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ABSTRACT

Purpose

Aging is known to play a critical role in the etiopathogenesis of several diseases.
Among them, cardiovascular disorders are especially relevant since they are
becoming the first cause of death in western countries. Resveratrol is a
polyphenolic compound that has been shown to exert beneficial effects at
different levels, including neuronal and cardiovascular protection. Those effects
of resveratrol are related, at least in part, to its antioxidant and anti-inflammatory
properties. In the current investigation we were interested in exploring whether
the positive effects of resveratrol at cardiac level were taking place even when
the supplementation started in already old animals.

Methods

Old male rats were supplemented with resveratrol during 10 weeks. Using RT-
PCR, we analyzed the effects of resveratrol supplementation on the expression
of different genes related to inflammation, oxidative stress and apoptosis in rat
heart.

Results

Resveratrol reverted the age-related changes in inflammatory, oxidative and
apoptotic markers in the rat heart. Among others, the expression of two major
inflammatory markers, INF-y and TNF-o. and two oxidative markers, heme
oxygenase and nitric oxide synthase, were increased with aging, and resveratrol
supplementation reduced their levels to those observed in the heart of young
animals. Moreover, age-related changes in apoptotic markers in rat heart were
also reverted by resveratrol treatment.

Conclusion
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Our results suggest that resveratrol might exert beneficial effects as an anti-aging

compound in order to revert age-related changes in cardiac function.
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INTRODUCTION

Cardiovascular diseases are becoming the first cause of death in western
countries, and in the next two decades the proportion of total deaths worldwide
due to cardiovascular diseases within the elderly population (>70 yr) will be 40%
[1]. Although long- term exposure to risk factors, such as those related to lifestyle
(diet, physical inactivity...), plays a major role in the etiopathogenesis of cardiac
disorders, aging itself is considered to be the major determinant for developing
cardiac diseases [2]. Thus, the increased life expectancy has as a direct
consequence: a higher incidence in age-related diseases, in particular those

associated with the cardiovascular system.

During the last decades different investigations have stressed the relevance of
inflammation and oxidative stress both in heart aging and in the onset and
development of cardiac diseases, such as heart failure, cardiac hypertrophy
and diabetic cardiomyopathy (reviewed in [3]). Age-related increases in those
processes lead to reduced cellular survival and cardiac dysfunction. Moreover,
inflammation and oxidative stress are also believed to play an important role in
age- related changes in the vascular system, in particular in the reduction in the
endothelium-dependent relaxation and increases in endothelium-dependent
contraction [4]. Cytokines are major signaling proteins involved in immunity,
inflammation and hematopoiesis, among other processes. During aging, a shift
in the cytokine profile in blood occurs, with increases in inflammatory
substances such as tumor necrosis factor- alpha (TNF-a) and interleukins (IL)
1, 2 and 6, as well as decreases in anti-inflammatory substances like IL-10 [5].
Regarding oxidative stress, mitochondrial reactive oxygen species (ROS)

production is considered the most important source of cellular ROS in healthy
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tissues since the main free radical generator, the electron transport chain, is
located at the inner mitochondrial membrane. Together with ROS, reactive
nitrogen species (RNS) also play an important role in the disruption of redox
signaling and in molecular damage. RNS includes the nitric oxide radical (NO),
which is mainly generated by NO synthases (NOS), and other compounds
originated by the reaction of NO with ROS, which results in peroxynitrites.
During aging, the age-associated organ dysfunction has been partly related with

the accumulation of damage induced by ROS and NOS [6].

Eventually, inflammatory and oxidative processes have been described to
contribute to mitochondrial dysfunction that may trigger apoptotic signaling [7,8].
According to this, an over-activation of the apoptotic pathways has been
observed in age-related diseases, including neurodegenerative processes and

cardiovascular events such as ischemia/ reperfusion [9,10].

