
https://helda.helsinki.fi

Identification of structural multivariate GARCH models

Hafner, Christian M.

2022-03

Hafner , C M , Herwartz , H & Maxand , S 2022 , ' Identification of structural multivariate

GARCH models ' , Journal of Econometrics , vol. 227 , no. 1 , pp. 212-227 . https://doi.org/10.1016/j.jeconom.2020.07.019

http://hdl.handle.net/10138/339818

https://doi.org/10.1016/j.jeconom.2020.07.019

cc_by

publishedVersion

Downloaded from Helda, University of Helsinki institutional repository.

This is an electronic reprint of the original article.

This reprint may differ from the original in pagination and typographic detail.

Please cite the original version.



Journal of Econometrics 227 (2022) 212–227

a

b

c

d

2
m
p
a
f
a
v

a
i
f

m
(

(

h
0
l

Contents lists available at ScienceDirect

Journal of Econometrics

journal homepage: www.elsevier.com/locate/jeconom

Identification of structuralmultivariate GARCHmodels
Christian M. Hafner a,b,∗, Helmut Herwartz c, Simone Maxand d

Louvain Institute for Data Analysis and Modelling in Economics and Statistics (LIDAM), Université catholique de Louvain, Belgium
ISBA, Université catholique de Louvain, Belgium
Department of Economics, University of Goettingen, Germany
Department of Political and Economic Studies, University of Helsinki, Finland

a r t i c l e i n f o

Article history:
Received 26 October 2018
Received in revised form 7 June 2020
Accepted 1 July 2020
Available online 29 July 2020

JEL classification:
C32
G15

Keywords:
Structural innovations
Identifying assumptions
MGARCH
Portfolio risk
Volatility transmission

a b s t r a c t

The class of multivariate GARCH models is widely used to quantify and monitor volatility
and correlation dynamics of financial time series. While many specifications have been
proposed in the literature, these models are typically silent about the system inherent
transmission of implied orthogonalized shocks to vector returns. In a framework of non-
Gaussian independent structural shocks, this paper proposes a loss statistic, based on
higher order co-moments, to discriminate in a data-driven way between alternative
structural assumptions about the transmission scheme, and hence identify the structural
model. Consistency of identification is shown theoretically and via a simulation study. In
its structural form, a four dimensional system comprising US and Latin American stock
market returns points to a substantial volatility transmission from the US to the Latin
American markets. The identified structural model improves the estimation of classical
measures of portfolio risk, as well as corresponding variations.
©2020 TheAuthors. Published by Elsevier B.V. This is an open access article under the CCBY

license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

In the wake of a growing dependence across markets and countries, evidenced during the financial and economic crisis,
007–2009, and the European debt crisis, concern has risen among central bankers, regulators, policy makers and portfolio
anagers about understanding the volatility linkages between countries, markets, and asset classes from a fundamental
erspective. In this context, multivariate GARCH models (MGARCH) have been used extensively to analyse contagion
nd transmission of risks, either via variance impulse response functions, tests of specific parameter restrictions, tests
or causality in variance, or forecast error variance decompositions, see Bauwens et al. (2006) for a review. The latter
pproach has been initially proposed by Diebold and Yilmaz (2009) to model contemporaneous variance transmissions in
ector autoregressions (VAR) of realized variances.
While conveying insightful information about the volatility and correlation dynamics, both realized volatility VAR

nd MGARCH models are limited in the sense that in most studies the underlying model of shock transmissions lacks
dentification in a strictly structural sense. For instance, Diebold and Yilmaz (2009) use the order-dependent Cholesky
actorization, and similar ad-hoc choices are often encountered in MGARCH specifications.

Identification of structural MGARCH models has been addressed previously in the framework of the orthogonal GARCH
odel of van der Weide (2002) and Rigobon (2003), as well as the structural conditional correlation model of Weber

2010). Both approaches come at the cost of imposing reduced form dynamic profiles that are more restrictive than
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a general MGARCH model such as the BEKK model of Engle and Kroner (1995). Alternatively, one may use external
economic information for identification as in Herwartz and Roestel (2018). On the high frequency scale of financial
markets, however, such external information is generally scarce and often not consensual.

In this paper, retaining the full flexibility of unrestricted BEKK models, we build upon recent advances in data based
identification of SVARs to develop a new structural MGARCH model. In particular, we exploit the uniqueness of non-
Gaussian structural shocks for MGARCH identification, see e.g. Lanne et al. (2017), Gouriéroux et al. (2017) and Lütkepohl
and Kilian (2017). The starting point is the definition of structural shocks as stochastically independent innovations as
in Hafner and Herwartz (2006). This definition exploits the full information of the joint distribution of shocks, and not
only their second order moment structure. The idea is that under our assumptions, higher order conditional moments, as
opposed to second order moments, are not invariant with respect to rotations of a decomposed conditional covariance
matrix. For the identification of independent shocks we suggest a feasible loss (test) statistic that is a weighted sum
of squared differences between empirical third and fourth order moments and their theoretical counterparts under the
independence assumption. We show theoretically and via a simulation study that the minimization of the proposed test
statistic consistently identifies the structural MGARCH model that has been estimated by quasi maximum likelihood
(QML).

The identified structural model is particularly helpful in modelling the higher order moment structure of portfolio
returns which is an important ingredient for modern risk management and regulatory purposes. In a non-Gaussian
framework, risk measures such as Value-at-Risk (VaR) and expected shortfall (ES) directly depend on the a priori unknown
structural model. Furthermore, the structural model is also helpful in quantifying uncertainties inherent in conditional VaR
and ES statistics. To further improve the modelling of tail events, we introduce a higher order risk measure by considering
the difference between squared returns and conditional variances. While the conditional mean of this variable is zero, its
conditional variance is directly linked to the conditional kurtosis of portfolio returns. Analysing the variation and tail risk
of this variable provides important insights for risk management with respect to variations of classical risk measures over
time.

The merits of our approach are discussed in detail based on an application to a four dimensional system of weekly stock
returns of US and Latin American markets. Unlike an ad-hoc symmetric covariance decomposition, the estimation results
suggest an active role of US markets in transmitting volatilities to Latin American markets. We show via simulations that
VaR and ES measures are well approximated using the estimated structural model, as opposed to a symmetric model. We
also show that this holds for quantities measuring the higher order type risk.

The next section introduces the structural MGARCH model and discusses the moment based identification criterion. A
simulation study sheds light on the discriminatory strength of the identification criterion in finite samples. In Section 3
we highlight how structural information can be beneficial for both types of risk analysis. Section 4 provides an empirical
illustration of identified volatility transmission patterns, and shows how structural information improves practical matters
of monitoring portfolio risks. Section 5 concludes.

2. Structural MGARCH and identification

Suppose that an N-dimensional vector of financial returns, denoted rt , is decomposed into a conditional mean and an
error component,

rt = µt + et , (1)

where µt = E[rt |Ft−1], Ft−1 denotes the information set available at time t −1, et is an error term with conditional mean
equal to zero. We suppose that et is conditionally heteroskedastic, Ht := Var[et |Ft−1], where the N × N matrix process
{Ht} is symmetric, positive definite, and Ft−1-measurable.

