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Abstract

Various studies show that pretrained language
models such as BERT cannot straightfor-
wardly replace encoders in neural machine
translation despite their enormous success in
other tasks. This is even more astonishing con-
sidering the similarities between the architec-
tures. This paper sheds some light on the em-
bedding spaces they create, using average co-
sine similarity, contextuality metrics and mea-
sures for representational similarity for com-
parison, revealing that BERT and NMT en-
coder representations look significantly differ-
ent from one another. In order to address this
issue, we propose a supervised transformation
from one into the other using explicit align-
ment and fine-tuning. Our results demonstrate
the need for such a transformation to improve
the applicability of BERT in MT.

1 Introduction

Contextualized token representations produced by
pretrained language models (LMs), in particular
BERT (Devlin et al., 2019), have ushered in a new
era, allowing the separation of unsupervised pre-
training of powerful representation spaces, from the
supervised training of task-specific, comparatively
shallow classifiers on top of these representations.
BERT-based models have consistently shown state-
of-the-art performance in a variety of tasks, which
is largely attributed to the rich information cap-
tured by the representations. These capabilities
and its Transformer-based architecture suggest that
BERT could improve neural machine translation
(NMT) as well. However, as shown by Clinchant
et al. (2019), although useful, information encoded
by BERT is not sufficient by itself for successful
MT. The reason for this is still an open question.
Some of the most widely accepted hypotheses to
date argue that either there is a fundamental dis-
crepancy between the masked language modeling

training objective of BERT compared to the gen-
erative, left-to-right nature of the MT objective
(Song et al., 2019; Lewis et al., 2020) ; or that
catastrophic forgetting (Goodfellow et al., 2015)
takes place when learning the MT objective on
top of the pretrained LM (Merchant et al., 2020).
The latter could be caused by the large size of the
training data typically used in MT,and by the high
capacity decoder network used in MT because to
fit the high-capacity model well on massive data
requires a huge number of training steps. However,
since on the one hand, the left-to-right constraint
in MT is potentially more relevant for the decoders
than the typically bidirectional encoder that has ac-
cess to the entire input sequence, and on the other
hand, BERT and other pre-trained LMs have been
successfully used for other complex problems with
large training data and high capacity classifiers (Liu
and Lapata, 2019; Witteveen and Andrews, 2019;
Huang et al., 2021), it is reasonable to assume there
may be further reasons for these discrepancies.

We take a complementary stance and analyze the
differences between the representation spaces pro-
duced by BERT and those produced by the MT
objective. We therefore attempt to align these
spaces, and investigate whether such an explicit
alignment would reshape the BERT representa-
tion space to enable its use as an NMT encoder.
To the best of our knowledge, this is the first
study to investigate the intrinsic differences of pre-
trained LM and MT spaces, as well as the first
attempt to explicitly align them. For reproducing
our experiments, we make our code available at
https://github.com/Helsinki-NLP/Geometry

2 Methodology

2.1 Comparing the Representation Spaces

Measures of Isotropy and Contextuality. We
investigate how the embedding spaces of BERT

https://github.com/Helsinki-NLP/Geometry
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and MT differ by making a layer-by-layer compari-
son of these spaces. First, we measure the level of
isotropy of these spaces using the average cosine
similarity (AvgSim) between the representations of
uniformly randomly sampled words from different
contexts (Ethayarajh, 2019). (An)isotropy corre-
sponds to the degree of directional (non)uniformity
in an embedding space, where perfect isotropy im-
plies directional uniformity in the distribution word
vectors. It is important to consider (an)isotropy
when discussing contextuality since cosine similar-
ity is relative to the directional uniformity of the
sample space. Then, we also generalize AvgSim to
using the Euclidean distance as our distance met-
ric. Understanding how cosine similarity and the
Euclidean distance interact allows for a more com-
plete understanding of the space.

We also make a layer-wise comparison using
two of the anisotropy-adjusted contextuality met-
rics presented in Ethayarajh (2019): SelfSim: av-
erage cosine similarity between the contextualized
representations of a word across its occurrences in
the dataset, and IntraSim: average cosine similar-
ity between representations of words in a sentence
and the sentence mean vector. Both metrics are
corrected for anisotropy via subtracting the corre-
sponding AvgSim, assuming AvgSim as a measure
of anisotropy.

Measures of Representational Similarity. We
measure the similarities between pairs of layers
of both models using Representational Similar-
ity Analysis (RSA) (Laakso and Cottrell, 2000;
Kriegeskorte et al., 2008) and Projection-Weighted
Canonical Correlation Analysis (PWCCA) (Mor-
cos et al., 2018) as task-agnostic measures.

