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FLOQUET PROBLEM AND CENTER MANIFOLD REDUCTION

FOR ORDINARY DIFFERENTIAL OPERATORS WITH

PERIODIC COEFFICIENTS IN HILBERT SPACES

VLADIMIR KOZLOV1, JARI TASKINEN2

Abstract. A first order differential equation with a periodic operator coefficient
acting in a pair of Hilbert spaces is considered. This setting models both elliptic
equations with periodic coefficients in a cylinder and parabolic equations with time
periodic coefficients. Our main results are a construction of a pointwise projector
and a spectral splitting of the system into a finite dimensional system of ordinary
differential equations with constant coefficients and an infinite dimensional part
whose solutions have better properties in a certain sense. This complements the
well-known asymptotic results for periodic hypoelliptic problems in cylinders [7]
and for elliptic problems in quasicylinders [13].

As an application we give a center manifold reduction for a class of non-linear
ordinary differential equations in Hilbert spaces with periodic coefficients. This
result generalizes the known case with constant coefficients, [10], [11].
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1. Introduction

Consider a first order ordinary differential equation (ODE) for an unknown func-
tion x(t) with values in an infinite dimensional Hilbert space Y ,

(1.1)
dx(t)

dt
= Ax(t) + f(t; x(t)), t ∈ R,

where A is an unbounded linear operator in Y , which is constant in t, and f :
R×DA → Y is given. If P is a finite dimensional orthogonal projector in Y which
commutes with A, then the system (1.1) with f ≡ 0 can be split into a finite
dimensional system on the subspace P(Y ) and an infinite dimensional system which
may have better properties than the initial one. This reduction can be quite useful
in the study of the large time behaviour of linear dynamical systems perturbed by
a linear or non-linear perturbation f (see [3], [11] and references there). The main
subject of this paper is to study similar splitting for the case when A = A(t) is a
periodic operator function with certain Fredholm properties. Our goal is to define a
pointwise projector P = P(t), which is a projector for any t ∈ R and commutes with
the operator of the periodic problem. This projector leads to the reduction of the
problem to a finite dimensional problem with time independent operator and infinite
dimensional problem having better properties than the original one. Another goal
is to present a center manifold reduction for nonlinear periodic operators.
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We recall the classical Floquet theorem concerning a system of ODEs

(1.2)
dx(t)

dt
= A(t)x(t), t ∈ R, x(t) ∈ R

d,

where A is a d×d-matrix depending periodically on t. Let G(t) be the fundamental
matrix-solution of (1.2). The Floquet theorem says that there exists a constant
matrix C and a periodic matrix P (t) such that G(t) = P (t)eCt. This theorem
allows to reduce the periodic system (1.2) to a system with constant coefficients.

We will consider the infinite dimensional case, where A is an operator in infinite
dimensional Hilbert-spaces and depends periodically on t. We will use the theory
of this equation as developed and exposed in [6] and [7] (see in particular Sect.
5.1, the comments of Ch. 5 and the references there). This allows us to avoid the
details of the Floquet-Bloch techniques, on which the theory is based (for a recent
presentation of the Floquet-Bloch techniques, see [8]). We also mention the related
theory of elliptic problems in periodic quasicylinders, see [13] and [14], although we
stick to cylindrical domains here.

Our contribution to the infinite dimensional, periodic problem will consist of a
construction of a projection operator and a spectral splitting of the problem as
described in the beginning. We also mention the references [3], [4] and [5], the first
two of which contain an analogous theory in the case A(t) is a perturbation of an
operator A0 independent of t. We will use the same formalism of analytic Fredholm
operator in the way as it is presented in the appendix of [3]. In particular in the
treatment of the infinite dimensional part of the splitted system we use a technique
developed [3], which allows us to avoid a choice of function spaces for estimating the
remainder terms, since all of them can be treated from this ”pointwise estimate”,
see Sect. 4 and 7 in [3].

The new aspects of the above approach are motivated by the possibility to gener-
alize the existing center manifold reduction results of non-linear Hilbert-space valued
ODEs to the case of periodic equations. Indeed, in the last section of the paper we
will present such an application, where we consider small solutions of a non-linear
problem Dtu − A(t)u = f(t, u) and present its reduction to a finite dimensional
dynamical system, similarly to the constant coefficient case considered by Mielke in
[10].

The structure of the paper is the following. In Sect. 2 we formulate the periodic
infinite dimensional problem, introduce the function spaces and present the main
assumptions on the operator of the problem. In Sect. 3 we remind some basic defi-
nitions and properties of the eigenvalues, eigenvectors and generalized eigenvectors
of the operator pencils associated with our periodic problem. In Sect. 4 we collect
known results ([7], Ch. 4 and 5) on the solvability and asymptotics of solutions to
periodic problems. These results are proved in [13] in the case of elliptic boundary
value problems with periodic coefficients in periodic cylinders. Our main results
are contained in Sect. 5 and 6 . In Sect. 5 we introduce a certain operator P which
is actually a projector which commutes both with the periodic operator as well as
the point evaluation operator f 7→ f(t) for all t, and delivers a finite dimensional
ODE with constant coefficients for Pu, where u is a solution to the infinite dimen-
sional system. The main result of our paper is Theorem 6.1 in Sect. 6, which gives
a splitting of the periodic operator valued equation into a finite dimensional system
of ODEs with constant coefficients and an infinite dimensional part whose solutions
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have better properties in a certain sense. In Section 7 we present the main applica-
tion of Theorem 6.1, namely an extension of the center manifold theorem for ODE
in Hilbert space obtained by Mielke in [10], [11], to the periodic coefficient case.

2. Statement of the Problem

The setting of our problem is similar to that of [7], Section 5.1, and [3], Part
III, except that in the latter, the nature of the t-dependence of the operator A(t)
is different. All the results of this section are known, see in particular Ch. 1 of the
first above mentioned citation. Some proofs are reproduced for the convenience of
the reader.

To proceed with details, we let X and Y be Hilbert spaces over the complex scalar
field C such that X is compactly and densely embedded in Y . We denote the norms
in X and Y by ‖ · ‖X = ‖·;X‖ and ‖ · ‖Y = ‖·; Y ‖, respectively. We identify Y ∗ with
Y by using the inner product (·, ·) = (·, ·)Y and introduce for h ∈ Y the norm

‖h‖X∗ = sup{|(g, h)| : g ∈ X, ‖g‖X = 1}.

The completion of Y with respect to this norm coincides with X∗, and the sesquilin-
ear form (g, h) can be extended for g ∈ X and h ∈ X∗ such that the inequality
|(g, h)| ≤ ‖g‖X‖h‖X∗ holds. Clearly, Y ⊂ X∗.

Given a, b ∈ R, a < b, we denote by X (a, b) the space of functions u : (a, b) 7→ X
such that the weak t-derivatives with values in Y exist and are locally integrable (in
the standard Bochner sense, see e.g. [1], Sect. 3.7.) and such that the norm

‖u;X (a, b)‖ =
( b∫

a

(
‖u(t);X‖2 + ‖Dtu(t); Y ‖

2
)
dt
)1/2

(2.1)

is finite. Here and elsewhere Dt = ∂/∂t. Also, the space Y(a, b) consists of locally
integrable functions u : (a, b) 7→ Y with finite norm

‖f ;Y(a, b)‖ =
( b∫

a

‖f(t); Y ‖2dt
)1/2

.(2.2)

The space Yloc := L2
loc(R; Y ) consists of measurable functions defined on R with val-

ues in Y with finite semi-norms (2.2) for all a < b, and the space Xloc := L2
loc(R;X)

is defined analogously (cf. above); in particular for every f ∈ Xloc, the semi-norms
(2.1) are finite for all a < b .