Numerous MGARCH specifications for Ht have been proposed, see e.g. Bauwens et al. (2006) for a review. In our
applications we will focus on the popular BEKK specification of Engle and Kroner (1995), which in its simplest form
can be written as

Ht = CC ′
+ A′et−1e′

t−1A + B′Ht−1B, (2)

where C is a lower triangular matrix and A and B are N×N parameter matrices. The BEKK model has the convenient feature
to ensure positive definite covariance matrices under mild regularity and initial conditions. Conditions for ergodicity and
stationarity have been derived by Engle and Kroner (1995) and Boussama et al. (2011). Higher order terms can be added
but are rarely used in practice. The parameters of the model are stacked into a vector θ = ( vech(C)′, vec(A)′, vec(B)′)′,
and we can emphasize the dependence of Ht on θ by writing Ht (θ ).

We note also that there is some discussion about the caveats of a BEKK representation with full parameter matrices
A and B, as opposed to a diagonal BEKK model, in terms of the existence of an underlying stochastic process, regularity
conditions, invertibility and asymptotic properties, see in particular McAleer (2019). Moreover, in higher dimensions,
further restrictions may be necessary to avoid the curse of dimensionality, i.e., vastly increasing numbers of parameters,
for example by specifying A and B as scalar parameters, as advocated by Caporin and McAleer (2012). The diagonal form
of a BEKK model has been advocated e.g. by Chang et al. (2017) to test for (co-)volatility spillover, as this model has a
well-defined underlying stochastic process and asymptotic theory.
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To fully specify the dynamics of et and not only its conditional second moment structure, one often uses ad-hoc
decompositions of Ht such as, for example, the symmetric eigenvalue decomposition or Cholesky factors. Denoting by
H1/2

t the matrix square root of Ht obtained by eigenvalue decomposition, the MGARCH process reads as

et = H1/2
t ξt , ξt ∼ iid(0, IN ). (3)

Viewing the expression in (3) as a structural scheme, the jth column of H1/2
t formalizes how single orthogonalized shocks

ξjt in ξt affect the returns (or their reduced form residuals) collected in rt (et ). Similarly, the ith row of H1/2
t unravels the

ontribution of each shock in ξt to uncertainty/volatility received by a single market rit (eit ). Importantly, the eigenvalue
ecomposition implies for each market a symmetry of cross market volatility reception and transmission.
On a priori grounds one might argue that the implication of symmetry lacks economic justification in many contexts.

or instance, it appears intuitive to expect a wedge between patterns of market specific volatility transmission and re-
eption if the considered markets differ considerably in terms of economic importance or market valuation. Alternatively,
Cholesky decomposition of Ht is conditional on the presumed ordering of variables. However, an analyst might warrant
more flexible model framework which could also nest as special cases particular a-priori schemes.
Generalizing the exposition in (3), the identification problem in MGARCH models can be made more explicit in terms

f a structural transmission scheme as

et = Wtξt , (4)

here Wt is an N × N , Ft−1-measurable matrix such that Var[et |Ft−1] = WtW ′
t = Ht . Note that this decomposition

is not unique without further assumptions. For instance, under the assumption of conditional normality all possible
decompositions of the form Ht = WtW ′

t are observationally equivalent, and one would have to rely on external non-data
based information to identify a structural model.

We now introduce the following parameterization of Wt :

Wt = H1/2
t Rδ, (5)

where Rδ is a rotation matrix, parameterized by a vector δ, such that RδR′

δ = IN . A special case is Rδ = IN , which corresponds
to the symmetric model in (3). Another special case is the Cholesky factorization, which can be recovered by choosing
the rotation angles δ such that Wt becomes triangular. To be more specific, Rδ is parameterized as the product of distinct
forms of Givens rotation matrices where the elements of δ, denoted δi, 0 ≤ δi < π , are rotation angles. For a model of
dimension N , δ comprises N(N − 1)/2 rotation angles. For instance, in the case of N = 3,

Rδ =

[1 0 0
0 cos(δ1) − sin(δ1)
0 sin(δ1) cos(δ1)

]
×

[cos(δ2) 0 − sin(δ2)
0 1 0

sin(δ2) 0 cos(δ2)

]
×

[cos(δ3) − sin(δ3) 0
sin(δ3) cos(δ3) 0

0 0 1

]
. (6)

Obviously, the matrices Wt depend on both the reduced form MGARCH parameters θ ∈ Θ and the rotation angles
δ, i.e., Wt (θ, δ) = Ht (θ )1/2Rδ . Consequently, model implied structural shocks read as ξt (θ, δ) = W−1

t (θ, δ)et . While the
vector of coefficients θ can be uniquely determined by means of QML estimation, δ lacks identification without additional
information. Henceforth, the specification of Wt focuses on the most appropriate choice of Rδ for given (estimates of) θ
and {Ht}.

The recent literature on identification in structural VAR models has shown that data-based identification of structural
relations offers unique solutions if structural shocks are non-Gaussian and independently distributed (Lanne et al., 2017;
Gouriéroux et al., 2017). In empirical applications of volatility models the supposition of Gaussian innovations is regularly
confirmed as overly restrictive and models incorporating skewed or leptokurtic innovations have been put forward. This
motivates our approach to exploit the particular structure of third and fourth order co-moments that is implied by
independently distributed non-Gaussian model innovations.

2.1. Moment based identification

Under non-normality, the core idea to identify the structural MGARCH model is to start with an a-priori decomposition
Ht (θ )1/2, obtaining standardized reduced form errors estdt := Ht (θ )−1/2et . In a second step, this factor is subjected to
systematic rotations Rδ to obtain a specific (rotated) matrix Wt (θ, δ) = Ht (θ )1/2Rδ that implies innovations which are best
in matching a set of co-moment conditions that apply to independent shocks.

Before characterizing the identification technique, we need to impose some assumptions on the vector of innovations
ξt (θ, δ) = W−1

t (θ, δ)et . In the following, we distinguish between the vector of independent structural error terms which
is related to rotation angle δ0 by ξt := ξ

δ0
t = ξt (θ, δ0) and the general vector of structural shocks ξ δt = ξt (θ, δ) which

depends on rotation angle δ and is not necessarily independent. The following assumptions are imposed on ξt .

