have 

been developed in different fields of research, and as such, for different purposes: AI2D is 

intended for training algorithms to answer questions about diagrams and their structure in the 

field of artificial intelligence, while AI2D-RST was developed for researching multimodality and 

discourse coherence. I first explain the content, annotation schema, and annotation process of 

AI2D, after which I do the same for AI2D-RST, illustrating their uses and differences. 

3.1 AI2D 

The first corpus is the Allen Institute for Artificial Intelligence Diagrams dataset (henceforth 

referred to as AI2D) compiled by Kembhavi et al. (2016) to support research on automatic 

diagram understanding and question answering. The dataset consists of some 5,000 grade-school 

natural science diagrams that cover topics such as food webs, rock cycles, and human anatomy. 

 AI2D’s annotation schema is partially built on Engelhardt’s (2002) theory of a “visual 

grammar” for diagrams, etc. and explores structural and semiotic aspects of graphic 

representations. The theory proposes a visual syntax, in which a composite graphic object 

consists of a graphic space, other graphic objects, and a set of graphic relations. This means that 

a graphic object can be a compound, consisting of smaller graphic objects, and that this can apply 

recursively. The most elementary graphic objects Engelhardt (2002, p. 24) compares to linguistic 

morphemes. Building on this, Engelhardt (2007) claims “that all graphics are based on the 

possibility of combining graphic constituents (graphic objects) of different syntactic categories” 

(p. 27) and asks what level of detail these elementary, “basic signs” (p. 29) can be found on. In 

light of this, Kembhavi et al. (2016) describe diagrams as “a composite graphic that consists of a 

graphic space, a set of constituents, and a set of relationships involving these constituents” (p. 

238). 
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  Kembhavi et al. (2016) then establish the different relationships and constituents that 

appear in the data. Ten relation definitions are provided; these relations are mostly local in scale, 

as opposed to assessing the discourse on the level of the entire diagram, and graphic in that they 

describe the visual constituents and the connections between them – this is identified as an issue 

by Hiippala and Orekhova (2018). Said connections can be spatial or based on attributes such as 

color or linkage, for example. The established relations include (but are not limited to) Intra-

Object Label, in which a text box names an entire object; Intra-Object Region Label, which refers 

to a region within an object; Intra-Object Linkage, which denotes a label referring to a region 

within a visual object using an arrow; Inter-Object Linkage, in which two objects are connected 

via an arrow; as well as Arrow Head Assignment, which is an arrowhead connected to its tail. 

Engelhardt’s (2002) theory as described by Kembhavi et al. (2016, p. 4) classifies the different 

constituent elements as illustrative (such as drawings), textual, diagrammatic (arrows and lines), 

informative (i.e. legends), and decorative. A vital distinction lies in the fact that the theory 

adopted by Kembhavi et al. (2016) is based on structure and not discourse semantics. 

The diagrams in AI2D were collected via web-scraping Google Image Search using terms 

extracted from grade-school science textbook chapter titles. A total of over 5,000 diagrams were 

collected and then annotated via Amazon Mechanical Turk (AMT), a crowdsourcing platform. 

Crowdsourcing, as comprehensively defined by Pedersen et al. (2013, p. 7), is “[a] collaboration 

model enabled by people-centric web technologies to solve individual, organizational, and 

societal problems using a dynamically formed crowd of interested people who respond to an 

open call for participation.” Crowdsourcing may be used to access collective intelligence and 

lower costs (Pedersen et al., 2013, p. 1). As discussed in Section 2, multimodality is a complex 

phenomenon, and so crowdsourcing descriptions of multimodal communication is challenging; 

thus, to ensure accessibility for non-expert workers, the crowdsourcing tasks need to be simple. 

To make the annotation process feasible and to maintain agreement between AMT annotators, 

Kembhavi et al. (2016) split the task into a six-step sequence. 

The six-step sequence consisted of distinct phases, beginning with identifying basic 

constituents such as images, text, and arrows. This very simplistic distinction however neglects 
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the possible different communicative aspects afforded by multimodal artefacts (see Section 2). 

The sequence then continued with categorizing the constituents and finally forming multiple-

choice questions and answers for the diagram in its entirety (Kembhavi et al., 2016, p. 243). This 

division already presupposes separate functions for different semiotic modes. The annotation as 

such splits each diagram into its constituents by type – blob, text box, arrow, or arrowhead. The 

annotation schema therefore does not regard diagrams as discursive wholes with more granular 

discourse units and combinations of different modes of expression, but as a collection of visual 

components. A crucial point also lies in that annotators were not instructed to decompose the 

constituent type of image into further component parts, even though this is a common 

occurrence in diagrams (see Section 2). This seems to have resulted in the insufficient 

composition of images, as the corpus contains numerous blobs outlined in full instead of granular 

parts that may otherwise be interpreted as analytical units (see Figure 5). It should also be noted 

that the schema does not separate blobs further into illustrations, photographs et cetera, which 

may differ in their semantics (see Section 2; see also Greenberg, 2021). 

The annotation process generated approximately 150,000 annotations and 15,000 

multiple-choice questions. Kembhavi et al. (2016) introduce Diagram Parse Graphs (DPG) to 

encode the annotated data, representing the diagrams’ different elements and the connections 

between them. In DPGs, annotated objects are represented by nodes, while the edges correlate 

to the relations between them. 

AI2D has successfully been used in other projects to examine semantics in diagrams, such 

as Alikhani and Stone (2018) to interpret the function of arrows from the perspectives of 

linguistics, crowdsourcing, and machine learning. The study finds that in certain contexts, arrows 

serve largely the same purpose as verbs in the dataset, although it also notes potential limitations 

in automatic semantic parsing of the corpus; in particular, the lack of stroke order and sometimes 

ambiguous general purpose of diagrammatic elements (Alikhani and Stone, 2018, p. 3559).  

3.2 AI2D-RST 

To assist in the empirical research of diagrams from a multimodal perspective as well as their 

computational processing, Hiippala et al. (2021) present the AI2D-RST corpus of diagrams, stating 
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that “AI2D-RST seeks to reduce the need for time and resources and to scale up the volume of 

data by building multimodally-informed expert annotations on top of pre-existing crowd-sourced 

annotations” (p. 662) from AI2D. This is to say that the inventory of analytical units in AI2D-RST 

was populated by the crowdsourced annotations; elements are precisely as annotated for AI2D.  