Different strategies have been used trying to improve aging and postpone the
onset of age-related disorders. Among them, nutritional intervention is very
popular, including both dietary restriction and dietary supplementation. Dietary
restriction (DR) has been used as a model for investigating the mechanisms
underlying the aging process for many years and it has described to increase
lifespan and reduce the incidence of age-related diseases in different species
[11,12]. Interestingly, the positive effects of DR have been described to take
place even when restriction is initiated in middle-aged animals [11]. On the
other hand, one of the most popular dietary supplements that has been used
due its beneficial effects on age-related detrimental changes is resveratrol [13].
Resveratrol (3,5,4'-trihydroxy-trans-stilbene) is a polyphenolic phytoalexin

present in some food products including grapes and berries. The relevance of
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resveratrol exponentially rose when it was considered as a potential DR
mimetic, being identified as an activator of Sirt1 [14]. Nevertheless, sirt1 is not
the only target of resveratrol. It has been described to inhibit cyclooxygenase 1,
cAMP phosphodiesterases, and to interact with the estrogen receptor alpha
[15]. The beneficial effects of resveratrol are diverse, including suppression of
cancer cell growth, neuroprotection and protection against age-related
cardiovascular dysfunction [15]. However, most of the studies on resveratrol
have been performed in young/ adult animals, when the deleterious effects of
aging are still missing. In the current investigation we were interested in
exploring whether supplementation with resveratrol in old animals reverted the
age-related changes in different parameters covering various aspects of
inflammation, oxidation and apoptosis in the rat heart. We observed that when
old animals were supplemented with resveratrol, the expression of genes
related to those processes were reverted to levels observed in young animals.
Moreover, those effects were related, at least in part, by the changes in SIRT1
levels. Our results suggest that resveratrol would exert beneficial effects on

cardiac function even when supplementation starts at advanced age.

MATERIAL AND METHODS

Animals and treatment

This study was carried out in accordance with the guidelines for Ethical Care of
Experimental Animals of the European Union, approved by the Ethical
Committee for Animal Studies of the Complutense University (Madrid, Spain).
Young (2 month-old) and old (24 month-old) male Wistar rats were compared in

this study. All rats were housed in standard conditions and fed a standard
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laboratory rat diet and water ad libitum. One group of old rats was treated with
resveratrol at dosages of 10 mg/ kg per day during 10 weeks. In humans, this
dosage would correspond to approximately to 100mg/ day, assuming an
average human body weight of 60Kg. This would correspond to a mild dose in
humans. Several studies in humans have shown that resveratrol is well
tolerated with no marked toxicity [16,17], and only the daily administration at
very high doses of 2.5- 5g per day for 29 days caused mild to moderate
gastrointestinal symptoms [18]. Using allometric scaling [19], the human
equivalent dosage to the one we used in old rats in the current investigation,
based on body surface area, is 1.61 mg/ kg / day. In the present study, old rats
were treated with resveratrol at doses of 10 mg / kg / day for 10 weeks.

The second group of rats was left untreated as a control group. Resveratrol was
obtained from Actafarma Laboratories, Madrid, Spain. It was dissolved in
absolute ethanol and added to the drinking water in a final ethanol
concentration of 0.1%. Resveratrol solution was prepared according to water
intake of the animals, in order to ensure that they received the right dosage.
Water bottles were covered with aluminium foil for protection from light, and the
drinking fluid was changed every day. Untreated animals received same
ethanol concentration in tap water. Animals were sacrificed by decapitation and

the heart (ventricles) removed.

RNA isolation and RT-PCR
RNA was isolated from heart samples using the method described by
Chomczynski and Sacchi [20], using the TRI Reagent Kit (Molecular Research

Center, Inc., Cincinnati, OH), following the manufacturer's protocol. The purity
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of the RNA was estimated by 1.5% agarose gel electrophoresis, and

RNA concentration was determined by spectrophotometry (260 nm). Reverse
transcription of 2 uyg RNA for cDNA synthesis was performed using the Reverse
Transcription System (Promega, Madison, WI) and a pd(N)6 random hexamer.
RT-PCR was performed in an Applied Biosystems 7300 apparatus using the
SYBR Green PCR Master Mix (Applied Biosystems, Warrington, UK) and 300-
nM concentrations of specific primers (Table 1). The thermocycling profile
conditions used were: 50°C for 2 m, 95°C for 10 m, 95°C for 15 s, 60°C for 1 m,
95°C for 15 s, 60°C for 30 s, and 95°C for 15 s. For the normalization of cDNA
loading in the PCR reaction, the amplification of the 18S rRNA for every sample
was used. Relative changes in gene expression were calculated using the 2-

AACT method [21].

