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Abstract

1. Stacked species distribution models (S-SDM) provide a tool to make spatial predictions about 

communities by first modelling individual species and then stacking the modelled predictions to form 

assemblages. The evaluation of the predictive performance is usually based on a comparison of the 

observed and predicted community properties (e.g., species richness, composition). However, the most 

available and widely used evaluation metrics require the thresholding of single species’ predicted 

probabilities of occurrence to obtain binary outcomes (i.e., presence/absence). This binarisation can 

introduce unnecessary bias and error.

2. Herein, we present and demonstrate the use of several groups of new or rarely used evaluation 

approaches and metrics for both species richness and community composition that do not require 

thresholding but instead directly compare the predicted probabilities of occurrences of species to the 

presence/absence observations in the assemblages.

3. Community AUC, which is based on traditional AUC, measures the ability of a model to differentiate 

between species presences or absences at a given site according to their predicted probabilities of 

occurrence. Summing the probabilities gives the expected species richness and allows the estimation of 

the probability that the observed species richness is not different from the expected species richness 

based on the species’ probabilities of occurrence. The traditional Sørensen and Jaccard similarity 

indices (which are based on presences/absences) were adapted to maxSørensen and maxJaccard and to 

probSørensen and probJaccard (which use probabilities directly). A further approach (improvement 

over null models) compared the predictions based on S-SDMs with the expectations from the null 

models to estimate the improvement in both species richness and composition predictions. Additionally, 

all metrics can be described against the environmental conditions of sites (e.g., elevation) to highlight 

the abilities of models to detect the variation in the strength of the community assembly processes in 

different environments.

4. These metrics offer an unbiased view of the performance of community predictions compared to metrics 

that requiring thresholding. As such, they allow more straightforward comparisons of model 

performance among studies (i.e., they are not influenced by any subjective thresholding decisions).

Keywords: community modelling, stacked species distribution models, validation, environmental gradient, 

insects, plants, Sørensen index, Jaccard index, null model 
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Introduction

In recent years, the focus of spatial ecology has shifted from analysing the distributions of species 

individually to examining them as part of communities or networks (e.g., D'Amen et al. 2017; Ovaskainen 

et al. 2017; Staniczenko et al. 2017), and the field of species distribution modelling has evolved from 

predicting the distributions of individual species towards predicting those of species assemblages (e.g., 

Guisan & Rahbek 2011; Wisz et al. 2013; Harris 2015; D'Amen et al. 2017). Among the different methods 

(see D'Amen et al. 2017 for a review), stacked species distribution models (S-SDMs; Dubuis et al. 2011; 

Guisan & Rahbek 2011) have become the most prevalent examples of species assemblage modelling 

approaches in recent literature. S-SDMs first predict the probability of occurrence of individual species 

using niche-based species distribution models (SDMs) based on quantification of the relationship between 

environmental factors (usually climatic, topographic and land-cover/use variables) and species occurrences 

(usually presences = 1 and absences = 0; Guisan & Thuiller 2005; Elith & Leathwick 2009; Guisan, 

Thuiller & Zimmermann 2017). These individual predictions are then assembled (i.e., stacked; e.g., Ferrier 

& Guisan 2006; Guisan & Rahbek 2011; Mateo, Mokany & Guisan 2017).

One of the major discussions around S-SDMs is whether to threshold individual species distribution 

predictions (i.e., to binarise the predicted probabilities of occurrence “back” to presences and absences) or 

to keep them as probabilities (i.e., continuous values from 0 to 1; e.g., Gastón & García-Viñas 2013; 

Calabrese et al. 2014; Scherrer et al. 2018). It has been argued that predictions should be kept as 

probabilities because thresholding is a transformation of the original model outcome, and as with all 

classifications, it bears some subjectivity (e.g., which threshold method to use? Fernandes, Scherrer & 

Guisan 2018). While there is a consensus that some community properties, such as species richness (SR), 

can be obtained directly based on the probabilities of all of the species predicted at a site (i.e., summing up 

the probabilities by assuming Poisson-binomial distribution; Dubuis et al. 2011; Calabrese et al. 2014), 

there is more debate on the question of how to obtain or evaluate composition information using the raw 

probabilities (Scherrer et al. 2018). The vast majority of S-SDM studies use community evaluation metrics 

(e.g., Sørensen or Jaccard (dis)similarity indices) that compare binary predictions with presence/absence 

observations and therefore require the process of thresholding the probabilistic predictions into a 0/1 

outcome. The most commonly applied approach is to threshold species individually by optimising a 

combination of sensitivity (i.e., proportion of correctly predicted presences) and/or specificity (i.e., 

proportion of correctly predicted absences) and then to use a single threshold per species across all sites 

(“species threshold”; Calabrese et al. 2014). An alternative approach to thresholding individual species 

predictions does not require a species-specific threshold but instead uses site-specific ecological constraints 

(e.g., macro-ecological models or co-occurrence matrices) in combination with probability ranking rules 

(PRR) to threshold the species in each site ("site-threshold"; Scherrer et al. 2018). These methods select a A
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number of species equal to the expected species richness (e.g., derived from macro-ecological models) on 

the basis of the decreasing probabilities of occurrence calculated by the SDMs (D'Amen et al. 2015; 

D'Amen, Pradervand & Guisan 2015). Therefore, the species with the highest probabilities for a site are 

selected (considered present) in decreasing order until the SR predicted for the site is reached.