RSA, originally developed for neuroscience, and
later adopted for quantifying the similarity between
neural networks (Chrupała and Alishahi, 2019; Ab-
nar et al., 2019) works by taking a set of input
stimuli of size n, and running them through the
models to be compared. For each model, the acti-
vations to each of the n stimuli points are pairwise
compared to each other using a similarity metric
to compute a an adjacency matrix of size [n × n]
between the stimuli points obtained. These matri-
ces are then contrasted against each other using the
Pearson’s correlation coefficient, giving a measure
of the "representational similarity".

PWCCA is an extension over the SVCCA (Sin-
gular Value Canonical Correlation Analysis) dis-
tance measure (Raghu et al., 2017), which com-

bines Singular Value Decomposition (SVD) and
Canonical Correlation Analysis (CCA) (Hotelling,
1936). CCA is invariant to linear transforms, hence,
it is useful for finding shared structures across rep-
resentations which are superficially dissimilar, mak-
ing it a good tool for comparing the representations
across groups of networks and for comparing rep-
resentations. Specifically, given the two sets of n
corresponding representations from two models,
PWCCA performs (1) SVD over the dimension
space to prune redundant dimensions, (2) CCA to
find linear transformations of the two spaces’ di-
mensions, which are maximally correlated to each
other, and (3) a weighted average of the resulting
correlation coefficients, which favor the ones that
are more relevant to the underlying representations.

2.2 Aligning the Representation Spaces

We present two methods to align the BERT space
to that of the MT encoder: (i) an explicit alignment
transformation that forces BERT representations to
better match those of the MT encoder, and (ii) an
implicit alignment effect achieved by a fine-tuning
process which uses translation as its objective.

Explicit Alignment Transformation. We build
upon Cao et al. (2020), maximizing the contextual
alignment the model can achieve via the average
accuracy on the contextual word retrieval task. This
method presents several advantages that can be
leveraged in our work. It is multilingual, it respects
contextuality of the embeddings, and it makes use
of rather reliable, widely used and not-memory
intensive alignment algorithms (Brown et al., 1993;
Och and Ney, 2003)

The task, as originally posed by Cao et al.
(2020) is as follows. Given a parallel pre-aligned
corpus C of source-target pairs (s, t), and one
word within a source sentence, the objective is
to find the corresponding target word. Let each
sentence pair (s, t) have word pairs, denoted
a(s, t) = (i1, j1), ..., (im, jm), containing position
tuples (i, j) such that the words si and tj are trans-
lations of each other. We use a regularized loss
function Loss = L+ λR so that L aligns the em-
beddings from one model, f1(i, s), to the ones of
the other model f2(j, t):
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Figure 1: Cosine similarity (top) and Euclidean distance (bottom) distributions between randomly sampled words.
Note that BERT has 12 layers and MT encoder has 6 layers, so the layers should be compared according to their
relative positions, such as comparing the final layer of BERT to the final layer of MT encoder.

L(f1, f2;C) = -
∑∑

sim (f1(i, s), f2(j, t))

(s,t)∈C
(i,j)∈a(s,t)

R(f ;C) =
∑
s∈C

len(t)∑
i=1

‖f1(i, s)− f◦1 (i, s)‖22

where f◦1 denotes the pretrained model 1 before
alignment and R is the regularization term that
imposes a penalty if the target embeddings stray
too far from their initialization. We validate using
a version of Cao et al. (2020) word retrieval task
using a nearest neighbor retrieval function:

N(i, s|f1, f2) = argmax
t∈C,0≥j≥len(t)

sim (f1(i, s), f2(j, t))

We propose to modify the regularized loss func-
tion Loss = L + λR so that L aligns the embed-
dings from one model, f1(i, s), to the ones of an-
other model, f2(j, t), and also use a regularization
term R to impose a penalty if the aligned embed-
dings stray too much. In contrast with Cao et al.
(2020), this allows for alignment between embed-
dings produced by different models. Specifically,
we align the representations in the final layer of the
pretrained language model, to that of the encoder of
the MT model. Although in this work, we focus on
aligning the different representations for the same
word to each other, aligning embedding spaces of
different languages and different models is also an
interesting future direction.

