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Abstract 11 

Music-listening and performance have been shown to affect human gene expression. In order to 12 

further elucidate the biological basis of the effects of music on the human body, we studied the 13 

effects of music-listening on gene regulation by sequencing microRNAs of the listeners (Music 14 

Group) and their controls (Control Group) without music exposure. We identified upregulation of 15 

six microRNAs (hsa-miR-132-3p, hsa-miR-361-5p, hsa-miR-421, hsa-miR-23a-3p, hsa-miR-23b-16 

3p, hsa-miR-25-3p) and downregulation of two microRNAs (hsa-miR-378a-3p, hsa-miR-16-2-3p) 17 

in Music Group with high musical aptitude. Some upregulated microRNAs were reported to be 18 

responsive to neuronal activity (miR-132, miR-23a, miR-23b) and modulators of neuronal 19 

plasticity, CNS myelination and cognitive functions like long-term potentiation and memory. miR-20 

132 plays a critical role in regulating TAU protein levels and is important for preventing tau protein 21 

aggregation that causes Alzheimer’s disease. miR-132 and DICER, upregulated after music-22 

listening, protect dopaminergic neurons and are important for retaining striatal dopamine levels. 23 

Some of the transcriptional regulators (FOS, CREB1, JUN, EGR1 and BDNF) of the upregulated 24 

microRNAs were immediate early genes and top candidates associated with musical traits. BDNF 25 

and SNCA, co-expressed and upregulated in music-listening and music-performance, are both are 26 

activated by GATA2, which is associated with musical aptitude. Several miRNAs were associated 27 

with song-learning, singing and seasonal plasticity networks in songbirds. We did not detect any 28 

significant changes in microRNA expressions associated with music education or low musical 29 
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aptitude. Our data thereby show the importance of inherent musical aptitude for music appreciation 30 

and for eliciting the human microRNA response to music-listening.  31 

Introduction 32 

Music-listening involves sensory processing of acoustic stimuli by the auditory system followed by 33 

cognitive and emotional processing in a neural network that is widely distributed in the cerebral 34 

cortex, basal forebrain, and rostral brainstem [1-4]. Studies of regional cerebral blood flow [5,6,7] 35 

and dopamine receptor ligand binding [7] in vivo have demonstrated activation of the reward 36 

system and limbic system during music listening. Music enhances motor performance during 37 

exercise in healthy adults [8], and rehabilitation of motor and cognitive deficits in neurological 38 

patients [9]. However, the biological background of these effects has largely been unknown. 39 

From a genetic perspective, music is an epigenetic modulator that may affect human genes and their 40 

regulation. The regulatory roles of microRNAs are well-studied in the development and synaptic 41 

plasticity of the human nervous system [10,11]. MicroRNAs are also involved in inner ear 42 

development and the sensory functions of the ear [12]. Studies on zebra finches have indicated that 43 

song-listening regulates both novel and known microRNAs with implications on neurogenesis and 44 

neuronal differentiation [13]. The song-listening response in zebra finches showed a positive 45 

correlation in transcriptomic changes of the auditory forebrain and the peripheral blood [14]. We 46 

have previously shown that genes activated by music-listening and music-performance are involved 47 

in dopaminergic neurotransmission, long-term potentiation, synaptic plasticity and memory [15,16]. 48 

Here, we analyzed the effects of music-listening on the microRNA transcriptome using high-49 

throughput sequencing and bioinformatics methods. We provide an integrated perspective of how 50 

music-listening affects miRNA levels by comparing the same cohort of human subjects as in the 51 

transcriptome study [15], and published transcriptomic changes in songbirds including regulatory 52 

network and pathway analyses.  53 

Results 54 

MicroRNA response to music-listening 55 

At a very stringent FDR threshold of 5%, we observed statistically significant upregulation of hsa-56 

miR-132-3p, hsa-miR-361-5p, hsa-miR-421 and downregulation of hsa-miR-378a-3p in the high 57 