Purification of total protein extracts and western blotting

In order to obtain the total protein extracts, hearts were homogenized in RIPA
buffer (1:10 w/v) (60 mM TRIS, 150 mM NacCl, 1 % triton 9100, 0.5 % Sodium
deoxycholate, 0.1 % SDS) in the presence of protease inhibitors (protease
inhibitor cocktail (Sigma)) and incubated 30 min on ice. After centrifugation at
100009 for 30 min, the supernatants were collected. Samples were aliquoted
and stored at -80°C until use. The protein concentration of the different
preparations was determined by the Lowry method (Lowry et al. 1951).

Total heart samples (75 ug protein) were separated on 4-15 % MiniPROTEAN
TGX™ gels (Bio-Rad) and transferred to PVDF membranes (Millipore). SIRT 1
protein levels were detected by using a monoclonal mouse antibody (1:500

dilution; ab110304 Abcam). 3-Actin (monoclonal mouse antibody. 1:10000
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dilution, A2228 Sigma) was used as loading control. Secondary anti-mouse
antibody was used at 1:5000 dilution. Chemiluminescent reaction was
performed using ECL plus® (GE Healthcare, Amersham) and visualized in a
GeneGnomeXRQ (Syngene). In order to estimate the levels of SIRT1, the
intensity of the bands was quantified using the specific Gene Snap software

(Syngene)

Statistical analysis

All data are reported as mean * standard error of the mean (SEM) using from 4
(old animal group) to 6 (young group and old resveratrol treated group)
independent preparations, except when indicated. The results were analyzed by
ANOVA followed by Fisher’s test. Statistical analyses were carried out using the
Graphpad Prism Software. The minimum level of statistical significance was set

at p<0.05 in all analyses.

RESULTS

SIRT1 levels were increased in the heart of old rats after resveratrol
treatment

During aging SIRT1 levels were reduced by 20% in rat heart although this
reduction was not statistically significant (p=0.50) (Figure 1). When old animals
were subjected to resveratrol treatment, SIRT1 protein levels were 20% higher
than old control counterparts (p=0.38), reaching protein levels similar to those

observed in young rats.
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Resveratrol reverted the age-related changes in the transcription of
inflammation- related genes in the heart of old rats

One of the main hallmarks of aging is a chronic inflammation state. In the
current investigation, we did observe such pro- inflammatory state in the heart
of old rats (Figure 2). A significant age-related increase in the transcription of
pro-inflammatory cytokines INF-y and TNF-a (p=0.04 and p=0.03, respectively)
was observed. Such increase was especially important in the case of TNF-a,
with a 2.2 —fold enhancement. We also investigated one of the main
transcription factors related to pro-inflammatory cytokines, NFxB. Similarly to
what we observed in pro-inflammatory cytokines, the expression of NFxB2
(p52) increased by 45% with age in rat heart, although it did not reach statistical
significance (p=0.29). In addition, the transcription levels of the anti-
inflammatory cytokine IL-10 were 25% lower in the heart of old rats than in
young animals, although such reduction was not statistically significant
(p=0.43). On the other hand, resveratrol treatment led to a significant reduction
in the levels of pro- inflammatory markers INF-y and TNF-a (p<0.05 and
p=0.08), and it also reduced the age-related enhancement in p52 transcription
levels, yet again, not significantly (p=0.60). Conversely, resveratrol increased
the transcription of IL-10 (p=0.39), reaching comparable levels to those

observed in young animals.

Resveratrol treatment reduced the age-related increase in the
transcription of oxidation- related genes in the heart of old rats
Similarly to what we observed with inflammatory markers, the heart of aged rats

showed higher transcription levels of oxidative stress markers (Figure 3).

