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Abstract: Understanding the mechanisms underlying the effects of behaviour change interventions
is vital for accumulating valid scientific evidence, and useful to informing practice and policy-
making across multiple domains. Traditional approaches to such evaluations have applied study
designs and statistical models, which implicitly assume that change is linear, constant and caused by
independent influences on behaviour (such as behaviour change techniques). This article illustrates
limitations of these standard tools, and considers the benefits of adopting a complex adaptive systems
approach to behaviour change research. It (1) outlines the complexity of behaviours and behaviour
change interventions; (2) introduces readers to some key features of complex systems and how
these relate to human behaviour change; and (3) provides suggestions for how researchers can
better account for implications of complexity in analysing change mechanisms. We focus on three
common features of complex systems (i.e., interconnectedness, non-ergodicity and non-linearity),
and introduce Recurrence Analysis, a method for non-linear time series analysis which is able to
quantify complex dynamics. The supplemental website provides exemplifying code and data for
practical analysis applications. The complex adaptive systems approach can complement traditional
investigations by opening up novel avenues for understanding and theorising about the dynamics of
behaviour change.

Keywords: complex systems; wellbeing; methodology; behaviour change

1. Introduction

Behavioural interventions often fail to produce sustainable effects [1], especially when
transferred from one context to another. One core interest of behaviour change science
then, is to improve our understanding of interventions’ mechanisms of action. Behavioural
theories identify hundreds of potential “determinants” of behaviour, that is, factors that
potentially influence the behaviour of interest. These determinants constitute the channels
through which behaviour change techniques might influence behaviour [2]. Determinants
range from social cognitions such as self-efficacy and attitudes, to biological factors, and
elements of the social and built environments in which behaviours take place [3]. When
studied using typical factorial designs and linear statistical models, the relationships
between causal precedents and behaviour change are assumed additive, constant and
linear (i.e., the outputs are proportional to the inputs). However, it is our position that this
offers researchers and the public an inaccurate and imprecise understanding of behaviour
change. We should instead consider the relevant factors as complex, potentially non-linear,
and dynamic.

The evaluation of behaviour change interventions often involves randomly assigning
participants to receive an intervention of interest or a comparator, and measuring subjective
and objective indicators of behaviour [4]. Usually, these measurements occur immediately
before and after the delivery of the intervention, though sometimes additional follow-up
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measurements may take place weeks or months later. This is the classic Randomised
Controlled Trial (RCT) design and the data from such studies are most often analysed
using statistical techniques that are specific cases of the General Linear Model. In this
paper, we refer to this as the “conventional approach.” To assess whether an intervention
was more effective, on average, than a comparator, comparing averages in RCTs can
be purposeful and acceptable. This method can answer questions such as “Does the
intervention influence the target behaviour?”, and “Do cohorts differ from each other?”
However, using so few measurement points to study behaviour change mechanisms (“How
do intervention participants change?”) may present problems.

Currently, mechanisms of change within behaviour change interventions are typically
studied using mediation analysis [5], where the impact of X (e.g., an intervention) on Y (e.g.,
a behavioural outcome) is modelled to pass through a third variable M (e.g., a theoretical
determinant of the behavioural outcome targeted by the intervention). In the presence
of classical mediation, the path X-Y would be reduced to near zero when adding M to
the model. If this were observed, the researcher would conclude that there is evidence
for mediation. In the case of behaviour change interventions then, one would conclude
that the intervention (X) changed behaviour (Y) because it changed important theoretical
determinants of the behaviour (M). For a case example from members of the current author
group see [6].

Inferring mechanisms from contemporary mediation analyses is problematic on vari-
ous grounds [7–12]. Of particular importance to human behaviour change, however, is that
the accuracy of mediation analysis depends on four key assumptions [13]: (1) The number
of variables involved is small, and dynamics can be meaningfully assessed with only a few
time points; (2) The process of change is the same for all individuals, e.g., follows the same
sequence; (3) The dynamic between variables is linear, additive, and does not change in
time; and (4) The included variables are not entangled with the context, omitted variables,
or each other in bi-directional recursive relationships. Researchers can, of course, include
more variables (leading to new issues, e.g., mixing up mediators, confounders and col-
liders [14,15] or lowering the already worrisome statistical power [16]), try to incorporate
non-linear effects [17], and add more time points (for caveats regarding latent variable
modelling, see, e.g., [18,19]). However, limiting the notion of a mechanism to a (multiple)
mediation/moderation problem narrows our understanding of how changes occur over
time [20,21].

During the first two decades of the 21st century, behaviour change researchers began
extending the traditional approach and embracing designs with an increased focus on
temporal processes [22,23]. Recently, alternative solutions stemming from complex sys-
tems science [24,25] have become increasingly accessible and helpful in understanding
change processes. We will explore these ideas and how they help us surpass traditional
assumptions. In what follows, this paper will (1) outline the complexity of behaviours and
behaviour change interventions; (2) introduce readers to some key features of complex
systems and how these can be applied to human behaviour; and (3) provide concrete
suggestions for how researchers can better account for the implications of complexity in
analysing behaviour change mechanisms.

1.1. What Are Complex Systems?

A system is “a delineated part of the universe which is distinguished from the rest
by an imaginary boundary” [26], although other definitions exist [27]. Many things—an
airplane, a car, a robot, a central nervous system, a school, a community, a society—
can be conceptualised as systems. This paper focuses on individual people, which are
complex systems. Complex systems can be characterised as webs of many interdependent
self-organising parts that operate without central control, whose interactions give rise to
emergent properties and behaviours, irreducible to a sum of the parts [28]. The future
behaviour of a complex system strongly depends on its unique history of interactions, that
is, past experience. Additionally, the system adapts to its environment and actors therein,
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coevolving with each other to create macro-level behaviour. This dynamic is difficult to
predict and is usually not changeable in a stepwise engineering sense [29]. The italicized
characteristics above distinguish complex systems from those which are just complicated.
Highly complicated systems (e.g., an airplane), unlike complex ones (e.g., an organism),
cannot self-organise to function adaptively when one part is removed [30]. Guides to basic
terminology of complexity for scientists working with health behaviours can be found
in [30] as well as table 1 of [29].

