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• Background and Aims Branch biomass and other attributes are important for estimating the carbon budget of 
forest stands and characterizing crown structure. As destructive measuring is time-consuming and labour-intensive, 
terrestrial laser scanning (TLS) as a solution has been used to estimate branch biomass quickly and non-
destructively. However, branch information extraction from TLS data alone is challenging due to occlusion and 
other defects, especially for estimating individual branch attributes in coniferous trees.
• Methods This study presents a method, entitled TSMtls, to estimate individual branch biomass non-destructively 
and accurately by combining tree structure models and TLS data. The TSMtls method constructs the stem-taper curve 
from TLS data, then uses tree structure models to determine the number, basal area and biomass of individual branches 
at whorl level. We estimated the tree structural model parameters from 122 destructively measured Scots pine (Pinus 
sylvestris) trees and tested the method on six Scots pine trees that were first TLS-scanned and later destructively meas-
ured. Additionally, we estimated the branch biomass using other TLS-based approaches for comparison.
• Key Results Tree-level branch biomass estimates derived from TSMtls showed the best agreement with the de-
structive measurements [coefficient of variation of root mean square error (CV-RMSE) = 9.66 % and concordance 
correlation coefficient (CCC) = 0.99], outperforming the other TLS-based approaches (CV-RMSE 12.97–57.45 % 
and CCC 0.43–0.98 ). Whorl-level individual branch attributes estimates produced from TSMtls showed more ac-
curate results than those produced from TLS data directly.
• Conclusions The results showed that the TSMtls method proposed in this study holds promise for extension to 
more species and larger areas.

Key words: Branch biomass, terrestrial laser scanning, tree-structure model, individual branch attributes, quanti-
tative structure model.

INTRODUCTION

Tree biomass estimates are essential in modelling gross pri-
mary production of forest stands and understanding what role 
forests play in the global carbon cycle. Branch biomass, as 
an important component of tree above-ground biomass, can 
help to reflect how climate change influences carbon alloca-
tion patterns (Delucia et al., 2000). Individual branches, on the 
other hand, can reflect the vertical crown biomass distribution, 
or have implications for timber quality via knots (Helmisaari 
et al., 2002; Mäkinen and Mäkelä, 2003), which are essential 
for targeting harvest operations and for optimizing thinning 
strategies in sustainable forest management.

Traditionally, destructive measurements are required for 
establishing and modelling tree structure, biomass and growth. 
As field work is time-consuming and labour-intensive, terres-
trial laser scanning (TLS) offers a solution for the measurement 
of tree structure quickly and non-destructively. Recent studies 
have reported that TLS can successfully produce various tree 
structural variables, showing great potential to remedy the 

disadvantages of destructive measurement in forest research 
(Gonzalez De Tanago et al., 2017; Stovall et al., 2017; Atkins 
et al., 2018).

Previous studies have estimated total branch biomass 
through allometric or theory-based equations, with which 
variables can be derived from easily measured variables (e.g. 
diameter at breast height, tree height, crown length) (Marklund, 
1988; Mäkelä, 1997; Medhurst et  al., 1999; Lehtonen et  al., 
2004a; Repola, 2009), or summing individual branch biomass 
estimates using empirical models (Lehtonen et  al., 2004b). 
Coupling biomass estimate models and TLS data, it is possible 
to estimate tree biomass with non-destructive measurement 
(Kankare et al., 2013; Stovall et al., 2017; Momo Takoudjou 
et al., 2018; Lau et al., 2019). Regarding specific branch bio-
mass estimates, most approaches are either based on allometry 
models with TLS-derived parameters (Hauglin et  al., 2013; 
Gonzalez De Tanago et al., 2017), or use branch volume de-
rived from tree quantitative structure models (TreeQSMs) 
multiplied by branch wood density (Lau et  al., 2018). These 
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methods consider tree-level branch biomass, while individual 
branch attributes have been more difficult to estimate. The most 
important reasons are poor visibility due to branch overlapping, 
and long distance from the scanner, which increases the foot-
prints of beams and results in more occlusions. Previously, 
Pyörälä et al. (2018a) assessed branch structure and evaluated 
performance using manual point cloud measurements, coming 
to the conclusion that it remains challenging to capture the full 
branching structure with TLS alone. Some studies reported that 
large uncertainty may occur when extracting branches of length 
<5  cm or diameter <10  cm from point clouds (Kaasalainen 
et  al., 2014; Lau et  al., 2018). In addition, most current re-
search on branches has been performed on deciduous trees, 
and TLS scans were collected during the leaf-off season (Lau 
et  al., 2019; Vicari et  al., 2019; Wang et  al., 2019; Zimbres 
et al., 2020). Given that coniferous trees are evergreen and have 
denser branches that overlap vertically, branch extraction dir-
ectly from TLS could present greater difficulties and challenges 
within boreal conditions, which cover 70 % of the coniferous 
forests in the world (UN-ECE/FAO, 1985).

