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Abstract

This thesis is motivated by the need to analyse measured traffic data from networks. It
develops and applies statistical methods to characterize and to model such data. The
application areas are related to teletraffic and telecommunication networks, vehicular
traffic and road/street networks, and Internet of Things applications. The research is
based on four scientific publications, augmented with the statistical framework and the-
oretical development included in this summary. From the applications’ point of view,
the addressed research problems diverge on the types of the engineering problems, while
from the statistical point of view, they share common theoretical methods.

The application problems are: i) to study whether a Gaussian process is a feasible
model for aggregated Internet traffic, ii) to obtain aggregated flow level models for flow
sizes, flow durations and their bivariate joint distribution, iii) to deduce vehicular traffic
routes from correlated counts of vehicles that are observed at different locations of a
street network, and iv) to develop a data reduction algorithm that works with limited
computational capacity and can be deployed by Internet of Things applications.

This summary provides the statistical framework that combines the developed and
applied methodologies and emphasizes their common features. Rigorous mathematical
proofs are given for certain less-known, possibly novel, results about mutual information
of pairs of order statistics, and a convergence result related to simultaneous estimation
of several quantiles. These were used in the publications or, alternatively, bring new
statistical insight to the methods that were used in the publications.
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Chapter 1

Introduction

In May 2021, while we had already started to write this summary, we had the privilege
of participating in a statistics course led by Neil Sheldon. The aim of the course was
to sharpen statistical thinking, the use of statistical concepts and the language used in
presenting results of statistical analysis. Sheldon forced us, the students, to think about
why we use statistical concepts, when we should or should not use statistical language and
what we should communicate to other people, colleagues and society, about our findings.
We fully agree with the opinion of Neil Sheldon, which he shared in his lectures, that the
purpose of statistics is insight and not numbers. First, a statistician should gain enough
insight about the nature of the statistical problem for oneself and then communicate
one’s insight to other people, from project collaborators to the scientific community, so
clearly that they can agree or disagree with the insight. The possibility to disagree is, of
course, the more crucial option as it allows us to find better insight in the future. The
insight that a statistician can gain on a statistical problem is based on two corner stones,
theory and data. In Figure 1.1, the structure of this summary is drawn based on these
corner stones. The publications of this thesis contain the major insight to the statistical
nature of the studied problems, which combines background knowledge, inference and
interpretation.

This research is based on the four scientific publications [1], [2], [3], and [4]. These
articles develop and apply statistical methods that are used to characterize, to analyze
and to model observed or measured traffic data from a network. The application areas of
[1] and [2] are related to teletraffic and telecommunication networks while [3] is related
to vehicular traffic and road/street networks. Publication [4] describes an algorithm,
originally designed for Internet of Things applications, which we expect to have a wider
range of applications. For example, the algorithm of [4] has already been applied in
intensive network delay measurements of a test network, therefore the application area
of [4] includes telecommunications. Table 1.1 offers an overview to the engineering
research topics and to the different sources of data that are used in the publications.
However, the focus of the publications is more on the developed and applied methods
than on the data itself.

From the applications point of view, the addressed research problems diverge on
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Figure 1.1: The structure of this thesis.

Table 1.1: Quick reference to the application research topics and data sources.

Publication Research topic Data source

[1] Feasibility of a Gaussian TCP/IP packet headers
process as a model for
aggregated TCP/IP traffic

[2] TCP flow level models for TCP/IP packet headers
flow sizes, flow durations
and flow rates

[3] Deduce vehicular traffic routes Vehicular traffic counts
from correlated traffic counts from loop detectors
observed at different locations
of a street network

[4] Perform data reduction with Internet of Things
limited computational applications
capacity

2



the types of engineering problems, while from the statistical point of view, they share
common theoretical basis. Our main objective in this thesis summary is to emphasize
the shared common statistical methods and to provide necessary details of them. These
include order statistics and quantiles, multivariate analysis, and statistical time depen-
dence models in the context of data traffic or vehicular traffic. We hope to bring a
fresh view to order statistics by exploring the mutual information between two order
statistics. The statistical framework also contains rigorous proofs of some less-known,
possibly novel, results about mutual information of certain pairs of order statistics, and
simultaneous estimation of several quantiles. These were used in the publications or
bring new insight to the methods that were used. Therefore the scope of the statistical
framework of this summary extends beyond the publications.

The wider motivation background and context of publications [1] and [2] is the ob-
servation of long-range dependence and heavy-tailed distributions in Internet traffic
starting from Leland’s Ethernet measurements [Leland et al., 1994], in which features
of self-similar processes were noticed. One observed characteristic feature was that the
bursty nature of Ethernet traffic does not get smoother when the time scale and the
level of traffic aggregation are increased [Leland et al., 1994, Fig.4]. These topics had
been rather rare in telecommunications, when they suddenly became the object of wide
engineering and mathematical interest.

A common motivation in publications [3] and [4] is the attempt to achieve purely
algorithmic solutions to distill statistical information from data, that is, solutions that
can be programmed as a single piece of code. In the era of continuous measurements
and constantly growing data sets, it seems necessary to process and reduce data online
before it is forwarded for applications. In many engineering applications, the end users
need the information content of the data rather than the raw data.

This summary is structured as follows. In Chapter 2, we describe the objectives and
the results of the research. In Chapter 3, we provide application-specific background
knowledge that describes what the data represents and how the data collection was
done. In Chapter 4, we provide the statistical framework, which describes the major
theoretical issues that were used in the publications, and we provide proofs of some
relevant results that were not included in the publications but were used in them. In
Chapter 5, we discuss further the insight that we have after the research work has been
done and the next steps. In Appendix A, we compute a formula that we use in Chapter
4.
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Chapter 2

Statistical objectives and results
of the research

In this Chapter, we describe the objectives and the results of the research of each of the
the four publications.

2.1 Publication [1]: Feasibility of a Gaussian traffic model

A Gaussian process (Xt) has the property that all of its finite dimensional marginals
are multinormally distributed and it is completely determined by its mean value func-
tion EXt and covariance function Cov(Xs, Xt) ([Parzen, 1962],[Priestley, 1982]). The
main objective in publication [1] was to study the possibility to model the increments
of the aggregate TCP/IP traffic flow with a Gaussian process in different time scales
when the data have long-range-dependent (LRD) features. We focused on 1-dimensional
marginal distribution of increments of real traffic and on the question of how well a nor-
mal distribution approximation describes the data. No assumption about the covariance
structure was done. During the research work, a statistical description of required aggre-
gation types, vertical and horizontal, arose as a research objective. Vertical aggregation
means the amount of users per time slot of width Δ and horizontal aggregation means
the width of the time slot.

We studied a TCP/IP packet data trace which was aggregated into different scales
Δ, from 1 millisecond (ms) up to 4 seconds (s). The scales increased in doubled manner:
1 ms, 2 ms, 4 ms, and so on until 4096 ms = 4 s. We showed that the known method,
which is based on computing the linear correlation coefficient r2n from normal-quantile
plots, is able to distinguish between a relatively good fit and a bad fit. We used this
method to study different scales and considered the behavior of r2n(Δ) when the sample
size n was increased. Because the method is simple to compute it was meaningful to
study increasing sample sizes. The possibility to consider increasing sample sizes was
important since LRD means that a sample of size n contains less information about the
possible model parameters than an independent sample of the same size n would contain.
In practice, it means that the convergence towards stable parameter values is slower.
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Increasing the sample size shows whether the normal distribution fit improves or seems
to stop improving at some point. Both negative and positive cases were shown based on
the data. We also compared the empirical tail 1−Fn(x) = Pn{X > x} against the model
tail 1 − Φμ,σ(x). The same method also applies to lognormal models and comparison
between the normal and lognormal fit is fruitful since the lognormal distribution is
known to belong to the class of subexponential distributions and, therefore, lognormality
indicates that the assumed Central Limit Theorem (CLT) based assumption does not
hold. The main result can be formulated by saying that the CLT assumption must hold
between those sources that contribute in the largest magnitude to the aggregate traffic
rate. If the largest magnitude contributors are rare, then even the sum of all smaller
magnitude contributors is not comparable to a single large contribution.

2.2 Publication [2]: TCP data flow sizes, durations and
rates

The first objective in publication [2] was to characterize the univariate heavy-tail prop-
erties of TCP flow sizes S and flow durations D. The second objective was to model the
bivariate dependence structure of the joint distribution of (S,D). The third objective
was to obtain the distribution of average flow rates, defined as the ratio R = S/D. There
was also some interest in dependency between the pair (S,R).

The results were based on analysis of TCP connection data of mobile Internet users.
The data of flow sizes and durations were highly variable and had subexponential fea-
tures. First, we applied several known methods to study the heaviness of the tails. Then
we approximated the distribution of the TCP flow rate by deriving it from the joint
bivariate extreme value distribution of the maxima of flow sizes and flow durations. Due
to the heavy tailed nature of flow sizes and durations, the joint distribution was repre-
sented by a bivariate extreme value distribution using the Pickand’s dependence function
A(t), 0 ≤ t ≤ 1. We estimated the A function with known non-parametric estimators
to measure the dependencies of random pairs: (S,D), (S,R), and (D,R). In [2, Section
4.2.1], we provided a generally applicable method to test that the achieved estimate of
the A function is good. This method is based on the observation that the Pickand’s
A function allows to write the distribution function of the ratio of the two variables in
terms of A and its derivative A′ [2, formula (14)]. We also demonstrated the use of this
method by selecting a parametric model, the logistic model, for A. The selection of the
logistic model was based on the non-parametric estimates of A. In this way, we obtained
a computable distribution model for the flow rates of large flows with S ≥ 200 kB [2,
Section 4.2.2].
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2.3 Publication [3]: Multinormal models for vehicular traf-
fic

The major research work of publication [3] was done in the Finnish Academy-funded
project called Stomograph. The broad objective in the Stomograph project was to re-
cover the vehicular traffic routes from traffic count data that was collected from different,
mutually relevant and correlated locations from a central area of the city of Tampere.
These locations bounded the area and there were also measurements from locations
inside the area. In publication [3], we restricted the study to the boundary locations
of the area. The objective of the research in publication [3] was limited to utilize the
information from correlated counts of vehicles in two (or three) mutually relevant loca-
tions and to deduce smaller spatial scale conclusions about traffic dynamics from these
correlations.

The result is the following algorithmic framework that can be used to extract in-
formation about traffic dynamics from counts of vehicles in the case where the traffic
counts are available in the opposite directions and in two or more locations. Denote
two such locations as 1 and 2 and also the two directions by 1 and 2. The data was
counts of vehicles per 15-minute time slots Xij , with i = 1, 2 as a location and j = 1, 2
as a direction at the location. Our algorithmic framework was built on several basic
ideas. First, we selected and named the locations and directions. Second, we performed
a linear transformation for the data in order to change the focus to the difference and
to the sum of the counts of vehicles in the opposite directions in every location. The
difference Zi = Xi1 −Xi2 was called asymmetry and the sum Vi = Xi1 +Xi2 was called
volume at location i. Mutually relevant means locations where it was justified to assume
that the two asymmetries (Z1, Z2) correlated due to detecting a proportion of the same
vehicles at these locations. Then we used multinormal distributions as a baseline model
for the asymmetries (Z1, Z2) at different locations. Third, we estimated the parame-
ters of the multinormal distributions, including correlation, using robust methods. The
fourth idea was the sample version of conditional expectation, which is supported by the
model-based estimates with confidence intervals.