1.2. The Relevance of Complexity for Behaviour Change

The promise of complex adaptive systems approaches in health behaviour change
research has been previously discussed by, e.g., [31], but over a decade ago, not many
empirical solutions were easily accessible to investigators in this field. Recently, methods
to study complex adaptive systems in health behaviour change have been presented [32],
with a focus on simulation and qualitative methods. This article discusses novel quanti-
tative solutions, which have recently become available, to investigate behaviour change
phenomena with a complex systems lens.

To paint a picture of just how complex the behavioural world is, take the case of
physical activity. Already three and a half decades ago, more than 30 influences on (or
“determinants of”) physical activity were being considered, along with calls for better under-
standing of their dynamics, interactions, and the time scales over which these develop [33].
While any influence (e.g., intention, attitude) could have a direct relationship with physical
activity, some rely on interactions with other influences to affect behaviour [34,35]. Further-
more, these interactions may be moderated by additional factors, and by other variables
which themselves have no direct relationship with physical activity, with synergistic and
opposing effects which may themselves depend on whether some threshold is exceeded.
The extent to which all known (and unknown) influences on physical activity interact with
one another presents a map of practically infinite, intertwined ‘routes’ to initiating and
maintaining physical activity.

The role of time brings added complexity to this behavioural world, as dynamic
patterns change over time and at varying frequencies [36,37]. For example, fluctuations in
physical activity clearly occur within a day, as most individuals are (at least in the absence
of highly sedentary working conditions and considerable somnambulism) more active
while awake than while asleep. Fluctuation also occurs over the course of a week, as activity
levels tend to be higher on weekdays than on weekends [38]; over the course of months,
as activity levels are higher in warmer seasons and lower in colder ones [39] and over the
course of years, as activity levels tend to decline with age [40]. How determinants—which
are postulated to comprise the mechanisms underlying changes in behaviour—fluctuate
and interact with the fluctuations in behaviour, is largely unknown.

Human behaviour is complex, and while we have formulated theoretical constructs
to be as amenable as possible to linear methods of analysis, this may obscure important
characteristics of behaviour change. Why are linear models inappropriate for many of our
research questions in the behavioural sciences? First, with many non-linear interactions
across time scales, mechanistic causality (including mediation and moderation) becomes
suspect or intractable [19,41,42]. Second, traditional statistical analyses start from the
simplification that everything is independent from everything else. In actuality, nearly
everything eventually depends on everything else, contributing to what Paul E. Meehl [43]
seminally coined as “the crud factor”. Jacob Cohen, the developer of power analysis,
similarly exclaimed that (in the absence of randomisation), the nil hypothesis of no effect is
always a priori false [44]. These well-known ideas demonstrate violations of the classical
assumptions regarding independence and interference [45,46]. In the same vein, forecasting
in complex systems is notoriously difficult [47–49], making hypothesis testing—which is,
after all, the test of a prediction—in intervention evaluation, a curious challenge.

Complexity science starts from the assumption that everything is intertwined, and
can provide us with new hypotheses that respect the complexity of the phenomena under
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study [50]. This is necessary, because a conventional linear analysis will only yield accurate
results when underlying assumptions are met: that the components in the model are
independent, with additive effects that can be decomposed and attributed to their causes
(e.g., beta coefficients in multiple regression). If, on the other hand, these “component-
dominant” dynamics are not driving the system, and instead, the effects are intertwined,
overlapping and inseparable [51], the dynamics are “interaction-dominant”, and the repli-
cation and generalisation issues for results stemming from the linear analysis are almost
inevitable [46]. Instead, intensive longitudinal methods are necessary to monitor how
processes unfold. This information can then be used to dynamically tune interventions
in real time, making success less dependent on having a correct program theory at the
outset [52,53]. Made possible by N-of-1 methodologies [54], this goal has been recently
pursued by using control systems engineering approaches [55] and just-in-time adaptive
interventions [56], among others.

Although behaviour change maintenance has been theorised at length [1], existing
theories do not incorporate complex systems principles, which might overcome the afore-
mentioned issues. From the viewpoint of complex systems science, the effects of behaviour
change interventions can be considered as shocks to the system in which they take place.
The aim of the intervention shock is to alter the system’s status, pushing against existing
forces to affect change [57,58]. This is akin to attempts to work against gravity, which pulls
a ball to the bottom of a valley. In this example, the valley represents a relatively stable
state, also known as an attractor (see Figure 1) [59,60]. Taking the analogy further, pushing
the ball outside of the valley may lead it to roll off a peak, ending up in a deeper valley
than where it started (i.e., a more stable, deep-rooted state). A complex systems perspective
implies that, even in the event of a successful intervention, stabilizing a system in a more
functional state may require at least as many resources as the initial change itself [61]. In
general, while complex systems may often be impossible to control precisely, they can be
stewarded approximately, while allowing for variability stemming from self-organisation
to flourish instead of trying to iron it out [62,63]. The necessity of a complex systems
approach is increasingly recognized, including within the UK Medical Research Council’s
recently updated guidance for developing and evaluating complex interventions [64].

Figure 1. Evolution in attractor landscape: An intervention moulds a system, making it less stable,
hence easier for the ball to move from current state (left) to another one (right). Alternatively, an
intervention—or random events—can jolt the system over the ridge, i.e., a tipping point.