Nevertheless, no matter which approach is used, thresholding bears the risk of introducing bias in the 

modelling outcome (see Nenzen & Araujo 2011; Calabrese et al. 2014). To date, only very few studies 

have used threshold-independent community evaluation metrics (but see Gastón & García-Viñas 2013; 

Harris 2014). Therefore, while the process of thresholding might ultimately be necessary for some 

applications (e.g., to create community maps in space or time for conservation purposes), we herein 

advocate that this bias-prone “a priori” thresholding can be avoided in the process of model evaluation. 

Using an evaluation method prior to any thresholding could therefore give a more realistic, bias-free 

estimation of the community prediction.

In addition to the potential biases associated with thresholding, there is also the question of which 

information to include in the model evaluation. The most commonly used metrics (e.g., the Sørensen or 

Jaccard similarity indices) only consider the species that are present or that have been predicted to be 

present, while the correctly predicted absences bear no influence on the metrics. Metrics that also consider 

the species as absent or predicted to be absent from a site (i.e., assigning ‘0’ to all species of the modelled 

species pool that are not (predicted to be) in the plot) might provide a more comprehensive evaluation of 

the performance of community predictions (Baroni-Urbani & Buser 1976; Wolda 1981).

Herein, we present five groups of valuable but rarely used approaches and propose new metrics to evaluate 

predictions of both species richness and community composition that do not require thresholding but 

instead directly compare the predicted probabilities of occurrence of species assemblages to the 

presence/absence observations (see Table 1 for an overview). Our aim is to show the power of these 

threshold-independent metrics and approaches to compare any probabilistic predictions to real presence-

absence observations (note that we do not consider the special case of presence-only or presence-

background data here but that we do discuss these in some places in this study). We illustrate their uses and 

performances by applying them to re-evaluate published predictions of both plant and insect communities 

with varying assemblage characteristics (D'Amen et al. 2015; D'Amen, Pradervand & Guisan 2015) as well 

as to a set of 100 virtual species in a controlled environment with a known “true” distribution and bias.

Materials and Methods

We first present the data and models used to obtain the community predictions, which were existing 

datasets and published community models; later, we present the existing and new metrics and approaches 

that can be used to evaluate them without requiring any subjective thresholding.A
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Community data and environmental variables

To model and predict species assemblages, we used presence-absence data on vascular plants, butterflies, 

grasshoppers and bumble bees that were exhaustively surveyed in a study area located in the western Swiss 

Alps (46°10´ to 46°30´ N; 6°50’ to 7°10’ E). Sites were placed following an equal random-stratified 

sampling of grasslands, covering an area of ca. 700 km2 and spanning an elevation range from 375 to 3210 

m a.s.l.

For the plants, 909 sites (4 m2 plots) were surveyed (for more details see Dubuis et al. 2011), whereas the 

data on butterflies, grasshoppers and bumble bees were collected at 208, 202 and 202 sites, respectively, by 

sampling 50 x 50 m areas (for more details see Pradervand et al. 2011 (bumble bees); Pellissier et al. 2012 

(butterflies); Pradervand et al. 2013 (grasshoppers)). Due to data and model restrictions, only 37-69% of 

the originally observed species (those with >10 occurrences) were considered in this study (Table 2 and 

Figure S1). The loss of a large proportion of the observed species is a common disadvantage of methods 

such as S-SDM. However, while the rare species form an essential part of the biodiversity of the area, 

within the datasets used here, they only marginally contributed to shaping the patterns of species richness 

across sites (Figure S2). Furthermore, not accounting for bias in data can affect community models and 

predictions (e.g., Dorazio et al. 2006; Kery, Gardner & Monnerat 2010; Fernandes, Scherrer & Guisan 

2019). For the sake of ecological realism, we demonstrated the use of the metrics by evaluating existing 

model predictions based on real data with varying community characteristics (see Table 1). Additionally, 

we used artificial data to explore the influence of detection issues and species misidentifications (more 

detailed analysis in Fernandes, Scherrer & Guisan 2018; Fernandes, Scherrer & Guisan 2019).

For all species in all taxonomic groups, we used the same set of six environmental predictors calculated at a 

25 m × 25 m resolution: annual mean temperature [°C], annual temperature range [K], annual precipitation 

sum [mm], sum of potential solar radiation over the year [KJ], slope [°] and topographic position [unit-less, 

indicating ridges or valleys]. These variables captured the topo-climatic conditions of the mountain 

environments.

Species distribution models

Due to the low prevalence of many modelled species, we fitted our models with an ensemble of small 

models approach optimised for rare or under-sampled species (ESMs; Lomba et al. 2010; Breiner et al. 

2015; Breiner et al. 2018). Individual models were calibrated with bivariate combinations of the predictors 

using four modelling techniques: generalised linear models (GLM; McCullagh & Nelder 1989), boosted 

regression trees (BRT; Elith, Leathwick & Hastie 2008), classification tree analysis (CTA; Strobl, Malley 

& Tutz 2009) and artificial neural networks (ANN; Lek et al. 1996). All the converged bivariate models 

were then averaged into one ensemble model weighted by their respective AUC. To evaluate the A
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performance of our models both on an individual species level and on the species assemblage level, we 

used a community-cross-validation approach (N=10, 80%/20% training/validation; CCV; Scherrer et al. 