COMB  (combined score of three tests of musical aptitude i.e. Seashore’s test for pitch and time 58 

perception and auditory structuring ability, see Methods) Music Group after music-listening, 59 
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compared to the Control Group without music. At a permissive significance threshold (FDR<10%), 60 

we also observed upregulation of hsa-miR-23a-3p, hsa-miR-23b-3p, hsa-miR-25-3p and 61 

downregulation of hsa-miR-16-2-3p in the Music Group. DE statistics for microRNAs that 62 

exhibited significant differential expression in the high-COMB Music Group compared to the 63 

Control Group are given in Table 1. Genomic information for the DE microRNAs is provided in 64 

Table S1. No statistically significant changes in microRNA expressions were found in low-COMB, 65 

high-Edu or low-Edu Music Groups (see Methods) when compared to the Control Group. 66 

Putative functions of DE microRNAs 67 

Based on the results yielded by the using TAM 2.0 tool for analyzing differentially expressed 68 

microRNA (p-value<0.05), the upregulated microRNAs were found to be regulators of neuronal 69 

apoptosis (hsa-mir-23a, hsa-mir-23b), hormone-mediated signaling pathway (hsa-mir-23a, hsa-mir-70 

23b, hsa-mir-132), neurotoxicity (hsa-mir-25, hsa-mir-132), cell death (hsa-mir-23a, hsa-mir-23b, 71 

hsa-mir-25), wound healing (hsa-mir-23a, hsa-mir-132) and glucose metabolism (hsa-mir-23a, hsa-72 

mir-23b) (Table 2a). TAM 2.0 analysis also revealed EGR1, GNRH1, USF1 and CREB1 as the top 73 

transcriptional regulators (p-value<0.05) of the upregulated microRNAs. For the downregulated 74 

microRNAs, angiogenesis (p-value=0.00372; hsa-mir-16-2, hsa-mir-378a), cell proliferation (p-75 

value=0.00565; hsa-mir-16-2, hsa-mir-378a) and adiponectin signaling (p-value=0.00755; hsa-mir-76 

378a) were the top hits (Table 2b). The comparative analysis wizard from TAM 2.0, which analyses 77 

the upregulated and downregulated microRNAs together, uncovered neuroblastoma as the topmost 78 

result. The validated TF-microRNA interactions from the TransmiR 2.0 database are provided in the 79 

Figure 1. 80 

Target genes of DE microRNAs and their functions 81 

Our goal with target gene finding was to understand the regulatory significance of the DE 82 

microRNAs in music-listening. We collected 147 validated human microRNA:target gene 83 

interactions for the DE microRNAs from the high-COMB Music Group from the miRTarBase 84 

Release 7.0 [17]. Furthermore, the predicted target genes (N=2496) from TargetScan Release 7.2 85 

[1815] for these DE microRNAs were combined with the validated targets from the high-COMB 86 

Music  Group. Notably, hsa-miR-132-3p and hsa-miR-25-3p showed validated targeting of 87 

CDKN1A and CDKN1B respectively (Figure 2). These cell cycle inhibitors belong to the same 88 

family implying the activation of functions like cell proliferation and differentiation. Similar 89 

findings were made regarding songbird stimuli in songbirds [13]. Furthermore, PTEN, which is a 90 

promoter of apoptotic mechanisms, is targeted by three of the upregulated microRNAs from this 91 



4 

 

study (hsa-miR-23a-3p, hsa-miR-23b-3p and hsa-miR-25-3p [1714], suggesting neuroprotective 92 

mechanisms may be associated with music-listening (Figure 2). Interestingly, this is consistent with 93 

the results of our microRNA specific enrichment analysis which indicated neuronal apoptosis as one 94 

of the functions regulated by the upregulated microRNAs. 95 

Comparative analyses with songbirds 96 

To understand the evolutionary conservation of the molecular regulatory mechanisms underlying 97 

auditory perception and vocal communication, we compared the DE microRNAs and their target 98 

genes to those identified in song birds during song-listening and singing. Amongst the DE 99 

microRNAs, hsa-miR-25-3p, which was upregulated in the high-COMB Music Group, also showed 100 

song-responsive upregulation (tgu-miR-25) in song birds [13]. Another DE microRNA from our 101 

study, miR-132, was found to be differentially expressed across seasons in the avian song control 102 

nuclei where its target gene network regulates cell cycle inhibitors and PTEN signaling [1916]. 103 