Having now undergone a brief conceptual introduction to complexity, we can describe
behaviour change as “a collection of contextualised processes that are nontrivially specific
to each individual, and which form a complex interconnected system that is not restricted
to linear dynamics” (see [65], p. 4). We highlight three features of this definition:

1. A complex interconnected system: A multitude of variables and timescales which are
interwoven, interdependent, and interacting.

2. Contextualised processes, specific to each individual: Individuals follow meaningfully
different change trajectories that develop and change with time.

3. Not restricted to linear dynamics: Inputs are not necessarily proportional to outputs,
and long periods of apparent stability can precede short periods of rapid change.



Behav. Sci. 2021, 11, 77 5 of 22

2. Behaviour Change Mechanisms under Complexity: Three Key Features

In the following three sections, we drill further down into these ideas. In the first, we
introduce interconnectedness via interaction-dominant dynamics, which flow from point 1
above; second, we present how idiosyncratic, non-stationary change trajectories lead to non-
ergodicity, a technical term for point 2; third, we highlight that the flexibility of complex
systems leads to ubiquitous non-linear dynamics as alluded to in point 3. Table 1 provides
an overview of these ideas, which are elaborated further in the subsequent sections.

Table 1. Three common features of complex systems, with recommendations for behaviour change research.

Interconnectedness Non-Ergodicity Non-Linear Dynamics

Description

The structure of a system—how it
is organised and the relationships

between its component
parts—can matter more than the
component parts themselves. This

includes interconnectedness of
different variables such as

attitudes or perceived norms, as
well as that of their temporal

dependence; dynamic
dependencies of complex systems
are not restricted to one or a few
previous time points [41,46,66].

Psychological processes are
non-stationary and

heterogeneous, hence non-ergodic
(group-level measurements do

not correspond to those of
individuals in time). This means

within-individual processes
cannot, in general, be inferred
from between-individual data.

The lack of group-to-individual
generalisability implies a threat to
validity of results in many areas

of science [67–69].

In a linear progression of a
phenomenon, the whole is exactly

the sum of its parts: You can
calculate how much each

influencer of behaviour changes,
and add them together to get the
total effect. Non-linearity occurs

when a system’s inputs are
disproportionate to its outputs.
For example, an effect might be
imperceptible for a long time,

then explode (as in exponential
growth), or suddenly switch

states upon reaching a
threshold [70–72].

Main lesson

Dynamic, intertwined processes
do not exist in a vacuum. They are
always co-dependent and cannot

be partialed out into variance
components without losing

essential information on how the
system as a whole operates.

Drawing individual-level
inferences from group-level data
(the ecological fallacy) leads to

misleading or incorrect inferences
regarding individual behaviour.
A statistical relationship in the

population may not hold for any
of the individuals.

Viewing the world solely from the
lens of linear phenomena and
relationships, leads to missed

opportunities and misunderstood
impacts of interventions.

Recommendations
for the research

community

Move from traditional
regression-based approaches,

which are inspired by
component-dominant, additive

dynamics, to methods developed
for interaction-dominant

dynamics, able to cope with
multiplicative effects and

heavy-tailed distributions.

Move from large-sample research
with many variables and many
people but few time points (one

model per sample), to N-of-1 and
intensive longitudinal time series

designs, with usually fewer
people and variables, but more
data per variable (one model

per individual).

Move from linear approximations
with the illusion of predictability,
to methods that can accommodate

non-linear patterns and
disproportionate influences.

2.1. Interconnectedness

When processes in complex systems are not independent, they are said to be coupled.
Coupling can be unidirectional (for example, physical activity increases muscle mass but
not the other way around), or bidirectional, where the elements of a system simultaneously
reinforce or suppress each other over time, demonstrating a type of circular causality (e.g.,
good performance and rewards). Dynamics in living systems tend to be dominated by
synergies (“interaction-dominant causation”) instead of their component parts [41,46,73].
Many psychological and behaviour change theories, at least implicitly, assume the presence
of reciprocal causation and intertwined processes (e.g., [74], p. 6), but empirical testing of
such processes has, to date, been limited.

As mentioned earlier, within the conventional approach to behaviour change interven-
tion evaluation, researchers commonly employ mediation analyses to examine mechanisms.
However, the clean independent variable→ mediator→ dependent variable type of path anal-
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ysis can be misleading when change is in fact driven by self-reinforcing, “autocatalytic”
interactions that occur over time. In component-dominant causation, effects follow causes
in a billiard-ball fashion, and one variable can change without everything else changing.
For example, a study developed with the component-dominant mindset could explore how
a specific behaviour change technique, say goal setting, affects behaviour. On the other
hand, variables of interest to behaviour change researchers are unlikely to change without
affecting a large amount of other related variables [51], producing context-dependent
effects [75]. This, too, implies that interaction-dominant causation is a more plausible
framework for the behaviour change domain, wherein effects emerge (and are conditional
upon) the system’s holistic multivariate dynamics, with everything potentially taking place
simultaneously in a circularly causal manner. Interaction-dominant dynamics are also char-
acterised by heavy-tailed distributions [49,66,76] such as the log-normal distribution [77],
which are common in psychological data [78,79], as well as the presence of long-range
temporal correlations and power-law scaling [72,80,81]. Importantly, interplay happens not
just between variables, but also between their temporal dynamics: Processes taking place
on fast timescales (e.g., lack of physical activity) modulate slow-timescale processes (e.g.,
development of obesity, lower energy levels), which then feed back, affecting fast-timescale
processes [41].