Given β ∈ R, the space Xβ consists of functions u ∈ L2
loc(R;X) such that Dtu ∈

L2
loc(R; Y ) and the norm

(2.3) ‖u;Xβ‖ =
(∫

R

e2βt(‖u(t);X‖2 + ‖Dtu(t); Y ‖
2)dt

)1/2

is finite,

and the space Yβ = L2
β(R; Y ) consists of functions f ∈ L2

loc(R; Y ) with finite norm

(2.4) ‖f ;Yβ‖ =
(∫

R

e2βt‖f(t); Y ‖2dt
)1/2

.

In order to deal with periodic problems we follow [12], [14] and also introduce
subspaces of Xloc and Yloc, which consist of periodic functions in t of period 1 and
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which are denoted by X̂ and Ŷ , respectively. The norms in these spaces are

‖u; X̂ ‖ = ‖u;X (0, 1)‖, ‖f ; Ŷ‖ = ‖f ;Y(0, 1)‖.

Let A(t) be a bounded operator from X into Y depending continuously on t ∈ R

with respect to the operator norm. We assume that A(t) is periodic with respect to
t with the period 1. For every t, we denote by A(t)∗ : Y → X∗ the adjoint operator
with respect to the duality (·, ·), i.e.,

(A(t)ϕ, ψ) = (ϕ,A(t)∗ψ) ϕ ∈ X,ψ ∈ Y.(2.5)

We also define the differential operators

(2.6) L = L(t, Dt) := Dtu(t) + A(t)u(t) and L∗(t, Dt) := −Dtu(t) + A(t)∗u(t).

In the following we will consider the problem

(2.7) L(t, Dt)u = f(t),

where f ∈ L2
loc(R; Y ) is a given function and u ∈ Xloc is a function to be found. Our

aim is to introduce a reduction of this problem into a system consisting of a scalar
valued, finite dimensional ODE-system and of another vector valued ODE, which
has better properties then the initial problem. The first main assumptions on L is
the following local estimate (cf. [4], Sect. 2.2)

‖u;X (0, 1)‖ ≤ C
(
‖L(t, Dt)u;Y(−1, 2)‖

+ ‖u;Y(−1, 2)‖
)

for all u ∈ X (−1, 2).(2.8)

To formulate the second assumption let us consider the following operator de-
pending on a complex parameter λ,

(2.9) A(λ) = L(t, Dt) + λ : X̂ → Ŷ, λ ∈ C.

(Here, for the values λ = iξ, the number ξ ∈ R would correspond the Floquet
parameter or quasimomentum in the Floquet-Bloch transform, but we do not need
to exploit this machinery, as mentioned in the introduction.) Obviously, A is a
holomorphic operator pencil with respect to the parameter λ. The second main
assumptions on L reads as (cf. [12]):

there exists λ0 for which A(λ0) : X̂ → Ŷ is an isomorphism.(2.10)

Remark. We have in mind some applications to parabolic and elliptic PDE-
problems, which have been transformed into first order ODE-systems with respect
to one of the variables in a canonical way. The assumptions (2.8), (2.10) are natural
for such cases. The assumptions would in general fail for hyperbolic PDE-problems.

Lemma 2.1. If the assumptions (2.8) and (2.10) hold, then the families

A(λ) : C → L(X̂ , Ŷ),

A∗(λ) := A(λ)∗ : C → L(Ŷ, X̂ ∗),

where A∗(λ) = −Dt + A(t)∗ + λ, are holomorphic Fredholm families. Moreover,
there holds

(2.11)
( 1∫

0

(
‖u(t);X‖2+‖(Dt+λ)u(t); Y ‖

2
)
dt
)1/2

≤ Ce|ℜλ|
(
‖A(λ)u; Ŷ‖+‖u; Ŷ‖

)
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for u ∈ X̂ .

Here, L(X̂ , Ŷ) denotes the Banach space of bounded linear operators from X̂ into

Ŷ .

Proof. Writing estimate (2.8) for the function eλtu, u ∈ X̂ , we get

( 1∫

0

e2tℜλ
(
‖u(t);X‖2 + ‖(Dt + λ)u(t); Y ‖2

)
dt
)1/2

≤ C
(( 2∫

−1

e2tℜλ‖L(t, Dt + λ)u(t); Y ‖2dt
)1/2

+

2∫

−1

e2tℜλ‖u(t); Y ‖2dt
)1/2)

,

which implies estimate (2.11). Since the inclusion X ⊂ Y is compact, we can use

the argument in [9], p. 20 or Theorem 2.1. to see that the embedding X̂ ⊂ Ŷ is also
compact. Hence, estimate (2.11) implies that the kernel of A(λ) is finite dimensional
and the image is closed for all λ. This together with assumption (2.10) gives that
the operator pencil is Fredholm with the index 0 for all λ (see [3], Section A.8).

The definition of the adjoint holomorphic family A∗(λ) is as in [3], Section A.9,
and its Fredholm property follows from that of the family A(λ), as explained in the
citation; see also the next lemma. �

Let us provide a description of the dual space X̂ ∗. To this end we use the inner

product to identify Ŷ∗ = Ŷ , and we also denote by L2
per(R;X

∗) the subspace of

L2
loc(R;X

∗) consisting of periodic functions f : R → X∗, endowed with the norm

‖f ;L2
per(R;X

∗)‖ =
( 1∫

0

‖f(t);X∗‖2dt
)1/2

.

We skip the standard proof of the following lemma.

Lemma 2.2. Under the dual pairing

(u, v)Ŷ :=

1∫

0

(u(t), v(t)) dt ,

the dual space X̂ ∗ of X̂ consists of periodic functions w represented as

w = w0 +Dtw1,(2.12)

where w0 ∈ L2
per(R;X

∗) and w1 ∈ Ŷ, and it is endowed with the norm

‖w; X̂ ∗‖ = inf
(
‖w0;L

2
per(R;X

∗)‖+ ‖Dtw1; Ŷ‖
)
,

where the infimum is taken over all representations (2.12). The adjoint A∗(λ) of
the operator A(λ) satisfies

(A(λ)ϕ, ψ)Ŷ = (ϕ,A∗(λ)ψ)Ŷ ϕ ∈ X̂ , ψ ∈ Ŷ .

We end this section with one more lemma. One can easily verify that

(2.13) e2πitA(λ)u = A(λ− 2πi)(e2πitu)

for u ∈ X̂ .
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Lemma 2.3. Assume that the operator A(µ) is an isomorphism for µ = β + iξ

with a fixed β ∈ R and for all ξ ∈ [0, 2π). Then, for all u ∈ X̂ and λ = β + iξ with
ξ ∈ R,

(2.14)
( 1∫

0

(
‖u(t);X‖2 + ‖(Dt + λ)u(t); Y ‖2

)
dt
)1/2

≤ C‖A(λ)u; Ŷ‖,

where C may depend on β but it is independent of ξ.

Proof. By (2.13) the optimal constant c in the inequality

(2.15) ‖A(λ)u; Ŷ‖ ≥ c‖u; Ŷ‖

is the same for λ and λ−2πki for all k = ±1,±2, . . .. This together with (2.13) and
the assumption of the lemma implies existence of a constant c0 such that (2.15) is
true for all λ = β + iξ with ξ ∈ R. Using (2.15) we derive (2.14) from (2.11). �

3. Eigenvectors, generalized eigenvectors, Jordan chains

We recall some basic facts concerning the spectrum of the operator pencil A(λ),
(2.9). For the sake of the presentation, we recall some proofs and otherwise refer to
the Appendix [3] for a quick introduction to the topic. As in standard spectral theory

of linear operators, the spectrum is the set of those λ ∈ C such that A(λ) : X̂ → Ŷ
is not invertible; λ is an eigenvalue, if the kernel of A(λ) is not {0}.