Remarkably, miR-132 also promoted neurite outgrowth and radial migration of the neurons by 104 

repression of FOXP2 [20]. FOXP2 is important for human language development and vocal 105 

learning [21]. The downregulated hsa-miR-378a-3p has predictable interactions with TLK2, one of 106 

the predicted target genes of the song-inhibited miR-2954 in song birds [13], with roles in 107 

proliferation and neuronal differentiation. hsa-miR-378a-3p and hsa-miR-16-2-3p also show 108 

expected interactions with song-stimulated genes that are found to be upregulated during song-109 

responsive downregulation of miR-2954 in songbirds [22]. The target genes of the DE microRNAs 110 

that were found to be overlapping with the genes behaviorally regulated in songbirds [23] are 111 

provided in the Table S3. Consequently, the results from the comparative analysis suggest some 112 

shared molecular mechanisms relevant to the auditory perception and vocal communication 113 

processes in songbirds and humans. 114 

Integrated results and putative regulatory network in music-listening 115 

We observed a total of 10 upregulated genes in music-listening from the high-COMB Music Group 116 

[15] to be the target genes of two of the downregulated microRNAs from the current study: hsa-117 

miR-378a-3p shows an anticipated interaction with CREBRF and hsa-miR-16-2-3p with UBE2B, 118 

SLC4A7, MOB1A, OSBPL8, RGS2, KCTD6, MBNL1, DSTN and TMED7. Amongst the upregulated 119 

microRNAs in our study, hsa-miR-132-3p was predicted to target PSMD13, which was found 120 

downregulated after music-listening in the high-COMB Music Group [15]. Furthermore, DICER1 121 

was upregulated in the high-COMB Music Group [15], and is crucial for the biogenesis of 122 

microRNAs and functions of multiple systems [24]. 123 
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Figure 3 proposes a gene regulatory network activated by music listening based on the integrated 124 

analysis, expanded with transcriptional regulatory data for microRNAs (TF-microRNA), TF-gene 125 

regulatory data for the DE genes, microRNA-TF interactions and findings related to auditory 126 

perception and vocal communication. Notably, from the merged network, we observed that hsa-127 

miR-132-3p and hsa-miR-25-3p, which were upregulated in the high-COMB Music Group, have 128 

interactions, respectively, with MAPT (Microtubule associated protein tau) and TNFSF10 (a 129 

cytokine), two of the upstream regulators of the downregulated genes from the same group [15]. 130 

MAPT is predicted to activate the downregulated ATP5J, HSPE1, and STIP1 as MAPT expression 131 

has been attributed to reduced connectivity in the brains of patients with Parkinson’s Disease [25]. 132 

TNFSF10 is predicted to activate the downregulated HLA-A, IFI6, and TNFRSF10B. miR-132 plays 133 

a critical role in regulating TAU protein levels [26] and is important for preventing tau protein 134 

aggregation that causes Alzheimer’s disease. Furthermore, one of the downregulated microRNAs 135 

from the high-COMB Music Group hsa-miR-16-2-3p is anticipated to target HOXA9, one of the up-136 

stream regulators of the genes upregulated n the high-COMB Music Group [15]. The functional 137 

interactions between the upregulated genes [15] are shown in Figure 3. The genes and pathways 138 

previously reported to be associated with song-perception and human musical aptitude are provided 139 

in Fig.S1. 140 

Discussion 141 

We have previously shown that listening to music and music performance affects human gene 142 

expression [15,16]. The present study demonstrated that music listening alters human microRNA 143 

profiles. Of the identified miRNAs, miR-132 is an activity-dependent microRNA which responds 144 