One possible solution to improve individual branch estima-
tion would be to bridge individual branch prediction models 
with TLS data. Previously, a few studies have reported practical 
models for estimating individual branch biomass or other attri-
butes: Mäkinen and Mäkelä (2003) developed statistical models 
to estimate branch basal areas at different heights within the 
live crown; Lehtonen et  al. (2004b) proposed a mixed effect 
model to estimate the dry weight of each branch using branch 
diameter as the only variable, with unbiased predictions; and 
Helmisaari et  al. (2002) used branch and length and relative 
height of the crown to estimate the individual branch biomass. 
Additionally, pipe model theory (PMT) premises that stem 
cross-sectional area at any height of the stem is proportional to 
the cumulative branch basal area above this height (Shinozaki 
et  al., 1964a, b; Valentine, 1985). Moreover, Pitkänen et  al. 
(2021) have proposed a novel method based on TLS data, which 
significantly improved estimates of stem taper curve and pro-
vided accurate stem diameter at a given height. Bridging these 
studies with TLS data could enable us to estimate individual 
branch biomass.

Taking account of the current limitations in estimating indi-
vidual branch biomass with TLS, our study aims to develop a 
new method (TSMtls) for individual branch biomass estimation 
that bridges tree structure models and TLS data. The TSMtls 
method is an improvement on using TLS data alone to esti-
mate branch biomass, where branch information extracted from 
cloud point data is often inaccurate or even missing because of 

noisy scan data. We estimated the tree structural model param-
eters from 122 Scots pine (Pinus sylvestris) trees destructively 
measured earlier in southern Finland. The TSMtls method was 
tested using six Scots pine trees that were first TLS-scanned 
and later destructively measured in Lapinjärvi, Finland. The 
specific objectives of the study were the following:

 (1) to develop a new method (TSMtls) for estimating individual 
branch attributes from TLS data;

 (2) to evaluate the accuracy of the individual branch bi-
omass derived by TSMtls against the destructive tree 
measurement; and

 (3) to compare the tree-level branch biomass estimate derived 
by TSMtls with other TLS-based methods against the de-
structive tree measurement.

MATERIALS AND METHODS

Study materials

Two data sets were included in our study, referred to as dataset 
I and dataset II below. Dataset I included destructive measure-
ments and TLS data collection. The field work was conducted 
in August 2018 at the Latokartano research forest, Lapinjärvi 
(60°37′ N, 26°10′ E). Six old Scots pine (Pinus sylvestris) trees 
from three plots were scanned before felling. The trees came 
from two site types, characterized based on their ground vege-
tation as mesic heath forest and sub-xeric heath forest (Table 1).

Dataset II refers to the VAPU database (collected by the 
Finnish Forest Research Institute) (Korhonen and Maltamo, 
1990), which is based on biomass measurements and detailed 
information about tree dimensions. Destructive tree sampling 
was established from 94 plots during 1988–90. Lehtonen et al. 
(2004b) have described the sampling design in more detail. 
A total of 122 Scots pine trees and 13 947 branches were in-
cluded in our analysis. For each sample tree, destructive meas-
urements were performed using a protocol identical with that 
of dataset I.

TLS sampling and field data collection

TLS data collection and pre-processing steps.  For dataset I, the 
TLS scans were collected with a Leica Scan Station P40, which is a 
time-of-flight LiDAR scanner. In each plot, six scan positions were 
set up and co-registration was performed with Leica’s Cyclone 

Table 1. Detailed information on the sample trees from dataset I

Plot Tree no. Site type Site description Age H (m)  HC (m) DBH (cm) Nb DC (cm)

1 11 MT Mature thinned site 91 29.62 7.61 24.0 103 15.1
 12  97 30.88 10.92 28.1 96 16.9
2 21 VT Seedling tree stand with seed trees 108 24.01 11.07 29.6 94 19.3
 22  105 24.88 8.56 31.3 64 18.1
3 31 CT Mature trees on a cliff 108 23.03 9.56 35.4 89 22.2
 32  113 23.69 12.6 40.5 96 34.0