Using these steps we presented three applications of the framework. The first ap-
plication was to recognize that the correlation matrices of the asymmetries can be
used to restrict the solution space of the more general origin-destination matrix esti-
mation problem. In the second application, we computed conditional expectations of
type E(Z2|Z1 > a) and deduced results about traffic dynamics from these. That is,
we quantified how much asymmetry in one location affects the asymmetry in another
location. The third application was to reconstruct missing data in one location given
the traffic dynamics in nearby locations.

2.4 Publication [4]: Online percentile estimation (OPE)

Our objective was to develop a statistical data reduction algorithm for IoT applications.
It was assumed that an IoT application produce univariate data and, because of low
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latency requirements, the computation of the algorithm should be performed near the
origin of the data. Therefore, the algorithm should be applicable in situations where the
computational resources, CPU power and memory, are limited.

The result is an algorithm called OPE, which is best described as a control loop
over an existing sequential quantile estimation algorithm. We used the extended P 2

algorithm of [Raatikainen, 1987], but the control loop can be based on any sequential
quantile estimation algorithm. The control loop either computes the sample quantiles
by ordering a small buffer or uses the sequential algorithm to estimate quantiles of any
univariate input data sequence. It transforms an univariate input sequence into out-
put sequence of (variable bin width) histograms without storing or sorting (ordering)
all of the observations. The algorithm is designed to continuously test whether the in-
put data appears stationary, and to react to events that do not appear to fit in the
stationary model. By using meta-data, OPE indicates how to interpret the histograms
since their information content varies according to whether the quantiles, which define
the histogram, were computed or estimated. It works with parameter-defined, fixed-size
small memory and limited CPU power. The control loop algorithm has a built-in feasi-
bility metric called applicability. The applicability metric is based on the meta-data that
OPE produces and it indicates whether the use of the algorithm is justified for a data
source: OPE is designed to work for an arbitrary univariate numerical input, but it is
statistically feasible only if the data source is in a stationary state more often than in a
non-stationary state. The theoretical part includes an extension of a known mathemati-
cal theorem about the convergence of a single quantile estimate. The extended theorem
covers the case of simultaneous estimation of several quantiles. We also presented the
results of a performance study done for the algorithm with positively autocorrelated
simulated data from the moving average model.
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Chapter 3

Background knowledge of
applications

The beginning of this chapter is aimed for those readers who are not yet familiar with the
Transport Control Protocol (TCP), the Internet protocol (IP), and TCP/IP networks. A
reader who is already familiar with TCP/IP should at least have a look at the figures and
tables as they will be referred to later on. In addition to TCP/IP, we aim to familiarize
the reader with some relevant issues about the Internet of Things (IoT) and vehicular
traffic.

3.1 A brief overview of TCP/IP networks

A fast way to understand the functionality of a communication network is to consider
the layered architecture description of it ([Stevens, 1994], [Medhi and Ramasamy, 2007],
[Heckmann, 2006], [Lin et al., 2012]). Figure 3.1 shows the layers. The layered architec-
ture means that the functionality of a layer is based on the functionality of the lower
layer. In this context, there are two different descriptions to consider. The first is the
Reference Model for Open Systems Interconnection (OSI model) made by the Interna-
tional Standardization Organization and the other model is the TCP/IP model.

The OSI model is an abstraction and the TCP/IP model is the one that is actu-
ally needed in the context of this thesis. However, together they give an overview of
the different functions that a communication network has and how a TCP/IP network
functions.

A protocol is an explicit set of messages and associated rules, which two or more
devices must obey so that they can communicate with each other. The notation TCP/IP
is read as “TCP over IP” and it essentially has the meaning that the functionality of
the TCP layer is based on the functionality of the IP layer. Each node of an IP network
has the same TCP/IP protocol stack implemented, and the corresponding layers at
each node communicate using the protocol of the layer. An example of the connection
layer protocol is the Ethernet, which was the measurement interface of the data used
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Figure 3.1: Layered architecture models.

in publications [1] and [2], and also in the early motivation study [Leland et al., 1994]
discussed in Introduction.

The TCP/IP networks are packet switched networks. It means that the source node
segments a data file into payloads of TCP packets and transmits them over the network
by IP packets that carry the TCP packets as payload. At the destination node, the small
segments are collected and reassembled back to the original file. The TCP layer of the
source node takes care of the segmentation and the TCP layer of the destination node
takes care of reassembling the data. The TCP packet header contains the information
that the destination node needs to reassemble the original file. The IP layer functions
take care that every IP packet that is sent from the source node eventually finds it way
to the destination node and these functions use the header information of the IP packet.

A TCP connection is a connection between the end points and traffic in the con-
nection can flow in both directions. The TCP protocol takes care that possibly lost
packets are re-transmitted and that packets that arrive out-of-sequence are reordered at
the receiving end node. In publication [2], we call the sequence of TCP/IP packets that
traverse from the source node to the destination node a TCP flow. Thus, connection is
a bidirectional concept and flow is a unidirectional concept; a TCP flow is a part of a
TCP connection.

A characteristic property of IP networks is that the individual packets of a single
TCP flow may traverse different routes between the source and the destination. It is
customary to draw an IP network as a cloud to indicate that all routes inside the cloud
are possible.

The TCP layer of the destination node sends acknowledgment (ACK) packets back
to the TCP layer of the source node and with the information from the ACK packets the
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source node knows to re-transmit a lost segment, send packets faster or send them at a
slower pace. TCP has sliding window-based flow control mechanisms that allow a slow
receiver to slow down the sending rate of the data sender. The time it takes for a piece
of information to traverse from the source node to the destination node and back to the
source node is called the round-trip-time (RTT), see Figure 3.2. The RTT and possible
packet loss determine the performance of a TCP flow. A packet loss is considered to be
a sign of congestion in the network and the sender TCP node reacts to the packet loss
by decreasing its sending window size. This is called a congestion control mechanism.

The dynamics of a single TCP connection can vary a lot. The source slides the send-
ing window over the segmented data file and, when the earliest segment of the window
is acknowledged, it moves the window onward over the segmented file and sends a new
segment. The sliding window controls the number of unacknowledged segments that can
exist at any time. However, the consecutive ACK packets may have an improper spacing
due to the cross-traffic, the other traffic in the network, which affects by mixing the ACK
packets with the cross-traffic in the queues along the reverse path(s) from destination to
the source. The spacing between consecutive ACK packets may be diminished so that
the ACK packets arrive to the source in clusters. In [Lin et al., 2012] this is called the
ACK-compression problem. It has the consequence that the source node sends a burst
of packets and waits for the feedback from the destination before it sends the next burst.
The burst sizes vary according to the flow control and congestion control mechanisms.
The TCP protocol tries to maximize the throughput and, occasionally, the source node
may send larger bursts than what the destination node receives. The protocol measures
the burst size in segments or packets and it is usually measured in bytes in the data
analysis. The concepts of a burst and the burst size variability, and RTT are important
in publication [1] and it is the message to remember from Figure 3.2.

Every TCP/IP packet contains an IP header to perform the functionality needed at
the IP layer and a TCP header to perform the described functions at the TCP layer.
These headers contain necessary information that these protocols need to perform the
above described data transfer functions, including flow control and congestion control.
The size of the IP header is 20 bytes and the size of the TCP header is 20 bytes,
making it 40 bytes in total. The size of an ACK packet, which carries information from
the destination back to the source is 40 bytes. If this header information is available
afterwards, then it is possible to reconstruct the protocol events that occurred during
the file transfer process. Usually, this header information is unavailable since there are
several possible routes and, excluding the source and the destination nodes, there is no
such place where the header information of every packet of the TCP connection could
be monitored.

In the case of data we used in publications [1] and [2], the situation was as illustrated
in Figure 3.3 below. All traffic traversed through a gateway node between two IP clouds,
therefore it was possible to monitor and, in case of the data used in [2], also to reconstruct
the events of TCP connections from the TCP/IP packet header data collected at the
gateway.

One important aspect in the reconstruction of the events of a TCP connection is the
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Figure 3.2: The TCP source transmits data packets in bursts.

Figure 3.3: A gateway node between two IP clouds.
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ability to detect the beginning and the end of it. A TCP connection begins with the
three-way handshake procedure which is recognized from the synchronization bits (SYN)
at the TCP headers. The end of the connection is recognized with the finish bit (FIN)
at the TCP header.

Data transfer rates are of interest both at the level of an individual TCP flow of
a user and at the level of the aggregate of TCP flows of several users. The aggregate
of TCP flows is called a traffic flow. The concept of a flow always has a direction
associated to it and, in publications [1] and [2], we call the direction either an upstream
or a downstream direction. In the context of web browsing traffic (HTTP or HTTPS
protocol), the downstream direction means from a web server on the Internet towards
an end user, and the upstream direction means from an end user towards a web server
on the Internet.

In publications [1] and [2], we express the transfer rates with the unit bits per second
(b/s) and its derivatives when multiplied by 103, as explained in Table 3.1. The file
sizes are commonly expressed in the unit byte (B) and its derivatives when multiplied
by 210 = 1024 �= 103. The prefixes “kilo”, “Mega” and “Giga” have different meanings
that depend on the context. Also, 1B = 8bits = 8 b. As an example, with constant
data transfer rate 384 kb/s, it takes at least 14 minutes and 34 seconds to transmit 40
MB of data: 40 × 220 × 8 b/384 × 103 b/s ≈ 874s. A more realistic estimate takes into
account the overhead due to TCP/IP packet headers and the performance of the TCP
protocol that is affected by the RTT and packet loss. One such estimate rate is given in
[Heckmann, 2006] by the formula for the average rate r of a long-lived TCP flow

r = 1.22
MTU

RTT
√

2
3p

, (3.1)

in which p is the packet loss probability and MTU is the maximum transmission unit, that
is, the maximum TCP/IP packet size. For an individual TCP flow, the MTU information
may be available in the header information at the beginning of the connection since it
can be negotiated. If it is not negotiated, a default value is used. Even in the case
of a single TCP connection, the RTT should be considered as a random variable with
ideally a small variance so that, for example in (3.1), the ‘RTT’ is interpreted as the
expected value of the RTT. However, for the TCP protocol RTT is just a parameter
that is estimated at the beginning of the connection. In the context of an aggregate
TCP traffic, the RTT refers to the distribution of the RTTs that each contributing TCP
connection uses as its parameter.

A reconstruction of the events of the TCP connection from the header information
allows to estimate the RTT and p. The same data that is analyzed in publication [2]
were also used in an earlier study [Kilpi and Lassila, 2006] where we analyzed the RTTs.

The aggregate traffic process A(0, t) represents a cumulative amount of all traffic in
one direction during a time period [0, t]. The difference A(0, t2)−A(0, t1) is an increment
of traffic during the interval ]t1, t2], 0 < t1 < t2 < t. The time interval ]t1, t2] is a slot and
the width (t2−t1) of the time slot is a scale. In publication [1] we use the word ‘resolution’
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Table 3.1: Different magnitudes of the basic units.

Type Value Unit Description

Transfer rate 1 b/s bits per second
103 kb/s kilobits per second
106 Mb/s Megabits per second
109 Gb/s Gigabits per second

File size 1 B Byte
210 kB kilobytes
220 MB Megabytes
230 GB Gigabytes

for scale. If the scale is finer than the RTT of a TCP connection, then the connection
may not be able to contribute to the amount of traffic in consecutive slots. On the other
hand, if the scale is larger than the RTT of the connection then the source may contribute
to the consecutive time slots. If a scale is chosen afterwards and if the scale is smaller
than many of the individual RTTs of all contributing sources, then we also perform
unintentional selection (possible selection bias) as some of the connections may not even
be able to contribute to the aggregate traffic at every consecutive slot. Therefore, RTT
is an important factor also in publication [1] even though it is not emphasized there. In
publication [1] the measurement was layer 3 level with some information about layer 4,
like protocol, port numbers and the size of the payload.