immediately to neuronal stimulation [27], is seasonally regulated in avian song control nuclei, and 145 

is important for sensorimotor neuronal plasticity [19]. In parallel, of our convergent analysis of 146 

genes identified correlating with musical traits and the effects of music, several of the top candidate 147 

genes [EGR1, FOS, ARC, BDNF, DUSP1] are known to be activity-dependent immediate early 148 

genes [IEGs] [28].  At the molecular level, neural stimulation is conducted via calcium channel 149 

activity and neurotransmitters, which activate immediate early genes (IEG) thereby regulating gene 150 

and microRNA expression patterns [29]. miR-132 is also activated by CREB [27], BDNF - a 151 

neurotrophin which is a target of CREB [29]- and external stimulants like cocaine. miR-132 and 152 

CREB are important for the maturation and plasticity of dendrites [30]. CREB is also critical for 153 

consolidation of long-term memory and is stimulated by song-learning of songbirds [3128]. 154 

Interestingly, ARC, which is co-expressed with miR-132 after induction of long-term potentiation, is 155 

also activated by BDNF [32]. BDNF augments neurogenesis and cognition [33] and is found to be 156 
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activated after music exposure [34] and songbird singing [35]. FOS is activated after music-157 

performance in musicians [16] and has roles in neurotransmission and experience-dependent 158 

neuroplasticity [36]. In addition, miR-132 protects dopaminergic neurons by its regulation of 159 

caspase3 (CASP3) [37], and its expression has been linked to dopaminergic neuronal loss of 160 

Parkinson’s disease patients [38]. Individuals with Alzheimer’s and mild cognitive impairment had 161 

lower expression levels of miR-132 in the hippocampal and cortical areas [26] whereas music-162 

listening seems to upregulate neuroprotective microRNAs and molecules linked to 163 

neurodegenerative diseases. 164 

It is noteworthy that miR-23a, another candidate microRNA, is also induced by long-term 165 

potentiation with implications in memory consolidation [39]. More importantly, brain expressions 166 

of BDNF that are connected to behavioral activation of dopaminergic neurons showed a positive 167 

correlation with that of SNCA [40,41], the candidate gene upregulated in the high-COMB Music 168 

Group and high Edu Music Groups [15] and in musicians after music-performance [16]. 169 

Furthermore, SNCA also activates BDNF [42] and BDNF and SNCA are regulated by GATA2, which 170 

is located in the strongest associated region for musical aptitude [43,44]. miR-23a and miR-23b 171 

have been experimentally confirmed to show neuroprotective effects via repression of APAF1, 172 

which is an activator of caspases and neuronal apoptotic processes [45]. This finding is in line with 173 

the results of the transcriptome study where downregulated genes were responsible for mammalian 174 

neuronal apoptosis and deficits in dopaminergic neurotransmission [15].  175 

The upregulated miR-25 and its cluster members inhibit the pro-apoptotic TP53 and its mediators 176 

and reduce the neuronal apoptotic process [45]. miR-25 also promotes neurogenesis and 177 

differentiation of adult neurons by regulating the TGFB-signaling pathway, which was previously 178 

identified to repress neurogenesis and neuronal cell proliferation, and by activating insulin-like 179 

growth factor-1 (IGF) signaling via its targeting of PTEN [46]. This is consistent with the findings 180 

of the gene expression study of music-listening that indicated the downregulated genes from the 181 

high-COMB Music Group as activators of peptidase, endopeptidase and caspase activities [15]. For 182 

instance, upregulation of miR-25 is consistent with findings from songbirds where it was found 183 

activated in response to song-learning and listening [13]. 184 

miR-23b and miR-23a are involved in feedback regulatory circuits with their transcriptional 185 

regulator EGR1 which is an IEG that is induced in songbird learning and singing [35]. Furthermore, 186 

DE microRNAs from this study (hsa-miR-23a-3p, hsa-miR-23b-3p, hsa-miR-132-3p, hsa-miR-25-187 