2018). The CCV uses the same set of study sites for all species within an assemblage for each CV and 

therefore allows correct cross-validation at both the species and community levels.

The single species models were evaluated using three threshold independent evaluation metrics: the area 

under the curve of a receiver-operating-characteristic (ROC) plot (AUC; Hanley & McNeil 1982; Swets 

1988), the maximum true skill statistics (maxTSS; Allouche, Tsoar & Kadmon 2006) and the maximum 

Cohen’s Kappa (maxKappa; Cohen 1960; see Guisan, Thuiller & Zimmermann 2017 for details on 

maximisation approaches). All models were run in the R software version 3.4.2 (R Core Team 2017) using 

the ESM functions from the ecospat package (Broenniman, Di Cola & Guisan 2017; Di Cola et al. 2017) in 

combination with biomod2 (Thuiller et al. 2009; Thuiller et al. 2016).

Evaluation of species assemblage predictions

We used four different approaches to evaluate the species assemblages’ predictions based directly on the 

probabilistic output of the ESMs, thus avoiding the bias introduced by thresholding (see the next section). 

These threshold-independent metrics were then compared to the corresponding evaluation metrics based on 

the binary stacked species distribution models (bS-SDMs) using traditional thresholding techniques 

(Scherrer et al. 2018) and/or examined along the elevational gradient to the identify environmental 

conditions where the models performed best or worst.

To create binary predictions for all species (needed for the bS-SDMs), we used three “species-specific” 

(i.e., for each species same threshold across all sites) and one “site-specific” thresholding method (i.e., 

same threshold for all species at a given site). The “species-specific” thresholds were either fixed to 0.5 or 

determined by maximising the true skill statistics (maxTSS) or Cohen’s Kappa values (maxKappa), and the 

“site-specific” threshold was based on the sum of probabilities in combination with a probability ranking 

rule (pS-SDM+PRR; see D'Amen et al. 2015; D'Amen, Pradervand & Guisan 2015; Scherrer et al. 2018 for 

details on thresholding).

To estimate the sensitivity of our evaluation approaches to bias in the initial calibration data, we not only 

tested them on the above-mentioned “real world” datasets but also on a set of 100 virtual species. The 

simulations with virtual species allowed us to observe the behaviours of the evaluation approaches to 

different types of error (i.e., omission errors due to detectability issues and omission and commission errors 

due to misidentification) under controlled conditions (i.e., known truth and bias). All details about these 

virtual simulations can be found in Appendix 2.
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All the presented approaches are intended for and tested on accurate presence-absence data. Using any of 

the suggested approaches on presence-only (or presence-background) data/models is technically incorrect, 

as these models will not give a probability of occurrence (due to the missing absence information) but 

rather a habitat suitability index (i.e., violating the underlying assumptions of the Poisson-binomial 

distribution). Nevertheless, some of the approaches (especially those with low influence of absences; Table 

1) might work well in practice with presence-only models, as the same sites are used for all species within a 

community.

Metrics proposed for evaluating species assemblage predictions without thresholding

1. Community AUC

The community AUC (cAUC, equation 1) is mathematically identical to the standard AUC used in the 

evaluation of single species distribution models (SDMs), but instead of calculating the area under an ROC 

curve (i.e., the false positive rate vs true positive rate) of one species across all sites, the cAUC calculates 

the area under the ROC curve of all the species at one site (resulting from the S-SDM predictions). In this 

case, the cAUC can be interpreted as the abilities of the models to distinguish species presence/absence 

based on the ranking of the predicted probabilities of occurrence of all species at a given site (identical to 

Harrell's Concordance Index; Harrell Jr et al. 1982). The cAUC is defined as follows:

eqn 1  cAUC =
∑𝑅𝑃 ―

𝑛𝑃(𝑛𝑃 + 1)

2

𝑛𝑃𝑛𝐴

where  is the rank sum of all species present at a site (i.e., the ranks sorted from lowest to highest ∑𝑅𝑃

probability), nP is the number of species present and nA is the number of species absent (see Marrocco, 

Duin & Tortorella 2008 for mathematical details). Therefore, a cAUC value of 1 means that all the species 

that are present at a site have higher predicted probabilities of occurrence than any of the species that are 

absent from the site. As a result, a probability threshold can be set that perfectly distinguishes the species 

that are present from those that are absent. A value of cAUC lower than 1 indicates that no such perfect 

threshold is possible, and some commission or omission errors are unavoidable (note: 0.5 = random model, 

0 = all the species present in a site have lower predicted probabilities of occurrence than all the species 

absent from the site; i.e., counter-prediction). While the AUC is the most commonly used evaluation metric 

for assessing the predictive performance of individual species SDMs (i.e., performance across sites; 

Fourcade, Besnard & Secondi 2018), it has rarely been used thus far to evaluate predictions at the 

community level (i.e., across species in a site; but see Gastón & García-Viñas 2013).