One way of looking at mutually interacting processes with reciprocal causality is
to consider the system as a network. Network science is a well-established field with
applications ranging from physiology to the organisation of cities [82], and health [83,84].
An illustrative example comes from the study of depression, where the traditional thinking
assumes that a latent factor—depression—causes the symptoms. On the other hand, a
network science perspective leads to an alternative view, where the network of mutually in-
teracting symptoms constitutes the phenomenon [85,86]. This approach has provided new
avenues into understanding and treating depression, such as locating the symptoms which
are most relevant to the activation of the network (i.e., the emergence of depression). In
addition, this network approach provides insights into how intervening on specific symp-
toms might affect the system as a whole, given the dynamic interconnected relationships
between symptoms.

Although the network theory of mental disorders [85] aligns with and stems from com-
plexity science, the psychological network models usually associated with the approach [87,88]
rely on many assumptions stemming from their grounding in multiple regression, including
multivariate normality (i.e., linearity) and stationarity [89]. Despite their valuable richness,
they were recently shown to not reliably inform about the underlying system dynamics [90].
Still, the conceptual frameworks such models represent—coupled processes interacting
in a system, instead of “root causes” [91]—ought to be the primary ontology considered
by behaviour change researchers. In the later section on empirical solutions, we present
a recurrence-based network modelling approach to consider when investigating these
coupled processes [92].

2.2. Non-Ergodicity

To be useful to individuals, processes postulated by psychology should work on the
individual level [93]. Whether group-level variation is informative of individual-level
dynamics depends on a condition known as ergodicity. Ergodicity has the following
properties: “Only if the ensemble of time-dependent trajectories in behaviour space obeys
two rigorous conditions will an analysis of interindividual variation yield the same results
as an analysis of intraindividual variation [ . . . ] First, the trajectory of each subject in the
ensemble has to obey exactly the same dynamical laws (homogeneity of the ensemble).
Second, each trajectory should have constant statistical characteristics in time (stationarity,
i.e., constant mean level and serial dependencies)” ([94]; see also [68]).

In other words, in a 100 × 100 spreadsheet, where participants are rows and mea-
surement occasions are columns, calculating an average of values within one column
(“ensemble average”), should give the same result as calculating the same statistic from
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one row (“time average”). For example, in an ergodic process, the mean and standard
deviation of each person’s daily minutes of physical activity over a 100-day period would
be the same as the mean and standard deviation of 100 people’s daily physical activity
minutes measured once. Or, observing that 20% of a given population are smokers, would
mean that everyone is a smoker for 20% of their lives. In terms of coupled processes, the
correlation between physical activity and intention would be the same in the population
measured once, as it is for one person over time.

Going back to the two “rigorous conditions”, the condition of homogeneity almost by
definition rules out the behaviour change researcher’s interests, as we are interested in how
people (can) change, and it is quite clear that people do not all follow the same behaviour
change processes. Indeed, it would seem preposterous to suggest that a process like
self-regulation would remain constant across an individual’s life span. The mathematical
proof for the non-equivalence of inter-individual and intra-individual data structures was
published over a decade ago [95], and recent research has attempted to quantify the threats
stemming from lack of group-to-individual generalisability [67]. This preliminary work
indicates that even if we could work with “generalisable” ideal random samples from
well-defined populations, we would still be committing the ecological fallacy (i.e., drawing
individual-level inferences from group-level data) if we wanted to apply our knowledge
to individuals.

The second condition, generally referred to as stationarity, is that the statistical proper-
ties of these processes must not change over time. In the context of physical activity, the
factors that influence behaviour are likely to change over time. For example, the effect
of discomfort on physical activity is likely to change in a non-linear manner over time as
fitness and tolerance of discomfort fluctuate, not only because of randomness, but as core
features of the phenomena itself [96]. The tools most often used in research to analyse
behaviour change, such as linear regression, do not account for these kinds of temporal dy-
namics. This is because temporal cognitive change fundamentally violates the assumption
of stationarity.

For the processes underlying physical activity to be considered stationary, the average
level of discomfort must remain stable across time for all individuals. In addition, the
sequential dependence between repeated measures must be stable [97]. In terms of the
relationships between variables, the assumption of stationarity requires that the causal
structure which leads to a particular outcome is unchanging across time [98]. Examining
behaviour change usually involves an attempt to change the causal structure underlying a
behaviour. For example, after making coping plans to tackle barriers to physical activity,
the causal relationship between perceived barriers and low physical activity ought to be
diminished. Generally, this also means that behaviour can be expected to change as learning
and development progress. Stationary data is therefore rare in behaviour change research.
This lack of stationarity is rarely acknowledged or (statistically) accounted for in empirical
studies evaluating behavioural processes. The result is analogous to the ecological fallacy of
taking a population-level mean and extrapolating to individual-level attributes; an average
over an individual’s time series describes that individual better than the population-level
snapshot, but still might not apply to any particular time period. As a simple example,
consider 100 days of data in which a dependence relationship is strongly positive for the
first 50, and strongly negative the other: In this case, the average association over the whole
time series might be zero, and this misses the abrupt change in this dynamic over time.

Figure 2 illustrates non-stationarity in the case of work motivation, a key feature of
occupational health psychology. In these data, (taken from one participant in an observa-
tional intensive longitudinal study of work motivation; Heino et al., in prep), the observed
relationships between variables shift drastically as the study progresses.
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Figure 2. Relationships between a single participant’s motivational variables varying in time (time-varying autoregressive
model). Networks represent relationships between variables around the time points where 10% (panel (A)), 50% (B) and
90% (C) of the study had been completed. An arrow from one variable to the next means the former predicts the latter at
the next time point; green for positive and red for negative correlation. If a stationary model was used, all periods would
be collapsed to a single result, creating the impression that the relationships were homogeneous across the study period.
Although this temporal variability can be due to, e.g., changes in how the participant answers the questions (boredom,
shifting perception of the items, etc.), or poor reliability of the measures, complexity theory would also guide us to expect
that in very concrete reality, the direction and strength of relationships can shift over time and differ based on the state a
person resides in. As an example, the relationships between motivational variables during behaviour change initiation
phase, may differ from the relationships during the maintenance phase.