Implicit Alignment via Fine-tuning. We fine-
tune a hybrid model consisting of BERT in the

encoder side that sends its representations to a pre-
trained MT decoder. We then use smoothed cross
entropy loss as our training objective to fine-tune
BERT representations for performing MT. The out-
puts of BERT are passed through a linear projection
layer to match the dimension of the MT decoder
and then fed into the decoder in the same way as in
the standard Transformer architecture.

3 Comparing The Embedding Spaces.

We compare the representation spaces produced by
BERT and the encoder of a Transformer trained
on the MT task. BERT is composed of 12 layers,
plus an initial input embedding layer, with a dimen-
sion of 768. The MT system we apply consists
of an input embedding layer followed by 6 Trans-
former layers with a hidden dimension of 512. We
use the pretrained bert-base-uncasedmodel,
as well as the pretrained English-German transla-
tion model opus-mt-en-de, both from the Hug-
gingFace library (Wolf et al., 2019). Following
Ethayarajh (2019), we extract embeddings using
data from the SemEval Semantic Textual Similarity
tasks from 2012 to 2016 (Agirre et al., 2016).

Average similarity between random tokens.
Figure 1 presents the layer-wise cosine similarity
(top) and the Euclidean distance (bottom) distribu-
tions of randomly sampled words.The behavior of
BERT in Figure 1(top) is consistent with the find-
ings of Ethayarajh (2019). The level of anisotropy
of the embedding representations throughout layers
of BERT increases towards higher layers, with the
exception of a slight drop at the last layer (L12),
considering the average cosine similarity of the rep-
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resentations as a proxy measure of anisotropy. Fur-
ther, we notice Figure 1(bottom) that BERT embed-
dings follow an inverted U-shape. This, together
with the AvgSim trend, means that the embedding
space starts by stretching out and becoming nar-
rower, later on to spread out shorter embeddings in
layer 12, in line with (Voita et al., 2019).

The MT-based representations, however, look
significantly different. The cosine-based AvgSim
follows an almost U-like trend: it starts from a
relatively high level at layer 0, then immediately
drops and stays low throughout the middle layers,
before a sudden increase at the final layer (L6). In
particular:

1. a high average similarity of the MT embed-
dings in layer 0 is striking since the represen-
tations are not yet that “contextualized” this
early in the model, and

2. the gradual increase of average similarity in
BERT layers, versus the very steep increase
at the last layer of MT model.

Behavior (1) might be caused by the shared source-
target vocabularies and the embedding layer in the
MT model in the encoder and the decoder being
shared. Such shared processing can result in a
seeming inflation of the cosine similarity of ran-
domly selected vectors, which actually belong to
two different language spaces. To test for this
hypothesis, we check the average Euclidean dis-
tance between randomly selected tokens in Figure
1-bottom. Interestingly, we do not observe consid-
erable high levels of closeness between random
words in layer 0, and the distribution is widespread.
That is, the embeddings are organized in a nar-
row cone but have a wide range of lengths. This
behaviour might arise from the system needing to
represent both languages in the same space, and the
interplay between training the embeddings layer at
the target side while needing to keep source em-
beddings apart enough - future work is necessary
to confirm this. Motivated by these findings, we
emphasize that using both metrics and observing
how they interact allows for a more complete un-
derstanding of the representation spaces. 1

Finding (2) is more relevant to our main ques-
tion of the differences between the geometries of

1Cosine similarity does not take into account the magni-
tude of the vectors at play, making it susceptible to the exis-
tence a large value in one of the entries of a high-dimensional
vector, while Euclidean distance is hard to interpret in high-
dimensional spaces and it is unbounded from above.
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Figure 2: Comparison of contextualization for BERT
and MT spaces using SelfSim and IntraSim. We also
present the raw SelfSim before anisotropy correction.

BERT and MT. Both metrics show a more gradual
increase in the closeness of random tokens in the
BERT over layers, as compared to an abrupt in-
crease in the MT space. Therefore, we can deduce
that the MT model can keep random representa-
tions successfully apart for all but the uppermost of
the layers. We hypothesize that this monotonously
increasing levels of closeness of random token em-
beddings in BERT may be contributing to its sub-
optimal machine translation performance. To verify
this hypothesis, in section 4 we present results on
MT performance after alignment and in section 4.1
we show how the alignment method changes the
embeddings distributions.