2. Deviation in species richnessA
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Following Dubuis et al. (2011) and Calabrese et al. (2014), the expected species richness SR of a site j was 

calculated by summing the predicted probabilities (pj,k) of all K species at site j. This was based on the 

assumption that the site-level species richness prediction SRj follows a Poisson-binomial distribution with a 

probability mass function, which was calculated as follows:

eqn 2 Pr (𝑆𝑅𝑗│𝑝𝑗) =
1

𝐾 + 1∑𝐾
𝑛 = 0(𝑒

―𝑖2𝜋𝑛𝑆𝑗
𝐾 + 1 ∏𝐾

𝑘 = 1[𝑝𝑗,𝑘𝑒
𝑖2𝜋𝑛
𝐾 + 1 + (1 ― 𝑝𝑗,𝑘)])

where i =  is the imaginary unit. Therefore, the expected mean species richness E(SRj) and its standard ―1

deviation σ(SRj) of site j are as follows: 

eqn 3 𝐸(𝑆𝑅𝑗) = ∑𝐾
𝑘 = 1𝑝𝑗,𝑘

and

eqn 4 σ(𝑆𝑅𝑗) = ∑𝐾
𝑘 = 1(1 ― 𝑝𝑗,𝑘)𝑝𝑗,𝑘

which provide a formal theoretical basis for stacking predictions of probability of occurrence values from 

SDMs (see Calabrese et al. 2014 for more details). Based on the probability mass function (equation 1), we 

can also calculate the probability (p-value) of a site-level species richness prediction SRj that is equal to or 

lower than the observation  (equation 5) or equal to or higher than the observation  (equation 6) 𝑆𝑅𝑜𝑏𝑠𝑗 𝑆𝑅𝑜𝑏𝑠𝑗

based on the probabilities of occurrence in a site pj, which can be written as follows:

eqn 5  Pr (𝑆𝑅𝑗 ≤  𝑆𝑅𝑜𝑏𝑠𝑗
) = ∑𝑆𝑅𝑜𝑏𝑠𝑗

𝑆𝑅𝑗 = 0Pr (𝑆𝑅𝑗|𝑝𝑗)

eqn 6 Pr (𝑆𝑅𝑗 ≥  𝑆𝑅𝑜𝑏𝑠𝑗
) = 1 ― ∑𝑆𝑅𝑜𝑏𝑠𝑗 ― 1

𝑆𝑅𝑗 = 0 Pr (𝑆𝑅𝑗|𝑝𝑗)

Based on the null hypothesis (H0) that there is no difference between the observed and expected SR and a 

predefined α (the probability of making a Type I error, which is usually set at 0.05), we can then use 

equation 5 (if observed SR <= expected SR) or equation 6 (if observed SR >= expected SR) to decide 

whether to accept or reject H0 (see example scripts in Appendix 1). All these metrics are based on the 

assumption that the probabilities (pj) are fixed, known quantities. In reality, the pj contain uncertainty, and 

ignoring this uncertainty might lead to errors in the estimation of confidence intervals for SRj. Therefore, in 

the case of known uncertainty, error propagation techniques could be used to account for uncertainty in the 

site‐level richness predictions.

As the absolute SR error (i.e., the difference between the observed and expected SR) is strongly dependent 

on the modelled species pool (i.e., number of species modelled) as well as the average site SR, we A
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standardised the SR error by dividing it by the average site SR of each taxa (see Table 2). In this way, the 

results from the different taxa with differently sized species pools and the average site SR can be compared.

3. Maximisation approaches for community composition metrics

To evaluate the abilities of our models to predict the community composition, we propose two types of new 

similarity metrics that are closely related to the commonly used the Sørensen (equation 7; Sørensen 1948) 

and Jaccard (dis)similarity (equation 8; Jaccard 1901) indices. The two traditional indices were defined as 

follows:

eqn 7 𝑆ø𝑟𝑒𝑛𝑠𝑒𝑛 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 =  
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁

eqn 8 𝐽𝑎𝑐𝑐𝑎𝑟𝑑 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁

where TP are true positives (i.e., species are both observed and predicted to be present), FP are false 

positives (i.e., species that are not observed but are predicted to be present) and FN false negatives (i.e., 

species that are observed but are predicted to be absent). All these metrics only consider the species that are 

either predicted or observed to be present in at least one of the samples/sites and ignore species that are 

absent from both samples/sites.

The first type of new similarity metrics uses a maximisation of both the Sørensen (maxSørensen) and 

Jaccard similarity indices (maxJaccard) under the premise that the “site-thresholds” perform as well or 

better than the classical species-thresholds in S-SDMs when aiming for optimised community predictions 

(as evaluated by the Sørensen/Jaccard indices; D'Amen et al. 2015; Scherrer et al. 2018). By considering 

the “site-thresholds” instead of the “species-thresholds”, we can calculate the maximum possible values of 

the evaluation metrics (i.e., Sørensen and Jaccard similarity indices) at each site individually (i.e., optimal 

site specific threshold). This process is similar to the calculation of the maximum values of standard 

evaluation metrics (e.g., TSS or Kappa; i.e., maxTSS or maxKappa) when evaluating single species 

predictions (Guisan, Thuiller & Zimmermann 2017). To calculate the site-specific maxSørensen and 

maxJaccard, we took the maximum of the evaluation values calculated at “all” possible thresholds (0 to 1 

with 0.001 increments).