MT, mesic heath forest; VT, sub-xeric heath forest; CT, xeric heath forest; H, tree height. HC, crown length; DBH, diameter at breast height; Nb, number of all 
living branches above the crown base; DC, diameter at crown base.
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software (Leica Geosystems, 2016). Once the sample trees were 
extracted from the point cloud, a TreeQSM algorithm was applied 
to reconstruct the stem and branch structures. TreeQSM is a model 
to reconstruct trees as hierarchical collections of cylinders and to 
describe basic branch structure, geometric and volumetric proper-
ties quantitatively. It has been successfully applied to derive tree 
volume and structure in many studies (Raumonen et  al., 2013, 
2015; Lau et al., 2019; Raumonen, 2019; Krishna Moorthy et al., 
2020). Using TreeQSM, it is possible to compute various geomet-
rical stem and branch properties, such as tree height (H), diameter 
at breast height (DBH), branch diameter, branch length and branch 
volume.

Reference measurements from destructive trees.  For dataset 
I, breast height was marked, and DBH was measured before 
felling. For every branch originating from the trunk, we meas-
ured the diameter and the distance from the treetop. Stem diam-
eter was measured at eight points along the stem: the stump 
point, 1.3 m, crown base, half of the crown base and 25, 50, 
75 and 90  % of crown length. Crown base was recorded as 
the height of the lowest branch and a maximum of one dead 
whorl above was allowed. A  total of 811 individual branches 
(including 542 living branches above the crown base and 269 
dead branches) were measured. Sample branches with meas-
ured cross-diameters were selected randomly from each tenth 
of the crown length. A total of 60 sample branches were taken 
to the laboratory and dried in paper bags at 105 °C for 48 h to 
determine the dry branch biomass (needles were removed from 
branches after drying).

Branch biomass estimation from TLS data

Overview of the TSMtls method.  The TSMtls method integrated 
several models, including TLS-based and PMT-based tree 

structure models. Using this method, branch biomass was esti-
mated using a five-step process (Fig. 1) in which we:

 (1) extracted the height of each individual branch attached to 
the trunk (‘0’ branch) as observed by TreeQSM (TLS data 
from dataset I);

 (2) clustered the extracted ‘0’ branches to each whorl using a 
criterion generated from dataset II and estimated branch 
number at each whorl (Model 1);

 (3) estimated the total branch basal area at each whorl using 
a PMT-based tree structure model (stem taper curve and 
Model 2);

 (4) estimated individual branch basal area at each whorl using 
tree structure models (Model 3); and

 (5) estimated individual branch biomass using a linear mixed 
model (Model 4).

Stem taper curve.  We estimated the stem taper curve by mod-
elling the stem first as cylinders based on the TreeQSM method 
(Raumonen et  al., 2013, 2015) and the results from Pitk.nen  
et al. (2021). This process included three principle steps:

 (1) co-registered TLS data were used to model the stem 
roughly as a set of connected cylinders, based on their best 
fit and with no prior expectations with regard to the stem 
dimensions;

 (2) the cylinder model was used to split the stem into thin 
slices, which were further processed to refine their diam-
eter estimates; and

 (3) slice diameters, together with known dimensions (DBH, 
and H with a diameter of zero), were applied to construct 
the final spline-based taper curve. This taper curve was 
then used to calculate the stem diameter at any given 
height.

Structure models

TLS data acquisition (Dataset I) 6 trees

Reconstruction process

Modeling trunk and branches as cylinders

Construct Stem Taper curve

VAPU data (Dataset II) 122 trees/4797 whorls/13948 branch

Model 1: Branch number estimate

Stem cross-sectional area at whorl i
Model 2: Bi + Bi –1 + ... B1

Model 3: Individual branch diameter estimate

Individual branch number and basal area (whorl level)

Model 4: Individual branch biomass estimate

TLS processing

Locate “0” branch’s height

Total branch basal area at whorl i (Bi)

Tree 
level

Whorl
level

Branch biomass estimate

Destructive measurements (Same sample trees with TLS) Accuracy assessment

Fig. 1. Framework of TSMtls developed in this study to estimate branch biomass from TLS data and tree structure models.
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Whorl information estimation.  Based on TreeQSM, the branch 
architecture was reconstructed by segmenting the point cloud, 
and the segments provided modelled information for each fit-
ting cylinder. We selected the reconstructed branches that were 
attached to the trunk (‘0’ branch). The branch height was then 
determined and linked to the stem taper curve. Given that sev-
eral branches can be attached to one whorl, we needed to de-
cide whether the ‘0’ branches belonged to the same whorl. By 
analysing 12 952 branches from 3802 whorls with at least two 
branches (out of 4797 whorls in total) in 122 Scots pine trees 
(dataset II), we found that the branches of each whorl were lo-
cated mostly within 3 cm of each other (Fig. 2C). Hence, TSMtls 
sets the rule thus: if the ‘0’ branch height of two consecutive 
branches was <3 cm, then these two branches were clustered 
in one whorl.