Idiographic science, which tries to unveil person-level processes, does not aim to go in-
ductively from data to universal or statistical laws that hold in hypothetical infinitely large
populations [99,100]. Instead, it applies general principles, such as universal properties of
complex systems, to study how individuals behave in their particular contexts. Answering
more than half a century of calls to expand focus beyond outcomes to processes, new
technology in data collection and analysis has now made the idiographic approach possi-
ble [101]. The basic solution is to not average individuals and then model the behaviour of
the averages, but to first model individuals, and then aggregate those models to search for
commonalities [65]. Recent work has made use of methods such as ecological momentary
assessment [102] to gather intensive longitudinal data on behaviour and determinants
from one or more individuals, which can then be represented as time series. In the case of
smoking, analyses of such idiographic data have yielded individualised models that can
predict behaviour with stunning accuracy [103,104].

If the mechanisms of behaviour change occur within an individual, then we need to
also study them within individuals. However, when we study individual time series data,
the methods used in the conventional approach for studying group averages (e.g., pre-post
measurements with a long time between them) leave us wanting. Figure 3 illustrates the
effects of within-individual sampling rate on perceived trends. When the sampling rate
does not match the rate of progression of a phenomenon, a deceptively linear picture of the
process might emerge (see also [53], p. 3). The same logic applies if we are studying groups
but cannot rely on the means being informative due to a lack of power (as demonstrated
in [105]).

In sum, to study individual behaviour change, we need to not only collect intensive
longitudinal data on the individual-level, but we must also consider the time evolution of
the phenomenon and apply statistical analyses which can accurately model non-stationary
data. In the health psychology context, Bolger and Zee [37] argue that not only temporal
processes need to be considered, but also the heterogeneity therein. Consistent with the
idiographic approach outlined above, every individual may exhibit idiosyncratic dynamics.
As we will see next, the possibilities are vast when stepping outside the linear worldview.
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Figure 3. One of the time series recorded by the participant featured in previous figure. Dots
indicate answers to a visual analog scale question on their relatedness need satisfaction, as posited
by self-determination theory (y-axis), measured on different time points (x-axis): (A) Measuring three
time points—representing conventional evaluation of baseline, post-intervention and a longer-term
follow-up—shows a decreasing trend; (B) Same measurement on slightly different days shows an
opposite trend; (C) Measuring 15 time points instead of 3 would have accommodated both observed
“trends”; (D) New linear regression line (dashed) indicates stationarity and (E) Including all 122 time
points, a more complete picture of the dynamics emerges.

2.3. Non-Linear Dynamics

The linear methods traditionally used in psychology (e.g., multiple linear regression,
ANOVA, and other cases of the general linear model) view psychological phenomena as
following gradual changes over time. While sometimes useful as approximations, the
assumptions of linear models are usually violated in practice [24]. Furthermore, linear
models may be invalid when ceiling or floor effects are present [106,107], or under hysterisis,
when the temporal direction of a relationship matters for its impact (e.g., prevention is
important precisely because it takes more effort to exit the state of having a lifestyle disease,
than to enter it) [108,109].

While a reliance on linear models simplifies the analytical approaches needed to
explore relationships between variables, it does not contribute to our understanding of how
the world works, as “most of everyday life is non-linear” [110] and outside the physical
sciences, non-linear systems are “the rule, not the exception” [111]. As an intuitive example,
consider that falling from 10 m is likely to kill you, but falling from 1 m does not make you
1/10th dead—in fact, it makes you stronger [112,113]. Or that eating twice the size of a
normal meal rarely results in twice the pleasure.

Non-linear dynamics can be very useful albeit unintuitive to grasp, as the world
discovered during the COVID-19 pandemic: An exponential growth starting from 20 cases
on day 1 with a growth rate of 20% can lead to 4030 cases by day 30, and 81,030 cases



Behav. Sci. 2021, 11, 77 10 of 22

by day 45. Reducing this growth rate by a mere one percentage-point would result in
approximately 29,000 fewer cases by that time. Theories and methods to understand
non-linear change phenomena in individuals can provide different types of answers than
linear analyses. The most important factors in predicting behaviour change may not be the
strength of a variable’s relationship with behaviour (e.g., regression weights), but rather
the type of fluctuation that the variable exhibits in response to an intervention [73,114,115],
or how fast the dynamics recover after shocks [116].

Another key insight is that while we cannot usually predict what the value of the next
observation will be, we can “predict” which system states are possible, and evaluate the
risks and opportunities for intervention from there. This can be done with, e.g., simulation
approaches, which can potentially “replicate the global tendencies of the dynamics” [117],
without being precisely correct about any specific instance. Indeed, exact prediction beyond
some short-term horizon is convincingly shown to be impossible in complex and not-so-
complex systems across sciences, as indicated since Poincare’s discovery of the famous
three-body problem [110]. For a discussion on evaluating the aforementioned prediction
time horizon in psychological self-ratings, see [72].

Polynomial regression is perhaps the most commonly used model when linearity
is questioned. This method allows for identifying curves that may better fit data on the
relationships between variables than a straight line [118], and can also be used to represent
non-linear changes that occur over time. Polynomial regression models do not, however,
adequately capture the essence of complex systems; non-linear, irregular changes, periodic
peaks and plateaus, and with recoveries after negative shocks and deterioration after
positive ones [119].