3p) show validated and predicted targeting of FOXP2. Interestingly, FOXP2 was one of the top 10 188 
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candidates associated with musical abilities including the recognition and production of sound [28], 189 

and was found to be positively selected for during human evolution [47]. In songbirds, FOXP2 is 190 

enriched in corticostriatal circuits and shows downregulation during the sensorimotor learning 191 

period, during vocal practice, and after undirected singing [21,48]. This behavioral regulation of 192 

FOXP2 plausibly finetunes neural structures for learning [21] and vocal complexity [48]. This 193 

suggests a regulatory role of the candidate microRNAs in the plasticity circuits associated with 194 

music-listening. 195 

Interestingly, PTEN is targeted by other upregulated microRNAs: miR-132, miR-23b and miR-23a. 196 

Of these, miR-23a activates AKT (Protein Kinase B) signaling, PI3K (phosphatidylinositol 3-197 

kinase) signaling, MAPK activity and promotes the expression of myelin genes through its 198 

regulation of PTEN [49]. The MAPK signaling pathway has a crucial role in the regulation of 199 

neuronal transcription, synaptic plasticity, memory consolidation [50], and was previously reported 200 

to be activated by microRNA regulation in response to song-listening in songbirds [13]. The 201 

upregulation of microRNAs that are regulators of neuronal apoptosis and neurotoxicity may raise a 202 

question about clinical findings of the neuroprotective role of music [9]. 203 

Putative activation of the pro-survival PI3K/AKT signaling cascade indirectly by music-induced 204 

miR-23a is one candidate mechanism which explains dopaminergic neurotransmission in our study. 205 

PI3K/AKT signaling is activated in response to growth factors and neurotrophins and when coupled 206 

with dopaminergic signaling, it protects adult dopaminergic neurons from apoptosis [51]. Moreover, 207 

genetic variations in the AKT1 gene affect neural structures of the frontostriatal dopaminergic brain 208 

network as well as bioavailable dopamine levels and cognitive functions [52].  209 

We found DICER to be upregulated after music-performance [16]. DICER is important for the 210 

biogenesis of microRNAs. It acts on various systems including those in the inner ear and brain that 211 

are important for the reception and perception of auditory signals [53]. A sensory neuronal Dicer 212 

knockout reduced the expressions of the music-induced miR-23a and miR-23b [54] and DICER 213 

ablation in the inner ear hair cells led to hair cell degeneration and hearing loss [55]. DICER 214 

protects adult dopaminergic neurons [56] and is critical for the maintenance of proper levels of 215 

striatal dopamine [24]. These findings might explain the prior observations of music-listening-216 

responsive dopamine release and of the activation of reward pathways [57].  217 

In this study, music-listening affected microRNA regulation only in subjects with relatively high 218 

music test scores (high COMB). This is in accordance with findings from a previous transcriptome 219 
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study which identified more changes in the high-COMB Music Group than in the high Edu Music 220 

Group [15].  221 

Conclusions 222 

We provide evidence that listening to music has an effect on human gene regulation. The identified 223 

microRNAs were shown to affect dopamine metabolism and to prevent neurodegeneration. Some of 224 

the human DE microRNAs shared signaling pathways with songbirds suggesting an evolutionary 225 

conservation of the molecular regulatory mechanisms underlying auditory perception. MicroRNA 226 

expression patterns in the human brain and blood have been published previously [58,59]. Future 227 

studies are needed to experiment with the duration of listening, genre of music, and personal 228 

preferences of the participants, as well as ambiance in different combinations to get further insight 229 

into the effects of each of these factors on microRNA expression levels. 230 

Methods 231 

Study participants 232 

MicroRNA samples were obtained from the same cohort, and during the same music exposure 233 

(concert) as described in transcriptome study [15].  Briefly, the participants were invited to listen to 234 