4. Probability sum-based community composition metrics

The second type of new similarity metrics (probSørensen, equation 9 and probJaccard, equation 10) are 

directly based on the probability outputs of the SDMs. We wanted to stay close to the original Sørensen and 

Jaccard similarity indices, both of which are based on the concept of shared species ( ) versus the 𝐴 ∩ 𝐵

union of species ( ). Therefore, we defined the shared species as the sum of the predicted probabilities 𝐴 ∪ 𝐵

for all species present in the observation and the union of species as the sum of the predicted probabilities A
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that are higher than the lowest predicted probability of an observed species. Identical to the Sørensen and 

Jaccard similarity indices based on the binary data (presence/absence), our probabilistic Sørensen 

(probSørensen) index gives double the weight to the shared species compared to the weighting strategy of 

the Jaccard index (probJaccard):

eqn 9 𝑝𝑟𝑜𝑏𝑆ø𝑟𝑒𝑛𝑠𝑒𝑛 = 2∑
𝑘 ∈  𝑃𝑗

𝑝𝑗,𝑘/(2∑
𝑘 ∈  𝑃𝑗

𝑝𝑗,𝑘 + ∑
𝑝𝑗,𝑘 ≥  min (𝑝𝑗,𝑘)𝑘 ∈ 𝑃𝑗

 & 𝑘 ∈  𝐴𝑗
𝑝𝑗,𝑘)

eqn 10 𝑝𝑟𝑜𝑏𝐽𝑎𝑐𝑐𝑎𝑟𝑑𝑗 = ∑
𝑘 ∈  𝑃𝑗

𝑝𝑗,𝑘/∑
𝑝𝑗,𝑘 ≥  min (𝑝𝑗,𝑘)𝑘 ∈ 𝑃

𝑝𝑗,𝑘

where  is the predicted probability of species k in site j and Pj is the list of species present at site j and Aj 𝑝𝑗,𝑘

is the species absent at site j.

All these new metrics vary from 0 to 1, similar to the original Sørensen and Jaccard similarity indices, 

where 1 means perfect agreement and 0 means no species in common between observations and 

predictions.

5. Improvement over null models

To test our S-SDMs against random expectations, we created two different null models containing different 

amounts of available information. The first null model (null.SR) had information on the modelled species 

pool N and the mean observed SR ( ). This model therefore assumes the same probability pj,k for each 𝑆𝑅

species k in each site j, calculated as follows:

eqn 11  𝑝𝑗,𝑘 =  
𝑆𝑅
𝑁

In this way, the sum of the probabilities at each site adds up to the mean observed species richness across 

all sites.

The second null model (null.Prev) had all the information on species assemblages fed to the SDMs, i.e., 

modelled species pool N, mean observed species richness  and prevalence of each species Prev. This 𝑆𝑅

model therefore predicts for each species k in each site j a probability pj,k identical to the observed 

prevalence of the species and can be written as follows: 

eqn 12  𝑝𝑗,𝑘 = 𝑃𝑟𝑒𝑣𝑘

Based on our two null models, we then calculated for each site j the probability of obtaining the observed 

SR correctly based on the probability mass functions (equation 2). Additionally, we calculated for each site 

j the probability of obtaining the observed community composition Cj (presence/absence of species) 

correctly based on the following:A
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eqn 13 Pr (𝐶𝑗│𝑝𝑗) = ∏
𝑘 ∈ 𝑃𝑗

𝑝𝑗,𝑘∏
𝑘 ∈ 𝐴𝑗

(1 ― 𝑝𝑗,𝑘)

where P is the list of species that are present at a site and A is the species that are absent at a site.

The probability of obtaining the SR or composition correct with our null models was then compared to the 

probability of obtaining it correctly based on our SDM predictions (i.e., the predicted probability of 

occurrence of species) by dividing the probability based on our SDM predictions by the probability of the 

null models (see Box 1 for more information). For example, a value of 2 would mean that the SDM 

predictions are twice as likely to produce a correct result as the null model. Therefore, if the chance of 

obtaining the correct SR and composition based on our SDM predictions were higher than those based on 

our null models, we concluded that the environmental information (i.e., predictors) in the SDMs had 

explanatory power beyond the assemblage characteristics (i.e., species pool modelled, mean observed SR 

and prevalence of species; see Table 2).

Results

The AUC values of the individual SDMs were 0.83 ± 0.05 (mean ± sd across species), 0.70 ± 0.07, 0.87 ± 

0.06 and 0.80 ± 0.08 for plants, bumble bees, grasshoppers and butterflies, respectively (see Figure S3 for 

results on maxTSS and maxKappa). As the purpose of this work was the demonstration of new 

probabilistic community evaluation methods rather than model optimisation, we consider these models to 

be appropriate and focused on the evaluation of their community predictions.

Community AUC

The values for the community AUC (cAUC) were 0.87 ± 0.08 (mean ± sd across sites), 0.82 ± 0.12, 0.92 ± 

0.09 and 0.86 ± 0.07 for plants, bumble bees, grasshoppers and butterflies, respectively (Figure S4). 