Since A(λ) : X̂ → Ŷ is a holomorphic Fredholm family and due to the assump-
tion (2.10), the spectrum of A(λ) consists of isolated eigenvalues of finite algebraic
multiplicity, see Proposition A.8.4 of [3]. From the relation (2.13) it follows that if
λ is an eigenvalue then the same is true for λ+2πi and their multiplicities coincide.
In the following we denote for all β ∈ R

(3.1) δβ = {λ ∈ C : ℜλ = β, ℑλ ∈ [0, 2π)},

and we choose real numbers

β1 < β2(3.2)

such that there are no eigenvalues of A(λ) on the the intervals δβ1
and δβ2

. We
denote eigenvalues of A(λ) in the set

{λ = β + iξ ; β1 < β < β2, ξ ∈ [0, 2π)}(3.3)

by λk, k = 1, . . . , N , and let Jk and mk,1, . . . , mk,Jk be the geometric and partial
multiplicities of λk. Assume that for every k = 1, . . . , N ,

ϕk
j,m, m = 0, . . . , mk,j − 1, j = 1, . . . , Jk,(3.4)

is a canonical system of Jordan chains of the linear pencil A(λ) corresponding to λk
(see [3], Definition A.4.3, Propositions A.4.4, A.4.5.). The functions

ϕk
j,0, j = 1, . . . , Jk,(3.5)

form a linearly independent sequence of eigenvectors corresponding to the eigenvalue
λk, while the functions (3.4) with m ≥ 1 are associated vectors satisfying

A(λk)ϕ
k
j,0 = 0, A(λk)ϕ

k
j,m = −ϕk

j,m−1, m = 1, . . . , mk,j − 1.(3.6)
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In the same way, the eigenfunctions and generalized eigenfunctions of the adjoint
operator are the solutions of the equations

A∗(λk)ψ
k
j,0 = 0, A∗(λk)ψ

k
j,m = −ψk

j,m−1, m = 1, . . . , mk,j − 1.(3.7)

It will be important to specify the choice of the functions (3.5) and (3.7) such that
certain orthogonality relations are satisfied. Notice that we consider a finite set of
eigenvalues, which is fixed by the choice of the numbers β1, β2 above. The following
assertion is known and its proof can be found in Remark A.10.3 in [3] (see formula
(A.60) there).

Lemma 3.1. If the Jordan chains (3.4) are fixed, then there exist uniquely defined
Jordan chains of the adjoint pencil A∗(λ) corresponding to the eigenvalue λk

ψk
j,m, m = 0, . . . , mk,j − 1, j = 1, . . . , Jk,(3.8)

such that in addition to all equations (3.6) and (3.7) also the following hold true:

(ϕk
j,mk,j−1, ψ

k
J,m)Ŷ = δJj δ

m
0 , m = 0, . . . , mk,j − 1 .(3.9)

From now on we assume that the eigenfunctions and generalized eigenfunctions
satisfy (3.9). The last relation implies some more orthogonality relations.

Lemma 3.2. Let the Jordan chains (3.4) and (3.8) be the same as in Lemma 3.1.
Then the following biorthogonality relations hold:

(ϕk
j,m, ψ

K
J,mK,J−1−M)Ŷ = δKk δ

J
j δ

M
m(3.10)

for all k,K, j, J,m,M .

Proof. Let first K = k. Then (3.10) for m = mk,j − 1 follows from (3.9).
Next we observe that for m = 1, . . . , mk,j − 1 and M = 1, . . . , mk,J − 1, J =

1, . . . , Jk, the relations (3.6) and (3.7) yield

(ϕk
j,m, ψ

k
J,mk,J−1−M)Ŷ = −(ϕk

j,m,A
∗(λk)ψ

k
J,mk,J−M)Ŷ

= −(A(λk)ϕ
k
j,m, ψ

k
J,mk,J−M)Ŷ = (ϕk

j,m−1, ψ
k
J,mk,J−M)Ŷ .(3.11)

Applying this relation with m = mk,j − 1 and M = 1, . . . , mk,J − 1 and using that
(3.10) is proved for m = mk,j − 1, we arrived at (3.10) for m = mk,j − 2 and
M = 0, . . . , mK,J − 2. Since the relations

(ϕk
j,m, ψ

k
J,0)Ŷ = 0, m = 0, . . . , mk,j − 2,

follow from the solvability of (3.6), we arrive at (3.10) for m = mk,j − 2 and all M .
Repeating this argument we prove (3.10) for all m and M .

We finally show that if k 6= K, then the orthogonality in (3.10) automatically
holds. For the two eigenfunctions we get the orthogonality (ϕk

j,0, ψ
K
J,0)Ŷ = 0 for all

j = 1, . . . , Jk, J = 1, . . . , JK by the simple classical argument, since the eigenvalues
λk and λK are different. Then, we have, for all M = 0, . . . , mK,J − 2, all j, J ,

(ϕk
j,0, ψ

K
J,M)Ŷ = −(ϕk

j,0,A
∗(λK)ψ

K
J,M+1)Ŷ = −(A(λK)ϕ

k
j,0, ψ

K
J,M+1)Ŷ

= −(A(λk)ϕ
k
j,0, ψ

K
J,M+1)Ŷ + (λk − λK)(ϕ

k
j,0, ψ

K
J,M+1)Ŷ

= (λk − λK)(ϕ
k
j,0, ψ

K
J,M+1)Ŷ ,(3.12)
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where the coefficient λk−λK is non-zero, so that the orthogonality (ϕk
j,0, ψ

K
J,M+1)Ŷ =

0 for all M = 0, . . . , mK,J − 1 and j, J follows by induction. In the same way one
obtains (ϕk

j,m, ψ
K
J,0)Ŷ = 0 for all m = 0, . . . , mk,j − 1 and j, J .

Then, one proves the following formulas in the same way as (3.12)

(ϕk
j,m, ψ

K
J,M)Ŷ =





(ϕk
j,m+1, ψ

K
J,M−1)Ŷ + (λk − λK)(ϕ

k
j,m+1, ψ

K
J,M)Ŷ

(ϕk
j,m−1, ψ

K
J,M+1)Ŷ + (λk − λK)(ϕ

k
j,m, ψ

K
J,M+1)Ŷ .

One can then proceed by induction to get the orthogonality for all indices. �

Let us still introduce some more notation with the help of the above introduced
Jordan chains: we define

(3.13) Φk
j,m(t) = eλkt

m∑

n=0

tn

n!
ϕk
j,m−n = eλkt

m∑

n=0

tm−n

(m− n)!
ϕk
j,n,

for all k = 1, . . . , N, j = 1, . . . , Jk, m = 0, . . . , mk,j − 1. It is known and one can
verify it directly that these functions are solutions to the homogeneous equation
(2.7). The binomial formula implies the following relation which will be needed
later:

eλkt
m∑

n=0

(t− τ)n

n!
ϕk
j,m−n(t) = eλkt

m∑

n=0

n∑

ν=0

tn−ν(−τ)ν

(n− ν)!ν!
ϕk
j,m−n(t)

= eλkt
m∑

ν=0

(−τ)ν

ν!

m−ν∑

n=0

tm−ν−n

(m− ν − n)!
ϕk
j,n(t) =

m∑

ν=0

(−τ)ν

ν!
Φk

j,ν(t).(3.14)

4. Some results on solvability and asymptotics for problem (2.7)

We will need some more solvability and asymptotical results for problem (2.7),
which are proved for general boundary value problems with periodic coefficients in
a cylinder in [7], Sect. 4.2, 5.1, 5.4 (for the case of a periodic quasi-cylinder, see also
[13]).

Theorem 4.1. The mapping

L(t, Dt) : X−β → Y−β

is isomorphic if the semi-interval δβ does not contain eigenvalues of the operator
pencil A(λ).