Whereas AI2D used crowdsourcing for its annotation process, AI2D-RST was annotated 

by five experts with backgrounds in English, trained in the annotation process and familiar with 

RST. As a result, the annotation quality is notably consistent – however, as the annotators were 

permitted to discuss individual cases, questions of potential circularity between annotators and 

reproducibility arise (Hiippala et al., 2021, pp. 679–681). The lack of visual decomposition in the 

original AI2D annotation hinders AI2D-RST somewhat, as more detailed annotation would in turn 

enable more precise RST analysis. Ideally, if multimodal cohesion can be used to guide future 

annotation attempts, these issues could be minimized via naive annotators and consistent, 

sufficient decomposition. 

Hiippala and Orekhova (2018) propose adopting Rhetorical Structure Theory (RST; Mann 

and Thompson, 1988) as a model of discourse structure for diagrammatic representations, as RST 

has previously been applied to multimodal artefacts successfully (Hiippala and Orekhova, 2018, 

p. 1925; see Section 2.2). Since diagrams are multimodal in nature, multimodal analysis can 

contribute significantly to the dataset, aiding in examining diagrams’ communicative properties. 

Hiippala and Orekhova (2018) note that local discourse relations are not sufficient for capturing 

the discourse semantics of diagrams. According to Hiippala and Orekhova (2018), a more 

comprehensive theory is needed, and RST provides one such theory. Moreover, the study finds 

exemplary rhetorical relations in the corpus by using RST. The application of RST enables detailed 

and descriptive representation of the relations that elements and their combinations participate 

in. 

3.2.1 Annotation schema 

Hiippala et al. (2021) apply the ideas proposed in Hiippala and Orekhova (2018) to create a corpus 

of 1,000 AI2D diagrams with multiple layers of annotation. The annotation schema introduced 

by Hiippala et al. (2021) has four distinct layers of information for each diagram: grouping, macro-
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grouping, connectivity, and RST. Each annotation layer is represented by a graph in which nodes 

represent elements (blobs, text, and diagrammatic). On the grouping layer, nodes can also stand 

for groups of said elements, with edges connecting the elements and groups – this can apply 

recursively. The RST layer, on the other hand, includes nodes for rhetorical relations, with edges 

connecting it to the nucleus (or nuclei) and possible satellites, also potentially recursively. The 

connectivity layer contains directed edges to represent directed connectivity: if node B0 is the 

source of an arrow and B1 is its target, the node is directed from B0 to B1. Edges can also be 

bidirectional. In the case of lines, which do not imply direction, the edge is undirected. 

As its name implies, the grouping layer is intended to group elements of the diagram 

together. Elements are annotated as a group on this layer if they are likely to be interpreted 

together. The choices were justified using Gestalt principles of perception (see e.g. Ware, 2012, 

pp. 181–187); for example, elements which were similar (such as in color or shape) or spatially 

close to each other were annotated as a group. These can be examples of cohesion in which an 

image and text are designed to operate together (see Section 2.2): a common occurrence of 

grouping in AI2D-RST is to group elements hierarchically, such as an illustration with its label in 

cycles, as seen in Figure 7. 

 
Figure 7. An example of hierarchical grouping in AI2D-RST. Each label has been grouped together with its 
corresponding illustration, such as T0 (“Larva”) with B0, illustrating the larval stage of a mosquito, to create the 
group node G3. Each of the 4 groups is then considered a stage of the cycle. Diagram #840. 
 

As per Hiippala et al. (2021), “the grouping graph provides a foundation for the subsequent 

annotation layers, namely macro-grouping, connectivity and discourse structure by providing the 
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necessary units of analysis” (p. 668, italics in original) allowing for the annotation and labeling of 

entire groups of elements. 

 Macro-grouping refers to a diagram’s structure and can describe the type of diagram in 

question (Hiippala et al., 2021, pp. 668–669), essentially functioning as a genre in how it guides 

the construction and interpretation of its different semiotic modes in its context (see Section 2.1), 

as an arrow in a cycle may represent a very different phenomenon from one in a network. 

Possible macro-groups include networks (such as food chains), cycles (rock cycles and life cycles), 

tables, and cross-sections (anatomy), among others. It should be noted that a diagram may have 

multiple groups with different types on the macro-grouping layer. For example, a diagram can 

consist of a cycle with more information elements in a vertical structure next to it; or a diagram 

may be a table of cross-sections. 

The connectivity layer represents explicit visual connections between elements, realized 

via diagrammatic elements such as arrows and lines. Hiippala et al. (2021, p. 669) specify that 

these connections must have clear sources and targets, and that they can be undirected, directed, 

or bidirectional. 

Lastly, the RST layer concerns the discourse structure of a diagram and applies Rhetorical 

Structure Theory to its constituents, which can be any annotated element by itself or a group 

thereof present on the grouping layer. As Hiippala et al. (2021) state: 

 
Whereas the grouping and connectivity layers seek to capture the diagram structure that is 

explicitly available for visual inspection, the discourse structure layer attempts to describe the 

implicit discourse relations that hold between diagram elements and their groups, which viewers 

may recover from the diagram structure. As such, the discourse structure layer provides the crucial 

link between multimodal structure and communicative intentions in the AI2D-RST corpus. (pp. 

669–671, italics in original) 

 

As such, rhetorical relations require inference from viewers’ part. These relations are heavily 

informed by the prior layers, which establish if certain expressive resources belong together, if 

they follow a hierarchy, and if they are connected visually. This information can indicate what a 

diagram is attempting to communicate, and as such, applying RST allows users to uncover the 

abstract rhetorical meaning expressed by the explicit elements and groups in the diagrams. In 
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the RST layer’s graph, a rhetorical relation is represented by a node (marked with the appropriate 

RST relation category), the children of which in turn represent the relation’s constituents. It is 

also vital to note that a relation may function as a nucleus or satellite of another relation: for 

example, a CYCLIC SEQUENCE depicting an insect’s life cycle may be constructed of various 

IDENTIFICATION relations in which a written label names the stage shown as an illustration. 

AI2D and AI2D-RST contain various types of data – element placement, connectivity, 

visual macrostructure, linguistic content, and rhetorical relations, just to name some – of a large 

number of diagrams. This information can be extracted, combined, and examined in various ways. 