Assumption 1. ξt , t = 1, . . . , T , is an N-dimensional vector with the following properties:

(i) At most one of the components of the random vector ξt has a normal distribution.
(ii) The components ξit are mutually independent with E[ξit ] = 0 and Var[ξt ] = IN .
(iii) For some ϵ > 0, E|ξ |

6+ϵ < ∞, k = 1, . . . ,N .
kt
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In the following, we discuss moment properties of independent shocks in order to propose a diagnostic statistic in
ection 2.2 to identify them based on higher order moments. We first introduce some notation and define respectively
he marginal skewness and kurtosis of innovations, m(3)

i := E[ξ 3it ] and m(4)
i := E[ξ 4it ], i = 1, . . . ,N . Furthermore, let

m(g)
:= (m(g)

1 , . . . ,m
(g)
N )′ denote N-dimensional moment vectors for g ∈ N. In particular, the skewness vector corresponds

to m(3), the kurtosis vector to m(4), and the second order moment m(2) is unity by definition. The operator diag(a) stacks
n n-dimensional vector a into a diagonal n × n matrix.
Let us now define the matrices of third and fourth order cross-products of ξt as

Φt := (ξt ⊗ ξt )ξ ′

t and Ψt := ξtξ
′

t ⊗ ξtξ
′

t

nd corresponding expectations,

Φ := E[Φt ] = diag(m(3))LN (7)
Ψ := E[Ψt ] = 2DND+

N + vec(IN ) vec(IN )′ + diag( vec( diag(m(4)
− 3ιN ))), (8)

where LN is the unique N2
× N matrix defined by the property diag(A) = L′

N vec(A) for any N × N matrix A, DN is the
duplication matrix, D+

N its generalized inverse, and ιN := (1, 1, . . . , 1)′ an N-dimensional vector of ones. A derivation of
these expressions is straightforward following the lines of Proposition 5.3 of Hafner and Rombouts (2007). An elementwise
characterization of the matrix Ψ was derived in Fengler and Herwartz (2018).

Furthermore, define φt as the vector containing the non-redundant elements of vec(Φt ), except for the terms ξ 3it ,
i = 1, . . . ,N . That is, φt contains all cross-products of the type ξ 2itξjt and ξitξjtξkt , so that φt is of dimension qφ :=

N(N − 1)(N + 4)/6. Similarly, define the vector ψt as the vector containing the unique elements of vec(Ψt ), except for
the terms ξ 4it , i = 1, . . . ,N . That is, ψt contains all cross-products of the type ξ 3itξjt , ξ

2
itξjtξkt , ξ

2
itξ

2
jt and ξitξjtξktξlt , and it can

easily be checked that ψt is of dimension qψ := N(N − 1)(N2
+ 7N + 18)/24. For example, if N = 4 as in our application,

then qφ = 16 and qψ = 31. Note that qφ = O(N3) and qψ = O(N4). Finally, let φ := E[φt ] and ψ := E[ψt ] be the vectors
of expectations of third and fourth order cross-products of innovations.

The variance–covariance matrix of φt can be obtained as

vech
(
Var(φt )

)
= C1

⎛⎜⎝
0
1

vecl(m(3)m(3)′ )
m(4)

⎞⎟⎠
where vecl(·) denotes the operator that stacks the lower triangular part of a matrix, excluding the diagonal, into a column
vector, and C1 is a qφ(qφ + 1)/2×N(N + 1)/2+ 2-dimensional binary selection matrix, that is, each row contains exactly
one entry of unity, and zeros elsewhere. For example, in the bivariate case (N = 2), we have φt = (ξ 21tξ2t , ξ1tξ

2
2t )

′ and

Var(φt ) =

(
m(4)

1 m(3)
1 m(3)

2

m(3)
1 m(3)

2 m(4)
2

)
such that C1 has dimension 3 × 5 and is given by

C1 =

(0 0 0 1 0
0 0 1 0 0
0 0 0 0 1

)
Similarly, the variance–covariance matrix of ψt is given by

vech
(
Var(ψt )

)
= C2

⎛⎜⎜⎜⎝
0
1

m(4)

vecl(m(4)m(4)′ ) − ιN(N−1)/2
m(6)

⎞⎟⎟⎟⎠
where C2 is a qψ (qψ + 1)/2 × (2(N + 1) + N(N − 1)/2)-dimensional binary selection matrix.

To construct the covariance-matrix of the vector (φ′

t ,ψ
′

t )
′, it remains to calculate the covariance between φt and ψt ,

which is obtained as

vec
(
Cov(φt ,ψt )

)
= C3

⎛⎜⎝
0

m(3)

m(5)

vec(m(3)m(4)′ )

⎞⎟⎠ ,
where C3 is a qφqψ × (N + 1)2 binary selection matrix.

We now stack both vectors into the q-dimensional vector St =
(
φ′

t , ψ
′

t

)′ (e.g. q = 47 for N = 4), and q = qφ + qψ .
All variances and covariances of φ and ψ are then used to construct Σ := Var((φ′ ,ψ′ )′). Furthermore, φ̂ and ψ̂ (Ŝ )
t t t t t t t
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efine the respective estimators obtained from ξ̂t = ξt (θ̂ , δ0). We discuss consistency of these estimators in the following
Section 2.2.

2.2. A diagnostic and its asymptotic properties

The co-moment structure detailed above holds for the case of independent structural shocks ξt . Alternative choices of
in (5) yield shocks ξ δt with non-trivial third and fourth order moments. We suggest to select the vector of rotation angles
n a way such that implied empirical third and fourth order co-moments of ξ δt are closest to the moments of independent
hocks ξt .
For the vector E[Sδt ] of stacked theoretical third and fourth order moments of ξ δt , let S̄

δ
T =

1
T

∑T
t=1 S

δ
t =

(
φ̄
δ′

T , ψ̄
δ′

T

)′

enote the empirical counterpart. To discriminate between distinct choices of the rotation angle δ we consider the statistic

λTδ = T (S̄δT − E[St ])′Σ−1
δ (S̄δT − E[St ]), (9)

where the covariance matrix Σδ collects the second order (co-)moments of the elements in Sδt =

(
φδ

′

t , ψ
δ′

t

)′

. The entries

in Σδ are calculated under the assumption of independence with respect to rotation angle δ. Similarly, the expectation
vector E[St ] comprises E[φt ] and E[ψt ] defined under independence.1

A feasible evaluation of (9) relies on estimated rather than true innovation estimates ξ̂ δt = Wt (θ̂ , δ)−1et , and the
corresponding statistic will be denoted

λ̂Tδ = T (̂ST − E[St ])′Σ̂−1 (̂ST − E[St ]). (10)

If independence is violated, and under non-sphericity, the third and fourth order moment conditions provided in
Section 2.1 are (partly) violated such that λ̂Tδ in (10) is expected to diverge for increasing T . Hence, minimizing λ̂Tδ provides
a particular decomposition of Ht closest to independence in a third and fourth order moment sense. Using the statistic in
(10), the identified structural model reads as

Ŵt = Wt (θ̂ , δ̂),with δ̂ = argminδ{λ̂
T
δ | ξt = Wt (θ̂ , δ)−1et}. (11)

Remark 1. Simplifications are possible by assuming that the marginal distributions of the shocks ξit are symmetric, as
the deviations of the Gaussian distribution are often due to excess kurtosis rather than skewness. Only a few higher
order moments would have to be estimated. Moreover, cross products of the form ξ 3itξjt are removed from ψt , St and S̄T .
Accordingly, the asymptotics of (9) can be established with the weaker assumption of finite moments of order 4+ϵ, ϵ > 0.

Remark 2. As an alternative identification scheme, one might consider the minimization of a non-parametric indepen-
dence diagnostic such as, for example, the Cramér-von-Mises distance of Genest et al. (2007). However, such rank-based
statistics typically suffer from low power compared to a moment-based criterion as λTδ in (9). This is confirmed in our
empirical analysis of Section 4.1, where we provide some details on the identification based on a Cramér-von-Mises
distance.