Additionally, there were 5.3%, 4.0%, 26.8% and 0.5% of plant, bumble bee, grasshopper and butterfly sites 

with a cAUC of 1, indicating that a perfect separation (i.e., one probability threshold) of species 

present/absent was possible. Our results showed that the variation in cAUC was not random but rather 

varied strongly according to elevation and had consistently higher cAUC values at the lowest and highest 

elevations and the worse predictions at mid elevations across all studied taxa (Figure 1).

Additionally, our simulations with virtual species showed that the cAUC was not strongly affected by 

detection issues as long as the bias levels were similar among the species of a community (Appendix 2).

Deviation in species richness

As expected, our probabilistic species richness predictions (i.e., the sum of the probabilities) resulted in a 

mean standardised SR error (i.e., the difference between the observed and expected SR standardised by the 

average site SR) across sites and species of approximately 0 (-0.01 ± 0.00, mean ± sd), while the A
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predictions using a “species-specific” threshold have a standardised SR error of -0.48 ± 0.23, 0.47 ± 0.46 

and -0.08 ± 0.04 for the fixed threshold, maxTSS and maxKappa, respectively (Figure S4). As the “site-

specific” threshold (pS-SDM+PRR) also uses the sum of probabilities to determine the SR, the results were 

identical to the probabilistic approach. Based on the H0 of no difference between the observed and 

expected SR and a predefined α of 0.05 (i.e., significance level), our results showed that, depending on the 

taxonomic group, 45.1–86.1% of the sites did not show a significant (p<0.05) difference between the 

observed and predicted SR (Figure 2). However, our simulation of virtual species in a controlled 

environment showed that this metric is strongly influenced by omission errors (Appendix 2).

Maximisation and probability-sum-based community composition metrics

Our four newly proposed threshold independent similarity metrics for community composition (i.e., 

maxSørensen, maxJaccard and probSørensen, probJaccard) are generally highly correlated with the 

corresponding similarity metrics based on thresholded presence/absences (bS-SDMs; Figure 3, Figure S6). 

The correlation between the binary Sørensen and Jaccard similarity indices and our threshold-independent 

counterparts increased with mean site SR and with the size of the modelled species pool and was 

consequently lowest for the grasshoppers and highest for the plants. “Species-specific” thresholding 

techniques generally led to lower correlations with our new metrics (Spearman correlation 0.53-0.83) than 

with the “site-specific” thresholding techniques (Spearman correlation 0.74-0.91).

Our simulations with virtual species showed that these metrics were not generally strongly affected by 

detection issues as long as the bias level was similar among the species of a community (Appendix 2).

Improvement over null models

The improvement of the SR predictions based on our SDMs compared to the null model (null.SR) was 

considerably higher at the sites at high elevation compared to the sites at mid or low elevation (Figure 4). 

This pattern seems directly linked to the SR gradient of the modelled species pool along an elevational 

gradient, showing that most species-rich sites were at mid-elevation and that the SR drastically decreased 

with elevation for all taxa above ~2000 m.

A similar pattern was observed for the improvement in composition predictions compared to the most 

informed null model (null.Prev) with the highest improvement at low and high elevations (Figure 4). The 

improvement in composition predictions compared to the null model based on average SR only (null.SR) 

was less clear but mostly seems to have decreased with elevation. However, the improvement over the null 

model based on the average SR was always much higher than that over the most informed null model 

independent of taxa.A
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Our simulations with the virtual species showed that the improvement over null models were highly 

affected by any bias in the initial data that was used for model calibration (Appendix 2).

Discussion

Herein, we presented a range of existing and new evaluation approaches and metrics for community 

predictions that do not require binary thresholding but that directly compare the probabilistic outputs of 

stacked species distribution models (S-SDMs) to presence-absence observations of the species occurrences 

that make up community composition and richness. While we illustrated the use of these metrics in the 

context of the S-SDM predictions, they were equally applicable for comparing observed binary species 

assemblages to probabilistic community predictions obtained with any type of modelling framework, such 

as the joint-SDMs (Warton et al. 2015) or the other more dynamic and/or mechanistic approaches (see 

D'Amen et al. 2017). The fact that no thresholding was found to be necessary – which is contrary to the 

large majority of existing community prediction evaluations– makes the comparisons of studies of different 

taxa or ecosystems less prone to effects other than those from the models themselves, such as the choice of 

a thresholding method (e.g., Gastón & García-Viñas 2013; Calabrese et al. 2014; Fernandes, Scherrer & 

Guisan 2018; Scherrer et al. 2018).

Community AUC

The cAUC is the most basic of the threshold independent community evaluation methods. In general, our 

cAUC values were high (>0.85), indicating that for a majority of the sites, a good separation of the species 

that are present or absent at the site was possible based on the predicted probabilities but that some error 

was unavoidable in most sites. Therefore, the cAUC gave us a direct indication of the minimum 

commission/omission error rates (false positives/false negatives) in the models. As the cAUC does not 

depend on the actual probabilities but rather on their ranking, cAUC was not highly affected by (uniform) 

detection issues (for detailed explanation see Appendix 2), and as a result might also work reasonably well 

for evaluating presence-only models.