Theorem 4.2. Let β1 < β2 be real numbers such that the semi-intervals δβ1
and

δβ2
do not contain eigenvalues of the operator pencil A(λ) and let f ∈ Y−β1

⋂
Y−β2

.
Denote by u1 and u2 solutions to the problem (2.7) from the spaces X−β1

and X−β2

respectively (which exist according to Theorem 4.1). Then

(4.1) u2 − u1 =
N∑

k=1

Jk∑

j=1

mkj−1∑

m=0

ckj,mΦ
k
j,m(t),

where the functions Φk
j,m, k = 1, . . . , N , are all the functions (3.13) such that the

eigenvalues λk belong to the set

Q(β1, β2) := {λ = β + iξ : β1 < β < β2, ξ ∈ [0, 2π)},(4.2)

and ckj,m are constants.
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A straightforward consequence of the last theorem is the following uniqueness
result.

Corollary 4.3. Let β1 and β2 be the same as in Theorem 4.2. If u ∈ Xloc is a
solution of (2.7) with f = 0 and

(4.3) ‖u;X (t, t+ 1)‖ ≤ Ceβ1t for t ≥ 0 and ‖u;X (t, t+ 1)‖ ≤ Ceβ2t for t ≤ 0

for some positive constant C, then

(4.4) u =

N∑

k=1

Jk∑

j=1

mk,j−1∑

m=0

ckj,mΦ
k
j,m(t),

where ckj,m are constants and Φk
j,m are all functions (3.13) such that the eigenvalues

λk belong to the set (4.2).

Proof. Let β ′
1 > β1 and β ′

2 < β2 be such that the intervals [β1, β
′
1] and [β ′

2, β2]
do not contain the eigenvalues of the operator pencil A(λ). Let also η = η(t) be a
smooth function of one variable such that η(t) = 1 for t > 1 and η(t) = 0 for t > 0.
Consider the problem (2.7) with f = (Dtη)u. This problem has two solutions,
u1 = ηu and u2 = (η − 1)u. Since

∞∫

0

e−β′

1
t‖u1(t);X‖2dt ≤ C

∞∫

0

e−β′

1
t‖u;X (t, t+ 1)‖2dt ≤ C

∞∫

0

et(β1−β′

1
)dt <∞,

u1 belongs to X−β′

1
. Similarly, u2 belongs to X−β′

2
. By Theorem 4.2, u = u2 − u1 is

equal to the right-hand side of (4.1) and we arrive at (4.4). �

5. Pointwise projector.

Let us introduce the operator

(5.1) Pu(t) =

N∑

k=1

Jk∑

j=1

mk,j−1∑

m=0

ukj,m(t)ϕ
k
j,mk,j−1−m(t),

where

(5.2) ukj,m(t) =
(
u(t), ψk

j,m(t)
)

and t ∈ R. If the inner product (·, ·) were replaced by (·, ·)Ŷ then by (3.10) the
above operator would be the finite dimensional spectral projector for the operator
−L(t, Dt) corresponding to the spectrum in the set (3.3). But here we have only
the inner product (·, ·) on the cross-section and the coefficients ukj,m are functions
of t. By definition, the operator P commutes with the point evaluation operator
Yloc ∋ f 7→ f(t) for all t ∈ R. The notation P(t) means the evaluation of (5.1) at t.

The operator P is well defined on the spaces Yloc and Xloc. Since there are only
finitely terms in the sums (5.1) and

|ukj,m(t)| ≤ C‖u(t); Y ‖ and |∂tu
k
j,m(t)| ≤ C‖∂tu(t); Y ‖,

the operator P is bounded as an operator in Xβ and Yβ.
In the following theorem we prove that the operator P(t) is indeed a projector

and derive some important properties of P.
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Theorem 5.1. The operator P has the following properties:
(i) P(t) is a projector for every t ∈ R;
(ii) LPu = PLu for all u ∈ Xloc ;
(iii) there holds

(5.3) LPu =

N∑

k=1

Jk∑

j=1

mk,j−1∑

m=0

(
(Dt − λk)u

k
j,m(t)− ukj,m−1(t)

)
ϕk
j,mk,j−1−m(t),

where it is assumed that ukj,−1 = 0.

The proof of is based on the following, perhaps unexpected fact.

Lemma 5.2. We have for all k,K = 1, . . . , N , j = 1, . . . , Jk, J = 1, . . . , JK,
m = 0, . . . , mk,j − 1, M = 0, . . . , mK,J − 1,

(5.4)
(
ϕk
j,mk,j−1−m(t), ψ

K
J,M(t)

)
= δkKδ

j
Jδ

m
M for all t ∈ R.

We will give a proof of this lemma at the end of this section and now complete the
proof of Theorem 5.1. Indeed, the claim (i) follows from (5.4). As for (iii), using
(3.6) we have

(Dt + A(t))U(t)

=

N∑

k=1

Jk∑

j=1

mk,j−1∑

m=0

(
(Dtu

k
j,m(t))ϕ

k
j,mk,j−1−m(t)

+ ukj,m(t)(Dt + A(t))ϕk
j,mk,j−1−m(t)

)

=
N∑

k=1

Jk∑

j=1

mk,j−1∑

m=0

(
(Dt − λk)u

k
j,m(t)ϕ

k
j,mk,j−1−m(t)

−ukj,m(t)ϕ
k
j,mk,j−m−2(t)

)
,

which implies (iii). Finally, we have

PLu =
∑

vkj,m(t)ϕ
k
j,mk,j−1−m(t) , where

vkj,m(t) =
(
(Dt + A(t))u(t), ψk

j,m(t)
)
= Dtu

k
j,m(t) +

(
u(t), (−Dt + A(t)∗)ψk

j,m(t)
)
.

Using (5.4) we obtain

vkj,m(t) = Dtu
k
j,m(t)− λk

(
u(t), ψk

j,m(t)
)
−

(
u(t), ψk

j,m−1(t)
)

= (Dt − λk)u
k
j,m(t)− ukj,m−1(t).

which together with (iii) gives (ii). �

Proof of Lemma 5.2. Introduce

I(k, j,m;K, J,M)(t) =
(
ϕk
j,m(t), ψ

K
J,M(t)

)
.(5.5)

We have for all m,M = 0, . . . , mk,j − 1

DtI(k, j,m;K, J,M)(t) = (Dtϕ
k
j,m(t), ψ

K
J,M(t)) + (ϕk

j,m(t), Dtψ
K
J,M(t)).

Moreover, by (3.6), (3.7),

(Dt + A(t) + λk)ϕ
k
j,m + ϕk

j,m−1 = 0, (−Dt + A(t)∗ + λK)ψ
K
J,M + ψK

J,M−1 = 0,
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where we must agree that the functions with negative second lower index are zero.
Thus,

DtI(k, j,m;K, J,M)(t) = −
(
(A(t) + λk)ϕ

k
j,m(t) + ϕk

j,m−1(t), ψ
K
J,M(t)

)

+
(
ϕk
j,m(t), (A(t)

∗ + λK)ψ
K
J,M(t) + ψK

J,M−1(t)
)
.

After cancellation, we get

DtI(k, j,m;K, J,M)(t)

= −
(
ϕk
j,m−1(t), ψ

K
J,M(t)

)
+
(
ϕk
j,m(t), ψ

K
J,M−1(t)

)

= −I(k, j,m− 1;K, J,M)(t) + I(k, j,m;K, J,M − 1)(t).(5.6)

1◦. We first prove the case K = k and J = j ∈ {1, . . . , Jk}.
(i) Let first m = 0 and M = 0. Then, the right-hand side of (5.6) is zero

by the convention made above, and therefore DtI(k, j, 0; k, j, 0)(t) = 0 and thus
I(k, j, 0; k, j, 0)(t) does not depend on t. By Lemma 3.2 we get for all t

I(k, j, 0; k, j, 0)(t) =

1∫

0

I(k, j, 0, ; k, j, 0)(τ)dτ = (ϕk
j,0, ψ

k
j,0)Ŷ = 0.(5.7)

(ii) We next consider the case m = 0, M = 1, . . . , mk,j − 2. We use induction
with respect to M : assume that I(k, j, 0; k, j,M)(t) = 0 for some M < mk,j − 2 and
all t ∈ [0, 1]. By (5.6) we get

DtI(k, j, 0; k, j,M + 1)(t) = I(k, j, 0; k, j,M)(t) = 0(5.8)

hence, I(k, j, 0; k, j,M+1)(t) is constant with respect to t. Integrating this constant
as in (5.7) and using Lemma 3.2 yield for all t

I(k, j, 0; k, j,M)(t) = (ϕk
j,0, ψ

k
j,M)Ŷ = 0 ∀M = 1, . . . , mk,j − 2.