The corpora contain different data on the diagrams, but are complementary: the linguistic 

content of labels and their spatial coordinates, for example, can be retrieved from AI2D, while 

the rhetorical relations they function in are found in AI2D-RST. Both corpora exist in JSON format, 

which simplifies their simultaneous processing. The corpora are interrelated, as AI2D-RST is a 

subset of AI2D. This enables pursuing analysis using both in my thesis, and in fact is necessary for 

the analysis of co-occurrence between linguistic patterns and rhetorical structure in the diagrams 

present in them. 

4 Methods 

Large multimodal corpora are only just emerging. As a result of these newly available and 

expanding volumes of data, new methods for their analysis are required (Steen et al., 2018; 

Huang, 2021), which poses a considerable challenge. In the total of 1,000 diagrams in AI2D-RST, 

there are 8,647 labels that participate in rhetorical relations; as such, manually annotating or 

processing the linguistic data alone would hardly be practical. To cope with the volume of data 

and multiple cross-referenced annotation layers, I use computational methods to study the 

linguistic structure of text elements in the corpus’s diagrams. I process the data in Python 3.9 

using the spaCy NLP library (Honnibal et al., 2020).1 

 
1 The code used for this thesis can be found on GitHub at https://github.com/Havoq/process_AI2D-RST and under 
the DOI https://doi.org/10.5281/zenodo.5834586 on Zenodo. 

https://github.com/Havoq/process_AI2D-RST
https://doi.org/10.5281/zenodo.5834586
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 spaCy is an open-source natural language processing library for Python, which is capable 

of performing a wide range of basic natural language processing tasks, such as tokenizing texts, 

tagging them for their parts-of-speech, and parsing their syntactic structure. The library applies 

a statistical language model to the input text and makes predictions pertaining to its linguistic 

attributes. To examine the linguistic content in the corpus, I extract each label participating in a 

rhetorical relation and parse it via spaCy. 

 To prepare the data for analysis, I take the following steps:  

1. I iterate over the entire AI2D-RST corpus (the diagrams of which, again, are a subset of 

AI2D). 

2. Each diagram can be represented as a graph, which can in turn be parsed and processed 

with the NetworkX library (Hagberg et al., 2008) to find edges, nodes, and their various 

attributes such as neighbors and predecessors. By iteration, the child nodes of macro-

groups and rhetorical relations can be found and analyzed. 

3. Each rhetorical relation in a diagram is then examined: the RST layer of AI2D-RST enables 

the extraction of labels that participate in a relation, as the relation nodes are connected 

to their nuclei and satellites. How labels participate in rhetorical relations is vital for this 

study, and so I find the labels through relations instead of simply listing them. 

4. I fetch the label’s value as a string from the diagram’s corresponding AI2D JSON file using 

the IDs of the diagram and its annotated elements; this enables the linguistic analysis of 

the label’s content. 

5. I iterate over the graph to find nodes of the “group” type to establish potential macro-

structures the labels may be a part of. The function for this is recursive: for each group, if 

it has a macro-structure field, that field is set as the predominant macro-structure, after 

which each of its child nodes is further checked for a macro-structure or added to the 

currently predominant macro-group. If a label does not belong to a smaller macro-

structure, it is classified as belonging to the macro-structure associated with the entire 

diagram. Assigning macro-groups to labels at this point enables finding co-occurrences 

between different macro-structures and linguistic structures. 
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These steps are needed to gather and organize the data for analysis. There is also an additional 

step that is required in order to sufficiently access and recognize the rhetorical function of every 

label in the corpus, resulting from an artefact of the annotation schema used in AI2D-RST. 

 The AI2D-RST corpus uses the JOINT relation as a shorthand to group together multiple 

elements. This relation is not present in the original schema for RST, but is used in AI2D-RST for 

elements with a shared rhetorical purpose: if a number of elements serve the same purpose and 

have similarities on the grouping and connectivity layers, they are annotated as the nuclei of a 

JOINT relation instead of each being an individual relation. Figure 8 shows an example of the 

relation’s use. 

 

Figure 8. The function of a JOINT relation in the AI2D-RST corpus. The relation node R1 represents a JOINT, which 
then acts as a satellite to the ELABORATION relation (used to denotate part-whole relations) for the blob B0. Instead 
of having to annotate each text element as the satellite of an individual ELABORATION relation, JOINT is used as a 
shorthand to group the text elements together. 

Since JOINT does not function as a true rhetorical relation but rather as a schema, each instance 

of JOINT needs to be parsed accordingly. The script therefore substitutes the JOINT for each of its 

nuclei, so that the nuclei function in the corresponding manner within the relation whose satellite 

JOINT acts as. For example, each of the labels in Figure 2 is interpreted as functioning as the 

satellite of the ELABORATION relation instead. 

Resulting from this process, each label then has a set of data attached to it: the ID of the 

diagram of origin, the ID and type of the relation in which the label appears, the macro-structure 

in which the label appears, the label’s ID, the label’s linguistic content, and whether the label 
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functions as a nucleus or satellite in its relation of origin. The labels are then added as rows to a 

DataFrame – structurally equivalent to a table – from the pandas Python library (the pandas 

development team, 2021) for further processing. If a label participates in more than one relation 

(for example, if the same text functions in both a PROPERTY-ASCRIPTION and a CONTRAST relation), it 

is added to the DataFrame the same number of times so that it may be accounted for in each 

context. Table 1 demonstrates the DataFrame’s structure. 

index diagram_id relation_id relation_type macro_group label_id content role nucleus_type 

5423 4759 6XABRE 
property-
ascription table T11 

Spiny with sharp stiff 
points sat blobs 

2609 1065 9P6MI9 elaboration cut-out T4 Vacuole sat blobs 

3578 490 OPXJUX connected network T11 oceanic fishes nuc  

8527 2061 445PCG connected network T9 Decomposers nuc  

5645 3078 WH8R4G elaboration cross-section T1 LEUKAEMIC CELLS sat blobs 

Table 1. A sample of five randomly selected rows of the DataFrame, exemplifying its structure. The columns include 
the ID of the diagram of origin, the ID of the relation from AI2D-RST, the relation type and macro-group as annotated 
in AI2D-RST, the label’s ID, linguistic content and rhetorical role – either nucleus (nuc) or satellite (sat). The final 
column contains the relation’s nucleus (text, blobs, arrows, or group) where applicable, provided it is not the label 
itself. 

Each row in the resulting DataFrame is then processed. First, I use spaCy to tag the label 

for its part-of-speech class (POS), which produces a string of POS tags, representing a pattern. An 

example of this is NOUN VERB for the label value “rain falls”. All proper nouns are converted into 

nouns for this analysis, as they serve the same purpose structurally, and to streamline the analysis. 