When we consider the situation where all components of a system interact, many
features evident in everyday life but ambiguous in linear modelling become salient. Long
periods with no discernible changes in outcomes might be followed by short bursts with
large shifts. For example, a person’s conscious intention to smoke may remain stable,
while social norms keep changing, until one day when a seemingly innocuous event causes
the person to quit. When a system finally reaches a “tipping point” (e.g., an individual’s
behaviour changes), conventional analytic methods have difficulty determining whether
the effect was caused by a critically important incident, or by less obvious, small, cumulative
effects over time which preceded the so-called phase transition. Obviously, in such situations,
the consequences of an incident (i.e., the camel’s back breaking) do not relate linearly to
the intensity of the event (i.e., loading the last straw on the camel). This is a common
dynamic in complex systems [63], but it is extremely difficult to evaluate if information
regarding the system is only available for a few points in time. Intensive longitudinal data
are therefore needed.

3. Empirical Solutions

To model intensive longitudinal data, models developed within the literature on time
series analysis are necessary [65,120]. A time series in this case is a sequence of values
representing one variable in one individual, and time series analysis consists of methods
for studying time evolution of one or more data generating processes.

The most common modelling framework, lag-1 autoregression, uses one previous time
point as input to predicting the next one. In behavioural science, vector autoregression—
vectors being sequences of numbers, representing values of variables—is often used to
test the effects of several variables on the outcome of interest. One drawback of such
autoregressive models is that they assume that there exists an average value around
which the process fluctuates, which also motivates the common practice of “detrending”.
In detrending, the researcher transforms the data by fitting a linear regression line and
continuing the analysis with the residuals, often not taking into account that there can
be several trends in subsections of the data (i.e., the trend is non-stationary), which all
contribute to what the linear model interprets as normally distributed “errors.” Moreover,
the supposed mean value—as well as variance around it—may not remain the same across
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time (i.e., the level is non-stationary), and the impact of previous time points on future
ones is assumed to remain constant [121]. One way to overcome this shortcoming, is to
let the parameters in autoregressive models vary across time, leading to the time-varying
autoregressive model depicted in Figure 2. But even time-varying autoregressive models
operate under the linear regression framework, with its accompanying assumptions, such
as normally distributed errors. Furthermore, in Figure 2, we have limited ourselves to
investigating the lag-1 relationships, whereas long-range dependencies are common in
ecological momentary assessment data [72,92,115,122].

Time-varying autoregressive models are regression-based, and are only appropriate
when the dynamics of all variables in the model conform to the required assumptions.
Empirical researchers have a wide variety of assumption tests at their disposal. The
supplementary website (section available online: https://git.io/JfLmm (accessed on 1 May
2021)) presents a plethora of these tests applied to a sample of 20 individuals collecting
data for 9 motivation variables. We can see that many or most time series indeed exhibit
non-stationary trends and levels, as well as non-linearities. Additionally, longer time series
reject more of the assumptions, as the deviations from assumptions are not necessarily
present in small samples, and larger samples confer higher statistical power. This does not
suggest that we ought to only gather short time series, as doing so would limit our abilities
to detect deviations from assumptions and generalise to data outside the sample.

There are many ways to study non-linear change processes in complex systems. Be-
havioural researchers may find the generalised logistic model [107] a good starting point.
This method produces readily-interpretable parameters indicating the floors and ceilings
of the variables intervened upon, as well as the growth rate and timing of changes. Re-
searchers may also be interested in identifying critical transformations taking place in a
system (e.g., a person’s motivational system). In complex systems, these state transitions
may be preceded by warning signs such as increased turbulence (quantified as e.g., dy-
namic complexity; [123]), or critical slowing down (i.e., heightened autocorrelations in a
time series), before (re)lapses occur [124,125]. In clinical psychology, intensive monitoring
of psychopathological symptoms has allowed researchers to examine symptoms’ vari-
ability, autocorrelations and other indicators of dynamics during interventions. This has
yielded considerable advances in the prediction of phase transitions between adaptive and
maladaptive psychological states [58,126–128]. A conceptual replication in a population
undergoing a weight loss intervention [129] recently found that sudden drops in physical
activity levels could be predicted by the emergence of erratic fluctuations in day-to-day
physical activity. While the presence of critical fluctuations is a key indicator of the effec-
tiveness of psychotherapy for mood disorders [58], similar investigations have not yet been
undertaken in other behaviour change contexts.

Multilevel models are often proposed as a method to handle nested timescales and
temporal dynamics. It should be noted though, that such models assume, e.g., that
individuals depart from group-level means according to some known distribution—and
if distributional assumptions are incorrect, so are the results [100]. For a use case of
complexity-informed multilevel modelling, see [129].

In the next section, we present one family of analysis methods, recurrence quan-
tification, that is suitable for analysing longitudinal data sets while making fewer a
priori assumptions.

Modelling Complex Time Series Data with Recurrence-Based Analyses

Recurrence quantification analysis, unlike regression-based methods, makes no as-
sumptions about distributional shapes of observations or their errors, about linearity, nor
about the time-lags involved. Researchers can therefore use it to explore the dynamics of a
phenomenon, obtaining robust visually-intuitive information about the organisation of a
system. Recall from Table 1 that, in complex systems, the organisation of components can
be more important than the components themselves.

https://git.io/JfLmm
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Recurrence networks display relationships between multivariate observations in a
time series in an intuitive way. The results of a multidimensional recurrence quantification
analysis can be thought of as displaying a type of multivariate “correlation”, indicating the
occasions in a time series that repeat a previously observed pattern. This could be patterns
of single values or combinations of values of different variables, analogous to a system
state. These patterns or configurations can be thought of as the attractor states towards
which the system is drawn.

An in-depth walkthrough of the analysis with code is provided in the supplementary
website (see section available online: https://git.io/JfLs3 (accessed on 1 May 2021)), and
a tutorial is available in [130], hence we will be brief in the background and focus on
the results. Data for the demonstration below comes from a single participant, who at
each time point, completed six questions about their self-determined motivation. A more
detailed exposition of the data is found at the supplementary website (see section available
online: https://git.io/JfLmQ (accessed on 1 May 2021)).