Wolfgang Amadeus Mozart’s Violin Concerto No. 3 in G major, K.216 which lasts about 20 235 

minutes, typical duration for a concerto in the Western Classical Period. Before listening and 236 

immediately after listening, blood samples were drawn from each participant. The participants were 237 

unaware of the type of music intended for the listening session. Given electroencephalographic 238 

evidence that humans differentiate and categorize musical instrument sounds and voices within 100 239 

ms [60], we expected that the duration of listening session would be sufficient to affect microRNA 240 

regulation.  241 

Blood samples from 43 volunteers who met our inclusion criteria were analyzed. Thirty-seven were 242 

in the Music Group (i.e., the test group), and seven in the Control Group. In the control condition 243 

participants did not listen to the Mozart concerto the day their bloods were drawn and did not listen 244 

to music or exercise vigorously the day before blood sampling. During the 20 minutes between the 245 

two phlebotomies, participants in the Control Group were permitted to read, take a leasurely walk 246 

outside, and/or converse. Peripheral blood samples were collected from the participants just before 247 

and after 20 min in the control session. 248 
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The analyzed phenotypes and their classification have been described in Kanduri et al [15] (see also 249 

Supplementary Methods). In short, we sub-phenotyped the participants based on their level of 250 

music education and musical aptitude using COMB score distributions (range:0-148). The data 251 

regarding the level of music education of the participants was collected using a questionnaire. 252 

Based on the answers, participants were allocated to four different Edu classes (class 1-4) [15]. 253 

Participants in Edu classes 3 and 4 are referred to as the high-Edu Music Group and those in Edu 254 

classes 1 or 2 have been categorized as low-Edu Music Group.  255 

The study was approved by the ethical committee of Helsinki University Central Hospital 256 

(permission #13/03/2013) and was conducted in accordance with the Declaration of Helsinki. 257 

Written informed consent was obtained from all the subjects. 258 

MicroRNA extraction, sequencing and pre-processing of microRNA sequencing reads 259 

Details of the microRNA extraction are provided in the Supplementary Methods. Sequencing 260 

libraries were prepared at the High-Throughput Genomics department of The Welcome Trust Center 261 

for Human Genetics followed by sequencing with Illumina HiSeq. We assessed the quality of the 262 

microRNA sequencing reads with FastQC version 11.3 263 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Next, we trimmed sequencing 264 

adapters from the 3’ end of 50 bp reads requiring an adapter overlap of 5 bp, error rate of 0.1 and 265 

then we filtered shorter (<15 bp) and low-quality reads (Phred score <20) with Trim Galore! version 266 

0.3.7 (http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/). Trimmed reads were 267 

quality checked again using FastQC and aligned with the human genome reference (GRCh38, 268 

Ensembl release 76) with bowtie version 1.1.2 [61]. Only unique alignments were selected from the 269 

best alignments (–best –strata), requiring a complete match for a seed length of 18. Afterwards we 270 

quantified microRNA expression using HTSeq version 0.6.1p1 [6259] according to miRBase 271 

release 21 annotations for human microRNAs [63]. 272 

Read and microRNA statistics 273 

All the reads of the Music Group and Control group samples passed the FastQC quality check for 274 

A) basic statistics, B) per sequence quality scores and C) per base N content. The median number of 275 

raw reads per sample was 13,521,377.5 for the music study (range:8,577,637-19,549,067) and 276 

9,355,225 for the control study (range: 8,423,477-11,094,252). On average, 97.75 % and 96.35 % of 277 

reads from the music-listening study and control study respectively were trimmed for sequencing 278 

adapters. Mean alignment percentage of the trimmed reads to the human genome reference 279 

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
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(Ensembl 76/GRCh38) were 83.6 % (range: 65.69 - 90.81) and 85.35 % (range: 79.85 - 87.88) 280 

respectively for the music-listening and control studies. All alignments from both the studies passed 281 

quality control.  282 

Differential expression analyses of microRNA 283 

To understand the effects of music-listening on microRNA expression, we used DESeq2 (version 284 

1.20.0) [6360] and analyzed the differential expression of microRNAs over time (Post versus (vs.) 285 