The results of publication [1] are based on data analysis of an IP-packet level traf-
fic trace that was measured from a gateway node which connected two communication
networks as illustrated in Figure 3.3. The other network was a dial-up network of a
Finnish Internet Service Provider and the other network was the Internet. The moni-
toring location was such that the trace could be considered statistically representative
in the following sense. A relatively large number of traffic sources contributed to the ag-
gregate traffic at the measurement point. Moreover, users were home users with limited
individual access link rates (typically less than 64 kb/s, at most 128 kb/s) compared to
the aggregate traffic rate (> 1 Mb/s) at the measurement point. This meant that the
largest bursts of packets that the TCP protocol of the source nodes injected should be
limited in size. Therefore, if the aggregate traffic rate at the measurement point were
large enough, no single traffic source should be able to dominate in the trace.

Both the measurements, of publication [1] and of publication [2], were done from a
commercial network. To protect the end users’ privacy, the IP addresses were anonymized
before analysis and the business secrets of the operator were kept confidential.

3.2 Internet of Things

The Internet of Things (IoT) means the ability to connect all kinds of devices with
the Internet so that they are accessible via an Internet connection. In the first place,
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this requires methods to address a device so that the network layer protocol can find
the device. Version 6 of the IP (IPv6) has a very large address space but, actually,
methods to reuse the existing address space of version 4 of the IP (IPv4) are also very
efficient. As soon as a device is connected to the Internet and has an IP address,
data communication becomes possible. There are, of course, a large number of privacy
and security issues that need to be solved. IoT can sometimes be just an extension
of TCP/IP, but other layer 4 protocols may be preferred instead of TCP. The main
difference related to earlier TCP/IP discussion is that the machine-to-machine (M2M)
communications dominate the IoT concept. M2M means that communication occurs
because some algorithm detects a situation where the information exchange is needed
and opens a connection for communication.

The typical devices that can be connected in the IoT framework include meters for
measuring the energy, electricity or water consumption, sensors for measuring tempera-
ture, pressure, humidity, speed, vibration, or detection of the presence of a vehicle, and
controllers that can detect working modes (on/off) or working states (high speed/low
speed) of engines or devices. These devices provide measured information at some rate
that can be fast or slow. In publication [4] we target the cases where the information
rate is high. There is also a question of where the data processing is optimally done:
cloud computing is a tempting solution due to huge memory and CPU capacity, but
latency is then also large. Computation in the proximity where the data collection is
done may be needed if small latency is required but then the memory and CPU capacity
are limited and this is the context of publication [4].

3.3 Vehicular traffic

While one second is a long time in data communication, in vehicular traffic the time
scales of interest start from 1 minute and include tens of minutes, hours, days, weeks,
months and years. Vehicles are not dropped, duplicated, re-transmitted nor segmented.
Queues, congestion and traffic flows are, however, concepts that are similar to packet
data traffic.

In the case of vehicular traffic, a flow of all vehicles can be divided into sub-flows in
many ways. The flow of buses can be considered as a separate flow from other traffic
flow in the same direction. If there are more than one lane available, vehicles in different
lanes can be considered to form different flows.

The routing functionality is basically in the head of the driver of a vehicle. However,
if a driver uses a GPS navigator then this navigator system is analogous to the routing
layer functionality of a communication network. Traffic lights, the lane and the road
signs in street crossings, in turn, form a functionality that is analogous to the link layer
switching functionality of communication networks.

In the data communication case, a single physical network can maintain several logical
networks and the logical network topology need not be the same as the physical network
topology. For example, the users of the communication network can be divided into
several groups that use the same physical network but are unaware of other groups. An
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analogy in the vehicular traffic case could be a network of regular bus lines in a city,
which traverse the same streets as other traffic, but does not traverse through all of the
possible streets.

The vehicle count data is obtained by loop detectors. A loop detector is an example
of an IoT application: it measures changes in the inductance of a wired loop that is
embedded under the road surface and forwards this data onward. Changes in the induc-
tance occur when a vehicle drives over the loop. An algorithm interprets the changes
in the inductance as counts of vehicles and the computation of this algorithm can be
done either in the loop detector, in some control unit of several loop detectors, or at the
cloud server where all raw data is collected. Loop detectors are often located in street
crossings near traffic lights. This is the context and origin of traffic count data that is
used in publication [3].
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Chapter 4

Statistical framework

In this chapter, we provide a statistical framework that, in a sense, combines the methods
of the publications of this dissertation under a broad theoretical umbrella. The scope
of the framework extends beyond the publications because we also provide new results
which are closely related to the publications but are not included in them. Our aim
is to facilitate the reading of the publications of this thesis by giving some background
knowledge, motivation and intuition of the selected methods. However, we do not aim
for a comprehensive coverage of all statistical issues that are used in the publications.
Indeed, the methods in publications [1] and [3] are motivated by the Central Limit The-
orem (CLT) and, therefore, they should be more common. The methods in publications
[2] and [4] are less common and we will emphasize them more. We start with the order
statistics and quantiles, and then we present some multivariate issues and, finally, some
time dependence issues. At the end of this chapter there is a brief summary of the
framework.

4.1 Order statistics and sample quantiles

We begin this section by introducing some theoretical results about mutual information
of pairs of order statistics. Both mutual information and order statistics are well-known
basic statistical concepts supported by a vast literature ([Cover and Thomas, 2006],
[Casella and Berger, 2002], [Nevzorov, 2001]). In [Ebrahimi et al., 2004], mutual infor-
mation of two consecutive order statistics was computed. We believe that the results
of [Ebrahimi et al., 2004] about mutual information bring some insight to publication
[2]. We will show how to compute the mutual information from the basic definitions
of [Cover and Thomas, 2006], [Casella and Berger, 2002] and some further assumptions.
Actual computations of the mutual information are done later in Appendix A.1.

4.1.1 Mutual information of pairs of order statistics

Let X and Y be two real-valued random variables with a joint density function f(x, y)
and let the marginal density functions be fX and fY , respectively. The mutual informa-
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tion I(X;Y ) is defined as

I(X;Y ) =

∫ ∞

−∞

∫ ∞

−∞
f(x, y) log

f(x, y)

fX(x)fY (y)
dxdy (4.1)

The main property of the mutual information is that I(X;Y ) ≥ 0 with equality if and
only if X and Y are independent [Cover and Thomas, 2006]. In information theory, the
uncertainty of a random variable means the complexity that is required to describe it,
and this descriptive complexity is measured by the entropy of the random variable. The
mutual information I(X;Y ) is interpreted as the reduction in the uncertainty of X after
observing or knowing the value of Y . Since I(X;Y ) = I(Y ;X), this interpretation is
symmetric between X and Y .

Let X1, . . . , Xn be an i.i.d. sample from a distribution F . Ordering of the sample
gives the order statistics X(1) ≤ · · · ≤ X(n). The new “name”, the index (i), is given for
each random variable and this index indicates that there are i values that are smaller
than or equal to the i:th order statistic X(i) in the sample of size n. The actual ordering
can be done only after the sample is observed, in the case of random variables the order
statistic notation is thus conditional on the ordering to be done. It is also conditioned
on the sample size n.

If Xi and Xj are independent, then I(Xi;Xj) = 0. In the case of the order statis-
tics, however, we expect that I(X(i);X(j)) > 0 because, when (i) �= (j), they contain
information about each other. This difference seems contradictory since X(i) and X(j)

are members of the original sample {X1, . . . , Xn}. The explanation for this is that
X(i) = T (i,X1, . . . , Xn), that is, each order statistic is a function T of the whole sample
and the parameters i and n. Function T consists of two parts, sorting and selection.
Whenever n ≥ 3, there exists at least one variable Xk which affects both X(i) and X(j)

but is not equal to either of them. The Xk acts as a common cause for X(i) and X(j)

and makes them associated.
From now on, assume that the distribution function F (x), x ∈ R, is continuous and,

following [Casella and Berger, 2002], the density of an order statistic X(i), denoted as
f(i), can be written in terms of the distribution function F (x) and the density function
f(x) = F ′(x) as follows

f(i)(x) =
n!

(i− 1)!(n− i)!
f(x)F (x)i−1[1− F (x)]n−i, x ∈ R. (4.2)

The joint density f(i)(j)of two order statistics X(i) and X(j) can also be expressed in
terms of F and f as ([Casella and Berger, 2002])

f(i)(j)(x, y) =
n!

(i−1)!(j−i−1)!(n−j)!
f(x)f(y)F (x)i−1[F (y)−F (x)]j−i−1[1−F (y)]n−j ,

(x, y) ∈ R
2, x < y and 1 ≤ i < j ≤ n. (4.3)

Together (4.2) and (4.3) suggest that by making some assumptions about the distribution
function F or specifying it somehow, then it is possible to obtain some results of the
mutual information (4.1) of any pair of the order statistics.
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The definitions (4.2) and (4.3) hold when F is continuous. Assume further that F is
strictly increasing. A consequence of this assumption is that the inverse function F−1

exists and, by making the probability integral transformation (PIT) X �→ F (X) = U , all
computations can be transferred to the unit interval [0, 1]. The transformed variables
Ui = F (Xi) are uniformly distributed in the unit interval [0, 1] with the order statistics
U(i) = F (X(i)).

Generally, when making the componentwise one-to-one PIT

(X,Y ) �→ (FX(X), FY (Y )) = (U, V ), (4.4)

the Jacobian of (x, y) �→ (FX(x), FY (y)) = (u, v) is

J(u, v) =
1

fX
(
F−1
X (u)

)
fY
(
F−1
X (u)

) =
1

fX(x)fY (y)
. (4.5)

Also, du = dFX(x) = fX(x) dx and dv = dFY (y) = fY (y) dy. Next, let f be the joint
density of the pair (X,Y ) and compute

I(X;Y ) =

∫∫
f(x, y) log

(
f(x, y)

fX(x)fY (y)

)
dxdy

=

∫∫
f
(
F−1
X (u), F−1

Y (v)
)
log

(
f
(
F−1
X (u), F−1

Y (v)
)

fX
(
F−1
X (u)

)
fY
(
F−1
Y (v)

)
)
J(u, v) dudv

= I(FX(X);FY (Y ))

= I(U ;V ). (4.6)

This computation shows a known fact that the mutual information (4.1) is invariant
under the component-wise one-to-one PITs. Since F is an increasing function, it is
order preserving: F (X)(i) = F (X(i)). Therefore, a consequence of (4.6) is that

I(X(i);X(j)) = I(U(i);U(j)). (4.7)

The integration range was dropped from the notation in (4.6) because it may change
with PITs.

The formulae (4.2) and (4.3) become computationally easy since the distribution and
the density functions of the uniform distribution are the simplest possible: FU (u) = u
and fU (u) = 1. Moreover, the U(i) follows the Beta distribution law Beta(i, n−i+1). The
Beta distribution and the Beta function have a fundamental role in the computations
and in the interpretation so we will briefly list some of the properties of the Beta function
for further reference.