By analysing the cAUC along elevation, we could see that the models perform best at the two ends of the 

gradient. This indicates that in the “warmest” and “coldest” environments, the models were much better at 

correctly predicting which species were present or absent (i.e., high or low predicted probability of 

occurrence, respectively) and could be interpreted in an ecological sense as the strength of the assembly 

processes (i.e., habitat filtering or competitive exclusion) caused by the predictors (i.e., abiotic 

environment). Low cAUCs might hint at the fact that the chosen predictors were not able to explain the 

observed species compositions. While the performance of the assembly predictions seems directly linked to A
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the environmental conditions, it is important to acknowledge that their performances also co-varied with 

the SR of the modelled species pool, although to a much lower degree.

Deviation in species richness

As shown in earlier studies, the sum of all the probabilities in a site gives a good threshold-independent 

estimation of the species richness of the modelled species pool (Lehmann, Leathwick & Overton 2002; 

Gelfand et al. 2005; Dubuis et al. 2011; Calabrese et al. 2014). As expected, the average species richness 

was correct if based on the sum of the probabilities, but the most species-poor and most species-rich sites 

were over- and under-estimated, respectively (Dubuis et al. 2011; D'Amen et al. 2015). However, the 

approach presented here allowed an additional estimation of the probability (p-value) that a value equal to 

or lower/higher than the observed SR was the result of the predicted probabilities of occurrence. While the 

absolute differences between predicted and observed species richness were highly dependent on the study 

system (i.e., modelled species pool, average site species richness), the p-values should be more objectively 

comparable among studies and allow the identification of the sites (e.g., environmental conditions, site 

species richness) where the differences between observations and predictions are most significant. 

However, as expected, this metric was quite sensitive to detectability issues (omission of species; Appendix 

2), as these lead to an underestimation of the expected species richness. However, this was not problematic 

as long as the calibration and evaluation datasets shared the same omission rates (e.g., when using cross-

validation) but might lead to greater errors when evaluated with independent data (i.e., possibly with a 

different bias).

Maximisation and probability-sum-based community composition metrics

Our four newly proposed similarity metrics for community composition (i.e., maxSørensen, maxJaccard 

and probSørensen, probJaccard) were highly correlated with the classical binary Sørensen and Jaccard 

similarity indices. As expected, the maximisation approaches usually showed higher values of the 

evaluation metrics, illustrating that all the other thresholding techniques (maxTSS, maxKappa and pS-

SDM+PRR) rarely found the optimal threshold possible at a site (i.e., per community). Therefore, we think 

this simple maximisation approach is an efficient way to make studies predicting and analysing 

communities more comparable as it eliminates the problem of different thresholding choices that make 

posterior comparisons difficult among different study groups and systems. As a very similar maximisation 

approach is becoming the standard in single species modelling (e.g., maxTSS or maxKappa; see Guisan, 

Thuiller & Zimmermann 2017), the community prediction evaluation version proposed here should be 

“easy-to-apply”, well received in community modelling, and adaptable to other similarity metrics (as listed 

e.g., in Cheetham & Hazel 1969; Legendre & Legendre 1998). As these maximisation approaches mostly 

depend on the ranking of probabilities rather than the actual values, these metrics are not strongly affected A
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by systematic omission errors (detectability issues) and might also work well with presence-only data (see 

Appendix 2 for detailed explanations).

Our new community composition evaluation approach (probSørensen and probJaccard) based on the sums 

of predicted probabilities shows promising potential as a truly threshold-independent metric. Furthermore, 

this metric mostly depends on the relative differences between the sums of probabilities rather than their 

actual values and is therefore reasonably resilient to a systematic bias in the initial data (see Appendix 2 for 

detailed explanations).

Improvement over null models

The third approach evaluated the performance improvement of S-SDM assemblage predictions over null 

models. This approach allowed us to identify if and where (in environmental space) the SDMs 

outperformed the null models. As the null models were fed with the same species data as the SDMs, all the 

improvements in the predictions could be directly related to the predictors. This enabled us to determine 

where the environmental variables had the strongest role in defining both the species richness and species 

composition. The improvement over null models was the highest at the two ends of the elevational 

gradient. This finding is in line with both ecological and mathematical expectations. As mentioned before, 

from an ecological perspective, the biological constraints are expected to be the strongest at the extreme 

ends of the environmental gradients (Michalet et al. 2006; Sexton et al. 2009; Louthan, Doak & Angert 

2015). From a mathematical perspective, it is obvious that predictions that are close to the mean species 

richness and most common compositions cannot be improved much more by S-SDMs. Thus, it is important 

to state that improvement over the null model is not necessarily linked to the model performance. If a site 

experiences exactly average conditions, both the null models and S-SDMs might predict the species 

assemblage perfectly, and therefore, no improvement would occur. The average improvement over null 

models therefore mostly allows us to determine how (un-)uniform the assemblages are, while the analysis 

of the improvement along gradients allows us to identify the sites where the species richness and 

composition are most affected by environmental constraints.