Punctuation is completely removed from this POS pattern; although it may show further 

complexity in sentences, simplifying patterns will make the data more uniform for the purpose 

of this study. 

Each label is also parsed for phrase classes, as I compare the percentages of noun and 

verb phrases in each rhetorical relation and macro-group. spaCy’s dependency parsing model, 

which largely follows the Universal Dependencies formalism (see de Marneffe et al., 2021), allows 

identifying the head of a phrase, whose POS tag may then be retrieved to determine the phrase 

type. This then enables the label (or a part thereof) to be classified as a verb or noun phrase, for 

example. If a label consists of more than one phrase (this occurs, albeit rarely), all phrases are 

processed and counted separately. Furthermore, the number of unique POS patterns is counted 

for each RST relation and macro-group to see how much variation there is in the linguistic 
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structure of said relations and structures. In addition to POS patterns, I calculate the average 

word count for labels in each category. This may provide additional insight into the linguistic 

complexity of labels in certain categories. 

5 Analysis 

In this chapter, I present my analysis of AI2D-RST’s labels and how their linguistic structure differs 

by the rhetorical relation and macrostructure they participate in. To scrutinize the results, I 

construct heatmaps and tables produced by processing the data using the methods described 

above. I first show the number of labels in each category for an overview of the data; then I 

present heatmaps of the most common part-of-speech (POS) patterns in each rhetorical relation 

and macrostructure to display the differences in linguistic structures participating in them; after 

this, I discuss the number of unique POS patterns in each category to see how much linguistic 

structures may vary by the contexts in which they are employed. Finally, I compare the number 

of noun phrases against the number of verb phrases in the corpus to explore how they are used 

along with different types of diagrams to signal coherence or limiting the amount of necessary 

world knowledge. 

Table 2 shows the total number of labels in AI2D-RST for each rhetorical relation and 

macro-structure type.2 

 

 

 

 

 

 
2 There are very rare instances in the data in which a label may not belong to any group due to only individual blobs 

having been annotated as belonging to a macro-group (such as illustration) without including its surrounding labels 
in the same macro-structure; alternatively, individual sections of a diagram may have been annotated as 
representing separate macro-groups without the diagram as a whole having a macro-group associated with it. Such 
labels have been left out of the macro-structure categories, but retained in the relations they appear in. 
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Relation Labels    

elaboration 3633    
identification 3065    
connected 591    
property-ascription 440    

preparation 336  Macro-group Labels 

class-ascription 208  cross-section 1916 

cyclic sequence 93  illustration 1881 

circumstance 72  network 1306 

restatement 34  cycle 1263 

sequence 30  cut-out 768 

means 21  table 467 

background 18  horizontal 432 

nonvolitional-result 18  vertical 199 

disjunction 8  photograph 117 

nonvolitional-cause 8  diagrammatic 95 

contrast 4  exploded 11 

enablement 2    
list 2    
condition 2    
conjunction 2    
volitional-result 1    

Table 2. The total number of labels under each category. 

The tables demonstrate the most common macro-structural and rhetorical categories within 

which written language is used in the corpora. ELABORATION and IDENTIFICATION far surpass other 

rhetorical relations in this category, as they are the most prominent discourse relations in AI2D-

RST. The next most common relation for written language is CONNECTED, which denotes networks 

in the corpora. Networks often contain textual elements (or units of textual and pictorial 

elements) interconnected by diagrammatic elements (see Figure 4); these elements have been 

annotated as CONNECTED with all the network’s lower-level units as the nuclei. 

5.1 Most common part-of-speech patterns 

To find answers to my research questions of whether different types of diagrams contain 

different linguistic structures in their labels and if certain patterns occur in specific rhetorical 

relations, I produce heatmaps via the seaborn library (Waskom, 2021; see also Hunter, 2007), 

which I examine for occurrences of each of the five most common POS patterns for each 

rhetorical relation (Figure 9) and macro-group (Figure 10). Visualization provides a practical 

overview of large volumes of data, and heatmaps afford high readability. Normalizing the counts 
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is necessary to make the observations comparable across the data; notably, these heatmaps have 

been normalized across rows and not columns. This means that the brightest point in each row 

is in relation to that category’s occurrences, and the highest ratio on one row may not be 

numerically equivalent to that on another. The unmodified tables for the occurrences can be 

found in Appendices A (for rhetorical relations) and B (for macro-structures). 

 

Figure 9. The spread of the five most common POS patterns per rhetorical relation. The heatmap has been 
normalized across rows. 
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Figure 10. The spread of the five most common POS patterns per macro-group. The heatmap has been normalized 
per row. 

As Figures 9 and 10 demonstrate, “NOUN” by itself is by far the most common pattern in 

each category except for the PREPARATION, RESTATEMENT and NON-VOLITIONAL CAUSE relations. For 

the most common relations, this is hardly surprising: both ELABORATION and IDENTIFICATION label 

objects or their parts, so a single noun is often sufficient for the task. The “NUM” pattern is the 

fourth most common pattern due to many diagrams simply referring to visual elements by a 

single number: for example, a row of illustrated bird breeds might have a single digit under each 

specimen to identify it instead of using its name. The numbers then act as pointers to their 

respective breeds of bird in some other body of text in the original context of appearance (see 

Hiippala, 2012, pp. 118–119). The three most common patterns seem to dominate the dataset, 

while the rest have quite few instances. A single verb, while the tenth most common pattern, is 
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very rare, and mostly appears in the context of PROPERTY-ASCRIPTION most likely due to gerunds. 

Similarly, the three most common patterns appear consistently by macro-group. 

 As “NOUN” is the most common pattern and appears in various relations and macro-

groups, it can be inferred that a single noun can be used in a variety of ways. The “NOUN NOUN” 

pattern is the second most prominent pattern across the dataset, consisting of nominal groups 

(see e.g. Halliday and Martin, 1993, pp. 59–75). As the final of the three most common patterns, 

“ADJ NOUN” is also a somewhat common pattern, although not as much as the prior two. This 

pattern can be deployed to assist in classifications (see e.g. Halliday and Martin, 1993, pp. 152–

287). See Section 6 for examples of these patterns’ uses. 