Figure 4 demonstrates a multidimensional recurrence network, where each point is a
measurement occasion. Lines between measurement occasions indicate recurrences of a
system state, in this case, a “motivation profile” consisting of the six motivation-related
questions. We can see that most of the recurrent states take place in the second half of the
data. In addition, patterns that appear only once (white dots) take place exclusively in the
first half of data collection. Had we only measured the first 50% of observations, many of
the recurrent system states would have been missed. This network demonstrates that this
person’s motivational system gravitates between several observable recurrent states.

Figure 4. Weighted multidimensional recurrence network. Each circle (“node”) is a measurement
occasion, numbers indicate their running number, and colors represent different motivation profiles.
These profiles are configurations of six variables, and can be conceived of as attractors. Lines indicate
the same motivational state reoccurring at a later time point. Yellow nodes indicate configurations
connecting to that with the highest strength centrality (i.e., number of connections weighted by the
similarity of the connected nodes), red nodes connect to the second strongest configuration which
is not connected to the strongest, followed by purple and blue. Grey nodes depict uncategorised
configurations which occur at least twice, and white ones depict the configurations, which only occur
once. Nodes that are larger have higher strength centrality. Drawn with R package casnet [131].

https://git.io/JfLs3
https://git.io/JfLmQ
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While Figure 4 shows how various states recur over time within the system, Figure 5
depicts the actual values of variables within each recurrent state. With this information, one
might attempt to assign qualitative meaning to the observed recurrent profiles. In this data,
we can observe that about a fifth of the participant’s responses fall into a relatively balanced
profile (category 1st, yellow), while ca. 15% display what self-determination theory [132]
would consider an “optimal” motivation profile—high in autonomous forms of motivation
and low in controlled ones (categories 3rd and 4th, purple and dark blue, respectively).

Figure 5. Main profiles corresponding to the colors indicated in the previous plot. See supplementary website (section
available online: https://git.io/JfLmS (accessed on 1 May 2021)) for a thorough exposition.

We can collapse the information in Figure 4 to the percentages with which one state
follows another, demonstrating a transition network. It answers the question “If you are in
state x, what is the probability of transitioning to state y?” Figure 6 (panel A) depicts the
relative frequencies with which each state precedes the others. If the system displays linear
dynamics, then the matrix should be roughly symmetrical, with similar values observed
above and below the diagonal drawn from the bottom left cell to the top right cell. Panel B
of Figure 6 presents the same information as a network.

To distinguish whether the results reflect a non-linear data structure, or whether they
are merely a product of randomness, researchers can use a technique called surrogate
data analysis [133]. In this method, temporally disordered versions of the data—called
“surrogates”—are created, and the observed data is then compared to those. The surrogates
represent the hypothesis that the data were generated by a rescaled Gaussian linear process.
By analysing the surrogates, we ask whether the data can be understood to have arisen
from a process that is essentially stochastic and linear instead of highly interdependent
and non-linear. The analysis indicates that it would indeed be very unlikely to see these
results, if the dynamics were Gaussian. Surrogate analysis of this dataset is presented in
the supplementary website (section available online: https://git.io/JqRTQ (accessed on
1 May 2021)).

https://git.io/JfLmS
https://git.io/JqRTQ
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Figure 6. Transitions between states. Panel (A). Percentages with which each state precedes the others. If the system is in
the configuration labelled 1st, based on the relative frequencies of observed transitions, there is a 38% chance it stays in the
same configuration, and a 25% chance it transitions to one of the uncategorised states—that is, states that are less strong than
the state labelled 4th, but which appear more than once. Note that the zeroes do not signify this transition is impossible,
only that it did not appear once during the data collection period. Columns may not sum to 100 due to rounding. Panel (B).
Data from panel (A) represented as a transition network.

Following the idiographic approach outlined earlier, this information could now
be used to develop a personalised intervention. The designer of such an intervention—
possibly the person themself, using self-enactable behaviour change techniques [134]—has
several new perspectives to consider: How could transitions to the “optimal” profiles (3rd
and 4th) be increased? Could these optimal states be made more “sticky”, and the 1st
state less so (as indicated by self-loops in Figure 6, panel B)? Could just-in-time adaptive
interventions [56]—such as prompts on a mobile device—be used to inform the person of
the state they are in, and prompt enactment of techniques that can help them stay in or
leave that state?

To summarise: Having looked at all the time scales instead of just the previous time
points, while not restricting ourselves to linear dynamics, we observe the features outlined
in Table 1. The recurrent states of the system are connected across time, demonstrating
interconnectedness instead of independence. They are not equally spaced in time, demon-
strating non-stationarity and hence non-ergodicity. In addition, going from state a to state
b does not generally happen with the same probability as the reverse, hence demonstrating
non-linear dynamics. These features offer potent information for formulating interventions
and understanding the dynamics at play in a system, but would be overlooked by more
traditional analysis methods.

4. Discussion

Applied behavioural sciences have always studied phenomena, like behaviour change
mechanisms, which take place within complex ecological systems [135]. Past efforts to
understand these phenomena used linear models, even though the tools of complexity
science would have been more appropriate [136]. Behavioural scientists have an opportune
moment to start considering complexity, as the field of behavioural intervention research
is now taking committed first steps in this direction [64,75]. There is a growing interest
toward intervention programme theories that explicitly model complexity, such as recursive
causality, disproportionate relationships, “tipping points”, and emergent outcomes [137].
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In addition, novel analytical methods that are compatible with complexity science are
continually being developed [131].