10
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Expression of HO-1 was strongly induced with aging (p< 0.001) and although
resveratrol treatment significantly reduced such an increase (p= 0.0032), it did
not completely revert it. Similarly, HO-2 expression was also enhanced with
aging. However, this increase was not statistically significant (p=0.11).
Nevertheless, resveratrol significantly reduced the expression levels of HO-2 in
the heart of old rats (p=0.18). We observed and age-related increase in the
expression of both endothelial (eNOS; p=0.06) and inducible (iNOS; p=0.24)
NOS. Moreover, the expression of INOS was significantly reduced in old
animals when they were subjected to resveratrol treatment (p<0.05) to levels
similar to what we observed in young rats, whereas eNOS expression levels,

although diminished, did not change significantly (p=0.29).

The transcription of genes related to apoptosis was increased in the heart
of aged animals and reverted by resveratrol treatment

Inflammation and oxidative stress may induce the activation of the apoptotic
pathways, which would eventually lead to cell death. Enhancement in apoptosis
would be particularly relevant in tissues containing post-mitotic cells such as the
heart, since the tissue function might be compromised. Therefore, we
investigated the expression of four different genes related to both, caspase-
dependent and independent apoptotic pathways (Figure 4). We observed that
with the exception of XIAP (p=0.07), the transcription of AlF, BAD and Bcl-2
markers was significantly increased in the heart of old animals (p<0.05), being
the increase in AIF the most important one (1.9- fold increase; p<0.0064).
Similarly to what we observed in inflammatory and oxidative factors, resveratrol

treatment reduced the expression levels of all the analyzed apoptotic markers.

11
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However, such reduction did not reach statistical significance for any of the

markers, AlF (p=0.08), BAD (p=0.20), Bcl-2 (p=0.07) and XIAP levels (p=0.35).

DISCUSSION

Nowadays, cardiovascular diseases are the first cause of morbidity and
mortality in western countries. Thus, searching for new strategies that may help
to delay the development of cardiovascular diseases is of great interest. One of
the main risk factors for cardiovascular dysfunction is aging [3], and different
approaches have been used in order to improve the age-related decline in
cardiovascular function and delay the onset of cardiovascular diseases. Among
them, supplementation with resveratrol has been described to exert beneficial
effects on the cardiovascular system [22,23]. However, whether resveratrol has
beneficial effects once the age-related deterioration has taken place, is
unknown. In the current investigation, we analyzed whether resveratrol
supplementation had beneficial effects on the cardiovascular system, even
when the treatment starts in animals that are already old.

Resveratrol acts as an activator of different signaling pathways, but the
activation of SIRT1 seems to critical [24,25]. Moreover, it has been reported that
resveratrol induces the expression of SIRT1 as well [26,27]. SIRT1 belongs to
the sirtuin family of proteins and it is the most studied one in mammals. Sirtuins
are NAD* -dependent protein deacetylases that regulate key cellular processes
such as cell cycle, apoptosis or inflammation. Together with their role as
transcription regulators through histone deacetylation, sirtuins are known to
have different targets in cytosol and mitochondria, including, among others,

p53, FoxO transcription factors, PGC-1a and NF-kB [28]. Sirtuins also activates

12
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AMP-activated protein kinase (AMPK) [29], which is linked to the regulation of
the mammalian target of rapamycin (mTOR) pathway with important
consequences at cardiac level [30-32]

Different studies have shown that during aging or under specific pathological
conditions, such as diabetes, sirtuin expression and activity are reduced
[26,33,34]. Thus, the beneficial effects of resveratrol in relation to aging and the
onset and progression of various diseases are likely to be related to its role as
activator of sirtuins. Accordingly and in agreement with previous investigations
[33,34], we observed that SIRT1 protein levels tended to be lower in aged
animals and, as expected, resveratrol treatment reverted SIRT1 levels to those

observed in young animals.

Age-related cardiac dysfunction has been associated with an increased in
inflammatory processes (reviewed in [3]). In agreement with that, the
inflammatory markers analyzed in the current study indicated a pro-
inflammatory state in the heart of aged rats. In cardiac tissue, chronic
inflammation is particularly relevant, since it has been suggested to significantly
contribute to heart failure [35,36]. In particular, the increase in TNF-a levels has
been related with cardiac hypertrophy and dilated cardiomyopathy [37]. In old
animals, we have observed an increased in the pro- inflammatory markers INF-
vy and TNF-a, together with a reduction in the levels of anti-inflammatory
cytokines like IL-10. The enhancement of pro- inflammatory cytokines levels
was related with an age-related increase tendency in the expression of p52,
one of the proteins constituting homodimers and heterodimers with other NFxB

proteins. NFkB is a complex transcription factor that is involved in a number of

13
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physiological processes, including inflammation, oxidative stress and cell
survival [38]. NF«B is chronically elevated in the aging process and in many

age-related disorders including cardiovascular diseases [39].