Pre) in the music-listening group compared to the control group. DESeq2 has high sensitivity for 286 

experiments with a wide range of sample numbers (small to large) and for those with a small fold 287 

change [64,65]. Furthermore, a benchmark comparison of statistical tools for analyzing differential 288 

expression supports the use of DESeq2 as it shows that the DESeq2 false positive rate can be as low 289 

as 0 and the true positive rate above 80%, even with a log fold threshold and a replicate number as 290 

low as 0.5 and 6 respectively [66]. 291 

We then performed generalized linear model-based differential expression analyses with DESeq2, 292 

implementing likelihood ratio tests with a design matrix which controls for paired experimental 293 

design. False discovery rate (FDR) adjusted p-values were calculated using the Benjamini-294 

Hochberg method which accounts for multiple testing correction. MicroRNAs were considered to 295 

be differentially expressed when the FDR adjusted p-values were less than 10% [19]. We kept the 296 

fold-change threshold of 1.2 in accordance with gene-environmental interaction studies where 297 

moderate changes in microRNA expressions have been observed [67,68]. We chose differentially 298 

expressed (DE) microRNAs that showed a Post-Pre threshold of at least 10% for the music-listening 299 

session for further analyses [15].  The control samples were used as one reference group, without 300 

sub-phenotype divisions, to compare music-listening responsive microRNA expressions. To 301 

facilitate this, we estimated expression differences in microRNA between high-Edu Music Group 302 

(N=3) and low-Edu Music Group (N=4) from the Control Group and used it as an indicator of 303 

homogeneity of the control samples. From this analysis, we did not observe any significant 304 

differences in microRNA expression between these groups thereby showing homogeneity of the 305 

control samples. 306 

Functional analysis of microRNAs 307 

We performed a functional enrichment analysis of DE microRNAs using TAM 2.0 [69]. For a given 308 

microRNA dataset, TAM 2.0 analyzes the over-representation of functional and disease annotations 309 

by comparing the input microRNAs to a high quality, manually annotated reference microRNA 310 
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dataset. TAM 2.0 then applies a hyper-geometric test to determine whether the given microRNA 311 

dataset is over-represented or under-represented for functions, diseases, transcription factors 312 

(upstream-regulators) etc. The TAM 2.0 analysis addresses the bias previously noted to be 313 

associated with the over-represented functions reported for microRNAs, when the over-314 

representation analysis was performed solely based on target genes [70,71]. Additionally, TAM 2.0 315 

performs a comparative analysis of the upregulated and downregulated microRNAs together to 316 

correlate them to those dysregulated in disease conditions. We then collected the validated 317 

transcriptional regulators of the DE microRNAs from TransmiR 2.0 [72].  We targeted candidate 318 

genes previously associated with musical traits in humans [43], some of which may reflect 319 

convergent gene expression specialization for auditory-motor integration sufficient to support vocal 320 

communication in humans and songbirds [73], and those which were found to be positively selected 321 

for in accordance with human musical aptitude [47]. Comparing to the genes obtained from the 322 

same human cohort was done in order to reduce the genetic heterogeneity of complex human 323 

musical traits. Next, we obtained validated ontology annotations from miRBase, which is derived 324 

from experimentally-verified miRNA:target interaction data [74]. Annotations for the closest 325 

orthologs of our DE microRNAs, as indicated by Alliance of Genome Resources as Rattus 326 

norvegicus, were collected from the Rat Genome Database (RGD) [75]. Furthermore, to correlate 327 

blood microRNA expression to the brain, we obtained tissue-wide expression patterns for DE 328 

microRNAs from the miRWalk2.0 [76], miRIAD [7774], BBBomics [78], and literature. 329 