 

Figure 11. The cross-tabulated heatmap of the relationships between different rhetorical relations and 

macrostructures. 
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To contextualize the findings in this chapter, Figure 11 displays the cross-tabulated 

overlap between different macro-groups and rhetorical relations. As can be seen, certain 

combinations are prevalent in the data; quite predictably, the network macro-group and 

CONNECTED relation have the highest possible overlap, as networks in AI2D-RST are annotated 

with said relation (see Figure 4). Similarly, the cycle macrostructure co-occurs with the CYCLIC 

SEQUENCE relation. The relationship between ELABORATION and the cross-section macro-group is 

exemplified by Figure 8, in which a cross-section provides a useful look at the parts pointed out 

by labels. 

5.2 Unique POS patterns across diagram types 

Table 3 shows the number of unique POS patterns found in each rhetorical relation and macro-

group. This was achieved by appending each pattern (after removing punctuation and changing 

proper nouns to general nouns) to a list by category and ultimately converting it into a set, only 

maintaining unique values. The tables are organized by the number of unique patterns. 

Relation Patterns    

elaboration 328    
identification 167    
preparation 126    
property-ascription 62    

connected 40  Macro-group Patterns 

circumstance 32  illustration 201 

class-ascription 23  cycle 191 

cyclic sequence 18  cross-section 127 

background 15  cut-out 91 

sequence 13  network 97 

restatement 12  horizontal 69 

means 11  table 54 

nonvolitional-result 6  vertical 46 

nonvolitional-cause 5  photograph 17 

contrast 3  diagrammatic 12 

enablement 2  exploded 3 

disjunction 3    
list 2    
condition 2    
volitional-result 1    
conjunction 1    
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Table 3. Tables of the number of unique patterns found in each RST relation and macro-group. 

As Table 3 shows, the ELABORATION relation possesses the largest number of unique POS patterns, 

almost doubling the number of the second-highest number of IDENTIFICATION. Given that 

ELABORATION and IDENTIFICATION are somewhat close in terms of total label count, this indicates 

that ELABORATION uses a wider range of linguistic structures compared to IDENTIFICATION in the 

AI2D-RST corpus. PREPARATION, which can be used to explain the contents of a diagram to prepare 

the reader to interpret it, also has a high number of unique POS patterns, as these explanations 

can take on various linguistic structures. 

 While the CYCLIC SEQUENCE relation only displays 18 different POS patterns, the cycle 

macro-group contains 191 unique patterns and is the second most varied of the macro-structures. 

For a label to appear in a CYCLIC SEQUENCE relation, the sequence must contain the label by itself 

and not as a member of a lower-level relation, such as IDENTIFICATION which the cycle then consists 

of. As such, a label may well appear in a cycle macro-structure without appearing directly in a 

CYCLIC SEQUENCE. Figure 12 illustrates how a CYCLIC SEQUENCE relation may be composed of 

rhetorical relations, as labels serve to identify the illustrations, and this IDENTIFICATION relation is 

then annotated as part of the cycle.  

 

Figure 12. An example of a CYCLIC SEQUENCE (R5) composed of smaller-scale rhetorical relations – in this case, instances 
of IDENTIFICATION (R1-4) function as the nuclei. Diagram #1287 from AI2D-RST. 

In order for a label to appear directly as a part of a CYCLIC SEQUENCE, said label must be part of the 

cycle by itself, as seen in Figure 13. The number of unique labels in cycles indicates that diverse 

language may be used in explaining cycles, whether to prepare viewers or further explain 



 
 
 

38 
 

individual stages of the cycle. This may be an example of multiple signals being used in unison to 

enhance the diagram’s coherence and guide its interpretation. 

 

Figure 13. Labels forming a CYCLIC SEQUENCE relation (R1). Relation R2 represents PREPARATION, as the title (“Cycle”) 
prepares viewers to interpret the diagram. Diagram #502 from AI2D-RST. 

Given that illustrations are the second-most occurring macro-structure in the dataset, it 

is hardly a surprise to see that said structure has the most variation when it comes to linguistic 

patterns. Illustrations can be used in school textbooks in numerous ways. A table containing the 

occurrences of labels belonging to each possible combination of relation and macro-structure 

(see Appendix C) shows the different capacities in which illustrations use written language. 

5.3 Average word counts 

To aid in the assessment of linguistic complexity across rhetorical relations and macro-groups, I 

calculate the average word counts in each category. The mean word count by rhetorical relation 

and macro-group can be seen in Table 4. The rows have been organized according to word count. 
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Relation Word Count    

enablement 18    
background 5    

circumstance 4.28    
preparation 4.04    

means 3.48  Macro-group Word count 

restatement 2.62  cycle 2.56 

nonvolitional-cause 2.62  vertical 2.53 

sequence 2.33  cut-out 2.15 

elaboration 2.18  horizontal 2.03 

nonvolitional-result 2.17  illustration 1.99 

cyclic sequence 1.84  table 1.93 

property-ascription 1.77  cross-section 1.84 

identification 1.7  network 1.77 

class-ascription 1.66  photograph 1.66 

connected 1.59  diagrammatic 1.6 

list 1.5  exploded 1.36 

condition 1.5    
contrast 1.5    

disjunction 1.25    
volitional-result 1    

conjunction 1    
 

Table 4. Tables of the average word count in each RST relation and macro-group. 

The most exceptional value in Table 4 is the average word count of 18 in the ENABLEMENT 

relation. There is, however, a simple explanation to this: the relation is only represented by two 

labels in the entire AI2D-RST corpus, one of which has a length of 1 word, while the other is 35 

words long. This makes the average word count for the relation entirely disproportionate. The 

other relations meanwhile show much more even numbers. BACKGROUND, CIRCUMSTANCE, 

PREPARATION and MEANS are on average much longer likely because these attributes are more 

difficult to visualize and explain, and therefore require longer text to fully relay to receivers. 

 The ELABORATION relation has an average word count of 2.18, while IDENTIFICATION’s is 1.7. 

The difference is somewhat smaller than expected: prior to processing the JOINT “relation”, 

ELABORATION had almost double the word count of IDENTIFICATION. This shows that examples such 

as Figure 8, in which shorter labels function to point out parts of an object, have a large impact 

on the overall word count when counter as parts of an ELABORATION relation rather than a JOINT, 

even if the non-JOINT labels may be noticeably longer on average. 
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 It is worth mentioning that out of all macro-groups, labels within cycles have the largest 

average word count. As stated in Section 5.2, a label can appear in a cyclic macro-structure 

without appearing directly in a CYCLIC SEQUENCE relation; the figure then contains all labels, 

regardless of relation, that appear in such diagrams. This shows that written language may be 

more detailed or descriptive on average, serving as ELABORATION or PREPARATION, for example. This 

spread of relations in cycles can also be seen in Appendix C. 