(Note that by Lemma 3.2 the inner product is not zero for M = mk,j − 1.)
In the same way, using inductively

DtI(k, j,m+ 1; k, j, 0)(t) = I(k, j,m; k, j, 0)(t) = 0

for m = 0, . . . , mk,j − 2 instead of (5.8) we prove that

I(k, j,m; k, j, 0) = 0 ∀m = 1, . . . , mk,j − 2.

(iii) We next consider the case m+M ≤ mk,j−2 by using a double induction: as-
sume that for some indexM ≥ 0 withM ≤ mk,j−3 the equality I(k, j,m; k, j,M) =
0 has been proven for all m = 0, . . . , mk,j − M − 3. Then, (5.6) implies, for
m = 1, . . . , mk,j −M − 2,

DtI(k, j,m; k, j,M + 1)

= −I(k, j,m− 1; k, j,M + 1) + I(k, j,m; k, j,M).

We can thus proceed by induction with respect tom (using t-integration and Lemma
3.2 as above) to get

I(k, j,m; k, j,M + 1) = 0 ∀m = 0, . . . , mk,j −M − 2.

Induction with respect toM yields (5.4) for all m+M ≤ mk,j−2. In both induction
procedures we use (ii) for m = 0 and M = 0 to start with.
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(iv) Consider m +M = mk,j − 1. Formula (5.6) and what we have proven until
now again imply that for every m = 0, 1 . . . , mk,j − 1 the expression

I(k, j,m; k, j,mk,j −m− 1)

is a constant, which by t- integration and Lemma 3.2 is equal to 1.
(v) However, this and (5.6) again imply that for every m = 1, 2, . . . , mk,j − 1 we

have

I(k, j,m; k, j,mk,j −m) = 0.

(vi) From here on we can continue in the same way as in (iii) to get the result
for M +m ≥ mk,j.

2◦. The proof in the case K = k but J 6= j is simpler than 1◦. The case (i)
is the same. The argument of the case (ii) yields I(k, j,m; k, J,M) = 0 for the
pairs (m,M) with m = 0,M = 1, . . . , mk,J − 1 and m = 1, . . . , mk,j − 1, M = 0,
by Lemma 3.2. Then, the procedure of (iii) yields I(k, j,m; k, J,M) = 0 for all
remaining pairs (m,M), since now we do not have the obstruction of the case (iv)
(the inner products (ϕk

j,m, ψ
k
J,M)Ŷ equal 0 instead of 1, by Lemma 3.2, for all indices

in question).
3◦. For the proof in the case K 6= k we need to introduce instead of (5.5),

I(k, j,m;K, J,M)(t) = e(λk−λK)t
(
ϕk
j,m(t), ψ

K
J,M(t)

)
,

because λk 6= λK . By a similar calculation as around (5.6) we get for all j, J,m,M

e(−λk+λK)tDtI(k, j,m;K, J,M)(t)

= (λk − λK)
(
ϕk
j,m(t), ψ

K
J,M(t)

)

+ (Dtϕ
k
j,m(t), ψ

K
J,M(t)) + (ϕk

j,m(t), Dtψ
K
J,M(t))

= −
(
ϕk
j,m−1(t), ψ

K
J,M(t)

)
+
(
ϕk
j,m(t), ψ

K
J,M−1(t)

)
.(5.9)

The following argument shows that we can use (5.9) instead of (5.6) and repeat the
proof of the case 2◦ (i.e. the steps (i) − (iii) in 1◦) for all j, J,m,M : assume that
the right-hand side of (5.9) equals 0 for all t. Since e(−λk+λK)t 6= 0, this implies
that DtI(k, j,m;K, J,M)(t) = 0 for all t, hence, I(k, j,m;K, J,M)(t) = B for some
constant B, for all t. Thus, by Lemma 3.2,

0 =
(
ϕk
j,m, ψ

K
J,M

)
Ŷ
=

1∫

0

e(λK−λk)te(λk−λK)t
(
ϕk
j,m(t), ψ

K
J,M(t)

)
dt = B

1∫

0

e(λK−λk)tdt.

Here we have
∫ 1

0
e(λK−λk)tdt 6= 0, since λK − λk cannot equal a multiple of i2π, see

(3.3). Hence, the constant B must be zero, and thus also
(
ϕk
j,m(t), ψ

K
J,M(t)

)
= 0 for

all t. �

6. Spectral splitting.

We assume that β1 < β2 are the same real numbers as in Theorem 4.2 so that in
particular the semi-intervals δβ1

, δβ2
do not contain eigenvalues of the pencil A(λ)

and its eigenvalues in the set Q(β1, β2) of (4.2) are λ1, . . . , λN . We introduce the
function

µ(t) = e−β1t for t ≥ 0 and µ(t) = e−β2t for t ≤ 0.
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Using the projector P of (5.1) we represent a solution of (2.7) as

u = U + V, where U = Pu, V = Qu := (I − P)u.

Due to the commutation relation Theorem 5.1(ii) we have the following system of
equations for U and V :

L(t, Dt)U(t) =
(
Dt + A(t)

)
U(t) = Pf(6.1)

L(t, Dt)V (t) =
(
Dt + A(t)

)
V (t) = Qf.(6.2)

Using representations (5.1), (5.3) together with Theorem 5.1(iii) and writing

Pf(t) =

N∑

k=1

Jk∑

j=1

mk,j−1∑

m=0

fk
j,m(t)ϕ

k
j,mk,j−1−m(t),

where

fk
j,m(t) =

(
f(t), ψk

j,m(t)
)
,

we can present (6.1) as a system of first order differential equations

(6.3) (Dt − λk)u
k
j,m(t) + ukj,m−1 = fk

j,m,

Here, k = 1, . . . , N , j = 1, . . . , Jk, m = 0, . . . , mk,j − 1, and ukj,m is given by (5.2)

and we assume that ukj,m−1 = 0 if m = 0.
The equation (6.2) concerns the ”remainder” term: here we have removed the

spectrum λ1, . . . , λN from the operator using the projector, and hence it has better
estimates. This property of the equation (6.2) is contained in the following assertion.

Theorem 6.1. Let f ∈ L2
loc(R; Y ) and

(6.4)

∫

R

µ(t)‖f ;Y(t, t+ 1)‖dt <∞.

Then, the equation

L(t, Dt)u = f

has a solution u = U + V ∈ Xloc such that U is a solution of (6.1) and V is a
solution of (6.2) satisfying the estimate

‖V ;X (τ, τ + 1)‖ ≤ C

∫

R

µ(t− τ)‖Qf ;Y(t, t+ 1)‖dt(6.5)

for all τ ∈ R.
Let f satisfy (6.4) and Qf = 0. If the bounds (4.3) with some constant C hold

for u, then V = 0.