Additionally, from TreeQSM branch extraction results, we 
found that in the upper crown of sample trees very few or even no 
branches >1 m were detected, which was not realistic. Previous 
research has reported that the accuracy of branch extraction is 
highly dependent on the location of the living branch inside the 
crown (Pyörälä et al., 2018a). Thus, for the upper crown layer, 
whenever the distance from the topmost whorl to the treetop was 
>0.5 m, fake whorls were inserted. We optimized the interval of 

consecutive fake whorls by testing a range of values: 10–30 cm 
with 5-cm intervals. Using each candidate interval, fake whorls 
were inserted and branch number at each whorl was estimated 
(for details of the method see the Branch number and indi-
vidual basal area estimation section). By comparing the branch 
number with destructive measurements, a 25-cm interval was 
accepted in the end. Then, whorl height was calculated as the 
average height of the ‘0’ branches in each whorl.

Branch number and individual basal area estimation.  Using 
the height of each whorl as input, the stem cross-sectional 
diameter at each whorl was determined using the corresponding 
stem taper curve. Branch number and the basal area of each in-
dividual branch were then estimated using tree structure models 
(Models 1–3).

Model 1.  According to the branch number estimate model pro-
posed by Mäkelä and Mäkinen (2003), the branch number in 
whorl i, Nbi, was calculated as:

Nbi = b0 + b1ln (∆hi) +
b2 (H − 1.3)

DBH
+ b3hr + εk (1)

where b0, b1 and b2 are parameters, Δhi (cm) is the height incre-
ment between whorl i and whorl i − 1, H (m) is tree height, DBH 
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Fig. 2. Flowchart detailing the rules of the ‘0’ branch cluster. (A) Cloud points of a scanned sample tree. (B) Details of the branches. (C) By investigating branch 
information from 4797 whorls (dataset I), the distribution of branch height discrepancy at each whorl was generated. (D) The TreeQSM algorithm can produce 
cylinders of woody parts that include branch height. Example: from the TreeQSM result, the heights of branches A and B can be derived. We denote them as h1 

and h2. If |h1 − h2| ≤ 3 cm, we assume branches A and B are attached to the same whorl. Otherwise they are from two consecutive whorls.
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(cm) is diameter at breast height, hr is branch relative height in 
the crown and εk is the random error from tree k.

Model 2.  Based on PMT, as presented by Makela (2002), stem 
cross-sectional area Ai at the height of whorl i was proportional 
to the sum of branch basal area at and above whorl i (from 
whorl i to the first whorl at the top), Bi + Bi−1 + … + B1:

Bi + Bi−1 + . . .+ B1 = ηAi (2)

where η is an empirical coefficient and Bi is the sum of branch 
basal area at whorl i, calculated as follows:

Bi = (Ai − Ai−1) (3)

Model 3.   Since we have the Bi and Nbi estimates, individual 
branch basal area distribution can be calculated using Model 3,  
taken from Mäkinen and Mäkelä (2003). Firstly, the relative 
sizes of the largest (Ri max) and smallest (Ri min) living branches 
in whorl i were defined as Model 3: the largest and smallest 
branch basal area in whorl i divided by the mean branch basal 
area in whorl i. The models for Ri max and Ri min were estimated 
using the following equations:

lnRi max = b0 + b1Nbi + b2 (1.1 − hri)

+ b3 ln (1.1 − hri) + b4DBH + b5H/DBH + εk (4)

ln

Å
Ri min

1 − Ri min

ã
= b0 + b1Nbi + b2 (1.1 − hri)

+ b3 ln (1.1 − hri) + b4DBH + εk (5)

where b0–5 are parameters, Ri is the relative size of the branch in 
whorl i, Nbi is the number of branches in whorl i, hri is the branch 
relative height in the crown (distance from the tree top to whorl 
i divided by crown length) and εk is the random error from tree 
k. Then, individual branch size was drawn from a uniform dis-
tribution and Ri max and Ri min were used as the constraints. For the 
whorls that were estimated as having only one branch, branch 
basal area was assumed to be Bi. Thus, individual branch diameter 
can be derived according to branch basal area.