For the next theorem we will use an additional assumption.

Assumption 2. The estimator of the reduced form parameter θ is such that θ̂
p

→ θ and
√
T (θ̂ − θ ) has an asymptotic

normal distribution.

For the BEKK model, extensive results are available for the quasi maximum likelihood estimator (QMLE), giving
sufficient conditions under which Assumption 2 holds, starting with Comte and Lieberman (2003). For example, Hafner
and Preminger (2009) show consistency under the condition of finite second order moments of the (non-Gaussian)
innovations ξt , and asymptotic normality given sixth order moments of the MGARCH process. These assumptions,
however, are not easily testable, and more difficult to substantiate than those given in Ling and McAleer (2003). We
now have the following theorem.

Theorem 1. Under Assumptions 1 and 2, as T → ∞, λ̂Tδ
d

→ χ2(q) and δ̂
p

→ δ0.

Proof. See Appendix.

There is a connection of our approach with classical independent component analysis (ICA). The statistic λTδ minimizes
the sum of squared standardized elements of the matrices of third and fourth order co-moments, except for the marginal

1 For the class of spherical distributions, of which the standard normal is a special case, the above moment conditions hold as well and they are
nvariant with respect to orthogonal rotations. However, the standard normal is the only member of this class with independent components, so
hat spherical distributions are excluded by Assumption 1(i)–(ii). In practice, observing a statistic λTδ that is a non-trivial function of δ is an indicator
f non-sphericity.
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skewness and kurtosis. Alternatively, one could maximize the information contained in the marginal skewness and kur-
tosis. This technique is used in a classical ICA algorithm, the so-called joint approximate diagonalization of eigenmatrices
(JADE). Following, for instance, Miettinen et al. (2015), the described identification technique can be formulated as the
counterpart to standard ICA methodologies. While we are interested in minimizing the standardized cross-moments, JADE
maximizes the standardized marginal moments. As the overall entropy is constant, both approaches yield the same results.
The construction of the third and fourth moments criterion is similar to that of entropy and negentropy (cf. equation (14.2)
and (14.3) of Hyvärinen et al. (2001)). In this sense, it serves as a measure of mutual information and non-Gaussianity,
respectively. Minimizing/maximizing the respective criteria equivalently yields independent components under given
conditions. More details are provided in Hyvärinen et al. (2001).

2.3. Simulation study

The purpose of the simulation study is to uncover the scope of distance measures as defined in (9) for identifying
the structural parameters in Wt . Owing to consistency of QML estimation, we (mostly) discard QML estimation steps
in the simulations, and evaluate model selection outcomes under the assumption that {Ht}

T
t=1 is known to the analyst.

Throughout, we set µt = 0. We investigate model performance by means of trivariate DGPs (N = 3, benchmark
experiments) and, alternatively, set model dimensions to N = 2 and N = 4. Typical reduced form parameters of the
BEKK model in (2) are denoted C (N), A(N) and B(N) to account for model dimensionality. With regard to the loss statistic λ,
we consider mostly vectors collecting fourth order co-moments (i.e. ψ̄). Robustness analyses focus on the informational
content of using third order cross moments (i.e. φ̄) and third and fourth order cross moments jointly ((φ̄

′
, ψ̄

′

)′).
For benchmarking purposes we use trivariate DGPs, such that C (3)

= C, A(3)
= A and B(3)

= B, where

C =

(4.00 0.00 0.00
14.5 2.00 0.00
25.0 −8.50 2.50

)
/1000, A =

(
.14 .05 .05

−.05 .14 .05
−.03 .05 .14

)
, B =

(
.96 −.06 .02
.04 .96 .02
.04 .02 .96

)
.

Moreover, we set for the case of bivariate systems the parameters equal to the upper left block of the benchmark
parameters, i.e. C (2)

= C[1 : 2, 1 : 2], A(3)
= A[1 : 2, 1 : 2] and B(3)

= B[1 : 2, 1 : 2]. For bivariate models we also
evaluate the performance of the suggested identification scheme if applied to model residuals determined subsequent to
QML-estimation of the BEKK model. For the case of four-dimensional models we employ the parameterization

C (4)
=

(
C 0
c21 0.0025

)
, A(4)

=

(
A a12
a21 0.14

)
and B(4)

=

(
B b12
b21 0.96

)
,

where c21 = (10, 4,−5)/1000, a12 = (0.05, 0.05, 0.03)′, a21 = (0.03, 0.05,−0.03), b12 = (0.02, 0.02, 0.02)′ and
b21 = (−0.02,−0.04, 0.02).

To generate (excess) returns et from the structural model, the transmission matrix Wt is determined by means of a
rotation of H1/2

t as Wt = H1/2
t Rδ , where Rδ is of the form in (6) and rotation angles are δ(3) = δ, δ = (δ1, δ2, δ3)′ =

(.10, .25, .40)π . Furthermore we set δ(2) = 0.25π in the bivariate case and δ(4) = (δ′, δ′)′ in case of N = 4. The stochastic
model components are drawn from standardized Student-t innovations ξt with ν = 5, 10, 15, 30 and 100 degrees of
freedom. We also provide results for the unidentified Gaussian model. Sample sizes are T + 100 = 1100, 2100, 4100 and
8100, before discarding the first 100 observations to immunize the analysis from initialization effects. Each experiment
is replicated 10,000 times.

The simulated data {et ,Ht}
T
t=1 are subjected to a structural analysis presuming rival specifications of the decomposition

in (5). On the one hand, a candidate decomposition matrix is chosen in accordance with the true model, W (0)
t = Wt , for

which one would expect a minimal loss statistic λTδ . In addition, seven alternative (and false) covariance decomposition
schemes are considered, namely

W (0)
t = H1/2

t Rδ, true model, clockwise rotation of H1/2
t ,

W (1)
t = H1/2

t , unrotated model, eigenvalue decomposition,

W (q)
t = H1/2

t Rqδ, q = 1.010, 1.025, 1.050 ‘excess’ clockwise rotations,

W
(q)
t = H1/2

t Rqδ, q = (q)−1 ‘insufficient’ clockwise rotations.

Table 1 reports results for benchmark simulation experiments (N = 3, ψ̄). Contrasting loss measures from the true
decomposition against counterparts obtained from the symmetric decomposition is supportive for the true model with
selection frequencies close to unity under various scenarios with either sizeable deviations from the Gaussian model
(ν = 5, T = 1000) or sufficiently rich sample information. For a standardized Student-t distribution with 30 degrees of
freedom, samples as large as T = 8000 are informative to rule out the symmetric model against the true structural model
in 92% of all Monte Carlo replications. In the Gaussian case (i.e. ν → ∞), the outcomes of model selection are purely
andom, with selection frequencies of 50% for both alternatives.