Similarity between tokens of the same form.
SelfSim will be high in less contextualized models,
because such models use similar representations
for each occurrence of the same token. Highly con-
textualized models will have lower SelfSim since
every occurrence of the word will have a different
representation. Comparing the two spaces (Fig-
ure 2), we again observe different trends. SelfSim
steadily drops for BERT except for the last layer,
showing an increase in the contextuality of the rep-
resentations. For the MT model, on the other hand,
we observe a steep drop at layer 6, indicating a sud-
den increase in contextuality here. All in all, BERT
gradually increases contextualization whereas the
MT encoder tends to model individual lexical con-
cepts in most layers before adding a strong contex-
tual influence in the last one.

Once again, we see a different behavior in layer
0 of the MT model, which is characterized by low
SelfSim in the embedding layer. This a direct re-
sult of the high AvgSim value at the embeddings
layer (due to the shared vocabulary space) which
is the anisotropy correction factor for SelfSim. We
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Figure 3: Representation similarity analysis between of out-of-box BERT, as well as the aligned models
M1/M2/M3, with MT model from HuggingFace.

deduce that anisotropy-corrected SelfSim cannot
straightforwardly be interpreted as a measure of
contextuality in the embeddings layer of MT mod-
els with a shared source-target vocabulary. For
comparison, we, therefore, also present the uncor-
rected SelfSim (raw) value (dashed line) for this
layer, which confirms this reasoning.

Similarity between tokens within the same sen-
tence. We check the average similarity between
tokens in the same sentence (IntraSim). Figure 2
reveals different behavior between the two mod-
els. In particular, we see a smooth increase over
the layers for both models until the penultimate
layer, pointing to an increasing level of in-sentence
contextualization, as shown by the embeddings of
the words in the same sentence gradually coming
together. However, the behavior at the final layer
is different between the two models. We observe
an increase in IntraSim for the BERT model at the
last layer, in contrast to the drop at the last layer
of the MT model. In other words, the MT model
is suddenly discriminating between the words in
the sentence at layer 6, just before passing informa-
tion to the decoder. We hypothesize that it may be
useful for the MT decoder to have access to repre-
sentations that are less contextualized at a source
sentence level, since it still needs to add semantic
information for decoding into the target language.
Notice that SelfSim and IntraSim decrease for final

Encoder Explicit Fine-
alignment tuning

MTbaseline Trf 7 7

huggingface en-de (6-layers) 7 7

M1:align
BERT

3 7

M2:fine-tune
(12-layers)

7 3

M3:align+fine-tune 3 3

Table 1: Model setups. MTbaseline and hugging-
face en-de are baseline models which use Transformer
(“Trf”) as encoder. M1, M2 and M3 utilize various
combinations of the proposed alignment strategies.

layer of the MT model. That is, similarity of word
forms in different contexts is decreasing greatly
and similarity of words to the mean sentence vector
is (to a smaller degree) also decreasing. This might
be an indication of the different constraints MT
models have on contextualization. For example,
the model may have a tendency to pay strong atten-
tion to syntactic and positional information, instead
of focusing on shared semantics of the sentence.

Layer-wise similarity analysis between models.
Figures 3-top left and 4-top-left present the results
of the representational similarity analysis (RSA)
and projection-weighted canonical correlation anal-
ysis (PWCCA) between out-of-the-box BERT and
the MT model representational spaces. Both anal-
yses depict higher similarity values between the
lower layers of the models. At the lower layers, the
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Figure 4: Representational similarity analysis of BERT, HuggingFace MT model, and aligned models M1/M2/M3.

representations are not yet changed so much from
their initial starting point, so it is to be expected that
they are more similar between the models. Towards
the higher levels, though, the similarity decreases.
The BERT representations gain distance from the
MT representations, reaching the lowest similarity
between the BERT-L12 and the MT layers.

4 Aligning the Representation Spaces

To address the discrepancies observed in the BERT
and the MT encoder embedding spaces, we use
the transformations from section 2.2. We use five
different setups (Table 1). Two of these use 6-
layered Transformer encoders and serve as base-
lines: the MTbaseline model, a transformer-based
MT model trained from scratch with the fine-tuning
data (Table 2), and Huggingface en–de a state-of-
the-art, pretrained Transformer model. We com-
pare the proposed alignment methods using M1,
which uses only the explicit alignment transforma-
tion strategy, M2, which uses the implicit align-
ment via fine-tuning strategy, and the hybrid M3,
which combines the two strategies.