5.4 Phrase classes 

Variety in linguistic structures may also be found by examining and comparing phrase classes: 

notable co-occurrence of these label categories and certain linguistic features could give an 

answer to my research question of whether different relations and macro-groups consistently 

deploy different linguistic structures to signal coherence. Table 5 demonstrates the occurrences 

of verb phrases (VP) and noun phrases (NP) by RST relation and macro-group. As mentioned in 

Section 4, if a label contains multiple complete phrases, each is accounted for separately. 

relation VP NP total      

elaboration 155 3364 3665      
connected 8 569 591      

identification 104 2649 3084      

preparation 26 313 351  macro-group VP NP total 

restatement 3 28 31  illustration 88 1663 1919 

class-ascription 2 195 208  network 36 1250 1307 

background 6 10 18  table 33 371 469 

property-ascription 54 299 440  cycle 124 1041 1280 

nonvolitional-result 1 14 18  cross-section 33 1787 1920 

circumstance 16 52 72  cut-out 22 688 767 

cyclic sequence 1 84 93  horizontal 29 352 433 

volitional-result 0 1 1  diagrammatic 1 85 96 

means 1 23 24  vertical 12 173 203 

sequence 2 26 30  photograph 1 110 117 

enablement 2 1 3  exploded 0 11 11 

disjunction 0 7 8      
list 1 1 2      

condition 0 2 2      
contrast 0 4 4      

nonvolitional-cause 0 8 8      
conjunction 0 2 2      
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Table 5. Tables of the occurrences of verb phrases (VP) and noun phrases (NP) for each RST relation and macro-
group, as well as their total label counts. 

As anticipated due to ELABORATION serving both purposes of pointing out parts of a whole 

and elaborating on the nucleus, the relation contains more verb phrases in relation to its volume 

than the IDENTIFICATION relation. This difference is slightly lower than expected, as the average 

word count and number of unique POS patterns are both higher in instances of ELABORATION. 90 

percent of all phrases in said relation are noun phrases, while spaCy classifies only 85 percent of 

IDENTIFICATION phrases as NPs. This is partially explained by the POS pattern of a single numeric 

appearing in many IDENTIFICATION labels to simply assign a number to a visual element. The lowest 

relations in the table have so few labels that it is impossible to make conclusions on their uses 

without a larger corpus. 

The number of verb phrases is notable, however, when looking at the cycle macro-

structure, in which over 9 percent of all phrases – 123 out of a total of 1280 – are classified as 

VPs. Since not all labels in cycles are necessarily part of the CYCLIC SEQUENCE relation itself, this 

table shows the frequency of VPs that appear in them regardless of their rhetorical function such 

as ELABORATION or IDENTIFICATION. Based on this data, diagrams depicting cycles use generally the 

most verb phrases out of all macro-structure types. 

As arrows often serve similar functions as verbs in diagrams (Alikhani and Stone, 2018), 

they may be replaced by written language – specifically, verb phrases – to fill the same purpose 

while also requiring less world knowledge from viewers, as in diagram #4210 (see Figure 5). Verb 

phrases may also appear alongside arrows to explicate their meaning, hence strengthening 

cohesion (see Section 2.2); moreover, a verb phrase accompanying an arrow is an instance of 

multiple signals of the coherence relation in question (see Section 2.4). Figure 14 shows an 

example of verb phrases occurring alongside arrows. 
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Figure 14. An example of written language accompanying arrows to explicate the process indicated by the arrows. 
Many similar diagrams of life cycles in the dataset lack written language outside of the labels identifying the 
illustrations. Diagram #2242. 

6 Discussion 

In this section, I discuss the results shown in Section 5 and what they might indicate in terms of 

future computational approaches to diagrams as communicative, multimodal artefacts. Going 

over each of the subsections, I summarize the findings, explain their relevance for my topic, and 

give some examples of the analyzed phenomena. 

 Approaching diagrams as a semiotic mode highlights the importance of their dynamic 

interpretation, where every element and their combinations contextualize each other on the 

level of discourse semantics. As coherence relations can be signaled via multiple elements in 

diagrams, it is appropriate to consider written labels vital for this co-signaling and 

contextualization where they appear. Consequently, the analysis presented in Section 5 suggests 

that linguistic structures present in written labels can indeed inform the decomposition of visual 

expressive resources in diagrams, as indicated by the sub-questions posited in Section 1.2. 

 Even though certain patterns are very common across the corpus, different macro-

structures can deploy quite distinct linguistic patterns. For example, a large portion of labels 

appearing in cycles contain verb phrases, which can explicitly inform receivers of a given cycle’s 

phases, possibly filling gaps in their world knowledge where needed and co-signaling processes 
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along with diagrammatic elements. Cycles also contain the highest average word count among 

macro-structures. These findings indicate that cycles, such as the one in Figure 5, may use more 

descriptive language to convey the possibly complex processes and phenomena within. Similarly, 

the rhetorical relation of ELABORATION uses verb phrases and diverse linguistic structures to 

communicate discursive intent to viewers. The findings support my hypothesis in this respect; 

different macro-structures and rhetorical relations display some co-occurrence with specific 

linguistic patterns. 

 Verbs can be used to describe processes, which is quite common in school material 

(Halliday and Martin, 1996). This, along with how arrows can function in their place or co-occur 

with them to enhance coherence signaling, can explain their relatively high occurrence 

percentage in cycles. Even when a cycle does not consist of cyclical diagrammatic elements, it 

can be signaled by the combination of arrows or lines and written language. 

 Nouns are very prevalent throughout the entire dataset, unsurprisingly – nominalization 

and nominal groups have an extensive history in scientific and educational material (see e.g. 

Halliday and Martin, 1996; Doran, 2017; Martin et al., 2021). Halliday and Martin (1996, p. 161-

162) state that “in order to classify and organize with language, we need first of all to turn 

phenomena into things or nouns” and describe the nominalization of processes as “turning 

happenings into things which can be technicalized. … Thus, some technical terms are single 

nominals or things but realize a nominalization, for example, condensation, transpiration.” 