Comparing the loss statistic for the true model with those derived from over- and under-rotations shows that
inimizing the loss statistic yields a local minimum in the neighbourhood of the true structural model. With T = 1000
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able 1
enchmark simulation results (N = 3, ψ̄). The table documents estimated frequencies of particular identification results obtained from 10,000 Monte

Carlo replications. Columns entitled ‘F (W (0))’ show the frequency of a smaller diagnostic λTδ in (9) obtained for the true rotated model W (0) in
omparison with the unrotated model W (1) . Columns entitled with entries for ‘q’ document how often the diagnostic λTδ is smaller than both λTδq
nd λTδ/q. Distinct choices of q indicate varying degrees of over- or under-rotations of the symmetric model. Sample sizes and degrees of freedom
f standardized Student-t distributed shocks are T and ν, respectively, with ν = ∞ indicating the Gaussian case.
ν F (W (0)) q = 1.010 1.025 1.05 W (0) vs. W (1) q = 1.010 1.025 1.05

T = 1000 T = 2000

5 0.998 .103 .256 .480 1.000 .146 .347 .625
10 0.975 .060 .145 .284 0.998 .089 .214 .412
15 0.903 .041 .100 .196 0.976 .059 .148 .291
30 0.721 .025 .059 .109 0.817 .030 .078 .152
100 0.560 .015 .039 .071 0.576 .015 .038 .076
∞ 0.505 .012 .032 .065 0.497 .012 .033 .065

T = 4000 T = 8000

5 1.000 .194 .453 .770 1.000 .260 .597 .888
10 1.000 .122 .293 .549 1.000 .179 .414 .721
15 0.999 .083 .207 .403 1.000 .128 .304 .557
30 0.921 .046 .107 .211 0.982 .064 .157 .308
100 0.612 .019 .045 .086 0.663 .019 .052 .099
∞ 0.504 .013 .033 .067 0.495 .011 .031 .065

Table 2
Further simulation results. Simulation scenarios are indicated with regard to the dimension of the DGP (N) and the co-moments (‘cmom’) employed
for identification (ψ̄ or φ̄ or both). The column labelled ‘QML’ indicates if simulation results have been obtained from known (‘No’) or estimated
(‘Yes’) covariances. For further notes see Table 1.
N QML ν cmom F (W (0)) q = 1.010 1.025 1.05 F (W (0)) q = 1.010 1.025 1.05

T = 1000 T = 2000

3 No 10 (φ̄
′
, ψ̄

′

)′ 0.970 .052 .141 .272 0.998 .085 .205 .391
30 0.711 .020 .054 .108 0.793 .029 .073 .144

3 No 10 φ̄ 0.740 .020 .047 .094 0.758 .022 .048 .096
30 0.570 .014 .031 .057 0.575 .011 .028 .057

2 No 10 ψ̄ 0.951 .029 .072 .145 0.995 .040 .100 .194
30 0.663 .012 .027 .053 0.759 .015 .035 .070

4 No 10 ψ̄ 0.997 .100 .234 .438 1.000 .139 .337 .608
30 0.813 .037 .089 .174 0.902 .048 .117 .230

2 Yes 10 ψ̄ 0.918 .026 .066 .128 0.987 .041 .094 .183
30 0.439 .006 .020 .039 0.524 .010 .025 .051

T = 4000 T = 8000

3 No 10 (φ̄
′
, ψ̄

′

)′ 1.000 .116 .284 .536 1.000 .169 .412 .710
30 0.898 .044 .103 .197 0.973 .062 .156 .297

3 No 10 φ̄ 0.765 .022 .053 .103 0.769 .021 .052 .101
30 0.576 .013 .030 .059 0.578 .011 .027 .057

2 No 10 ψ̄ 1.000 .056 .145 .281 1.000 .086 .208 .395
30 0.867 .022 .055 .103 0.960 .032 .078 .151

4 No 10 ψ̄ 1.000 .202 .471 .788 1.000 .286 .638 .924
30 0.971 .071 .171 .327 0.998 .106 .263 .476

2 Yes 10 ψ̄ 1.000 .056 .141 .271 1.000 .086 .203 .387
30 0.670 .017 .039 .078 0.823 .025 .061 .116

observations and Student-t shocks with 15 degrees of freedom, the true decomposition leads to a loss measure smaller
than those from both bounds of false rotations with q = 1.050 in about 20% of all Monte Carlo experiments. Pointing at
the consistency of the loss minimization, this proportion increases to almost 30%, 40% and 60% in larger samples of sizes
T = 2000, 4000 and T = 8000, respectively.

Table 2 documents results obtained from further simulation experiments. For space considerations we document only
outcomes for DGPs generated from independent standardized Student-t distributed shocks where the degrees of freedom
parameter are either ν = 10 or ν = 30. Complementing benchmark outcomes, the robustness analysis obtains the
following results:

First, for the case of trivariate DGPs (N = 3) the identification outcomes are very similar if model selection is based
jointly on third and fourth order co-moments, i.e. on (φ̄

′
, ψ̄

′

)′. Although the true underlying innovations do not show any
co-skewness, subjecting an extended vector of co-moments to identification involves only a negligible power loss.
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Second, if one focuses model identification exclusively on third order moments, i.e. on φ̄, then model selection suffers
rom weak power in comparison with benchmark outcomes for ψ̄. However, given that the true model innovations do
ot exhibit any co-skewness, it is interesting to see that the identification scheme is not completely uninformative. For
nstance, the true model is preferred over the symmetric covariance decomposition in significantly more than 50% of all
xperiments, and unsurprisingly this effect is stronger for ν = 10 degrees of freedom in comparison with ν = 30. Although
[φ] = 0 holds for all model rotations, the diagnostic in (10) also depends on covariance assessments. These involve even
rder marginal moments of ξt , which are underestimated in falsely rotated models. In this case, the λ̂Tδ statistic does not
iverge but converges to a distribution different from a χ2. As the sample size increases, the success frequencies of the
rue model then converge to the proportion of statistics using this distribution that are larger than the theoretical χ2

istribution.
Third, the dimensionality of the process under scrutiny seems to be an important factor for the performance of the

riterion in (10) for structural model selection. Other things equal, i.e. using ψ̄ for identification and setting ν = 10 or
= 30, the structural model selection is more (less) successful in systems of dimension N = 4 (N = 2) in comparison
ith systems with benchmark dimension of N = 3.
For computational reasons almost all simulation results have been obtained under knowledge of the true covariances

Ht}
T
t=1. A fourth set of robustness results obtains from simulating identification outcomes with estimated BEKK models.

n larger samples (T > 2000) or under marked deviations from the Gaussian model (ν = 10) the performance statistics
ocumented in Table 2 are quite similar if the identification step relies on QML estimates of the BEKK model and hence
n estimated covariances {Ĥt}

T
t=1.