Model 4.  Finally, individual branch biomass was estimated 
using a mixed linear model as in Lehtonen et al. (2004b) and 
the whole-tree branch wood biomass was the sum of indi-
vidual branch biomass. Let wbki be the dry weight of branch 
i on tree k, then wbki can be modelled as a function of branch 
diameter (dki):

lnwbki (d) = b0 + b1[ln(dki)]
0.22

+ lnεk0 + εk1[ln(dki)]
0.22

+ lneki
 (6)
where b0 and b1 are fixed parameters, εk0 and εk1 are random tree 
parameters and eki is residual. The total branch wood biomass 
of each sample tree was determined by summing the biomasses 
of individual living branches.

Parameter value estimation

Models 1–4 have been previously tested for Scots pine in 
south Finland (Mäkelä, 2002; Mäkinen and Mäkelä, 2003; 
Lehtonen et al., 2004b; Hu et al., 2020). The parameter values 
of Models 1–3 applied in this study were estimated based on 
dataset II. The parameter values for eqn (6) (Model 4)  have 
been estimated previously using the same VAPU dataset 
(Lehtonen et  al., 2004b). For mixed effect models [eqns (1), 
(4)–(6)], parameters were estimated using the lmer function in 
R from the lme4 package (Bates et al., 2014) and pseudo-R2 
was calculated using the r.squaredGLMM function in R from 
the MuMIn package as an evaluation indicator (Nakagawa and 
Schielzeth, 2013).

Model evaluation

We used sample trees from dataset I  to compare the ac-
curacy of whorl and branch estimates from the TSMtls method 
(against reference measurements) with the accuracy obtained 
directly from a TreeQSM algorithm (against reference meas-
urements). The comparison combined: (1) a tree-level variable, 
i.e. the number of whorls; and (2) whorl-level variables, which 
included branch number, diameter and biomass (Table 2). To 
evaluate tree- and whorl-level results, we manually paired in-
dividual whorls from the TSMtls method and destructive meas-
urement. To locate each whorl, we paired each measured whorl 
with the modelled one that was the closest to the measurement 
with respect to stem cross-sectional area. Since we inserted the 
fake whorls in the top of the crown, we examined the perform-
ance of the TSMtls method separately at the upper, middle and 
lower crown. We classified the living branches inside the crown 
into three layers on the basis of relative height in the crown: 
(1) upper crown <30 %; (2) middle crown 30–70 %; and (3) 
lower crown 70–100 %. The accuracy, commission error (Ec) 

Table 2. Evaluated tree- and whorl-level information from different approaches

Estimate Approach Description Indicators

 Nw  TSMtls Whorl setting rules (cluster branch and fake whorls) Accuracy, Ec, Eo Eo

TreeQSM Each branch represented one whorl
 db (within paired whorls) TSMtls Model 1 and Model 2 Accuracy, Ec, Eo Eo

TreeQSM Branch number from TreeQSM result
db TSMtls Model 3 Relative error, RMSE

TreeQSM Branch diameter from TreeQSM result
wb TSMtls Model 4 KS test 

TreeQSM Volume from TreeQSM results multiplied by branch wood density

Nw, whorl number; Nb, branch number; db, individual branch diameter; wb, individual branch biomass.
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and omission error (Eo) of whorl/branch number were defined 
for each crown layer as well as for the whole tree using the fol-
lowing equations:

Accuracy (% ) =
Np

Np + Nc + No
× 100 (7)

Ec (% ) =
Nc

Np + Nc + No
× 100 (8)

Eo( % ) =
No

Np + Nc + No
× 100 (9)

where Np is the number of paired whorls/branches, Nc is the 
number of commission errors, i.e. the number of whorls/
branches that were falsely detected or modelled, and No is the 
number of omission errors, i.e. the number of whorls/branches 
omitted from the measurements. Moreover, the correspondence 
between measured and estimated individual branch diameter 
was evaluated by comparing the whorl mean, whorl maximum 
and whorl minimum diameters with destructive measurements. 
The two-sample Kolmogorov–Smirnov (KS) test and com-
parisons of the cumulative distribution function were used to 
analyse whether the individual branch biomass distributions in 
three crown layers determined by TreeQSM and TSMtls were 
different from our destructive measurements.

Total branch biomass from other TLS-based models

Additionally, we tested the performance of our total branch 
biomass estimates against tree-level allometric models evalu-
ated with TLS-based input variables. Here we used empirical 
allometric (denoted QSM_Allometry) (Repola, 2009) and pipe-
model based equations (denoted QSM_CROBAS) (Valentine 
and Mäkelä, 2005; Hu et al., 2020). These two methods util-
ized the tree height and diameter derived from TreeQSM as 
inputs with parameter values as presented in previous literature 
(Table 3). We used linear regression to compare the different 
approaches with reference to destructive measurements. As 
general indicators of the accuracy of the model approaches, 
R2, root mean square error (RMSE) [eqn (10)] and the coeffi-
cient of variation (CV) of the RMSE [eqn (11)] of total branch 
biomass estimation were calculated. In addition, we also used 
the concordance correlation coefficient (CCC) (Lawrence and 
Lin, 1989) to compare agreement of model estimates with 
reference.