The Beta function B(α, β) is defined as

B(α, β) =

∫ 1

0
uα−1(1− u)β−1du. (4.8)
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The value of the Beta function can be expressed in terms of the Gamma function Γ,

Γ(x) =

∫ ∞

0
e−ttx−1dt, (4.9)

as

B(α, β) =
Γ(α)Γ(β)

Γ(α+ β)
. (4.10)

Using these facts it is possible to compute partial derivatives ∂
∂α and ∂

∂β of the Beta
function in two ways, both in (4.8) and in (4.10), and this gives the formulae

∂

∂α
B(α, β) =

∫ 1

0
uα−1(1− u)β−1 log u du = B(α, β)[ψ(α)− ψ(α+ β)] (4.11)

and

∂

∂β
B(α, β) =

∫ 1

0
uα−1(1− u)β−1 log(1− u)du = B(α, β)[ψ(β)− ψ(α+ β)] (4.12)

where the ψ-function

ψ(x) =
d log Γ(x)

dx
=

Γ′(x)
Γ(x)

(4.13)

is the logarithmic derivative of the Gamma function. It is also computationally feasible
to express the factorials of (4.2) and (4.3) in terms of the Gamma function, which has the
recursive property Γ(x+1) = xΓ(x) and with positive integers this implies Γ(n+1) = n!.
In addition to the Gamma function, we use the n:th Harmonic number Hn =

∑n
k=1 1/k

that is related to the ψ -function at the integers n ≥ 1 as follows [DLMF, , Eq. 5.4.14]

ψ(n+ 1) = Hn − γE , (4.14)

where γE is the Euler’s constant:

γE = lim
n→∞(Hn − log n) ≈ 0.57721566490153286061 . . . (4.15)

Also, ψ(1) = −γE and we defineH0 = 0 so that (4.14) actually holds for all n ≥ 0 . In the
literature, γE is also called the Euler-Mascheroni constant. We consider (4.14) important
because the interpretation of the ψ-function from its definition (4.13) is difficult. The
equality (4.14) states a close relationship to Harmonic numbers and it is widely known
that Hn → ∞ when n → ∞. Moreover, the recursive property Hn = Hn−1 + 1/n is
immediate to check from the definition of Hn.

4.1.2 Mutual information of two consecutive order statistics

In publication [2], the distribution of X(n) is of interest when we estimate the upper tail
probabilities of X since

{X(n) > x} = {X1 > x or . . . or Xn > x} =

n⋃
i=1

{Xi > x}
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and, when all the variables have identical distribution,

P{X > x} ≤ P{X(n) > x} = P

(
n⋃

i=1

{Xi > x}
)

≤
n∑

i=1

P{Xi > x} = nP{X > x}. (4.16)

In publication [2], we have a large number N = 610 000 of observations of TCP flow sizes
which we treat in the order of arrival. We divide the data into m blocks of size n with
N = mn with different choices for n and m. By taking the largest value x(n) of each
block we obtain data of the block maxima, which we use to estimate the distribution of
the largest observation X(n). This classical Extreme Value Theory (EVT) approach is
quite a waste of data! However, the second-largest variable X(n−1) also contains useful
information about the upper tail since, after observing X(n−1) = x(n−1), the probability
of the event {X > x(n−1)} is always strictly positive and it has the empirical probability
estimate equal to 1/n. This is the simplest data-based prediction model we can think
of that extends beyond data: we ignore the value x(n) and give probability 1

n to the
infinite interval ]x(n−1),∞). We interpret this to mean that observing the second-largest
observation reduces the uncertainty of the largest observation in this way. By symmetry,
X(n) reduces the uncertainty ofX(n−1) the same amount. Next, we study I

(
X(n−1);X(n)

)
to see how much the uncertainty can reduce.

In [Ebrahimi et al., 2004], a more general closed form result of any two consecutive
order statistics was claimed:

I
(
U(i);U(i+1)

)
= logB(i+ 1, n− i) + nψ(n)− iψ(i)− (n− i)ψ(n− i)− 1 (4.17)

= nHn−1 − iHi−1 − (n− i)Hn−i−1 − 1− log

(
n

i

)
. (4.18)

The formula (4.17) is written in the same general format with the ψ function as in
[Ebrahimi et al., 2004]. In (4.18) it is rewritten in terms of the binomial coefficient and
Harmonic numbers because that format is easier to interpret. Fast conclusions include
the following ([Ebrahimi et al., 2004]):

1. The right-hand side of (4.17) indicates that the mutual information between con-
secutive order statistics does not depend on the distribution F . It depends only on
the sample size n and on i. We anticipated this since the positive mutual informa-
tion is the consequence from the sorting and the selection phases of the definition
of the order statistics.

2. The Beta function has the symmetry property B(α, β) = B(β, α) and the binomial
coefficient has the symmetry property

(
n
i

)
=
(

n
n−i

)
. Hence, from (4.17) it can be

concluded that there is symmetry between i and n− i.

3. The mutual information of consecutive order statistics increases when n increases.

The interpretation of (4.18) is worth thinking over. Any process that computes the
ordering of a sample can be represented by a decision tree, where each vertex of the tree
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represents an ordering comparison (‘<’ or ‘≥’?) of two sample values. The decision tree
that is needed to order a sample of size n is a binary tree with n! leaves and height at
least log2(n!) = O(n log2 n) ([Biggs, 1989, Chapter 9.2],[Cormen et al., 2009, Theorem
8.1]. Recall from (4.15) that Hn ≈ log n+ γE . Hence,

nHn−1 ≈ n log(n− 1) + nγE = O(n log n)

can be interpreted as the term reflecting the amount of information that is needed to
describe the required number of ordering comparisons when the whole sample is ordered.
But, when computing I

(
U(i), U(i+1)

)
, it is not necessary to describe the computations of

U(j) with j < i or j > i+ 1. The terms ‘−iHi−1’ and ‘−(n− i)Hn−i−1’ in (4.18) reflect
this. Hence,

nHn−1 − iHi−1 − (n− i)Hn−i−1 ≈ log#[common ordering comparisons],

where the common ordering comparisons are those that are needed to determine both
U(i) and U(i+1). The binomial coefficient

(
n
i

)
is the number of ways that a subsample

of size i can be selected from a sample of size n, without replacement, and it satisfies
the ‘Pascal’s triangle’ recursion formula

(
n
i

)
=
(
n−1
i−1

)
+
(
n−1
i

)
[Biggs, 1989, Chapter 4].

Hence, the term ‘− log
(
n
i

)
’ in (4.18) can be interpreted as the amount of information

required to describe the selection of U(i) and U(i+1). Thus, sorting and selection are
transparently present in (4.18). In addition to this, the more there are common ordering
comparisons done when the mutual information is determined, the more information
there is about the location of U(i+1) given U(i) or vice versa.

Next, notation In is used because different sample sizes n are considered. For exam-
ple, if n = 2 then I2

(
U(1);U(2)

)
= 1−log 2 > 0. This must be a baseline level since, when

n = 2, sorting and selection are essentially the same process and there are no variables
that could act as common causes for both U(1) and U(2). Generally, selection and sorting
are not the same algorithmic processes. For example, it is possible to select U(n) and
U(n−1) from a sample of size n without sorting all values and, in that algorithm, there
are at most n+ 
log n�− 2 ordering comparisons needed ([Cormen et al., 2009, Chapter
9]) so that the height of the corresponding decision tree should be ≈ log(n+
log n�−2).
Indeed, the general case can be computed from (4.18):

In
(
U(n−1);U(n)

)
= nHn−1 − (n− 1)Hn−2 − 1− log n

= Hn−1 − log n > 0. (4.19)

From the definition of γE in (4.15) it follows that In
(
U(n−1);U(n)

)→ γE , when n → ∞.
This was an unexpected result! The next question is whether γE is a large or a small
amount of information? The value of γE in natural units (nats) was already given in
(4.15), the value in binary units is γE

log 2 ≈ 0.832746 . . . bits.

The cases i = n − 1, . . . , n − 5 of In
(
U(i);U(i+1)

)
near the upper tail are collected

in Table 4.1. Relative to these other cases in Table 4.1, γE is the smallest limiting
amount of mutual information that two consecutive order statistics can have. However,

21



restricting to consecutive pairs seems like a limitation and other pairs may also be of
interest. In the next section, we continue this argument and ask how much uncertainty
X(n−k) can reduce about X(n) when 1 < k < n.

Table 4.1: Values of In
(
U(i);U(i+1)

)
with some i < n from the upper tail.

Case Formula Asymptotic formula

i = n− 1 Hn−1 − log n γE

i = n− 2 2Hn−3 + n(Hn−1 −Hn−3)− 3− log
(

n
n−2

)
log 2 + 2γE − 1

i = n− 3 3Hn−4 + n(Hn−1 −Hn−4)− 11
2 − log

(
n

n−3

)
log 6 + 3γE − 5

2

i = n− 4 4Hn−5 + n(Hn−1 −Hn−5)− 25
3 − log

(
n

n−4

)
log 24 + 4γE − 13

3

i = n− 5 5Hn−6 + n(Hn−1 −Hn−6)− 137
12 − log

(
n

n−5

)
log 120 + 5γE − 77

12

4.1.3 Mutual information between X(i) and X(n)

In publication [2], we use several estimators to estimate the Extreme Value Index (EVI).
These include the Hill estimator Hk,n. The Hill estimator utilizes the information of the k
largest order statisticsX(n−k), . . . , X(n). It is defined as ([Hill, 1975],[Beirlant et al., 2004],
[Németh and Zempléni, 2020])

Hk,n =
1

k

k∑
j=1

logX(n−j+1) − logX(n−k). (4.20)

It is known ([Beirlant et al., 2004],[Caers and Van Dyck, 1999]) that the Hill estimator
is consistent and asymptotically normally distributed if k = k(n) depends on n in such
a way that

k(n) → ∞ and
k(n)

n
→ 0 when n → ∞ (4.21)

A large class of possible forms of k = k(n) that satisfy (4.21) is obtained by k(n) = Cna,
0 < a < 1 and C > 0 a constant ([Caers and Van Dyck, 1999]). A possible value for k,
that is usually searched for, is such that Hk,n is approximately a constant near k and
(4.21) can be assumed to hold. It may be visually detected from the Hill plot, which is
the plot of pairs

(k,Hk,n), 1 ≤ k ≤ n− 1. (4.22)

Publication [2, Figure 1] contains two examples of the Hill plot, for observed TCP flow
sizes and flow durations. The interpretation of the Hill plot can be difficult and it is far
from easy to select k from the plot. In publication [2, Section 2.2], we used bootstrapping
([Hall, 1990], [Caers and Van Dyck, 1999]) to select one k for each block.
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In Figure 4.1, m = 61 Hill plots for flow sizes S are shown in gray color, and the
black curve is the average of the m Hill plots: 1

m

∑
Hk,n. The block size n = 10 000, but

the horizontal axis is restricted to k ≤ 5 000.

Figure 4.1: Hill plots of m = 61 blocks in gray. The black curve is the average of them.
The red vertical lines are at k = 300 and k = 600.

The black average curve in Figure 4.1 is visually flat when 300 ≤ k ≤ 600 indicating
that in this interval Hk,n may have an average value independent of k. Numerically,
the first 3 decimals of the average appear stable: 1

m

∑
Hk,n ≈ 0.688 . . .. If only one

sample (block) were available, then finding such a flat portion visually would be hard in
practice. Bootsrapping solves the problem giving a good candidate for k, but we still ask
why such a k exists? The Hill estimator (4.20) is expressed in terms of order statistics
and there is the log transformation which is order preserving. The asymptotic condition
(4.21) is very general. There is no clue about which k should be selected. Hill [Hill, 1975]
already discussed the selection of k as a problem of high threshold selection: X(n−k) is a
data-based estimate of a high threshold and Pickands [Pickands, 1975] had shown that
for values X that exceed a fixed high threshold x0, the distribution of X − x0 converges
to the Generalized Pareto distribution. Hence, k should be such that X(n−k) > x0.