Considering the described anti-inflammatory effects of sirtuins and the effect of
resveratrol supplementation on SIRT1 levels in the heart of our animals, we
expected to observe a reversion of the inflammatory markers in old animals
treated with resveratrol. The expression levels of pro-inflammatory cytokines
were actually reduced, reaching those observed in young animals. At the same
time, the reduction in the anti-inflammatory IL-10 observed in old animals was
reverted by resveratrol treatment. However, resveratrol treatment did not
change significantly p52 expression levels. Resveratrol has been described to
inhibit NFKB signaling by suppressing the activity of Ik3 kinase (IKKR) [40].
Activation of IKKR is required for p52 activation, which suggests that the effect
of resveratrol might not be dependent on changes on p52 expression levels but
rather on its activity. In sum, our results support previous investigations showing
that resveratrol prevent inflammation in the cardiovascular system [41-43].
Together with inflammatory markers, we investigated the expression levels of
two enzymes related with oxidative stress: heme oxygenase (HO) and nitric
oxide synthase (NOS). The beneficial effects of resveratrol have been
described to be related with a lower ROS generation, which would be
responsible, at least in part, for its anti-oxidant effects [41,42]. Heme
oxigenases 1 and 2 are the inducible and constitutive isoforms respectively.
Both catalyze the degradation of heme to biliverdin, free iron, and carbon

monoxide (CO). HO-1 can be induced by several factors, including oxidative
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stress, and HO-2, although it is constitutively expressed, may be regulated
differently under certain conditions [44,45]. Both HO isoforms are believed to
play an important role in the cellular antioxidant defense [46,47]. Moreover, the
HO system has been described to have an important anti-inflammatory role
[48]. In contrast with a recent study showing a decline in the levels of HO-1 and
HO-2 and in the total HO activity in female rats with aging [49], we observed an
age-related increase in the mRNA levels of both HO-1 and HO-2. However, it
has been described that estrogens play an important role in the regulation of
HO activity [49-51], suggesting that the pattern of age-related changes in HO
expression in male and females animals may differ. In fact, a previous study in
our laboratory showed that HO-1 levels were increased with aging in the heart
of male mice [52], in agreement with the current results in male rats. The
increase in HO levels might indicate an attempt to compensate an
enhancement of oxidative stress and inflammation in the heart of old animals.
We observed that resveratrol supplementation in old rats totally or partially
blocked the age-related increase in HO transcription levels. Reported effects of
resveratrol on HO levels are contradictory. Thus, despite it has been reported to
induce HO-1 expression in cell cultures [53], supplementation with resveratrol
has been described to revert increases in HO-1 levels observed in retina of
diabetic rats [54] as well as to inhibit metastasis of lung adenocarcinoma cells
by suppressing HO-1 activity [55]. In agreement with these studies, we
observed that the HO-1 and HO-2 transcription levels were lower in the heart of
resveratrol-supplemented rats than in aged control animals, suggesting that