RMSE (kg) =

 ∑n
1 (Wbmodel − Wbref )

2

n
 (10)

CV RMSE ( % ) =
RMSE∑n
1 Wbref /n

× 100 (11)

RESULTS

Model parameter values

In this study, parameters of Models 1–4 were estimated based 
on dataset II (Table 4). For linear mixed models [eqns (1), (4)–
(6)], only the fixed part was applied to the TSMtls method for 
estimating branch number, diameter and biomass.

Whorl number evaluation

Whorl number was estimated for sample trees in dataset 
I  using three approaches (Table 2). The TSMtls method im-
proved whorl number estimate accuracy from 40.43 to 57.73 % 
compared with the TreeQSM method, and the upper crown 
showed the highest improvement of accuracy, from 29.20 to 
52.59 % (Table 5, Fig. 3). In addition, commission error (Ec) 
and omission error (Eo) were reduced by 14.38 and 3.01 per-
centage points, respectively (Fig. 3A–C, Table 5).

Branch information evaluation

Branch number (Model 1).  With the TSMtls method, branch 
number was estimated for each individual whorl. For the 199 
paired whorls, the TSMtls method had an overall accuracy of 
68.60  % and registered its highest improvement (from 28.94 
to 68.92 %) compared with the TreeQSM method in the upper 
layer of the crown (Table 6). Using the TSMtls method, Ec and 
Eo relative to the destructively measured branches were 22.24 
and 9.16 %, respectively. The inserted fake whorls in the upper 
crown led to more commission errors (42 more cases) than 
TreeQSM, but the respective omission error decreased almost 
6-fold (97 fewer cases) (Table 6).

Branch diameter and biomass (Models 2, 3 and 4).  Within 
paired whorls, the diameter estimation of the largest branch 
had a lower relative error (31.2 %) than the smallest branch 

Table 3. Model description for the TLS-derived branch woody biomass estimations, including stump diameter (dS, m), wood density (ρb, 
kg m−3), height (H, m), stem cross-sectional area at crown base (Ac, m

2), and parameters used in each equation. QSM_Allometry was 
based on Repola (2009) and QSM_CROBAS on Hu et al. (2020)

Models Equations ρb
a b c φb ηs/ηb

TreeQSM Wb = Vcylinder × ρb 400 – – – – –

QSM_Allometry In(Wb) = a + b × ds
ds+6 + c × H

H+1
– –6.16 15.08 –2.62 – –

QSM_CROBAS Wb = ρb × ϕb × ηs/ηb × Ac 400 – – – 1.16 1.65
TSMtls* Wb =

∑i
1 Wbj – – – – – –

*Total branch biomass from TSMtls was calculated by summing individual branch biomass (wbj, kg) based on Model 4, eqn (6).
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estimation (52.6  %) (Fig. 4). Nevertheless, both models 
[eqns (5) and (6)] underestimated the branch diameter, and 
the underestimation was more pronounced on the smallest 
individual in each whorl, with a proportion of 73.8 % of the 
smallest branches being underestimated. Furthermore, the 
empirical cumulative distribution function (ECDF) of indi-
vidual branch biomass from the TSMtls method showed that 
the bias occurred more in the middle and lower part of the 
crown (Fig. 5, P < 0.05).

Although branch diameters were underestimated, the cu-
mulative branch biomass estimated by the TSMtls method 
agreed much better with the destructive measurements than 
the TreeQSM method (Fig. 6, Table 7) at the tree level. 
Moreover, the KS test showed that individual branch estimates 
produced by the TSMtls method had lower D statistic values 
than the TreeQSM method when compared with destructive 

measurements in all the crown layers of each sample (Fig. 5). 
It indicated a significant improvement of the individual branch 
biomass estimate using the TSMtls method. For the TreeQSM 
method, some extreme individual branch biomass estimates 
(Fig. 6) and unobserved branches (Fig. 3C, tree 11) could be 
the main reasons behind the bias of the total branch biomass 
(Table 7).