Proof. We need to prove here the existence of V satisfying (6.5) as well as the
last uniqueness statement. We start by the uniqueness. Let Qf = 0 and assume
u satisfies (4.3). Let the coefficients of Pu in (5.1) satisfy (6.3). Then Pu is a
solution to (2.7) and by analysing solutions of the ODEs (6.3) we conclude that this
solution also satisfies (4.3) possibly with a slightly larger β1 and smaller β2. Then,
according to the above uniqueness result from Corollary 4.3 we have u = Pu and
hence V = Qu = 0.
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Let us turn to the existence. Let first f have a compact support and let g = Qf .
Applying Theorem 4.1 to the equation LV = g, we get the estimates

(6.6)

∞∫

−∞

e−βk(t−τ)‖V (t);X‖2dt ≤ C

∞∫

−∞

e−βk(t−τ)‖g(t); Y ‖2dt,

for k = 1, 2 and all τ ∈ R. Finally, assume f is as in (6.4) and write f =
∑∞

j=−∞ fj ,
where

fj(t) = f on (j, j + 1) and fj = 0 for t outside (j, j + 1), j = 0,±1,±2, . . . .

Using estimate (6.6) for the function Vj (corresponding to fj and gj = Qfj) we get

( τ+1∫

τ

‖Vj(t);X‖2dt
)1/2

≤ Cµ(j − τ)
( j+1∫

j

‖Qf(t); Y ‖2dt
)1/2

.

Summing up these relations, we obtain for all τ ∈ R

( τ+1∫

τ

‖V (t);X‖2dt
)1/2

≤ C

∫

R

µ(t− τ)‖Qf(t); Y ‖dt,

which is the same as (6.5). �

Remark 6.2. We note that the function µ(t) is the Green function of the second
order operator −(Dt−β1)(Dt−β2) up to a positive constant factor. So the estimate
(6.5) is similar to the representation of the solutions to the equation

−(Dt − β1)(Dt − β2)u(t) = f(t)

through the Green function and the right-hand side.
Estimates (6.4) and (6.5) imply estimate (4.3) possibly with some slightly larger

(smaller) β1 (β2) and hence uniqueness and existence parts in Theorem 6.1 are in
agreement.

7. Reduction of a dynamical system with periodic coefficients in
Hilbert space

7.1. Formulation of the problem. In this section we apply Theorem 6.1, in a
slightly modified form, to obtain a center manifold reduction for a non-linear ODE
with periodic coefficients in a Hilbert space. The proofs are mainly quite straight-
forward modifications of existing result, hence, we only sketch many of them.

To formulate the problem we let the Hilbert spaces X and Y and the operators
A(t) and A(λ) be as in Section 2. Then, consider the following non-linear ODE in
the space X ,

(7.1) L(t, Dt)u(t) = f(t, µ, u(t)),

where

f : R×M× X̃ → Y(7.2)

and M is the set of parameters, which is a neighborhood of a point µ0 ∈ R
d, while

X̃ is a neighborhood of zero in X and u ∈ Xloc with u(t) ∈ X̃ for all t. Moreover we
assume that the function f of (7.2) belongs to Ck+1

BU (R×M× X̃ ; Y ) (the space of

functions R×M× X̃ → Y , which, together with all t-, µ- and u-derivatives up to
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order k + 1, k ≥ 1, are uniformly continuous and bounded; by the u-derivative we
mean the standard Fréchet-derivative in Banach-spaces) and that

f(t, µ0, 0) = 0, ∂uf(t, µ0, 0) = 0 for t ∈ R.(7.3)

Observe that according to these equalities, f is in a sense at least of the second degree
with respect to u, a property which will be essential to the fixed point argument in
the proof of the main result. We assume also that the periodic operator function A(t)
belongs to Ck+1

per (R;L(X, Y )) (the space of k + 1 times continuously differentiable
functions R → L(X, Y ) which are periodic in t).

In this section and in what follows we denote by λ1, . . . , λN the eigenvalues of
A(λ) on the interval δ0, (3.1), and for their multiplicities, partial multiplicities,
eigenvalues and generalized eigenvalues we keep the notation of 3. Introduce the set
of indices

Θ = {(k, j,m) : k = 1, . . . , N ; j = 1, . . . , Jk;m = 0, . . . , mk,j − 1},

and the total algebraic multiplicity of all eigenvalues on the interval δ0

M =
N∑

k=1

Jk∑

j=1

mk,j.

Following Sections 5, 6 we represent the function u of (7.1) as

(7.4) u = U + V, ,

where

(7.5) U(t) = P(t)u(t) =
∑

(k,j,m)∈Θ

ukj,m(t)ϕ
k
j,mk,j−1−m(t),

with

(7.6) ukj,m(t) =
(
u(t), ψk

j,m(t)
)

and V = u − U = Qu, Q = I − P. Due to additional smoothness of A(t) we have
ϕk
j,m ∈ Ck

per(R;X) and ψk
j,m ∈ Ck

per(R; Y ). Now equation (7.1) can be transformed
into the system

L(t, Dt)U(t) = Pf(t, U(t) + V (t)),(7.7)

L(t, Dt)V (t) = Qf(t, U(t) + V (t)).(7.8)

By Theorem 5.1, equation (7.7) can be written as the scalar system

(7.9) (Dt − λk)u
k
j,m(t)− ukj,m−1(t) = fk

j,m(t, U(t) + V (t)), (k, j,m) ∈ Θ,

where ukj,−1 = 0 and

(7.10) fk
j,m(t, u(t)) =

(
f(t, µ, u(t)), ψk

j,m(t)
)

for all k, j,m. We introduce the notation

(7.11) u(t) = {ukj,m(t)}(k,j,m)∈Θ = {
(
u(t), ψk

j,m(t)
)
}(k,j,m)∈Θ, f = {fk

j,m}(k,j,m)∈Θ

and define the M ×M-matrix by

Ru = {λku
k
j,m + ukj,m−1}(k,j,m)∈Θ.(7.12)

Given τ ∈ R and ξ ∈ CM we associate to the equation (7.9) the problem

(7.13) (Dt −R)u(t)(t) = f(t, µ, U(t) + V (t)), u(τ) = ξ,
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where U is expressed through u by (7.5). This reformulation will replace (7.7) in
the later considerations (see (7.35)) in the general case of complex Hilbert spaces X
and Y . In the next section we make remarks on the real case.

7.2. Projector P in the case of real Hilbert spaces. We consider here the case
when the operator A(t) is real, or real valued. Namely, in possible applications for
partial differential operators having real coefficients, it may very well be desirable
to stick to the real valued solutions, but in (7.13), there is no guarantee that for
example the matrix R is a real one. Accordingly, we derive here a modified equation
with a real R.

To be precise, we assume here that our basic Hilbert spaces X and Y , Section 2,

are presented as a standard complexification of the Hilbert spaces X̂ , X̃ , Ŷ and Ỹ ,
respectively, over the real scalar field R, i.e.

X = X̂ ⊕ iX̃ and Y = Ŷ ⊕ iỸ

as vector spaces. Then, x = x̂ − ix̃ denotes the conjugation of an element x =

x̂ + ix̃ ∈ X̂ ⊕ iX̃ = X (here, x̂ and x̃ are the real and imaginary parts of x).

Moreover, x ∈ X is real, if x ∈ X̂ , or equivalently x = x = x̂; the notions of the real
and imaginary parts of x are as usual. The operator A(t) : X → Y is real, if there

holds A(t) = A(t), where A(t) is the conjugation of the operator A(t) defined by

A(t)(x̂+ ix̃) = A(t)(x̂− ix̃) for all x̂, x̃ ∈ X.

If A(t) is real, there holds A(t)(X̂) ⊂ Ŷ . For example, if X is a Sobolev-space H1(Ω)
on some domain Ω ⊂ Rd, then the above concepts have natural interpretations in
terms of real valued functions and partial differential operators with real coefficients
etc.

We introduce the operators P̂k : Ŷ → Ŷ as

P̂λk
u =

Jk∑

j=1

mk,j−1∑

m=0

(u, ψk
j,m)Ŷϕ

k
j,mk,j−1−m.