For this purpose, we compute In
(
X(i);X(n)

)
= In

(
U(i);U(n)

)
, i < n, to get more

insight into why (4.21) is needed for the asymptotical results. The computation is given
in Appendix A.1 and the result is

In
(
U(i);U(n)

)
= Hn−1 − log n− [Hn−i−1 − log(n− i)]. (4.23)

Substituing i = n− k to (4.23) gives

In
(
U(n−k);U(n)

)
= Hn−1 − log n− (Hk−1 − log k). (4.24)

It seems that the easiest is to visualize this by plotting k �→ In
(
U(n−k);U(n)

)
as shown

in Figure 4.2 with n = 10 000 so that it could be compared with Figure 4.1. Note that
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the vertical axis in Figure 4.2 is in log scale. It seems that the flat region in Figure
4.1 occurs since, after k > 300, there is practically no mutual information left. After
k > 600, the cumulative effect of rounding errors or noise start to distort the Hill plot
curves in Figure 4.1.

Figure 4.2: Plot of k �→ In
(
U(n−k);U(n)

)
with n = 10 000. The vertical axis is in log

scale and the vertical unit is bits.

In publication [2, Section 2.2], the bootstrapping provided values of k varying from
129 to 302 when the data was the same flow sizes S as in Figure 4.1. (The bootstrapping
computation was saved in a notebook. This piece of information was not included in
[2].) We conclude that, as long as the data is representative, bootstrapping is really able
to squeeze out all relevant information from the data!

4.1.4 Order statistics are empirical quantiles

In the publications of this thesis, we utilize both quantile-quantile plots (qq-plots) and
probability-probability plots (pp-plots). In the former, the quantiles of two distributions
are visually compared. In the latter, the cumulative probabilites of the data are com-
pared against the cumulative probabilities of a model of the data. Stuart Coles says in
his book [Coles, 2001] that the pp-plot and the qq-plot, when done for the same data and
model, contain the same information but it is expressed on a different scale. However,
they are complementary methods, they add value to each other, rather than alternative
tools.

Assume now that a continuous model candidate F is selected and x1, . . . , xn are the
data and x(1), . . . , x(n) are the ordered data. While the expectation E(X(i)) may be
computed or approximated numerically from (4.2), the PIT version can be computed
exactly and E

(
F (X(i))

)
= E(U(i)) =

i
n+1 , since U(i) ∼ Beta(i, n− i+ 1). The pp-plot is

the plot of pairs (
F (x(i)),

i

n+ 1

)
, i = 1, . . . , n. (4.25)
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If model F is correct the linear shape is then expected in the pp-plot. The qq-plot is
the plot of the pairs (

F−1

(
i

n+ 1

)
, x(i)

)
, i = 1, . . . , n. (4.26)

Two more definitions are needed to proceed. The empirical distribution can be written
with the order statistics as

Fn(x) =
1

n

n∑
i=1

1{Xi≤x} =
1

n

n∑
i=1

1{X(i)≤x} =

⎧⎨
⎩

0, x < X(1)
i
n , X(i) ≤ x < X(i+1)

1, x ≥ X(n).

(4.27)

It is immediate that Fn(X(i)) =
i
n . It is a piecewise constant function and not invertible

but, if the generalized inverse function is used

F−1(q) = inf{x | F (x) ≥ q} (4.28)

then F−1
n (q) = X(i) for all i−1

n < q ≤ i
n . A special case of this is F−1

n

(
i

n+1

)
= X(i)

since i−1
n < i

n+1 < i
n . Order statistics are the quantiles of the empirical distribution

function computed from the data. Now the qq-plot (4.26) can be rewritten as the plot
of the pairs (

F−1

(
i

n+ 1

)
, F−1

n

(
i

n+ 1

))
, i = 1, . . . , n, (4.29)

from which it is easier to see that a linear shape in (4.26) indicates that the empirical
quantiles are linearly related to the model quantiles. The linear relationship between
the probabilities (4.25) is a different concept than the linear relationship between the
quantiles (4.26), hence these methods complement each other.

The pp-plots and qq-plots were developed for small samples. The “small” sample
means the case where there is not enough data to draw a histogram. A clear benefit of
pp- and qq-plots is that a human eye catches clear deviation from linear shapes easily.
An algorithmic method to quantify a lack of linearity is obtained by computing the linear
correlation coefficient for the data in the plots (4.25) and (4.26). This is a well-known
method ([Johnson and Wichern, 2007, Chapter 4.6],[Filliben, 1975]) that we also used
in publication [1].

Brown and Hettmansberger [Brown and Hettmansperger, 1996] introduced the plot-
ting positions that we used in the normal-quantile plots (nq-plots) of [1]. They were
selected since they extend further into the tails and the possible lack of fit in the upper
tail of the Gaussian model was of importance in publication [1]. Normal-probability plots
(np-plots) were also made during the research work of [1], actually we started with them,
although the np-plots were not included in the article.

In publication [1] we also made qq-plots of ordered data against ordered data. This
is discussed more in Section 4.3 since that issue is related to time dependence. However,
if the data sets have different sizes n1 �= n2, then the quantiles need to be reconsidered
and this is discussed next.
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4.1.5 Estimating the q:th quantile

Assume 0 < q < 1 and let xq be the q:th quantile of a distribution F , F (xq) = q. A
quantile need not be unique, hence assume that F is strictly increasing at least in the
neighborhood of xq so that it is unique. Let 
x� = min{k ∈ Z | k ≥ x} be the ceiling
function. The estimator F−1

n (q) of the quantile xq can be written as the 
qn�:th order
statistic X(�qn�):

F−1
n (q) = X(�qn�). (4.30)

Assume that F has a density f in a neighborhood of xq, that f(xq) > 0 and f is
continuous at xq, then it is well known ([Serfling, 1980]) that X(�qn�) is asymptotically
normally distributed with parameters

N

(
xq,

q(1− q)

f(xq)2n

)
. (4.31)

This result is useful unless f(xq) = F ′(xq) ≈ 0, which is typical in the tail area.
One of the simplest statistical ways to reduce univariate data is to first select m, then

select 0 < q1 < . . . < qm < 1, compute indexes 
qjn�, and then select the values x(�qjn�)
from the sorted data. For example, qq-plots can be made at predefined probabilities qj ,
j = 1, . . . ,m, and this solves the problem of different sample sizes n1 and n2 when m <
min{n1, n2}. In publication [4, formula (15) and Section 8.3], we show that estimates
of the sample mean and the sample variance can be computed from the m quantile
estimators and the minimum and maximum observations of the sample.

4.1.6 Simultaneous estimation of several quantiles

In publication [4, Section 8], we state and apply Theorem 1 below but without proof. In
this section we provide the proof of Theorem 1.

Theorem 1. Let 0 < q1 < . . . < qm < 1. If X1, . . . , Xn are i.i.d., Xi ∼ F where the qj
quantiles of F are xqj and F is strictly increasing in the neighborhoods of each xqj , then
for all ε > 0

P

⎧⎨
⎩
∣∣∣∣∣∣ 1m

m∑
j=1

(
X(�qjn�) − xqj

)∣∣∣∣∣∣ > ε

⎫⎬
⎭ ≤ 2

m∑
j=1

e−2nδ2ε,j (4.32)

where
δε,j = min

{
F (xqj + ε)− qj , qj − F (xqj − ε)

}
. (4.33)

The proof of Theorem 1 is based on the following Theorem 2, which in Serfling’s
book [Serfling, 1980] is attributed to Wassily Hoeffding [Hoeffding, 1963].

Theorem 2. Assume that Y1, . . . , Yn are i.i.d. random variables with P{0 ≤ Yi ≤ 1} = 1
and E(Yi) = μ for all i = 1, . . . , n. Then, for all t > 0, we have the estimates

P

{
n∑

i=1

Yi − nμ ≥ nt

}
≤ e−2nt2 , (4.34)
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P

{
n∑

i=1

Yi − nμ ≤ −nt

}
≤ e−2nt2 . (4.35)

For the proof of Theorem 2, we refer to Hoeffding’s original article [Hoeffding, 1963]
or to the book [Devroye et al., 1996].

Proof of Theorem 1. Let ε > 0. If
∣∣∣(X(�qjn�) − xqj

∣∣∣ ≤ ε for every j = 1, . . . ,m, then

∣∣∣∣∣∣ 1m
m∑
j=1

X(�qjn�) − xqj

∣∣∣∣∣∣ ≤ 1

m

m∑
j=1

∣∣∣(X(�qjn�) − xqj

∣∣∣ ≤ mε

m
= ε.

Changing the focus on the complements, there is the following inclusion of the events⎧⎨
⎩
∣∣∣∣∣∣ 1m

m∑
j=1

X(�qjn�) − xqj

∣∣∣∣∣∣ > ε

⎫⎬
⎭ ⊆

m⋃
j=1

{
|X(�qjn�) − xqj | > ε

}
,

and an inequality of the probabilities of the events as follows

P

⎧⎨
⎩
∣∣∣∣∣∣ 1m

m∑
j=1

X(�qjn�) − xqj

∣∣∣∣∣∣ > ε

⎫⎬
⎭ ≤

m∑
j=1

P

{
|X(�qjn�) − xqj | > ε

}
. (4.36)

After this observation we follow the proof from Chapter 2.3.2 in Serfling’s book
[Serfling, 1980]. (Serfling attributes the proof technique to Smirnov [Smirnov, 1949].)
First, we choose an arbitrary j ∈ {1, . . . ,m}. Then we remove the absolute values to get
two mutually exclusive cases

|X(�qjn�) − xq| > ε ⇔ X(�qjn�) > xq + ε or X(�qjn�) < xq − ε.

We go through the first case in detail. Apply Fn to both sides of the inequality
X(�qjn�) > xqj + ε and compute


qjn�
n

= Fn(X(�qjn�)) > Fn(xqj + ε) =
1

n

n∑
i=1

1{Xi≤xqj+ε} =
1

n

n∑
i=1

(
1− 1{Xi>xqj+ε}

)

= 1− 1

n

n∑
i=1

1{Xi>xqj+ε}.

The strict inequality is maintained since Fn has a jump at X(�qjn�) and, since the jump

size is 1
n ≥ �qjn�

n − qj , equivalently qj ≥ �qjn�
n − 1

n , there is the following inclusion of the
events {

X(�qjn�) > xqj + ε
}
⊆
{
qj > 1− 1

n

n∑
i=1

1{Xi>xqj+ε}

}
. (4.37)
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Multiplying boths sides with −n < 0 in the larger event above allows to rewrite its
condition as

n∑
i=1

1{Xi>xqj+ε} > n− qjn = n(1− qj). (4.38)

Since Xi ∼ F ,

E

(
1{Xi>xqj+ε}

)
= P

{
Xi > xqj + ε

}
= 1− F

(
xqj + ε

)
.