Nominalization and nominal groups allow for taxonomies, defined by Halliday and Martin (1996, 

p. 153) as “ordered, systematic classification[s] of some phenomena based on the fundamental 

principles of superordination (where something is a type of or kind of something else) or 

composition (where something is a part of something else).” A fine example of taxonomies being 

used in this way is shown in Figure 6, in which certain parts of a plant constitute their own further 

segments such as the stamen. Nominalization can also be seen functioning in Figure 14 via 

grammar such as “respiration”, presented as a phenomenon affecting said cycle, which itself is 

clearly indicated by a circular diagrammatic element. 
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 Seeing as “NOUN” is the most prominent POS pattern in the data, it must be of use in 

various contexts. Figure 15 demonstrates how an individual noun can be used to either label an 

entire object or single out a part thereof. The distinction between these two purposes is made 

clear by the layout and diagrammatic elements: nouns labeling parts of an object are connected 

to it via lines, while the noun labeling the entire object is placed in close proximity to the 

illustration. 

 

Figure 15. Diagram #0 from AI2D. The diagram illustrates how a single noun can serve both the purpose of 
ELABORATION through pointing out parts of a whole in unison with diagrammatic elements (lines) and IDENTIFICATION by 
labeling an entire object (“Face”) via its spatial placement. 

The second-most commonly occurring pattern in the corpus is “NOUN NOUN” -- this is due to 

nominal groups, such as the labels “Plant Respiration” or “Factory Emissions” in Figure 16. Such 

classifiers in nominal groups are common in scientific and educational material, as discussed by 

Halliday and Martin (1993, pp. 59–75). 
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Figure 16. An example of the “NOUN NOUN” pattern in the dataset, with numerous examples such as “Carbon Cycle”, 
“Factory Emissions”, “Root Respiration”, “Animal Respiration”, and “Plant Respiration”. Diagram #77. 

Finally, “ADJ NOUN” is the third-most recurring pattern. As Figure 17 illustrates, the pattern can 

be used to categorize and distinguish between different types of phenomena, concepts, or 

objects, which helps create technical classifications (Halliday and Martin, 1993, pp. 153–250). 

 

Figure 17. An example of the “ADJ NOUN” pattern in the dataset. Diagram #1456. 

These examples demonstrate how each of these common patterns has distinct, yet quite 

numerous uses in educational material. It bears repeating, however, that these science diagrams 

have been designed for use in primary schools. It may be of service to consider where 

nominalization is advantageous; simple cases of IDENTIFICATION (such as in Figure 15), for example, 
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may gain nothing from further guiding viewers’ interpretations – but diagrams depicting more 

complex concepts or processes may benefit from more explicit language such as verb phrases or 

detailed ELABORATION to help guide younger recipients perhaps not yet familiar with more 

technical material or with more gaps in their world knowledge. 

As Watanabe and Nagao (1998) posit, both written language and layout elements are 

essential in the interpretation of diagrams. The various ways a single noun can be used can be 

distinguished via label placement and possible accompanying diagrammatic elements. While 

other patterns vary by diagram and relation type, the most common patterns seem consistent 

across categories in AI2D-RST. This relates to my third sub-question in section 1.2: the exact 

function of some patterns can be co-signaled and made more explicit by other elements present 

in the diagram. So, the dynamic interpretation of diagrams becomes vital again: it is not only the 

visual bottom-up makeup of a diagram that constitutes its meaning, but the discourse semantics 

and co-contextualization provided by labels’ linguistic content and structure in addition to their 

placement near other elements. 

As there are co-occurrences between different rhetorical relations, diagram macro-

structures, and labels’ linguistic structures, it can be inferred that the decomposition of visual 

expressive resources can be informed to some degree by linguistic structures present in a 

diagram’s written labels. Because of the various forms of written language in AI2D-RST and the 

diverse ways in which different diagrams use labels, it may be desirable for diagram annotation 

schemata to emphasize the linguistic content as a possible guide for annotators. If some of the 

signals used for effectively representing discursive intent are disregarded, the interpretation may 

not be as cohesive as necessitated by the various fields in which diagrams research is relevant. 

Thus, simply identifying structural visual units without dynamically considering the entire 

diagram may not fully take advantage of the discursive flexibility afforded by diagrams.  

 Using existing NLP libraries to process this data is not without its pitfalls. It must be noted 

that even though spaCy’s current transformer-based model at the time of writing is an 

improvement over its predecessor, it does make mistakes. Examples from the dataset include 

the word “rounded” and the phrase “Metamorphic rocks” being incorrectly classified as verb 
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phrases. As a result, there may be certain inaccuracies in the process, especially due to cycles in 

AI2D-RST including various examples of rock cycles. 

 Larger corpora would also yield more definitive results on the matter. Even with widely 

available multimodal corpora such as AI2D-RST, some rhetorical relations are very infrequent. 

Having access to more comprehensive datasets would help form a clearer picture of linguistic 

patterns and combinations of signals specific to or more common in certain relations. If further 

multimodal corpora were to be developed while also implementing some of the suggestions in 

this thesis, future research of a similar nature would be even easier to conduct.  

 Further research could successfully use the format set by Watanabe and Nagao (1998), as 

the two corpora contain the necessary information for accurately identifying labels’ location in 

relation to corresponding visual expressive resources, as well as determining connectivity 

between said elements. Using layout information accessible via AI2D’s polygons and AI2D-RST’s 

connectivity layer, the visual relations of labels and images can be scrutinized in more detail. 

 It may be beneficial to also seek patterns that occur exclusively in certain rhetorical 

relations or macro-structures to see if these occur in diagrams consistently for their respective 

purposes in future datasets. Additionally, spaCy’s phrase matcher class can be used to find more 

specific linguistic patterns, for instance by combining POS information with predetermined words, 

such as “NOUN + has + NOUN”. Combined with the available layout information, a similar ruleset 

to what Watanabe and Nagao (1998) observe may theoretically be assembled for AI2D-RST – 

larger corpora, finely targeted linguistic analysis, and detailed layout information may together 

provide further information as to how specific linguistic patterns function along with placement 

to create a complete discursive whole. 

The interest in diagrams’ computational processing has remained somewhat scarce since 

the work done by Watanabe and Nagao (1998), and so there has been no further pursuit of the 

ideas they propose. Recent studies in computational analysis of diagrams have yielded mixed 

results (see e.g. Haehn, Tompkin, and Pfister, 2019). Sachan et al. (2020) demonstrate that NLP 

approaches can be successfully combined with diagram parsing to extract data from schoolbooks, 

although the study is only concerned with mathematics. Kim et al. (2019) discuss the recent 
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increase in computational visual question-answering, again in the context of textbooks. Seo et al. 