. Portfolio risk analysis

MGARCH models have become a widespread tool for risk analysis and management of investment portfolios. In a non-
aussian framework, alternative structural MGARCH models exhibit distinct higher order characteristics. The importance
f higher order moments for risk measures has been recognized by regulatory authorities. For example, the European
upervisory authorities EBA, EIOPA and ESMA have established regulatory technical standards for packaged retail and
nsurance-based investment products (see ESA (2016)) that include the use of skewness and kurtosis via Cornish–Fisher
xpansions to evaluate market risk measures.
In the following, we first show that the choice of the structural model has non-trivial consequences for the conditional

urtosis of portfolio returns. We then discuss two implications for risk management: First, in the context of approxima-
ions of tail risk measures such as Value-at-Risk and expected shortfall, and second, for measures of variability of squared
ortfolio returns around their conditional expectation.
Henceforth, let at denote an Ft−1-measurable, N-dimensional vector of portfolio weights and define portfolio returns

s τt := a′
tet , where for notational simplicity we set the conditional mean to zero. The conditional portfolio variance

s given by σ 2
t = Var[τt |Ft−1] = a′

tHtat . In the univariate case, the conditional kurtosis of a GARCH process with i.i.d.
nnovations is a constant, given by the kurtosis of the innovations. In the multivariate case however, as we will see in the
ollowing, the conditional kurtosis of portfolio returns is in general no longer constant and, in particular, is not invariant
ith respect to orthogonal rotations of the innovation vector.

heorem 2. Under Assumption 1, the conditional kurtosis of portfolio returns is a non-trivial function of δ and given by

ςt (δ) := E[τ 4t |Ft−1] = vec(ata′

t )
′(Wt ⊗ Wt )Ψ (W ′

t ⊗ W ′

t )vec(ata
′

t ). (12)

here Wt = Wt (θ, δ), and Ψ is defined in (8).

roof. See Appendix.

The conditional kurtosis coefficient is defined as κt (δ) = ςt (δ)/σ 4
t , which can be compared with the corresponding

oefficient retrieved from the symmetric decomposition H1/2
t , i.e. κt (0). We provide a numerical example.

xample 1. Consider the special case N = 2, equally weighted portfolio at = (1/2, 1/2)′, unit conditional variances,
onditional correlation given by ρt , |ρt | < 1, and symmetric marginal distributions of ξ1t and ξ2t , having identical marginal
urtosis coefficient k. Then, straightforward calculations show that κt (δ) = k + (3 − k) cos2(2δ)/2, which is a non-trivial
unction of δ provided that k ̸= 3, while κt (0) = (k + 3)/2. Note that, in this special case, κt (δ) is constant as it does not
epend on ρt . Note also that, if k = 3 as for the case of a normal distribution, then κt (δ) = 3, independent of δ, which
onfirms the impossibility to identify δ based on kurtosis measures in the Gaussian case.

Therefore, identifying structural innovations using the λδ statistic of the previous section will have a non-negligible
mpact on the conditional kurtosis of portfolio returns. As we will show, this affects estimation uncertainty of common
isk measures. Moreover, it could be used for kurtosis diversification of portfolios that are sensitive to higher order risk,
ee e.g. Lassance et al. (2019).
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.1. First order risk

The main measures for evaluating market risk, recommended by the Basel committee of Banking Supervision, see
.g. Chapter 2 of McNeil et al. (2nd edition, 2016), are the Value-at-Risk (VaR) and the expected shortfall (ES). In a
on-Gaussian context VaR and ES may depend on higher order moments such that the choice between a structural or
ymmetric model for the decomposition of Ht is not innocuous for first order risk assessment.
Our approach consists of simulating risk measures for alternative models. At each point in time t , conditional on the

information set Ft−1, we simulate a very large number (i.e. 106) of portfolio returns τt using independent bootstrap draws
rom model implied innovations ξt , and then obtain the α-quantile of their empirical distribution, which will give an
pproximation of the conditional VaR at time t .2 Formally,

VaRαt (δ) = −F−1
αt (δ), (13)

here F·t (δ) is the conditional distribution function of portfolio returns as implied by the structural model parameter δ.
he nominal probability level α is set alternatively to α = .010, .025, .050, .100, .250.
In the same vein, we can simulate the conditional ES, i.e.,

ESαt (δ) = −Eδ [τt | (τt < −VaRαt (δ)) ,Ft−1] , (14)

here the expectation on the right hand side is taken with respect to the simulated distribution of portfolio returns. To
ighlight the role of tail events for the determination of ES, one might also consider the expected excess shortfall, i.e.

EESαt (δ) = ESαt (δ) − VaRαt (δ). (15)

n analysing VaR exceedances, however, we do not only consider their average but also address the extent to which the
tructural MGARCH models are useful in managing their distribution. For this purpose, we extract from the simulated
eturn distributions the interquartile range of VaR exceedances which provides a statistical tool that can be contrasted
gainst empirical patterns of exceedances. Specifically, one would expect that, on average, about 50% of all VaR
xceedances fall within the model implied interquartile range. Formally, the interquartile range is given by the interval
ESαt (δ), ESαt (δ)

]
, where the bounds are implicitly defined by the two equations Pt

[
τt > ESαt (δ)|τt < −VaRαt (δ)

]
= 0.25

nd Pt
[
τt < ESαt (δ)|τt < −VaRαt (δ)

]
= 0.75, and Pt (·) denotes probability conditional on Ft−1.

3.2. Kurtosis risk

While measures of volatility, VaR and ES convey important information for risk management, they are subject
to inherent estimation uncertainty. In particular, the variation of squared returns around the conditional variances
contributes to estimation uncertainty of conditional measures of VaR and ES. These fluctuations are directly related to
the conditional kurtosis of portfolio returns. Accordingly, we refer to such patterns of higher order risk as kurtosis risk.

Let us define the difference between squared portfolio returns and conditional variances as

mt := τ 2t − σ 2
t , (16)

which is a martingale difference sequence that describes surprises to portfolio risk. Such surprises can be expected to be
small (large) if Var[mt |Ft−1] is small (large). A standardized measure for the conditional variance of mt is given by

vt (δ) :=
Var[mt |Ft−1]

σ 4
t

=
E[τ 4t |Ft−1] − σ 4

t

σ 4
t

= κt (δ) − 1, (17)

which is directly linked to the conditional kurtosis κt (δ). Unlike the portfolio variance σ 2
t , the risk statistic in (17) depends

on the specification of the structural model, parameterized by δ. Hence, it is interesting to contrast rival structural
specifications with regard to their scope in quantifying time varying patterns of kurtosis risk. Accordingly, the empirical
counterpart of vt (δ) is given by

m̃2
t :=

m2
t

σ 4
t
, (18)

which is conditionally observable.
Apart from modelling mean profiles of m̃2

t , we evaluate model accuracies in capturing the (tail) event that m̃2
t exceeds

a pre-specified critical quantile of its (simulated) distribution. Formally, we define the conditional ‘kurtosis-at-risk’ (KaR)
as

KaRγ t (δ) = G−1
γ t (δ), (19)

here G·t (δ) is the conditional distribution function of m̃2
t as implied by the structural model parameter δ, and γ is a

ominal probability level.