We add the term −n(1− F (xqj + ε)) to both sides of the inequality (4.38) and then we
rewrite it as

n∑
i=1

1{Xi>xqj+ε} − n
(
1− F

(
xqj + ε

)) ≥ n
(
F
(
xqj + ε

)− qj
)
. (4.39)

Next, we apply the inequality (4.34) of Hoeffding’s Theorem 2 with Yi = 1{Xi>xqj+ε}
and t = F

(
xqj + ε

)− qj . Then

P

{
X(�qjn�) > xqj + ε

}
≤ e−2n(F (xqj+ε)−qj)

2

Repeating the same reasoning with the case X(�qjn�) < xqj − ε gives

n∑
i=1

1{Xi<xqj−ε} − nF
(
xqj − ε

) ≤ (qj − F
(
xqj − ε

))
n, (4.40)

and then we use the inequality (4.35) of Theorem 2.
Next, combining the two cases gives

P

{
|X(�qjn�) − xqj | > ε

}
≤ P

{
X(�qjn�) < xqj − ε

}
+ P

{
X(�qjn�) > xqj + ε

}
≤ e−2n(qj−F (xqj−ε))2 + e−2n(F (xqj+ε)−qj)

2

≤ 2e−2nδ2ε,j ,

(4.41)

in which
δε,j = min

{
F
(
xqj + ε

)− qj , qj − F
(
xqj − ε

)}
. (4.42)

In the last step, we apply the above reasoning for all j = 1, . . . ,m to obtain (4.32).
The proof of Theorem 1 is now finished. �

Theorem 1 is the core element of publication [4]. This extension to multiple simulta-
neous quantiles required only (4.36). There is a separate δε,j for all j, a common value
δε = minj δε,j does not make sense. The interpretation of δε,j is that the smaller it is,
the more uncertain the estimation of xqj is. The δε,j is small if the distribution function
F is almost flat near xqj . Theorem 1 states that, in this sense, the most uncertain quan-
tile affect the convergence of all simultaneous quantile estimates. If the distribution is
multimodal, then between the modes there can be regions where F is almost flat. If the
distribution has long or heavy tails, then in the tail area the distribution function F is
almost flat.
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4.1.7 The subexponential class of distributions

In publication [2], we do not introduce any distribution class to model heavy-tailed
data. However, in the introductory section of [2] we used the subexponential class as a
motivating example. Next, we discuss this model class more specifically.

Let F be a distribution function in ]0,∞[ and F ∗F = F ∗2 be the convolution product
defined as

F ∗ F (x) =

∫ x

0
F (x− y)dF (y).

The class of subexponential distribution functions satisfy

lim
x→∞

1− F ∗2(x)
1− F (x)

= 2 (4.43)

or, equivalently,

2(1− F (x)) ∼ 1− F ∗2(x) when x → ∞.

If this holds for n = 2, then it holds for all n ≥ 2 ([Chistyakov, 1964])

n(1− F (x)) ∼ 1− F ∗n(x) when x → ∞. (4.44)

Chistyakov [Chistyakov, 1964] appears to be the first who proved that the property
(4.43) is equivalent to (4.44). A more advanced theory about the class of subexponential
distribution functions is given in [Kluppelberg, 1988], [Kluppelberg, 1989]. The Pareto
and the lognormal distributions belong to the class of subexponential distributions and,
for the lognormal distribution, the proof of this fact seems to require the general theory
developed in [Kluppelberg, 1988] or by a sufficient criterion given in [Pitman, 1980] and
used in [Samorodnitsky, 2002].

The class of the subexponential distribution functions is not mathematically conve-
nient since, for example, it is not closed under summation [Leslie, 1989]. The class of
distributions with regularly varying right tails with exponent θ > 0 is generally used
if some properties need to be proved. For example, a direct proof that the Pareto dis-
tribution F (x) = 1 − (kx)α is subexponential by using (4.43) is surprisingly difficult,
but an easy way is obtained via reqularly varying tails. The Pareto distribution has
a regularly varying right tail with exponent α and, for example, [Samorodnitsky, 2002]
contains a short proof sketch that a distribution with a regularly varying right tail is
subexponential.

Assume X1, . . . , Xn are i.i.d. random variables with a common subexponential dis-
tribution function F . The asymptotic condition (4.44) can be interpreted as

P{X(n) > x} ∼ P{X1 + . . .+Xn > x} when x → ∞.

Since {X(n) > x} ⊂ {X1 + . . . + Xn > x}, the asymptotic equality has an important
interpretation that the sum is going to exceed a large threshold x because one of the
summands is going to exceed the threshold. This is the opposite to what the CLT states
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and, in practise, it occurs in our study [2] because the flow sizes S can have vastly
different magnitudes, from 1 kB to 42 MB. It occurs in our study [1] in the upstream
direction since the control traffic of a TCP flow has a small magnitude contribution to the
aggregate rate (an ACK packet contributes 40B/Δ) compared to the rate magnitudes of
data bursts that can be thousands of bytes (a single 1500B packet contributes 1500B/Δ).

4.2 Multivariate analysis and models

In publication [2], we analyse the bivariate distribution of TCP flow sizes and flow du-
rations. In publication [3], we model the joint distribution of vehicular traffic volumes
or asymmetry in two mutually relevant locations by a binormal distribution. In publi-
cation [4], we estimate several quantiles simultaneously and, in the background of this
approach, there is an asymptotic multinormal joint distribution of the estimators. Next,
we will discuss each of these topics more.

4.2.1 Bivariate and heavy-tailed distributions

If the TCP flow size S is large and the access link rate is limited, then the sending
window of the TCP source cannot be large and the flow duration D must be large but
the opposite need not hold: for various reasons D can be relatively large even when S is
relatively small. Therefore, we expected a rather strong dependence for the pair (S,D)
beforehand.

An asymptotic bivariate distribution G of normalized maxima (S∗, D∗) can be rep-
resented by its margins G1 and G2 by

G(x, y) = exp

(
log [G1(x)G2(y)]A

(
logG2(y)

log [G1(x)G2(y)]

))
(4.45)

where A(t), t ∈ [0, 1] is called the Pickands dependence function ([Beirlant et al., 2004]).
The normalization (S∗, D∗) mentioned above is implicit since the generalized extreme
value (GEV) distribution has location and scale parameters and, assuming that the
GEV margins are good approximations, the normalization is included in the estimated
parameters [Coles, 2001, Theorem 3.1.1]. The book [Beirlant et al., 2004] is a good
source of further information about Pickand’s dependence function. The function A(t)
satisfies A(0) = A(1) = 1, it is convex and lies inside the triangle determined by points
(0, 1), (1, 1) and (0.5, 0.5). This triangle is shown in publication [2, Fig. 7] as dashed
lines. Cases A(t) ≡ 1 and A(t) = max{1 − t, t} correspond to independence and total
dependence between S∗ and D∗, respectively.

The main reason to choose this approach was that there exists at least two non-
parametric estimators for A. We refer to publication [2] or to the original references
[Capéraà et al., 1997] and [Hall and Tajvidi, 2000] for information about these estima-
tors. Non-parametric estimators were crucial since we did not know beforehand what A
could or should look like. Once we obtained a good guess of the shape of A from the
nonparametric estimates, we could find a parametric model of A with a similar shape.
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This was done in publication [2] where, for that specific data, we found the logistic model
Ar(t) = ((1− t)r + tr)1/r with the parameter value r = 2 as a possible model.

4.2.2 Binormal and trinormal distributions

In publication [3], we apply binormal and trinormal distribution models [Kotz et al., 2000]
for pairs or triples of asymmetries of two or three locations. Here we provide reasons
why in publication [3] we employed E(Z2|Z1 > a) instead of customary E(Z2|Z1 = a).
We had three reasons for this.

First, vehicular traffic counts have a non-linear interpretation: the counts of vehicles
are highest when the traffic is fluent but if the count is low it can be either due to a small
amount of traffic or due to so large an amount of traffic that congestion slows down the
traffic flow over the loop detector. The interpretation requires additional information
from other sources.

Second, conditioning by an event with positive probability should be more robust
and an event of type {Z1 > a} usually has positive probability. For such values of a
that make sense, both the model probability and the empirical probability of the event
{Z1 > a} are typically positive.

Third, this formulation is already a simple prediction: Consider a 15 minute time
slot. If after 5 minutes Z1 = a is observed, then Z1 > a is likely to be true at the
end of the time slot and the conditional expectation gives an immediate and directly
interpretable prediction of Z2 at the end of the slot. The prediction is provided with
confidence intervals.

After the volume-asymmetry transformation in publication [3], the binormal distri-
bution is a natural model for the asymmetry at two different but mutually relevant
locations since the correlation is due to the same vehicles observed in the two locations
and the directions are meant to be chosen in such a way that there can be a causal
explanation for the correlation. Here is actually also a connection to the mutual infor-
mation: if ρ is the correlation between two normally distributed variables Z1 and Z2,
then it is well-known ([Kullback, 1968],[Cover and Thomas, 2006, Example 8.5.1]) and
straightforward to compute that I(Z1;Z2) = −1

2 log(1− ρ2).

4.2.3 Asymptotic joint distribution of quantile estimates

In publication [4], the OPE algorithm enters regularly into the model building phase [4,
Figure 1] and a new model building always starts by first trying to get a good estimate
for the median and then, once the median estimate appears satisfactory, it proceeds to
check that the estimates of the upper and the lower quartiles are sufficiently good. There
is a justification for this that we explain next.

Suppose F has a continuous density f in neighborhoods of xqi and xqj , f(xqi) > 0

and f(xqj ) > 0. Then the asymptotic covariance is Cov
(
X(�qin�), X(�qjn�)

)
= σij/n,

where, for i ≤ j

σij =
qi(1− qj)

f(xqi)f(xqj )
. (4.46)
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and σij = σji for i > j [Serfling, 1980].
Choose m = 3 and 0 < q1 < q2 < q3 < 1. According to (4.46), the asymptotic

covariance matrix Σ of the estimators X(�q1n�), X(�q2n�) and X(�q3n�) is

Σ =
1

n

⎛
⎜⎜⎜⎜⎝

q1(1−q1)
f(xq1 )

2
q1(1−q2)

f(xq1 )f(xq2 )
q1(1−q3)

f(xq1 )f(xq3 )

q1(1−q2)
f(xq1 )f(xq2 )

(1−q2)q2
f(xq2 )

2
q2(1−q3)

f(xq2 )f(xq3 )

q1(1−q3)
f(xq1 )f(xq3 )

q2(1−q3)
f(xq2 )f(xq3 )

(1−q3)q3
f(xq3 )

2

⎞
⎟⎟⎟⎟⎠ . (4.47)

By (4.31) and (4.46), asymptotically(
X(�q1n�), X(�q2n�), X(�q3n�)

) ∼ N3(μ,Σ), (4.48)

where μ = (xq1 , xq2 , xq3). Assume now that the asymptotic trinormal distribution is the
true distribution. The inverse of the covariance matrix, sometimes called the concentra-
tion matrix K = Σ−1 is

K = n

⎛
⎜⎜⎜⎜⎝

q2f(xq1 )
2

q1q2−q12
−f(xq1 )f(xq2 )

q2−q1
0

−f(xq1 )f(xq2 )
q2−q1

f(xq2 )
2(q3−q1)

(q2−q1)(q3−q2)
−f(xq2 )f(xq3 )

q3−q2

0 −f(xq2 )f(xq3 )
q3−q2

(1−q2)f(xq3 )
2

(1−q3)(q3−q2)

⎞
⎟⎟⎟⎟⎠ . (4.49)

The important thing in this concentration matrix K = (kij) is that k13 = k31 = 0. This
has the well-known effect ([Højsgaard et al., 2012]) that the joint trinormal density φ,

φ(x) =
1

(2π)3/2
√
det(Σ)

e
1
2
(x−μ)TK(x−μ), (4.50)

splits into the product φ(x1, x2, x3) = g(x1, x2)h(x2, x3) at every point x = (x1, x2, x3) ∈
R
3 , where g and h are functions. By Dawid’s work [Dawid, 1979], (4.49) means that

X(�q1n�) and X(�q3n�) are conditionally independent given the estimator X(�q2n�) which is
in the middle of them,

X(�q1n�) ⊥⊥ X(�q3n�)

∣∣∣∣X(�q2n�). (4.51)

If it is assumed that the asymptotic trinormal distribution is the true distribution of
the triple (4.48), then the above is actually the proof of the conditional independence.
Conditional independence means that knowing the value of the middle quantile estimator
blocks all information flow between the the two other quantile estimators that are on the
opposite sides of the middle estimator. The quartiles are an example of such conditional
independence and hence, the model building process in [4] always starts with the median
estimate.