Identification of microRNA target genes 330 

To understand the post-transcriptional gene regulatory mechanisms involving microRNAs, 331 

validated target genes supported by strong evidence (based on reporter assay or western blot) were 332 

obtained for the DE microRNAs using the miRTarBase database (Release 7.0) [17]. We also 333 

collected predicted target genes for the DE microRNAs from TargetScan (Release 7.2) [18] and 334 

applied the filtering criteria below to reduce false positive target genes. For the conserved and 335 

broadly conserved microRNA families, only target genes with conserved sites having an aggregate 336 

probability of conserved targeting at least 0.2 and a total context++ score at most -0.15 were 337 

selected. For the poorly conserved DE microRNA families and those with other miRBase 338 

annotations, target genes with a total context++ score of less than -0.15 were selected [18]. 339 

Predicted target genes of the DE microRNAs with non-canonical binding were not considered for 340 

the analyses. Both the predicted and validated target genes of the DE microRNAs were then 341 

combined for further analysis and functional interpretation. 342 
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Comparative analyses 343 

We then compared the DE microRNAs to the song-responsive and singing-regulated microRNAs in 344 

zebra finches [13,22,79] to understand of the microRNA regulatory mechanisms in human music 345 

cognition. We also compared target genes of the DE microRNAs to singing-regulated genes in song 346 

birds [23], and to the target genes of song-listening and singing responsive microRNAs [13, 22,79]. 347 

Next, we calculated the significance of the overlap between the target genes of our DE microRNAs 348 

and the genes regulated by songbird singing using random sampling (without replacement) of our 349 

datasets (N=10,000) and overlap estimation for each of the re-sampled datasets. To this end, we 350 

created a dataset with behaviorally (singing) stimulated genes from songbird brain [23,35,80] and 351 

labeled the gene set as the song production cum perception gene set. For the songbird set sampling, 352 

we used all the annotated genes from Taeniopygia guttata (N=17926) as Universe and sampling was 353 

performed for the same size as song production cum perception gene set. Human genes were 354 

sampled for the same size as the number of predicted and validated target genes of the 355 

downregulated microRNAs using all annotated human genes as the Universe (N=20219). Similarly, 356 

we analyzed the overlap significance between the target genes of the upregulated microRNAs from 357 

the high-COMB Music Group and the singing-inhibited genes from the songbird brain [23] using 358 

resampling (N=10,000). 359 

Integrated analysis and putative regulatory network construction 360 

To understand the microRNA-gene regulatory mechanisms underlying music-listening in listeners 361 

with high musical aptitude, we integrated our microRNA findings with the music responsive gene 362 

expression findings from the same group [15] using IPA and the microRNA-gene interactions 363 

gathered from TargetScan, miRTarBase and literature. Only target genes of the DE microRNAs 364 

from this study which showed an inverse direction of regulation in the gene expression findings 365 

(from the same music-performance and control activity as this study) [15] were considered as 366 

microRNA-gene interactions in music-listening. 367 

We further created a putative gene regulatory network in music-listening using Cytoscape 3.7.1 by 368 

merging our integrated results (above) with transcriptional regulatory data for microRNAs (TF-369 

microRNA) from TransmiR 2.0 including previously reported [15] statistically significant up-370 

stream regulators of the DE genes (TF-gene), the microRNA-TF regulatory information from 371 

TargetScan/literature and findings related to song and music perception. Here, it is important to 372 

highlight the fact that microRNA can simultaneously regulate the expression of multiple genes 373 

through direct interactions or indirectly through the regulation of their transcriptional regulators 374 
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(microRNA-TF) [81,82]. In this study, we examined the regulatory effects (activation/inhibition) of 375 

the upstream regulator on the DE genes (TF-gene) and included only those TFs which were targeted 376 

by DE microRNA (microRNA-TF) to the putative regulatory network. From the validated TF-377 

microRNA regulatory data from TransmiR 2.0, only those TFs which met our criteria described in 378 

the functional analysis were included in the network. This putative regulatory network was further 379 

extended with some of the functions from the microRNA enrichment analysis, literature findings 380 

and putative connecting molecules between the microRNAs and the functions. Functional 381 

interactions between the upregulated molecules, putatively up-regulated molecules and some of the 382 

transcriptional regulators in this network were also inferred with STRING [83]. 383 
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