In summary, although our results derived from real data showed the value of testing the improvement over 

null models to obtain more insight into community predictions, our virtual simulations additionally 

suggested that these metrics were very sensitive to differences in the bias between calibration and 

evaluation data (see Appendix 2), and care should thus be taken when two distinct datasets with different 

properties (e.g., different sampling designs) are used. It also confirms the value of complementing any tests 

of new metrics or approaches on real data (including the many uncertainties) with virtual simulations where 

the truth is known.A
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Conclusion

Herein, we presented five groups of approaches that allow threshold-independent evaluation of species 

assemblage (community) predictions. By applying these metrics to evaluate community predictions of four 

real species groups and virtual species, we were able to illustrate their use and identify issues that need 

further investigation. As with all evaluation approaches, each had its strengths and weaknesses, many of 

which will require further testing, yet they all offered the great advantage of providing less biased estimates 

of model performance than the previously used metrics that require thresholding. Furthermore, we also 

illustrated how the metrics could provide more robust insights into the strengths of the assembly processes 

that are driven by abiotic environmental predictors. Importantly, these metrics generally allowed a more 

straightforward comparison of the model performances among studies, as they did not depend on any 

thresholding choices (which are either related to the prevalence of the study species or of each study site). 

We herein advocate for the use of a combination of threshold-independent evaluation metrics such as 

cAUC, maximisation approaches for similarity indices and the improvement over null models to 

communicate the prediction accuracy of species assemblages rather than using a single or several 

community metrics and approaches based on probability thresholding. This development would be similar 

to the use of multiple single species evaluation metrics where threshold independent metrics such as AUC 

or maxTSS are currently the standard.
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Table 1: Overview of the different community evaluation approaches. The sensitivity to detectability 

indicates how strongly the approach is influenced by uncertainty in the initial absence data. For details on 

the classification of sensitivity to detectability, see Appendix 2.

Approach Principe Sensitivity to 

detectability

Community AUC The ability to distinguish species presence/absence based on the ranking of 

the predicted probabilities of occurrence of all species in a given site.

low

Deviation in SR The probability that the observed species richness is not different from the 

expectation based on the probabilities of occurrence of various species.

high

MaxSørensen 

MaxJaccard

Maximisation of the Sørensen/Jaccard indices by optimal per site threshold 

selection.

low

probSørensen

probJaccard

Based on the sum of probability of the species observed in contrast to the 

species observed and falsely predicted to be present.

low

Improvement over 

null models

Ratio to correctly get the SR/composition based on the predicted 

probabilities compared to null-models.

high
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Table 2. Statistics of the used community datasets. Prevalence and species richness (SR) were calculated 

after removing the species with 10 occurrences or less.

taxonomic group

n of 

species 

(orig.)

n of 

modelled 

species

% of 

modelled 

species

n of 

sites

prevalence 

(mean ± sd; 

across species)

SR           

(mean ± sd; 

across sites)

Plants 795 296 37.2 909 0.08 ± 0.08 24.3 ± 14.0

Butterflies 140 78 55.7 208 0.22 ± 0.14 17.5 ± 8.6

Grasshoppers 41 21 51.2 202 0.25 ± 0.19 5.2 ± 3.4

Bumble bees 29 20 68.9 202 0.25 ± 0.16 5.1 ± 2.7
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Box 1: Example of an observed species community and those predicted by the SDMs and the different null 

models. The presented example has a species pool (N) of five species, an average species richness ( ) of 𝑆𝑅

two species and the five species have a prevalence (Prev) of 0.4, 0.6, 0.1 0.2, 0.7. Improvement is counted 

as the probability of obtaining the compositionSDM.prediction / probability to obtain the compositionnull.model

Sp1 Sp2 Sp3 Sp4 Sp5 Probability to get composition Improvement

Observation 0 1 0 0 1 -

SDM prediction 0.1 0.8 0.3 0.2 0.9 0.9*0.8*0.7*0.8*0.9 = 0.363

null.SR (eqn. 4) 0.4 0.4 0.4 0.4 0.4 0.42 * 0.63 = 0.035 10.5

null.Prev (eqn. 5) 0.4 0.6 0.1 0.2 0.7 0.6*0.6*0.9*0.8*0.7 = 0.181 2
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Figure 1: Community AUC for the species groups along the elevation gradient of the study area. Each dot 
represents a site, and the solid lines are the smoothed mean. 
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Figure 2: Histogram of the p-values for the probability that a value equal or higher/lower than the observed 
SR is the result of the predicted probabilities of occurrence. The percentage numbers in the brackets indicate 
the proportion of sites with significant differences between the observed and expected values (p<0.05; H0 

no difference between observed and expected SR). 
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Figure 3: Correlation of the Sørensen similarity metrics based on binary data with threshold-independent 
Sørensen similarity metrics. The top row shows the correlation of binary metrics with maxSørensen, and the 

bottom row shows the correlation of binary metrics with probSørensen. The binary Sørensen similarity of 
panels a and d is based on a “species-specific” maxTSS threshold, of panels b and e on a “species-specific” 
maxKappa threshold, and of panels c and f on a “site-specific” probability ranking rule. The numbers in the 
legends indicate the Spearman correlation coefficient between binary and threshold independent metrics. 
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Figure 4: Observed species richness (SR, based on the modelled species pool; a) with dotted lines indicating 
the mean SR per taxa, improvement of SDM prediction over the null model of species richness (b) and 

improvement of SDM prediction over null models of species composition (c) along the elevation gradient for 
all taxa. Improvements are above one null model (null.SR) for SR and above the two null models (null.SR, 

null.Prev) for composition. All y-axes are logarithmic (log-fold change) with a base of 10. 