(2015), inspired by the growing trend of combining text and vision in NLP, computationally solve 

SAT geometry problems with modest but promising results. These studies indicate that further 

research into the linguistic structure of written language in diagrams may prove useful, but do 

not consider the potential value of a deeper linguistic understanding of written language in 

diagrams. Some of the methods in this thesis could then be beneficially applied to computational 

approaches to diagrams; further focus on linguistic structures at the levels of both syntax and 

discourse may lead to improvements in task-driven fields such as NLP and yield higher accuracy 

in predictive models. 

The implications of this study for empirical multimodality research are equally useful. It 

functions as an example of the usefulness of new, computationally accessible multimodal 

corpora as well as the synthesis of various theories from multimodality research, diagrams 

research, and discourse studies. The data can be approached via the diagrammatic mode to 

analyze the discourse-semantic aspects of included diagrams effectively to more precisely 

understand how they convey the complex concepts behind them. 

7 Conclusion 

This study synthesized theories from multimodality, diagrams research, and discourse studies to 

examine how written language functions with visual expressive resources to communicate 

discursive intent. I used natural language processing to computationally analyze two diagram 

corpora, AI2D and AI2D-RST, for their linguistic features. 

The study found that different discourse relations and types of diagrams (macro-groups) 

use different linguistics structures in their labels to aid receivers in interpreting them without 

needing to possess extensive world knowledge on the matter. Based on the findings, written 

language is a vital part of guiding receivers’ interpretation of the diagrams present in AI2D-RST. 

To maximize coherence and strive for successful receiver interpretation, the diagrams examined 

use multiple signals in unison, complementing visual expressive resources and diagrammatic 

elements with written language. 
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 Going forward, the linguistic structure of labels could be used along with layout 

information to enhance annotation schemata for multimodal corpora and the processing thereof, 

especially in the context of diagrams research. Empirical multimodality research can benefit 

notably from employing discourse semantics: because diagrams are gaining relevance in various 

fields, it may prove invaluable for future studies to emphasize the discursive, multimodal aspects 

found therein and design annotation schemata and processes accordingly. 
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Appendices 
 

Appendix A 

Relation NOUN 
NOUN 
NOUN 

ADJ 
NOUN NUM ADJ 

NOUN 
NOUN 
NOUN 

VERB 
NOUN 

ADJ ADJ 
NOUN 

ADJ 
NOUN 
NOUN VERB 

elaboration 1627 540 553 37 43 33 25 67 43 6 

connected 347 88 68 1 4 12 2 8 3 1 

identification 1563 391 205 191 66 49 74 23 31 25 

preparation 30 57 23 0 2 17 1 5 7 1 

restatement 5 6 9 0 0 1 1 0 0 0 

class-
ascription 95 30 48 0 4 2 3 1 3 1 

background 4 0 0 0 1 0 0 0 0 0 

property-
ascription 161 32 21 9 61 1 8 1 0 38 

nonvolitional-
result 9 2 3 0 2 0 0 0 0 0 

circumstance 22 1 1 0 0 0 0 0 1 2 

cyclic 
sequence 40 8 9 4 6 0 0 0 0 0 

volitional-
result 1 0 0 0 0 0 0 0 0 0 

means 7 4 0 0 0 0 1 0 0 0 

sequence 13 2 2 0 1 0 0 1 1 0 

enablement 1 0 0 0 0 0 0 0 0 0 

disjunction 7 0 0 0 0 0 0 0 0 0 

list 1 0 0 0 0 0 0 0 0 0 

condition 1 1 0 0 0 0 0 0 0 0 

contrast 2 1 1 0 0 0 0 0 0 0 

nonvolitional-
cause 0 3 1 0 0 1 1 0 1 0 

conjunction 2 0 0 0 0 0 0 0 0 0 
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Appendix B 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Macro-group NOUN 
NOUN 
NOUN 

ADJ 
NOUN NUM ADJ 

NOUN 
NOUN 
NOUN 

VERB 
NOUN 

ADJ ADJ 
NOUN 

ADJ 
NOUN 
NOUN VERB 

illustration 985 220 152 38 49 20 6 12 8 25 

network 700 187 133 6 4 35 6 14 9 9 

table 174 98 25 23 25 11 27 3 7 15 

cycle 470 133 75 52 55 13 34 6 21 12 

cross-section 903 272 319 51 24 20 15 35 25 0 

cut-out 335 119 129 31 10 5 13 31 10 2 

horizontal 140 71 37 28 18 7 12 4 3 10 

diagrammatic 49 12 13 5 0 0 0 0 0 0 

vertical 71 24 29 1 3 1 1 1 6 1 

photograph 50 18 6 0 1 4 2 0 1 0 

exploded 7 2 2 0 0 0 0 0 0 0 
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Appendix C 
 

 illustration network table cycle 
cross-
section 

cut-
out horizontal diagrammatic vertical photograph exploded 

elaboration 859 45 5 219 1583 614 90 22 53 70 5 

connected 2 545 0 20 5 0 0 9 10 0 0 

identification 674 602 304 773 202 120 177 48 100 16 6 

preparation 88 29 16 69 47 39 22 6 11 4 0 

restatement 16 1 0 5 6 0 6 0 0 0 0 

class-
ascription 32 37 20 2 22 15 50 0 11 5 0 

background 2 2 0 8 3 2 1 0 0 0 0 

property-
ascription 166 15 120 19 33 12 64 5 5 1 0 

nonvolitional-
result 11 0 0 2 5 0 0 0 0 0 0 

circumstance 16 9 0 26 12 4 4 1 0 0 0 

cyclic 
sequence 3 0 0 85 0 3 0 0 2 0 0 

volitional-
result 0 0 0 1 0 0 0 0 0 0 0 

means 2 0 0 11 7 0 0 1 0 0 0 

sequence 0 8 0 9 6 0 0 3 1 0 0 

enablement 1 0 0 1 0 0 0 0 0 0 0 

disjunction 0 0 0 8 0 0 0 0 0 0 0 

list 2 0 0 0 0 0 0 0 0 0 0 

condition 2 0 0 0 0 0 0 0 0 0 0 

contrast 2 0 0 0 0 0 2 0 0 0 0 

nonvolitional-
cause 2 0 0 6 0 0 0 0 0 0 0 

conjunction 0 0 0 2 0 0 0 0 0 0 0 
 

  