2 We provide a more detailed description of the resampling scheme in Section 4.1.
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Similar to expected shortfall analysis of first order risk, we also consider the expected violation of the threshold given
hat an event of threshold violation has occurred. Formally, we define the conditional ‘expected kurtosis shortfall’ (EKS)
s

EKSγ t (δ) = Eδ
[
m̃2

t |
(
m̃2

t > KaRγ t (δ)
)
,Ft−1

]
. (20)

Furthermore, we also consider the distribution of risk exceedances, and in particular the interquartile range, analogous
o our analysis of first order risk. For kurtosis risk, the interquartile range is defined as the interval

[
EKSγ t (δ), EKSγ t (δ)

]
,

here the bounds are implicitly determined by the two equations Pt
[
m̃2

t > EKSγ t (δ) | m̃2
t > KaRγ t (δ)

]
= 0.25 and

Pt
[
m̃2

t < EKSγ t (δ) | m̃2
t > KaRγ t (δ)

]
= 0.75.

4. Shock transmission in American stock markets

We illustrate the merits of the structural MGARCH approach by analysing a four dimensional system of the US and Latin
American stock markets. Regarding US stock markets as important issuers of information, profiles of volatility transmission
that are implied by a symmetric covariance decomposition might be critical for such a system. We study weekly real
returns of four stock markets in the US (r1t ), Argentina (r2t ), Brazil (r3t ) and Chile (r4t ) for the period January 1992 to
ovember 2007.3 We assume time invariant conditional return expectations and subject centred real returns to QML
GARCH estimation of a BEKK model. The sample size is T = 829. Estimates of the BEKK parameters (with QML t-ratios

in parentheses) are given as follows4:

Â =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.328
(3.655)

0.028
(0.122)

−0.035
(−0.125)

−0.020
(−0.309)

−0.019
(−0.565)

0.216
(3.721)

0.054
(0.941)

0.058
(3.322)

−0.042
(−1.394)

0.023
(0.375)

0.281
(2.205)

−0.033
(−1.074)

−0.033
(−0.451)

0.082
(0.635)

0.042
(0.306)

0.179
(4.884)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, B̂ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.914
(9.748)

0.012
(0.086)

0.015
(0.061)

−0.002
(−0.050)

−0.019
(−2.005)

0.958
(46.80)

−0.025
(−1.055)

−0.015
(−1.095)

0.033
(1.314)

0.021
(0.742)

0.949
(16.03)

0.019
(1.081)

0.034
(0.502)

−0.034
(−0.766)

−0.060
(−0.596)

0.969
(89.49)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
;

esting the joint significance of the off-diagonal parameters in Â and B̂ obtains a Wald-statistic of 121.75 with a respective
-value which is close to zero according to an asymptotic χ2(24)-distribution. Subsequent to QML estimation of the
EKK model we use the estimated covariance paths to extract model innovations. Minimization of squared deviations of
hird and fourth order cross moments of rotated shocks from their theoretical counterparts obtains estimated structural
GARCH matrices Wt = H1/2

t Rδ̂ , where

Rδ̂ =

⎛⎜⎝0.863 −0.134 −0.324 −0.364
0.348 0.805 0.466 0.113
0.142 −0.508 0.823 −0.210
0.338 −0.274 0.002 0.900

⎞⎟⎠ .
he independence diagnostics of the symmetric decomposition (δ = 0, Rδ = IN ) and the rotated model are λδ=0 = 126.6
nd λδ̂ = 39.73, respectively. While the former is clearly significant at any conventional level, the latter implies an
ssociated p-value of 0.76 from a supposed χ2-distribution with 47 degrees of freedom.
In the following, we illustrate the plausibility of the identified model. Time varying elements of estimated covariance

ecompositions are displayed in Fig. 1. Confirming a-priori intuition, the estimated structural model {Ŵt} implies that
ll Latin American markets are more affected by innovations in the US markets than under model symmetry ({Ĥ1/2

t }).
ikewise, the US market is less affected by Latin American markets under the estimated structural model. In the time
imension, volatility spillovers operating from the US to the Latin American markets are of particular strength during the
eriod 10/03/1997 to 09/03/1999, which roughly corresponds to the great economic recession in Argentina (1998–2002),
nd to the Brazilian financial/currency crisis of 1998 and 1999 which culminated in the 35% devaluation of the Real (Samba
ffect). Reflecting the traditionally close trade relationships between Argentina and Brazil, the Argentinian stock markets
eceived substantial volatility spillovers from the Brazilian markets in 1998 and 1999. While volatility transmission from
he Brazilian markets to Chile is of similar shape during the crisis in 1998 and 1999, the structural model indicates that
his is of less importance (i.e., of smaller magnitude) in comparison with transmission to the Argentinian stock market.

3 The data are taken from Diebold and Yilmaz (2009), https://estima.com/procedures/dieboldyilmaz_ej2009.zip. Weekly returns are changes in log
prices, Friday-to-Friday (or Thursday when Friday is not available) subsequently converted to real quotes by means of consumer price indices from
the IMF’s International Financial Statistics.
4 Estimates of the intercept matrix C are less important and available upon request.

https://estima.com/procedures/dieboldyilmaz_ej2009.zip
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Fig. 1. Elements of alternative transmission matrices H1/2
t (symmetric model, solid lines) and Wt (dashed lines). The ordering of markets (rows) is

US, Argentina, Brazil, Chile. Columns (rows) show volatility transmission of a given shock (reception from distinct markets).

4.1. Empirical risk measurement

To further highlight the merits of the identified model, we now discuss whether the distinction of alternative MGARCH
model structures is useful for an active management of portfolio risks. For both types of risk analysis described in Section 3
we choose five alternative nominal coverage levels ranging from α = 0.01 to 0.25 for first order risk modelling, and
γ = 0.75 to 0.99 for kurtosis risk modelling.

We consider the following six stylized portfolios: Equally weighted portfolio, P2: minimum variance portfolio, i.e. at =

H−1
t ι/(ι′H−1

t ι) where ι is a four dimensional vector of ones, P3: a1t = 0.5, ajt = 0.5/3, j ̸= 1; P4: a2t = 0.5, ajt = 0.5/3, j ̸=

2; P5: a3t = 0.5, ajt = 0.5/3, j ̸= 3; and P6: a4t = 0.5, ajt = 0.5/3, j ̸= 4.5 Throughout, the simulation of portfolio
returns and their higher order properties is conditional on the processes of estimated covariances Ht and their alternative
decompositions {Wt} and {H1/2

t }. Loss measures are obtained from averaging over samples of empirical portfolio returns
{τt}

T
t=1, whereas the conditional return features are determined at each time instance t over the number of generated

bootstrap samples.
All simulations rely on B = 106 bootstrap samples. Bootstrap samples {ξ ∗

t }
T
t=1 are drawn from estimated innovations

{ξ̂t}
T
t=1 originating alternatively from the symmetric (ξ̂t = Ĥ−1/2

t et ) or the asymmetric model (ξ̂t = Ŵ−1
t et ). Assuming cross

equation independence, we compose bootstrap vectors ξ ∗
t by drawing its elements ξ ∗

it with replacement from the marginal
distributions, i.e. from {ξ̂it}

T
t=1. After their generation, bootstrap vectors {ξ ∗

t }
T
t=1 are used to obtain samples of bootstrap

returns based alternatively on the symmetric (e∗
t = H1/2

t ξ ∗
t ) or the asymmetric model (e∗

t = Wtξ
∗
t ). Let b, b = 1, 2, . . . , B,

be an index to distinguish single bootstrap draws. Then, bootstrap samples of portfolio returns read explicitly as

{{τ ∗

t,b = a′

te
∗

t,b}
T
t=1}

B
b=1, B = 106. (21)

In the following we omit the replication index b for notational convenience. At each time instance, the samples in (21)
are used to determine the risk statistics that have been introduced in Section 3. The results are discussed in the following.