Indeed, the conditional independence (4.51), when q1 < q2 < q3, is very intuitive
and may be true more generally. The uniqueness of the quantiles could be a sufficient
criterion since a counterexample may exist if xq2 is not unique.
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4.3 Time dependence

Next, we will discuss some statistical time dependence issues that were relevant to us
when writing the publications.

There are two possibilities for the statistical time dependence: 1) non-stationary
data with recurrent patterns, and 2) autocorrelated stationary data. In publications [1]
and [3] we consider slotted time and the variable of interest is the amount of traffic per
time slot.

Vehicular traffic data in publication [3] is non-stationary in the sense that if we want
to predict the amount of traffic in the next slot, given the amount of traffic in the current
slot, we might get the best prediction by just looking at the time when the next slot
begins rather that the amount of traffic in the current slot. The 15-minute length of a
time slot makes sense for the vehicular traffic but it is too coarse for a stationary model
as abrupt time dependent changes can occur in this granularity level.

In publication [1], we have a stationary but positively autocorrelated data. Then, if
we want to predict the amount of traffic in the next time slot given the current and some
history of previous slots, the time does not matter. Instead, the amount of traffic in the
current and the previous slots may contain all information that is useful for prediction.
Prediction under a LRD correlated stationary input in the teletraffic context has been
studied in [Mannersalo, 2002].

In real data, both cases need to be considered and the choice of the length of the time
slot matters. Daily, weekly, monthly, and yearly profiles are always present in human
activity. The daily traffic profile, and other recurrent patterns in the data, may be
estimated and the estimated profiles may be included in the model. In shorter intervals,
the assumption of a stationary model makes things so much easier that it is worth doing
unless the data clearly does not support it.

In publication [1], we used a well-known method, in which we compared the empirical
distributions of two disjoint time intervals by qq-plots to see if the assumption of a
stationary data is plausible. More precisely, we had more than 2n obsevations and we
took two data samples (x1, . . . , xn) and (x1+h, . . . , xn+h) of consecutive observations,
where 1+h > n, and made a qq-plot with ordered data against ordered data [1, Section
V.A]. This method is one of the many choices to detect deviations from the strict or
complete form of stationary time series [Priestley, 1982, Chapter 3]. It is known that if
a Gaussian process has time invariant mean and variance functions, then the process is
completely stationary [Priestley, 1982, Chapter 3.4.1].

Deviations from strict stationary assumption may thus be detected with an elemen-
tary qq-plot method. However, traffic modelling research usually assumes covariance
stationary (also called weak, or second order stationary) time series since this concept
is mathematically more convenient. The sample autocorrelation function (ACF) may
indicate deviations from any assumed covariance stationary model for data but there
can be a multitude of reasons for deviations. In this way, the sample ACF may serve
as a diagnostic tool. However, if the sample ACF is used as an inference tool about the
autocorrelation, then one needs to first assure oneself by some other methods that the
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assumption of a stationary time series is feasible.

In publication [2, Section 3.2], we used a modified sample ACFs as a diagnostic tool.
The ‘heavy-tail’ modification taken from [Resnick, 1997] aims at diagnosing heavy-tailed
time series data. Our major argument is based on comparing the heavy-tailed time series
data against the same data in random order [2, Fig. 3].

Time dependence affects the estimation of the parameters of a model. In the station-
ary case, a sample of size n positively correlated observations contain less information
about the parameters of the model distribution for the data than an independent sample
of the same size n would contain [Beran, 1994, Chapter 1]. Estimates that are computed
from negatively correlated observations may converge most rapidly to the corresponding
model values. Truly negative autocorrelation at some lag strongly suggests a periodic
structure in the data. In a non-stationary case, we should first understand all relevant
periodic or recurrent patterns that are in the data and, after this, we should collect n
observations of each of the patterns. This is vastly more data than what is needed in
the stationary case.

4.3.1 Vertical and horizontal traffic aggregation

The possibility of Gaussian traffic models for data traffic was discussed in Section 13
of the book [Roberts et al., 1996]. The research work reported in [Roberts et al., 1996]
focused on Asynchronous Traffic Mode (ATM) technology, which divided data traffic into
ATM cells, bursts of cells and calls. From the TCP/IP traffic modelling point of view,
these hierarchical concepts can be re-interpreted as follows. ATM cells can be replaced
by TCP/IP-packets, bursts of ATM cells replaced by TCP flows where the source injects
a number of packets and waits for the time correponding to the RTT before it injects
a new burst of packets, and an ATM call can be interpreted as a TCP connection
correspondingly. Therefore, the discussion in Section 13 of [Roberts et al., 1996] about
traffic models is still valid after this re-interpretation. Only the scale of the amount of
bytes is different.

In Section 13.3.4 of [Roberts et al., 1996] the concepts “aggregation in time” and
“aggregation in space” were mentioned. These are the “horizontal” and the “vertical”
aggregations of publication [1], respectively. Vertical aggregation is basically CLT, but
horizontal aggregation is more complicated. We already indicated in Chapter 3 that
RTT, or the distribution of RTTs of TCP connections, may affect the horizontal ag-
gregation if the time scale of interest is smaller than typical RTTs. In publication [1,
Section V.C] we made a data-based synthetic vertical aggregation to study how much
traffic aggregation would be needed in the smaller time scales, less than Δ = 128 ms,
where normal distribution approximation could be ruled out even before testing. In this
argument we assumed ‘infinite capacity’, that is, that the variability of the RTTs does
not increase, but it is very likely that the variability of RTTs increases when TCP traffic
is aggregated more.
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4.3.2 Long range dependence and self-similarity

Willinger and Park [Park and Willinger, 2000] provided a telecommunication oriented
discussion about (asymptotic) self-similarity and long range dependence (LRD). These
concepts belong to the background knowledge of publication [1] so we will briefly discuss
them here.

A continuous time stochastic process Y (t) is considered as a model for the cumulative
aggregate traffic and such a model is self-similar with self-similarity parameterH if for all
a > 0 and t ≥ 0 the scaled and normalized version a−HY (at) has the same distribution
as Y (t), Y (t) =d a−HY (at). A self-similar process cannot be stationary but it can have
stationary increments. If the cumulative process Y (t) has stationary increments, finite
variance and second order stationarity is assumed, then the covariance is

Cov[Y (t), Y (s)] =
1

2

[
EY (t)2 + EY (s)2 − E(Y (t)− Y (s))2

]

=
σ2

2

[|t|2H − |t− s|2H + |s|2H] .
For 1

2 < H < 1, the autocorrelation at lag k is then ρ(k) ≈ ck2−2H which means that

∞∑
i=−∞

ρ(i) = ∞. (4.52)

Condition (4.52) is called a long memory effect in [Beran, 1994], since it means that
events in the faraway past may affect the current events. Condition (4.52) is also used
as the definition of LRD. It is difficult to distinguish a stationary LRD process from a
nonstationary process in general and, especially for short time series, it may be practi-
cally impossible [Beran, 1994, Chapter 7.4]. In practice, the condition (4.52) cannot be
studied from the sample ACFs since there is never enough stationary data for large lags
and stronger methods to detect the possible scaling laws is required.

Perhaps the best tool for all kinds of scaling phenomena in traffic data is wavelets
[Abry et al., 2000]. Longitudinal studies ([Fontugne et al., 2017], [Borgnat et al., 2009])
show that the existence of many scaling laws have been a persistent feature of Internet
traffic and there is a different scaling law for scales smaller than RTT versus scales larger
than (typical) RTT. Above the scale of RTTs, a single scaling law may be possible. This
suggests that, before trying to estimate the self-similarity parameter H, one should use
wavelets to study the scaling laws of the time scale of interest to decide whether a single
scaling exponent H makes sense.

4.4 Summary

Table 4.2 summarizes the concepts that were discussed in this framework. The result
(4.23) that gave In

(
U(n−k);U(n)

)
was computed for the purposes of this summary and,

to our best knowledge, is not found in literature. The proof of Theorem 1 combined
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(4.36) to an existing proof and this combination, to our best knowledge, is not found in
the literature.

Table 4.2: Summary of the discussed topics in the statistical framework
Publication

Topic [1] [2] [3] [4]

Order statistics qq-plots Hill estimator (Note 1) order statistics
and quantiles nq-plots Hk,n in initialization,

r2n In
(
U(n−k);U(n)

)
quantiles in

estimation,
Theorem 1

Multivariate (Note 2) bivariate with binormal: trinormal:
models tail dependence: E(Z2|Z1 > a) conditional

Pickands A where independence
Z1 and Z2 of quantile
are asymmetries estimators
in two locations

Time dependence stationary stationary non-stationary arbitrary:
LRD not LRD daily profile the algorithm

attempts to
detect if
stationary

In addition to the discussed topics, the following two notes in Table 4.2 complete the
framework:

Note 1 In publication [3, Section 4.3], we use robust estimates of the parameters of the
normal distribution and they are computed from the sample quartiles.

Note 2 All finite dimensional marginal distributions of a Gaussian process are multi-
normally distributed ([Parzen, 1962],[Priestley, 1982]). The 2-dimensional case of
the same data as in publication [1] was studied afterwards in an unpublished study.
The further insight of that study was that the binormal fit of the 2-dimensional
marginals was adequate when the 1-dimensional marginal fit was good. This al-
ready suggests that some covariance structure may have existed for the data of
publication [1].
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Chapter 5

Discussion

A result of statistical analysis or modelling is never an end to research. It is possible to
improve the insight about the statistical nature of the studied problems by looking at
the results of the publications afterwards, especially when some feedback is available.

5.1 Traffic data

The application research topic of publication [1] has been active ([De Meent et al., 2006],
[d. O. Schmidt et al., 2013], [d. O. Schmidt et al., 2014]) and, because Internet traffic
evolves, it is still active [Alasmar et al., 2021].

In hindsight, we should have been more careful when formulating the conclusion in
publication [1]. Publication [1] is methodological in nature, but sometimes it has been
cited as if the results of data analysis could be generalized. Normal-quantile plots are
not meant to be used to prove a distributional assumption, instead they form a visually
fast method to check if the normal distribution assumption does not hold. The use of
the linear correlation coefficient, which we denoted as r2n in publication [1], makes this
method algorithmic. With the data in publication [1], we were able to show both a
good fit to normal distribution and examples of a poor fit using the method. A value
of r2n(Δ) ≈ 1 alone is not an argument, the argument comes with both vertical and
horizontal aggregation.

With the data in publication [1] we showed the following: In the downstream direction
the assumptions of the vertical aggregation could be analyzed and verified to hold.
In the upstream direction the analysis of the traffic characteristics indicated that the
assumptions of the vertical aggregation did not hold sufficiently well in the sense that
the quantitative differences between control traffic flows and rare data uploading flows
was too large. There were at least one magnitude differences within the sources in their
contributions per time slot.

Another issue is the horizontal aggregation argument and the effect of RTT to the
possible scaling laws as discussed in [Fontugne et al., 2017]. Even if the burst sizes
were commonly bounded for all TCP connections of an aggregate, but if the RTTs
have different magnitudes and some TCP connections have a very small RTT, they may
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contribute to a fixed time slot Δ with two or even more bursts. However, other TCP
connections may only contribute to every second slot or even more rarely. The conclusion
is that the data-based synthetic vertical aggregation study in publication [1, Section V.C]
and the observed reality [Fontugne et al., 2017] indicate that vertical aggregation alone
is insufficient for a Gaussian traffic model in small time scales.