Total branch biomass from TLS-based models.  When com-
pared with destructive branch biomass measurements, the 
TSMtls method showed 1.76 and 25.27  kg lower RMSE and 
3.31 and 47.79 percentage points lower CV RMSE than the 
QSM_CROBAS and TreeQSM methods. The performance of 
the QSM_Allometry method was intermediate between the 
QSM_CROBAS and TreeQSM methods. The TSMtls method 
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was closer to the 1:1 line and the agreement between TSMtls 
estimates and destructive measurements expressed as CCC was 
higher (0.99) than those of the other TLS-based models (0.43–
0.98; Table 7).

DISCUSSION

This study proposes a method to estimate branch biomass 
by linking TLS data with tree structure models. The re-
sults showed that the TSMtls method of estimating total 
branch biomass is more accurate than the other TLS-based 
approaches tested.

Individual branch extraction from TLS

The TreeQSM method has been widely used in tree struc-
ture or biomass estimation (Gonzalez De Tanago et al., 2017; 
Lau et al., 2018, 2019). Our main rationale for developing the 
method further was its inaccurate individual branch extraction. 
Even though several scans were taken from different points 
around the target trees to gain more comprehensive branch in-
formation, many of the branches were still not observed, es-
pecially in the upper part of the crown, which showed higher 
omission error than the lower part (Figs 3C and 6). This has 
been observed in previous studies as well (Eysn et al., 2013; 
Boudon et al., 2014) and it was mainly caused by the scanner’s 

features (time-of-flight scanner): the signal will return as soon 
as it reaches a non-penetrable obstacle, rendering the cloud 
points unavailable for locations not visible from the scanner. 
As the lower branches may hinder visibility, fewer signals will 
reach the upper branches, which may cause branch omission. 
Moreover, the upper canopy is further from the scanner, which 
makes the point cloud naturally sparser compared with the 
lower parts.

In addition, in TreeQSM results it is not hard to notice the ab-
normal outliers that feature extremely large individual branch 
biomass (Fig. 6). This is because the main task of TreeQSM is 
to reconstruct the woody part as cylinders (Raumonen et al., 
2013). To get an accurate result, this procedure needs enough 
points, and fewer points increase the likelihood of misevaluated 
branch diameters. Weather effects such as wind can result in 
noisy data while scanning and detract from the ability to re-
construct individual branch structures. Additionally, our sample 
trees are Scots pine, which have needles all year round, and this 
makes it harder to get the leaf-off scanned data.

TSMtls method considerations

The TSMtls method relies on the PMT-based equation, in 
which the stem cross-sectional basal area and branch basal 
area at each whorl are linearly related [eqn (2)], which has 
been demonstrated in previous studies (Makela, 2002; Kantola 
and Mäkelä, 2004, 2006). This linear relationship was used 
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in Model 2, and, together with Model 1, individual branches 
were simulated in each whorl. It is not surprising that the 
total branch biomass estimates were in closer agreement with 
destructive measurements using TSMtls than the TreeQSM 
method (Table 7), because many branches failed to be ob-
served when using the TreeQSM method (Fig. 3). Also, in the 
TSMtls method we optimized the interval value of consecutive 
fake whorls based on destructive measurements, which could 
also contribute to better results compared with the TreeQSM 
method. This means that an optimized interval value of con-
secutive whorls may need to be considered properly when 
TSMtls is applied to another dataset. Nevertheless, the indi-
vidual branch number and diameter estimates were still biased 
using TSMtls (Figs 3 and 4). One reason could be that the 
branch number model we used was developed on the basis of 
branch data from trees in the age range of 22–76 years (Mäkelä 
and Mäkinen, 2003), while the age range of the trees sampled 
(dataset I) was 91–113  years and dataset II comprised trees 
of various ages in our study. In eqn (1), annual height growth 
and slenderness were considered the main variables reported 
to be affected by tree age (Hann and Larsen, 1991; Helmisaari 
et al., 2002; Weiskittel et al., 2011), and it is possible that the 

age influenced the accuracy of the model. Additionally, branch 
growth is also affected by shading or interaction with other 
branches and trees, especially for the branches in the middle or 
lower part of the crown. This could result in fewer branches in 
reality than modelled and is also consistent with our result that 
the modelled individual branch biomass distribution had more 
bias in the lower than the upper crown (Fig. 5). Hence, the over-
estimated branch number leads to a smaller mean branch basal 
area for a given whorl total, which may be one reason why the 
branch basal area was underestimated (Fig. 4). Nevertheless, 
the accuracy of the branch number estimate (68.60 %) was im-
proved compared with previous studies: Pyörälä et al. (2018a) 
extracted individual Scots pine branches with an accuracy of 
64.8  % and Pyörälä et  al. (2018b) reported a higher branch 
number detection accuracy (69.9 %), but they only considered 
the largest branches of whorls, where stem diameter exceeded 
15 cm. Other studies focusing on individual branch informa-
tion also indicate that the larger the branch, the easier it is to 
detect, even if only relatively large branches are considered 
(Lau et al., 2018).