Let also

Pλk
(t)u(t) =

Jk∑

j=1

mk,j−1∑

m=0

(u(t), ψk
j,m(t))Y ϕ

k
j,mk,j−1−m(t),(7.14)

which is now defined for all u ∈ Cloc(R; Y ). Clearly, P̂λk
is the spectral projector of

the operator pencil L corresponding to the eigenvalue λk and taking values in the
space of periodic functions. Similarly to Lemma 5.2 one can show that the operators
Pλk

(t) are projectors for every t ∈ R, i.e. we have P2
λk

= Pλk
. These projectors also

have the properties

P(t) =

N∑

k=1

Pλk
(t) and Pλk

(t)PλK
(t) = δk,K for k,K = 1, . . . , N

According to (2.13), the numbers λk − 2πi are also eigenvalues of the pencil A(λ)
of the same multiplicity and partial multiplicities as λk, and the systems

e−2πiϕk
j,m and e−2πiψk

j,m, j = 1, . . . , Jk, m = 0, . . . , kk,j − 1,(7.15)
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are canonical Jordan chains corresponding to the eigenvalue λk−2πi, and the relation
(3.10) holds for them. If the projector Pλk−2πi(t) is defined analogously to (7.14) by
using (7.15), then one can verify that actually

(7.16) Pλk−2πi(t) = Pλk
(t).

In the case a real valued operator A(t) the number λk is also the eigenvalue of
A(λ) of the same multiplicity and partial multiplicities as λk. There also holds the
important relation

Pλk
(t) = Pλk

(t).

It will be convenient to re-numerate eigenvalues as follows. We first consider
the eigenvalues λk ∈ (0, πi) and numerate them by 1, . . . , σ. Then the interval
(πi, 2πi) contains the same number of eigenvalues since the numbers λk, λk − 2πi
and −λk +2πi are all eigenvalues of the same multiplicity and partial multiplicities.
The eigenvalues in (πi, 2πi) are indexed by the numbers −1, . . . ,−σ so that

−λs = λ−s − 2πi.

Thus,

P(t) =
σ∑

s=1

(
Ps(t) + Ps(t)

)
+
(
ǫ0P0(t)

)
+ ǫσ+1Pσ+1(t)).

Here, ǫ0 = 1, if 2πi is an eigenvalue, otherwise ǫ0 = 0. Similarly, ǫσ+1 = 1, if πi is
an eigenvalue, otherwise this coefficient is 0.

If 2πi is an eigenvalue, then due to (7.16) we have P2πi(t) = P0(t); one can choose
all eigenfunctions and associated eigenfunctions ϕ0

m,j and ψ
0
m,j to be real. Hence, the

expression for the operator P0(t) consists of real terms only for each t. If λ = πi is
an eigenvalue of the operator pencil A(λ) then the corresponding projector Pσ+1(t)
has the form

(7.17)
(
Pσ+1u(t)

)
(t) =

Jσ+1∑

j=1

mσ+1,j∑

m=0

uσ+1
j,m (t)ϕσ+1

j,mσ+1,j−1−m(t),

where

(7.18) uσ+1
j,m (t) = (u(t), ψσ+1

j,m (t))Y

and

(7.19) ϕσ+1
j,m and ψσ+1

j,m , j = 1, . . . , Jσ+1, m = 0, . . . , mσ+1,j − 1,

are canonical Jordan chains corresponding to the eigenvalue 0 of the operators Dt+
A(t) and −Dt +A∗(t) with anti-periodic conditions (u(t+ 1) = −u(t)). The chains
are subject to the biorthogonality conditions (3.10). Clearly, the functions (7.19)
can be chosen to be real1. So the projector P(t) is real for each t.

To give a more explicit representation for P(t) we write the real and imaginary
parts

ϕk
j,m(t) = ϕ̂k

j,m + iϕ̃k
j,m and ψk

j,m(t) = ψ̂k
j,m + iψ̃k

j,m.

Then for real valued u we have

P(t)u(t) =

σ∑

s=1

Js∑

j=1

ms,j−1∑

m=0

(
ûsj,m(t)ϕ̂

s
j,ms,j−1−m(t) + ũsj,m(t)ϕ̃

s
j,ms,j−1−m(t)

)

1We note that isomorphism between periodic and anti-periodic vector-functions is given by
multiplication by e

πit.
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+

σ∑

s=0,σ+1

Js∑

j=1

ms,j−1∑

m=0

ǫsû
s
j,m(t)ϕ̂

s
j,ms,j−1−m(t),(7.20)

where
ûsj,m(t) = (u(t), ψ̂s

j,m(t))Y and ũsj,m(t) = (u(t), ψ̃s
j,m(t))Y .

By taking the real and imaginary parts in (7.9) we get the real equations

Dtû
s
j,m + µsũ

s
j,m − ûsj,m−1 = f̂ s

j,m,(7.21)

Dtũ
s
j,m − µsû

s
j,m − ũsj,m−1 = f̃ s

j,m,(7.22)

where λs = iµs and

(7.23) f̂ s
j,m(t) = (f(t), ψ̂s

j,m(t))Y and f̃ s
j,m(t) = (f(t), ψ̃s

j,m(t))Y .

In the case 2πi, or 0, are also eigenvalues, we get one more equation,

(7.24) Dtû
0
j,m − û0j,m−1 = f̂ 0

j,m,

since ϕ0
j,m, ψ

0
j,m and f 0

j,m are real, see above. Similarly, if πi is an eigenvalue, then
there is the additional equation

(7.25) Dtû
σ+1
j,m − ûσ+1

j,m−1 = f̂σ+1
j,m .

In the decomposition (7.4), i.e. u(t) = P(t)u(t) + V (t), the projector P(t)u(t)
has the new representation (7.20) and V satisfies the same estimate (6.5) as before.
However, the matrix (7.12) can now be replaced by another one, which is obtained
from the system (7.21)–(7.25) and has real entries. We keep the old notation and
still write system (7.13) as

(7.26) Dtu−Ru = f , u(τ) = ξ ∈ R
M ,

where R is a real matrix. In the real case we will use the coordinates

(ξ̂sj,m, ξ̃
s
j,m, ξ̂

0
j,m, ξ̂

σ+1
j,m ), s = 1, . . . , σ,

where the last two are there only when 2πi or/and πi are eigenvalues respectively.

7.3. Model problem. Hereinafter, we formulate all results for the case of real
Hilbert spaces. Their generalizations onto complex Hilbert spaces are quite straight-
forward.

We will need to consider a linearization of the system (7.7)–(7.8). To formu-
late this we introduce for γ > 0 the weighted Sobolev-type space H1

γ(R) of vector

functions u : R → RM with finite norm

‖u;H1
γ(R)‖τ =

(∫

R

e−2γ|t−τ |(‖u(t)‖2 + ‖Dtu(t)‖
2dt

)1/2

(here and in what follows, ‖ · ‖ without a Banach space denotes the Euclidean norm
of RM) and the space Xγ(R) consisting of functions V ∈ Xloc satisfying Q(t)V (t) =
V (t) for almost all t ∈ R with finite norm

‖V ;Xγ(R)‖τ =
(∫

R

e−2γ|t−τ |(‖V (t);X‖2 + ‖DtV (t); Y ‖
2)dt

)1/2

Given τ ∈ R and ξ ∈ RM , we pose the following linear problem

(Dt −R)u(t) = F(t), u(τ) = ξ(7.27)

L(t, Dt)V (t) = G(t),(7.28)
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for the unknown pair (u, V ) ∈ H1
γ(R)×Xγ(R). Here, F : R → RM is a given vector

function belonging to the weighted space L2
γ(R) endowed with the norm

‖F;L2
γ(R)‖τ =

(∫

R

e−2γ|t−τ |‖F(t)‖2dt
)1/2

,

andG ∈ Yloc belongs to the spaceYγ(R) consisting of functions satisfyingQ(t)G(t) =
G(t) for almost all t ∈ R and endowed with the norm

‖G;Yγ(R)‖τ =
(∫

R

e−2γ|t−τ |‖G(t); Y ‖2dt
)1/2

We denote by β a positive number such that λ1, . . . , λN are the only eigenvalues
of the pencil A(λ) on the intervals δβ′ with |β ′| ≤ β.