The qq-plot-based methodology of publication [1] has been used in various other stud-
ies, We mention [De Meent et al., 2006], [Juva et al., 2007], [d. O. Schmidt et al., 2013]
and [d. O. Schmidt et al., 2014] because they have also found examples of both roughly
Gaussian and non-Gaussian traffic. Non-Gaussian examples are informative because
their analysis suggest possible causes for non-Gaussianity. In [Alasmar et al., 2021]
the methods also include qq-plots but they base their main conclusions on the log-
likelihood ratio methodology of [Clauset et al., 2009]. Likelihood methods are generally
based on the assumption of independent observations. We do not know how well the
log-likelihood ratio methodology of [Clauset et al., 2009] works for LRD data or data
with possible multi-fractal scaling laws [Fontugne et al., 2017]. However, according to
[Alasmar et al., 2021], qq-plots support their conclusions of lognormal distribution as
the best model between those models that they compared. This is another piece of
evidence that the horizontal aggregation argument fails for time scales that are smaller
than typical RTTs.

Regarding the qq-plot methodology, numerical problems with r2n(Δ) may be an issue
when n is very large, which is the case if Δ is small. In addition to this, plotting too
much data on the nq-plot (or np-plot) may not be a good thing as the amount of new
information may not grow as expected. For example, if the sample size is n = 2k and
the mutual information of the consecutive order statistics next to the median U(k) is
computed, then

I2k
(
U(k), U(k+1)

)
= 2kH2k−1 − 2kHk−1 − 1− log

(
2k

k

)
→ ∞, n → ∞. (5.1)

When an order statistic next to the median is considered then, asymptotically, it shares
the same information as the median. Therefore, it does not bring much new information
to the nq-plot or to the np-plot.

There are at least two alternatives to study the behavior of r2n with increasing sample
sizes n. The first alternative is to fix m and then select probabilities 0 < q1 < . . . <
qm < 1. The nq-plot could be done by plotting only m points(

Φ−1(qj), x(�qjn�)
)
, j = 1, . . . ,m, (5.2)

and the linear correlation coefficient computed from these m points. For any value
n ≥ m, the nq-plot then has only m points. To distinguish this from r2n of [1], let r2n,m
be the notation for the linear correlation coefficient computed in this way. This requires
only slightly different computation due to selection of 
qjn�:th members of the ordered
data. With r2n,m the effect of increasing the sample sizes n can still be compared as in
[1]: for non-normal data r2n,m stops improving at some point when n increases, at least
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when m is large enough. The problem with (5.2) is that the fit to the central part is
only taken into account, not the tails.

Another fast alternative, which keeps the tails included, is to include only every
h:th pair in the nq-plot. For example, including only every second pair in (4.26), that is,
i = 1, 3, 5, . . . , n in steps of h = 2, reduces the number of points down to ≈ n/h = 50% of
n in the plot. No data is dropped, only the number of points in the qq-plot is reduced.
The corresponding correlation coefficient r2n,n/h still has the same behavior when the
sample size n is increased, at least when h is small.

The fact (5.1) suggests that the probabilities qj in (5.2) or h in the above discussed
thinned alternative should be chosen so that

In

(
X(�qjn�);X(�qj+1n�)

)
or In

(
X(i);X(i+h)

)
(5.3)

are small so that the amount of new information is large in the nq-plot. This criterion
together with the criteria that m is large enough or that h is small suggest that a
compromise may exist. This is a topic of further research.

5.2 Online, sequential or real-time analysis

The more there is data, the more there is a need to reduce the dimensionality of the
data retaining nearly the same amount of information. We have worked several years
with data analysis of different types of data from engineering applications/field. The
amount of data in typical traces has grown from Megabytes to Gigabytes and even more
and this is a thousandfold increase, as Table 3.1 indicated.

The increased amount of data also demands careful preprocessing and algorithmic
methods for analyses. However, the quality of the data is far more important than the
amount of data. The most important is to understand the process that produces the
data. The data may be collected under specific design, sampling scheme or selection
processes, and may give rise to missing data. Such aspects have to be accounted for in
the analysis.

The teletraffic speeds and volumes are already huge and they are still growing. The
consequence of the approximate self-similarity, that the bursty nature of the data traf-
fic does not get smoother when aggregated [Leland et al., 1994], is a persistent feature
[Fontugne et al., 2017]. Some of the network operator staff personnel have told us that,
as a rule of thumb, whenever the traffic average load exceeds 50% of the available capac-
ity they start to invest in new hardware that will increase the capacity. Increasing the
network capacity tends to be cheaper than fine-tuning the existing network resources.

If a plausible traffic model has been found, the computation of its parameters is
usually fast while checking if the model describes the data is usually a slow process.
An easier and faster way is to detect deviations from a given model and then ranking
them. However, the main problem in the approach of taking snapshots of data traffic and
spending the effort to analyze them is that teletraffic data out-dates rapidly. Changes
in the network configurations tend to be frequent and they may affect the aggregate
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traffic profiles instantly. This calls for online, sequential or real-time algorithms that are
capable of providing relevant non-trivial information about the existing traffic in real
time. We believe that there are a lot of fruitful research possibilities in that area.
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Appendix A

Computation of mutual
information

In this Appedix we do the computation of the non-trivial but very intuitive result of
mutual information In

(
U(i);U(n)

)
that we used in the Statistical framework of Chapter

4. We are not aware of similar published results but, since [Ebrahimi et al., 2004] exist,
it is quite possible that someone has already done the same computation.

It is convenient to rewrite the densities (4.2) and (4.3) of the order statistics in the
uniform distribution case and use the notations g(i) and g(i)(j) for them:

g(i)(u) =
n!

(i− 1)!(n− i)!
ui−1(1− u)n−i

=
Γ(n+ 1)

Γ(i)Γ(n− i+ 1)
ui−1(1− u)n−i

=
1

B(i, n− i+ 1)
ui−1(1− u)n−i, 0 ≤ u ≤ 1, (A.1)

which is the density of the Beta(i, n− i+ 1) distribution, and

g(i)(j)(u, v) =
n!

(i− 1)!(j − i− 1)!(n− j)!
ui−1(v − u)j−i−1(1− v)n−j

=
Γ(n+ 1)

Γ(i)Γ(j − i)Γ(n− j + 1)
ui−1(v − u)j−i−1(1− v)n−j . (A.2)

The joint density (A.2) is defined for 1 ≤ i < j ≤ n and 0 ≤ u < v ≤ 1. Partial
integration allows computing directly ([Valean, 2019]),∫ 1

0
un−1 log(1− u)du = − 1

n
Hn, (A.3)

but it is also a special case of formula (4.12) when α = n and β = 1:

B(n, 1)[ψ(1)− ψ(n+ 1)] =
Γ(n)Γ(1)

Γ(n+ 1)
[−γE −Hn + γE ] = − 1

n
Hn.
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The following results make the final computation a little bit shorter: Γ(1) = 1,
g(n)(v) = nvn−1, and

g(i)(n)(u, v) =
Γ(n+ 1)

Γ(i)Γ(n− i)
ui−1(v − u)n−i−1. (A.4)

The following integration is computed by changing the order of integration:

∫ 1

0

∫ v

0
ui−1(v − u)n−i−1 log(1− u)du dv =

∫ 1

0

∫ 1

u
ui−1(v − u)n−i−1 log(1− u)dv du

=

∫ 1

0
ui−1 log(1− u)

[∫ 1

u
(v − u)n−i−1dv

]
du

=
1

n− i

∫ 1

0
ui−1(1− u)n−i log(1− u)du

=
Γ(i)Γ(n− i)

Γ(n+ 1)
[ψ(n−i+1)−ψ(n+1)] (A.5)

A.1 Computation of In
(
U(i);U(n)

)
With (A.5), compute as follows:

In(U(i), U(n)) =

∫ 1

0

∫ v

0
g(i)(n)(u, v) log

(
g(i)(n)(u, v)

g(i)(u)g(n)(v)

)
du dv

=

∫ 1

0

∫ v

0

Γ(n+ 1)

Γ(i)Γ(n− i)
ui−1(v − u)n−i−1 log

(
Γ(n− i+ 1)

nΓ(n− i)

(v − u)n−i−1

(1− u)n−ivn−1

)
du dv

=

∫ 1

0

∫ v

0

Γ(n+ 1)

Γ(i)Γ(n− i)
ui−1(v − u)n−i−1

[
log

(
n− i

n

)
+ log

(v − u)n−i−1

(1− u)n−ivn−1

]
du dv

= log

(
n− i

n

)
Γ(n+ 1)

Γ(i)Γ(n− i)

∫ 1

0

∫ v

0
ui−1(v − u)n−i−1du dv︸ ︷︷ ︸

= 1, since (A.4) is a density.

+
Γ(n+ 1)

Γ(i)Γ(n− i)

∫ 1

0

∫ v

0
ui−1(v − u)n−i−1 log

(v − u)n−i−1

(1− u)n−ivn−1
du dv
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= log

(
n− i

n

)
+

Γ(n+ 1)

Γ(i)Γ(n− i)

∫ 1

0

∫ v

0
ui−1(v − u)n−i−1 log(v − u)n−i−1du︸ ︷︷ ︸

=(n−i−1)B(i,n−i)vn−1[log v−ψ(n)+ψ(n−i)]

dv

︸ ︷︷ ︸
=(n−i−1)B(i,n−i)[nψ(n−i)−nψ(n)−1]/n

− Γ(n+ 1)

Γ(i)Γ(n− i)

∫ 1

0

∫ v

0
ui−1(v − u)n−i−1 log

[
(1− u)n−ivn−1

]
du dv

= log

(
n− i

n

)
+

(
n− i− 1

n

)
[nψ(n− i)− nψ(n)− 1]

− Γ(n+ 1)

Γ(i)Γ(n− i)

∫ 1

0

∫ v

0
ui−1(v − u)n−i−1

[
log(1− u)n−i + log vn−1

]
du dv

= log

(
n− i

n

)
+

(
n− i− 1

n

)
[nψ(n− i)− nψ(n)− 1]

− (n− i)
Γ(n+ 1)

Γ(i)Γ(n− i)

∫ 1

0

∫ v

0
ui−1(v − u)n−i−1 log(1− u)du dv︸ ︷︷ ︸

(A.5) applies here!

− (n− 1)
Γ(n+ 1)

Γ(i)Γ(n− i)

∫ 1

0
(log v)

∫ v

0
ui−1(v − u)n−i−1du︸ ︷︷ ︸
=B(i,n−i)vn−1

dv

︸ ︷︷ ︸
=−B(i,n−i)/n2

= log

(
n− i

n

)
+ (n− i− 1)[ψ(n− i)− ψ(n)]− n− i− 1

n

− (n− i)[(ψ(n− i+ 1)− ψ(n+ 1)] +
n− 1

n

= log

(
n− i

n

)
− ψ(n− i) + ψ(n) (A.6)

= log

(
n− i

n

)
−Hn−i−1 +Hn−1. (A.7)

The result is in terms of the ψ-function (A.6) and in terms of Harmonic numbers (A.7).
The case i = n− 1 provides a partial check since that case is included in the consecutive
pair case. There is no symmetry between i and n− i. Due to (4.19) it appears the best
to write the result in the form

In
(
U(i), U(n)

)
= Hn−1 − log n− [Hn−i−1 − log(n− i)] . (A.8)
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The case i = 1 gives

In
(
U(1);U(n)

)
= log

(
1− 1

n

)
+

1

n− 1
, (A.9)

which should be of general interest since a typical application of order statistics is to
estimate the distribution of the range R = X(n) −X(1) ([Casella and Berger, 2002]).
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