By examining intensive longitudinal data, we have shown similar results to a
plethora of studies, which find complex dynamics in ecological momentary assessment
data [72,115,122,138]: Non-linear, non-ergodic, non-independent dynamics, which defy
traditional assumptions. Moreover, the empirical case example of a single person shows
the importance of observing change over long periods of time: There are several recurring
“ways of being”, patterns of experience which change dynamically within the individual.
These recurrence patterns, and the nature of states that recur, are likely to differ across
individuals. By using multivariate recurrence-based methods [92], researchers are free
to examine conceptually overlapping variables from multiple theories in the same analy-
sis [139], as such methods do not require partialing out variance. This makes intervention
process evaluation possible from a more holistic perspective—that is, looking for changes
in, e.g., attractor states or complexity measures.

Critically appraising the often hidden assumptions of models, especially in the context
of complex systems such as human behaviour change interventions, is necessary for
understanding the phenomena of interest and building a credible science. Researchers who
study stable phenomena and who only wish to draw group-level inferences (e.g., to select
promising public health interventions) are probably best served with traditional models.
This is rarely the case for psychologists and behaviour change intervention researchers
who wish to understand time- and context-embedded change mechanisms. For theory
to advance, assumptions need to be justified: We cannot conclude, both, that our models
for empirical testing omit crucial facets of reality, and at the same time imply real-life
consequences. We propose that a more fruitful approach would be to investigate coupled
processes with individual-level psychological data from intensive longitudinal designs,
and to use analyses that are reasonably free from assumptions regarding independence,
ergodicity and linearity.

By studying what other sciences know about change processes in complex systems
and replicating studies where the ideas have been applied to human behaviour change,
researchers can work towards uncovering more general principles of behaviour change.
As Molenaar [140] pointed out, “the set of person-specific time series models thus obtained
then can in the next step be subjected to standard analysis of inter-individual variation in
order to detect subsets of subjects who are homogeneous with respect to particular aspects
of the dynamical laws concerned”. In other words, information obtained from individual-
level studies of dynamic patterns can then possibly inform models of larger groups, leading
to better (or at least humbler and more nuanced) social scientific theories [141]. Generating
theory in this way would answer calls to address the issue of time more clearly in theories
of health behaviour [36,37]. It could also lay the foundation for more formal theories
of behaviour change to be developed [50,90,142], as these typically hypothesise how
relationships between variables unfold over time, and a more coherent correspondence
between theoretical cycles and empirical cycles in behaviour change research [143].

5. Limitations

The field of complexity science and aligned novel methods is fast-moving, with
new developments always on the horizon. However, there remain many practical and
methodological barriers to fully embracing the complexity perspective in behaviour change
research. Many of these barriers relate to data collection. While the development of smart-
phones and wearable devices for ambulatory assessment allow the convenient collection
of intensive longitudinal data, there are few stable and user-friendly open-source options.
This has resulted in large variability in the data collection tools used to produce intensive
longitudinal data [144]. Ensuring good adherence to these forms of data collection can be a
challenge for researchers. For participants, adapting to intensive assessment is a behaviour
change in itself—particularly if they are required to use a specific device or smartphone
application. Although measurement burst designs [145] might alleviate some challenges,
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they bring about other, perhaps graver ones, such as a mismatch between the sampling
rate and the time scales in which the phenomena of interest unfold.

Long time series data can be time-consuming and effortful to collect. It also creates a
much greater burden on participants than traditional questionnaires and fewer time points.
However, in behaviour change research and health psychology, much of the core research
interests of our theories—influences on behaviours—have traditionally been subjective
factors (e.g., sense of self-efficacy, motivations and motives, outcome expectancies), only—
by definition—accessible via self-report. This presents an undeniable practical challenge,
along with the fact that observations often need to be spread equidistantly in time, allowing
one individual to collect only 1–2 data points per day. Still, examples of more than
a hundred time points being collected are found from weight loss maintenance [146]
to psychotherapy [127], with some studies collecting more than 1000 observations per
participant [115].

Several methodological challenges for the study of dynamic systems in behavioural
science have been identified [147], including measurement reactivity, the optimal choice
of measurement intervals, and measurement quality. To properly address measurement
reactivity, it is necessary to know whether the anticipation of measurement or the self-
monitoring process itself (or both) interact with the outcomes of interest. Choosing an
optimal measurement interval requires knowledge of the timescale of the behaviour change
dynamics, which is rare. As regards to measurement quality, we still lack a comprehensive
approach to developing and establishing the quality of momentary measures of psycho-
logical constructs. Ensuring the validity and reliability of these measures can be difficult
due to the requirement to use few items, not to mention that the questionnaire scales are
themselves bounded, whereas experience hardly is. One solution for this is to inspect
change profiles of responses [92] instead of raw scores. Another solution would naturally
be tapping into wearable data; for example, electronically-activated recorders [148] are
maturing as a technology, and complexity methods have already been applied to physical
activity data during a weight loss intervention [129].

6. Conclusions

When a study finds that variables have explained an unsatisfactory proportion of
behaviour, researchers often follow the pattern seen in social and organisational sciences
and conclude that either: “(a) significant, explanatory variables have been omitted from the
study, (b) the measurement instrument is too imprecise and ‘rough’, or that (c) the random
or stochastic part of the problem has overwhelmed the patterned part” [149]. However,
if the result stems from a statistical model that makes unfounded assumptions regarding
independence, ergodicity and linearity, is it any wonder that it fails to satisfactorily describe
reality? In this paper, we have attempted to show that many common modelling strategies
fail to adequately capture real-world dynamics of behaviour change, and that a change in
approach can advance our understanding of behaviour and behaviour change processes.
Behaviour change researchers should further utilize intensive longitudinal designs to
collect individual-level psychological and behavioural data from participants, and should
utilise analytical methods that are reasonably free from assumptions of independence,
ergodicity and linearity. This has practical implications from replicability to outcome
and intervention selection. In our view, further embracing complexity science and its
methods will advance research on behaviour change and could unearth new evidence of
the dynamics of behavioural processes.
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