Lemma 7.1. Let γ ∈ (0, β] and ξ ∈ RM , F ∈ L2
γ(R), G ∈ Yγ(R). Then the

linear problem (7.27), (7.28) has a unique solution u ∈ H1
γ(R), V ∈ Xγ(R), and

this solution satisfies

(7.29) ‖u;H1
γ(R)‖τ ≤ C(‖ξ‖+ ‖F;L2

γ(R)‖τ )

and

(7.30) ‖V ;Xγ(R)‖τ ≤ C‖G;Yγ(R)‖τ ,

where C is independent of τ . In the case of complex Hilbert spaces we must assume
certainly that ξ ∈ CM .

Given γ as in the lemma, we define the linear operator

(7.31) K : L2
γ(R)× R

M ×Yγ(R) → H1
γ(R)×Xγ(R)

which maps the data (F, ξ,G) into the solution of the problem (7.27)–(7.28) satis-
fying the estimates (7.29), (7.30).

Let us sketch the proof of Lemma . By a shift of the t-variable the lemma can be
reduced to the case τ = 0, which is the case we will consider here. Equation (7.27)
can be written as

u(t) = eRtξ +

∫ t

0

eR(t−s)F(s)ds.

Since the eigenvalues λk, k = 1, . . . , N , are purely imaginary we have

|eRt| ≤ C(1 + |t|)m̂−1, m̂ = max{mk,j : k = 1, . . . , N, j = 1, . . . , Jk}

and similar estimate is valid for the t-derivative. Therefore

|u(t)| ≤ C
(
(1 + |t|)m̂−1 +

∫ t

0

(1 + |t− s|)m̂−1|F(s)|ds
)

and

|u′(t)| ≤ C
(
(1 + |t|)m̂−1 +

∫ t

0

(1 + |t− s|)m̂−1|F(s)|ds+ |F(t)|
)

which implies (7.29).
We will use the following version of Theorem 6.1 adapted to our situation.

Theorem 7.2. Let f ∈ L2
loc(R; Y ) and

(7.32)

∫

R

e−β|t|‖f ;Y(t, t+ 1)‖dt <∞.
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Then, the equation

L(t, Dt)u = f

has a solution u = U + V ∈ Xloc such that U is a solution of (6.1) and V is a
solution of (6.2) satisfying the estimate

‖V ;X (τ, τ + 1)‖ ≤ C

∫

R

e−β|t−τ |‖Qf ;Y(t, t+ 1)‖dt(7.33)

for all τ ∈ R.
Let f satisfy (7.32) and Qf = 0. If the bound

‖u;X (t, t+ 1)‖ ≤ Ceβ|t| for t ∈ R

with some constant C hold for u, then V = 0.

The estimate (7.30) follows from (7.33) by using the arguments in Section 4 of
[3]; the fact the in the present case the operator A(t) is not constant in t does not
influence the proofs. We need to observe that β in the reference can be replaced by
β1 > β with β1 so small enough so that the strip β < ℑλ ≤ β1 does not contain
eigenvalues of the pencil A(λ).

7.4. Center manifold reduction. The following theorem is an analog of Theorem
1 in [10] and its proof is literally the same. We present below the main steps of the
proof for the convenience of the reader. As in the previous section we consider the
real case and hence the matrix R is real valued and defined in the end of Sect.7.2.

Theorem 7.3. Suppose that the assumption on A(t) from Sect.2 are valid and the
Operator A(t) is real valued. There are neighborhoods of zero W1 ⊂ RM , W2 ⊂ X
and a neighborhood M0 of µ0 in M and a function

h = h(t, µ, ξ) ∈ Ck(R×M0 ×W1,W2),

such that

Q(t)h(t) = h(t), h(t, µ0, 0) = 0 and ∂ξh(t, µ0, 0) = 0 for t ∈ R .

Moreover the following properties hold:
1. Every solution u : R →W1 of the reduced system

(7.34) Dtu−Ru = f(t, µ, U(t) + h(t, µ,u(t))),

where µ ∈ M0 and U = Pu is given by (7.20), gives a solution u = U + h(t, µ,u(t))
of the whole system (7.1).

2. Every small bounded solution u : R → X of (7.1) satisfying u(t) ∈ W1 and
V (t) ∈ W2 for all t ∈ R yields a solution u of the reduced system (7.34). In this
case V (t) = h(t, µ,u(t)).

The first step of the proof is to study the solvability of the non-linear problem

(Dt −R)u(t) = f(t, µ, U(t) + V (t)), u(τ) = ξ(7.35)

L(t, Dt)V (t) = Q(t)f(t, µ, U(t) + V (t))(7.36)

for small ‖ξ‖. Since we are interested in small solutions it is convenient to introduce
new right-hand sides in (7.35), (7.36) which however coincide with the original ones
for small u. Thus, let

fε(t, µ, u) = f(t, µ, u)χ
(‖u‖

ε

)
χ
(‖V ‖X

ε

)
,
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fε(t, µ, u) = f(t, µ, u)χ
(‖u‖
ε

)
χ
(‖V ‖X

ε

)
,(7.37)

where χ ∈ Ck+1([0,∞)) is a cut-off function such that χ(t) = 1 for t ≤ 1 and
χ(t) = 0 for t > 2 and ε ∈ (0, ε0) with ε0 satisfying

{U + V : ‖u‖ ≤ 2ε0, ‖V ‖X ≤ 2ε0} ∈ X̃.(7.38)

Now instead of (7.35), (7.36) we consider the problem

(Dt −R)u(t) = fε(t, µ, U(t) + V (t)), u(τ) = ξ,(7.39)

L(t, Dt)V (t) = Q(t)fε(t, µ, U(t) + V (t)),(7.40)

where fε and fε are defined by (7.37). Using the operator K introduced in (7.31),
we can write problem (7.39), (7.40) as a fixed point equation

(u(t), V (t)) = K
(
fε(·, µ, U(·) + V (·)), ξ,Q(·)fε(·, µ, U(·) + V (·))

)
(t)

Similarly to [10] and using (7.3) among other things, one can show that the operator
K(·, ξ, ·) is a contraction in a small ball of the Hilbert-space H1

γ(R)×Xγ(R) deter-
mined by the choices (7.37), (7.38). The problem thus has a unique small solution
for small ε. The function h is defined by

(7.41) h(τ, µ, ξ) = V (τ, µ, ξ)(τ).

The same arguments as in [10] show that h has the required smoothness with respect
to t, µ and ξ and that the properties 1 and 2 hold.

The following remarks can be verified by quite straightforward arguments using
the definition of the function h given in the proof of the above theorem.

Remark 7.4. If f is periodic in t, then the function h is also periodic in t.

Remark 7.5. If additionally

f(t, µ, 0) = 0 for µ ∈ M, t ∈ R,

then

h(t, µ, 0) = 0 for µ ∈ M0, t ∈ R.

Remark 7.6. Let the operator A(t) (and hence L) depend also on µ ∈ M of class
Ck+1

per (R × M;L(X, Y )). So A = A(t, µ) and L(t, µ,Dt). We assume also that the
structure of the orthogonal projector P = P(t, µ) is the same for µ ∈ M and it is
given by (7.5) where the functions ϕk

jm = ϕk
jm(t, µ) and ψ

k
jm = ψk

jm(t, µ) are smoothly

depend on µ also (of class Ck+1
per (R×M;X) and Ck+1

per (R×M; Y ) respectively. If

f(t, µ, 0) = 0 and ∂uf(t, µ, 0) = 0 for µ ∈ M, t ∈ R,

then

h(t, µ, 0) = 0 and ∂ξh(t, µ, 0) = 0 for µ ∈ M0 and t ∈ R.
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