resveratrol supplementation might reduce oxidative stress in those animals.
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Regarding NOS, we investigated the inducible (iNOS) and the constitutive
(eNOS) isoforms. Nitric oxide (NO) is generated by the activity of NOS, which
converts L-arginine into L-citrulline. NO bioavailability is critical for vascular
function and hence age-related reduction on this parameter is considered as a
main risk factor for developing cardiovascular diseases such as hypertension,
which may lead to cardiac failure [56]. Different studies have described
decreases, increases and even no changes in eNOS expression with aging
[56]. In the current investigation we have observed that both eNOS and iINOS
expression were higher in aged animals than in young counterparts. An
increase in INOS expression has been previously described in the liver, heart
and pancreas of the senescence-accelerated mice model SAMP8 [52,57,58] as
well as in pancreas and heart of aged animals [52,59]. Increased INOS
expression has been suggested to play an important role in reducing eNOS
activity and NO bioavailability [60], and it has been related to atherosclerosis
development, since iINOS has been described to be the main generator of free
radicals in the atheromatous plaques [61,62]. Moreover, an age-related
uncoupling of eNOS occurs with aging, leading to higher superoxide production
and peroxynitrate generation [56,63]. Thus, the higher levels of both isoforms of
NOS in the heart of aged animals suggest that cardiac tissue is subjected to an
increased oxidative and nitro-oxidative stress in those animals. Similarly to what
we observed in HO-1 and HO-2, resveratrol treatment reverted the age-related
increase in NOS isoforms, supporting the antioxidant and protective effect of

resveratrol on the aged heart as previously reported [34,41].

Together with the evidences of inflammation being activated through

enhancements in oxidative stress, there are several reports suggesting a cross-
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talk between oxidative stress, inflammation and initiation of apoptotic events,
particularly in the cardiovascular system [7,8,64,65]. Age-related enhancement
in apoptosis has been related to cell loss in several tissues, including the heart,
leading to cardiac dysfunction and cardiomyopathies [66,67]. In the current
investigation, we observed that one of the pro-apoptotic factors in the caspase-
dependent pathway, BAD, was increased during aging. BAD is one of the pro-
apoptotic “Bcl-2 family” proteins that promote permeabilization of the
mitochondrial membrane and the release of cytochrome c. We also observed a
very significant increase, almost 2.5 fold, in the levels of AIF expression. This
pro-apoptotic factor is released from mitochondria and promotes apoptosis
through nuclear DNA fragmentation in a caspase- independent pathway,
stressing an age-related pro-apoptotic state in the rat heart. However, at the
same time, we observed that the expression of the anti-apoptotic protein Bcl-2,
which binds to pro-apoptotic proteins to inhibit mitochondrial permeabilization,
was significantly increased in old animals, as well as the levels of the caspase
inhibitor XIAP. These results suggest that the age-related increase in pro-
apoptotic factors would be counteracted by the enhancement of anti-apoptotic
factors of the caspase-dependent pathway. The augmented levels of anti-
apoptotic factors are likely a protective mechanism that would be important in
tissues with primarily post-mitotic cells like the heart, where cell loss would
greatly compromise their functionality. We have actually observed that in the
liver of these animals, which is a mitotic tissue, the expression of pro-apoptotic
proteins was increased 20-35% while the expression of anti-apoptotic proteins
like XIAP experienced a 20% reduction during aging (Torregrosa-Munumer,

unpublished results), suggesting a different profile of apoptosis in heart and

17



398 liver. These differences in apoptosis when analyzing mitotic and post-mitotic
399 tissues have been previously reported [68-70]. The effect of resveratrol

400 treatment on the expression of pro- and anti-apoptotic markers was similar to
401 the one observed in inflammatory and oxidative markers: it reverted the age-
402 related changes in all cases.

403  Since resveratrol treatment led to a general reduction in inflammatory and

404 oxidative markers in aged hearts, it was expected that its effect on pro-apoptotic
405 markers would be also similar. The apoptotic response of a cell is regulated by
406 the relative balance of pro- and anti-apoptotic proteins. Cellular control of anti-
407  apoptotic factors expression would be critical for cells’ ability to modulate its
408 responses to apoptotic stimuli [71]. Thus, similarly to what we observed in pro-
409 apoptotic factors, a reduction of anti-apoptotic proteins would be expected

410  under resveratrol treatment.

411 Moreover, these results are in agreement with previous investigation showing
412  an anti-apoptotic effect of resveratrol in pancreas [34] and heart [72,73].