Data. We use data from the English-German sec-
tions of the MuST-C dataset (Di Gangi et al., 2019),
Europarl (Koehn, 2005), extracted using OpusTools
(Aulamo et al., 2020) and the development tarball
from the WMT2019 news translation shared task
(Bojar et al., 2019) in the proportions indicated
in Table 2. We test using the MuST-C provided

Train Val.
Explicit Alignment Fine-Tuning

Europarl 45K 150K 1.5K
MuST-C 45K 150K 1.5K
newstest 13K 13K 500
Total 102K 313K 3.5K

Table 2: Train and validation splits for the datasets.

test-split, newstest2014 (Bojar et al., 2014) and
newstest2015 (Bojar et al., 2015), which were ex-
cluded from the train data. All of the data splits are
attainable using our repository.

We purposefully restrict the data amount used
for training the alignments. Such aligned systems
should be able to work under less intensive resource
requirements. The size of the training data for both
methods varies, because we try to keep the explicit
alignment comparable to what was originally pro-
posed for mBERT (Cao et al., 2020), whereas the
implicit alignment via fine-tuning requires more
data since the MT decoder is also to be fine-tuned.

Results. Table 3 presents the BLEU scores for
five setups. Notably, we see that by explicitly align-
ing the embedding spaces in a supervised way (M1)
the system is already able to perform translation
reasonably well. Besides being data efficient, due
to its simplicity, the alignment method used for
M1 is also memory efficient and fast to train. We
think that this shows how applying the simple align-
ment procedure described in section 2.2 can be
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Figure 5: Comparison of out-of-box BERT and MT models, against the aligned models M1/M2/M3, in terms of
the Cosine similarity (top) and Euclidean distance (bottom) distributions between randomly sampled words.

MuST-C newstest
2014 2015

MTbaseline 29.9 14.5 17.6
huggingface en-de 33.7 28.3 31.1
M1:align 21.4 18.1 18.9
M2:fine-tune 33.8 23.9 28.0
M3:align+fine-tune 34.1 25.0 29.2

Table 3: BLEU scores for EN-DE test sets.

used to make the rich world-knowledge captured by
BERT accessible for NMT by making the embed-
ding spaces compatible. In section 4.1, we investi-
gate the distributional changes in the embeddings
spaces caused by the alignments.

We also notice that fine-tuning in M2 works
quite well. We highlight how data efficient this
method is. After training for 1 epoch we obtain al-
ready over 30 BLEU points for MuST-C and after 3
epochs of fine-tuning we achieve results compara-
ble with the huggingface en-de model. On MuST-
C data, M3 yields similar results, notably however,
it converges much faster. At only 1% of the 1st
epoch (∼ 3K utterances) it achieves already 85%
of its performance in both test sets, and with 10K ut-
terances it starts to converge. The results obtained
with newstest 2014 and newstest 2015 follow a
similar trend, yet fail to surpass the huggingface
model – a state-of-the-art MT model trained with
all available EN-DE resources (∼ 350.7M parallel
sentences) from OPUS (Tiedemann, 2012). How-
ever, in all cases, we observe a better performance
than the MTbaseline, an MT model trained with
the same restricted data. These results indicate that

BERT can indeed be used as an MT encoder, but
only with a careful alignment procedure that over-
comes the incompatibilities between the encoders.

4.1 The Aligned BERT Space

Finally, we check the effects of the alignment
schemes on the geometry of the BERT space.
Here, our specific question of interest is in which
ways the BERT-produced embedding space became
more similar (or not) to the MT space after apply-
ing the alignment methods.

AvgSim. Figure 5 shows layer-wise cosine simi-
larity (top) and Euclidean distance (bottom) distri-
butions of random words of the aligned models.

While all three distributions are different from
the original BERT, M1 is the least different in terms
of where the distribution is centered, but even here
the distributions are less skewed/more symmetrical,
with respect to the cosine similarity. However, the
Euclidean distance results show that M1 consis-
tently produces shorter word vectors. This aligned
model is hence creating a space that is as narrow as
BERT’s, but not as elongated. This might be due
to the regularization term in the supervised align-
ment not allowing the embeddings to drift too far
from its pre-optimized setting, as well as the align-
ment being explicitly done for the last layer.2 For
both metrics, M2 and M3 are noticeably different
compared to the original BERT and similar to each
other. This indicates that aligning via fine-tuning
propagates information in such a way that the space

2We see changes in the distributions of all layers due to
backpropagation of information at training time.
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Figure 6: Comparison of BERT and the aligned models
M1/M2/M3, in terms of SelfSim and IntraSim.

is reshaped drastically. The increase in the BLEU
scores discussed above correlates with the amount
of change we observe in the distance distributions.