The present TSMtls approach has been motivated by the con-
venience of TLS and the idea of PMT-based carbon allocation 
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(Mäkelä and Mäkinen, 2003; Mäkinen and Mäkelä, 2003). This 
method allows branch biomass estimation without destructively 
harvesting the trees. The results are encouraging; however, only 
a limited dataset was used for validation. In order to apply this 
method in operational work, a larger dataset would be required 
to confirm our results in the future.

Tree-level branch biomass estimation by different methods

At the whole-tree level, four different TLS-based methods 
to predict the total branch biomass were compared. Despite 
the notable underestimation of individual branch diameter 

and biomass in the paired whorls, the total branch biomass 
estimates obtained using the TSMtls method showed close 
agreement with the measured trees (Fig. 6) and this method 
performed better than the other TLS-based methods (Table 
7). This is in line with the result that the estimate of total 
basal area of branches at each whorl (Model 2) was unbiased, 
as predicted by the PMT (Shinozaki et al., 1964b), and sug-
gests that it is more accurate for total biomass estimation 
than individual branch attributes.

In contrast, traditional allometry models for estimating total 
branch biomass are based on breast height or stump diameter and 
tree height (Kärkkäinen, 2005; Repola et  al., 2007). Although 
these models have been applied to different species and sites, and 
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Table 7. Summary of total branch biomass estimates from TLS-based models. For R2, RMSE, CV RMSE and CCC, n = 6. Slope and 
intercept values come from the regression models between TLS-based models and measurements. Models are arranged according to 

performance from the worst to the best

Model Slope Intercept R2 RMSE (kg) CV RMSE ( %) CCC

TreeQSM −2.46 112.2 0.27 30.37 57.45 0.43
QSM_Allometry 2.26 −11.90 0.91 10.58 20.02 0.95
QSM_CROBAS 0.69 1.79 0.96 6.86 12.97 0.98
TSMtls 0.72 5.08 0.98 5.10 9.66 0.99
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the variables used in the models are easy to measure and extract 
from TLS data, the reliability and applicability of the estimates 
still depend on data from different studies (Repola, 2009). Parresol 
(1999) found that the total branch biomass varies from stand to 
stand even with the same tree height and trunk diameter due to 
different growth conditions, reducing the precision of the biomass 
estimate using allometry models. Though Repola (2008) has de-
veloped multivariate mixed models to estimate tree component 
biomass better by considering simultaneous correlation between 
different tree components (foliage, branch, stem and root), it is still 
a challenge to use TLS data alone to obtain biomass estimation 
models for each tree component. From this perspective, it is not 
surprising that a PMT-based model together with TLS data could 
provide a more reliable and accurate branch biomass estimate than 
allometry models.

Potential application of TSMtls

This study proposes a new method to estimate branch biomass 
based on TLS data with tree structure models, which provides a 
non-destructive means of investigating the vertical branch dis-
tribution in the crown. Firstly, as the basis of branch attribute 
estimation, PMT-based tree structure models have been tested 
for Norway spruce and silver birch in previous studies (Ilomäki 
et al., 2003; Kantola and Mäkelä, 2004; Kantola and Mäkelä, 
2006; Hu et al., 2020). This suggests that we could apply our 
method to more species, such as Norway spruce, which require 
greater effort in field measurements due to their dense foliage. 
Secondly, recent advances in TLS data processing have en-
abled us to produce relatively accurate and unbiased stem taper 
curves in boreal forests (Pitkänen et  al., 2019, 2021), which 
further contributes to the estimation of branch basal areas of 
each whorl. Although our scanned sample trees (dataset I) are 
limited in number and focused on Scots pine only, TSMtls still 
has potential and value in measuring more species and over a 
larger area.

Conclusions

In this study we present a new method that not only estimates 
branch biomass precisely, but also present an opportunity to es-
timate individual branch attributes using TLS data. The TSMtls 
method presented showed greater accuracy of tree-level branch 
biomass estimation than other TLS-based methods. Although 
a high number of commission errors appeared in whorl/branch 
number estimates and biases could be found in branch diameter 
estimates, TSMtls produced more accurate results for whorl-
level information estimates than TreeQSM. The good perform-
ance in Scots pine trees shows the great potential in extending 
the method to more species and larger areas. While our results 
are based on six TLS-scanned trees, a limited dataset compared 
with other studies, it would be necessary to collect a larger 
dataset to confirm our conclusions in the future.
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