413  Summarizing, resveratrol had positive effects on the heart of old animals even
414  when starting supplementation at old age. Our results indicate that resveratrol
415 might be an interesting approach not only for preventing age-related increases
416 ininflammation and oxidative damage, but also for reverting those changes
417  once they take place. In the current investigation we observed that the pro-
418 inflammatory and pro-oxidative state that characterizes the aging process were
419 reverted by resveratrol. Moreover, the age-related changes in apoptotic markers
420  were also reverted by resveratrol treatment. In figure 5 we summarize some
421  aspects of the pathways that have been investigated in the current study

422  together with resveratrol effects through SIRT1. Similarly to previous studies

18



423  showing protective effects of resveratrol in cognitive performance [74] or

424  endothelial dysfunction [75] in aged rats, our results suggest that resveratrol
425 might be also used as anti-aging approach in order to revert the age-related
426  changes in cardiac function.
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FIGURE LEGENDS

Fig. 1 Sirtuin 1 protein levels in the heart of young (C 2m), old (C 24m) and old
rats treated with resveratrol (RSV 24m). Results are expressed as the meanzt

SEM relative to 2 month-old animals.

Fig. 2 mRNA levels of inflammatory markers in the heart of young (C 2m), old
(C 24m) and old rats treated with resveratrol (RSV 24m). Results are expressed
as the meanz SEM relative to 2 month-old animals. n= 4- 6, except TNF-a data

in C 24m group (n=3). *p=<0.05

Fig. 3 mRNA levels of oxidative markers in the heart of young (C 2m), old (C
24m) and old rats treated with resveratrol (RSV 24m). Results are expressed as
the meant SEM relative to 2 month-old animals. n= 4- 6, except eNOS and

INOS data in C 24m group (n=3). *p=0.05; **p=<0.01; ***p=<0.001

Fig. 4 mRNA levels of apoptotic markers in the heart of young (C 2m), old (C
24m) and old rats treated with resveratrol (RSV 24m). Results are expressed as
the meant SEM relative to 2 month-old animals. n= 4-6, except XIAP and Bcl-2

data in C 24m group (n=3). *p<0.05; **p=0.01

Figure 5. Beneficial effects of resveratrol are partly related to sirtuin 1 actions.
An important positive feedback between inflammation and oxidative stress
takes place leading to activation of apoptotic events. Among other effects,
resveratrol reduces inflammation and oxidative stress. The figure depicts some
of the resveratrol effects through sirtuin 1. Those that have been analyzed in

the current investigation are highlighted with boxes. Cyt c: Cytochrome c; C3:
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Caspase 3; C8: Caspase 8; C9: Caspase 9; Solid lines with bars indicate

inhibition; Arrows represent activation.
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719 Table 1. Primers used in RT-PCR experiments

IL10 Forward ACTGCACCCACTTCCCAGT
Reverse TTGTCCAGCTGGTCCTTTGT

NFkB Forward TGGAACAGCCCAAACAGC
Reverse CACCTGGCAAACCTCCAT

INFg Forward TGAAAGCCTAGAAAGTCTGAAGAAC
Reverse CGTGTTACCGTCCTTTTGC

TNF-a Forward ATGAGAAGTTCCCAAATGGC
Reverse CTCCACTTGGTGGTTTGCTA

AlF Forward AGTCCTTATTGTGGGCTTATCAAC
Reverse TTGGTCTTCTTTAATAGTCTTGTAGGC

XIAP Forward GCTTGCAAGAGCTGGATTTT
Reverse TGGCTTCCAATCCGTGAG

BAD Forward GCCCTAGGCTTGAGGAAGTC
Reverse CAAACTCTGGGATCTGGAACT

Bcl-2 Forward CAGGTATGCACCCAGAGTGA
Reverse GTCTCTGAAGACGCTGCTCA

HO-1 Forward GTCAAGCACAGGGTGACAGA
Reverse ATCACCTGCAGCTCCTCAAA

HO-2 Forward TACGGCACCAGAAAAGGAAA
Reverse GTGCTTCCTTGGTCCCTTC

eNOS Forward CCAGTGCCCTGCTTCATC
Reverse GCAGGGCAAGTTAGGATCAG

iNOS Forward CTTTGCCACGGACGAGAC
Reverse TCATTGTACTCTGAGGGCTGAC

18S Forward GGTGCATGGCCGTTCTTA
Reverse TCGTTCGTTATCGGAATTAACC

720 18S was used as a housekeeping gene to compare the samples
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Figure 2
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Figure 3
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Figure 4
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