SelfSim and IntraSim. Figure 6-top shows con-
siderable change in the SelfSim of M1/M2/M3 fol-
lowing the alignment. Now all three models show
an abrupt increase in the similarity of tokens of the
same form in the ultimate layer. In other words,
these models are retrieving information related to
the specific word form, just before passing the in-
formation to the decoder. This finding is in line
with (Voita et al., 2019), who find that the MT de-
coder seems to require more information about the
specific word form’s representation, as compared
to the overly contextual representations that the
pretrained language models tend to produce.

Figure 6-bottom compares the after-alignment
IntraSim with before-alignment case. Note that
the M1/M2/M3 values in general are lower than
the BERT, throughout the layers. This confirms
the previous findings that the word forms seem
to retain their original representations more, and
adjusting to the sentence context less.

Layer-wise similarity analysis between models.
Figures 3 and 4 show how the responses of
M1/M2/M3 become significantly similar to that of
the MT model post-alignment. Note that interest-
ingly the explicit alignment method is particularly
successful in achieving similarity to the MT model,
in terms of similarities between responses to pairs

of stimuli (as measured by RSA) and correlation
of model responses over changing stimuli (as mea-
sured by PWCCA). However, as shown in Table 3,
model M1 is outperformed by M2 and M3, which
might be related to the anisotropy levels of M1
being similar to those of BERT (Figure 5).

5 Related Work

Analysis of contextualized representations.
While there has been huge efforts to analyze word
representations, most of it has been conducted
using probing tasks (McCann et al., 2017; Conneau
and Kiela, 2018; Conneau et al., 2018; Hewitt and
Manning, 2019). Similarly, Merchant et al. (2020)
study the effects of fine-tuning BERT representa-
tions on a specific set of probing tasks and analyse
the change in the contextual representations using
similarity analysis. Mimno and Thompson (2017)
quantitatively studied static word representations
produced with skip-gram with negative sampling.
Their work was extended by Ethayarajh (2019)
for contextualized embeddings, in which they use
word level measures of contextuality to contrast
ELMo (Peters et al., 2018), GPT-2 (Radford et al.,
2019) and BERT (Devlin et al., 2019). Voita et al.
(2019) present a comparison of contextualized
representations trained with different objectives,
using CCA and and mutual information to study
information flow across networks. They conclude
that although MT-produced representations do
get refined with context, the change in those
is not as extreme as for masked LM-produced
representations (BERT-like), which is in line with
our observations of higher SelfSim and lower
IntraSim (i.e. not ultra-contextualized embeddings)
for MT and aligned models as compared to BERT.

Pretrained LMs in NMT. Clinchant et al.
(2019) present a systematic comparison of meth-
ods to integrate BERT into NMT models, includ-
ing using BERT at the embedding level or for ini-
tializing an encoder. Zhu et al. (2020) propose a
BERT-fused MT system that uses additional atten-
tion modules between the outputs of BERT and the
encoder and decoder of the Transformer, increasing
the model parameters by the number of parameters
the chosen BERT flavour has. Yang et al. (2020)
proposes a similar strategy, though using BERT out-
puts only in the encoder, and a three-fold training
technique. Imamura and Sumita (2019) propose a
simple yet effective two-stage optimization tech-
nique that first freezes BERT, and then fine-tunes
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over the full model parameters set. We argue that
this is similar to the align and fine-tune approach
we propose for incorporating BERT into MT. Fi-
nally, a number of studies leverage pretraining tech-
niques. MASS (Song et al., 2019) is partly inspired
by BERT, but it is pretrained in NMT and is tailored
to match the way prediction is done in NMT (left-
to-right). Liu et al. (2020) enhance transformer-
based MT systems performance by using a BART
pretraining technique (Lewis et al., 2020) in a mul-
tilingual fashion to initialize an NMT system.

Alignment. Numerous methods have been pro-
posed for aligning (contextualized) word represen-
tations (Och and Ney, 2003; Ruder et al., 2019).
Wang et al. (2019) learn an optimal linear transfor-
mation between embedding spaces. Schuster et al.
(2019) propose a similar approach using the cen-
troids of the instances of the same word in different
contexts. Our work is closer to Cao et al. (2020),
which use a resource-efficient algorithm that takes
into account the contextuality of embeddings.

6 Conclusion

This paper provides an analysis of the intrinsic
differences between BERT and machine translation
encoders. We compare the representation spaces of
both models and pinpoint discrepancies between
them. We show that this mismatch can be remedied
through an alignment strategy, which successfully
reshapes BERT into an effective MT encoder. We
also study the effects that the alignment methods
have on the geometry of the embeddings spaces.
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