4.2. First order risk analysis

To rank alternative model specifications we consider the following loss functions, where I{} denotes an indicator
function:

5 In an alternative set of experiments we draw randomly 1000 vectors of positive portfolio weights. Results from these exercises are fully in line
ith average outcomes for the stylized portfolios and available from the authors upon request.
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1. L1 =
1
T

∑T
t=1 I

{
τt < −VaR•

αt

}
(Empirical coverage of conditional VaR estimates)

2. L2 =
1
T

∑T
t=1

(
|τt | − VaR•

αt

)
I
{
τt < −VaR•

αt

}
(Mean excess shortfall)

3. L3 =
1
T

∑T
t=1 I

{
τt ∈

[
ES•

αt , ES
•

αt

]}
(Empirical coverage of interquartile ranges)

While the first loss function is common for VaR assessments, L2 provides an empirical counterpart of EES as defined
in (15). Empirical outcomes of the interquartile range coverage L3 are the more favourable the closer they are to a
nominal coverage of 50%. Before looking at the distinct model performances in risk modelling, it is worth to highlight
that the common loss measures L1 and L2 largely depend on the conditional VaR estimate. This estimate in turn depends
on the conditional portfolio variance and an unconditional quantile of the distribution of standardized returns. While
the former quantity (σ 2

t ) does not depend on the structural model representation at all, one might expect only small
differences of alternative structural representation with regard to the latter quantity. Hence, using H1/2

t orWt to determine
the conditional VaR will likely obtain similar results and, accordingly, similar outcomes for L1 and L2 losses. Given the
dependence of the tail properties of portfolio returns on the transmission et = Wtξt , however, we expect the choice of
the structural model as particularly beneficial for understanding the distributional features of returns in the tails of the
distribution. In particular, we expect the choice of the structural model to be essential for L3 loss which summarizes risk
model performance conditional on tail events.

Fig. 2 displays empirical equal weight portfolio returns (first line) joint with VaR estimates at levels α = 0.025 (second
line) and α = 0.01 (third line). Corresponding estimates of expected excess shortfall (EES) are shown in the fourth
(α = 0.025) and fifth panel (α = 0.01) of Fig. 2. For both nominal levels α = 0.025 and α = 0.01 the VaRs obtained
from the asymmetric model are slightly more conservative, i.e. larger in absolute value. As it becomes apparent from the
comparison of model implied EES statistics, the symmetric and the asymmetric MGARCH specification differ in particular
with respect to the assignment of probabilities to tail events of (very) small portfolio returns. The EES statistics issued
from the asymmetric model are throughout more conservative, i.e., larger in absolute value.

Detailed statistics for modelling portfolio risks are documented in the top panels of Table 3. Confirming a-priori
expectations, in terms of the loss statistics L1 (coverage) and L2 (mean excess shortfall) and taking a joint perspective
over all considered nominal coverage levels, the performance of both alternative MGARCH variants is similar. For 4 out
of 5 nominal coverage levels, however, the asymmetric model leads to more favourable outcomes for L3. For instance, in
case of the nominal level of α = 0.01 (α = 0.025) the empirical coverage of interquartile ranges for shortfall returns (L3)
are 0.125 and 0.40 (0.682 and 0.476) for the symmetric and asymmetric model, respectively.

Summarizing the results for six stylized portfolios (see also Table 3), we find that the asymmetric model overall
improves accuracy of risk assessments. The coverage of interquartile ranges of shortfall returns (L3) provides strongest
support for the asymmetric model. For instance, with nominal level of α = 0.01 and over six portfolios the total counts
of shortfall returns are 49 and 34 for the symmetric and the asymmetric model, respectively. Out of these, 13 and 19
shortfall returns are covered by the respective interquartile ranges obtaining empirical coverage frequencies of 26.7% and
55.8%. While the latter cannot be distinguished statistically from the nominal 50% coverage, the former violates this level
with 5% significance. On average and conditional on the six stylized portfolios, the empirical coverage of interquartile
ranges determined by means of the asymmetric model is closer to the nominal 50% coverage for each choice of α except
for α = 0.05.

4.3. Empirical analysis of kurtosis risk

To rank alternative model specifications in kurtosis risk assessment we consider the following two loss functions:

1. M1 =
1
T

∑T
t=1 I

{
m̃2

t > KaRγ t
}
(Empirical frequency of risk excess variations)

2. M2 =
1
T

∑T
t=1 I

{
m̃2

t ∈
[
EKSγ t , EKSγ t

]}
(Coverage of interquartile ranges)

As it turns out, the empirical profiles of m̃2
t exhibit a couple of strong outliers which coincide with sizeable new

information entering the conditional variance processes. For instance, the strong dispersion of the empirical distribution
of m̃2

t is reflected in the fact that, on average, 8.08%, 6.03% and 3.25% of all observations characterizing equal weight
portfolios are above thresholds of 3, 5 and 10, respectively. Throughout, model implied kurtosis (minus 1) statistics are
markedly larger for the asymmetric model (vt (δ̂) ≈ 3.2 on average (with standard deviation of 0.07)) in comparison with
statistics obtained from the symmetric model (vt (0) ≈ 2.5 (0.06)). Hence, seeing large and frequent outlying observations
for m̃2

t , we may expect from the kurtosis differential that the asymmetric model has some lead in managing tail events.
In its lower panels Table 3 documents the performance of alternative approaches to quantify kurtosis risk of equal

weight portfolio returns. Except for the most conservative nominal level, the empirical frequencies of excessive statistics
m̃2

t (M1) are throughout closer to the nominal counterparts when conditioning the analysis on the asymmetric model.
Using the simulated interquartile ranges for conditional interval ‘prediction’ (M2), we find that the quantities determined
by means of the asymmetric model are more reliable for several nominal levels γ . In particular, for the most conservative
nominal level (γ = 0.99) both model variants yield five violations of the respective quantile. None of these violations
s covered by the interquartile range determined under model symmetry, while the asymmetric specification obtains
ntervals capturing three out of five critical events.
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oss statistics for risk modelling. Alternative stylized portfolios include the equal weight (P1) and minimum variance portfolio (P2) and portfolios
assigning weights of ai = 0.5, aj = 0.5/3, j ̸= i to single markets i = 1, 2, 3, 4 (P3 to P6). Columns entitled ‘H1/2

t ’ and ‘Wt ’ refer to the symmetric
nd asymmetric structural MGARCH model, respectively. Rows labelled ‘av.’ document average outcomes for P1 to P6. Alternative nominal coverage
evels are indicated with α (first order risk) and γ (kurtosis risk).
α 1.0% 2.5% 5.0% 10.0% 25.0%

H1/2
t Wt H1/2

t Wt H1/2
t Wt H1/2

t Wt H1/2
t Wt

Empirical coverage (L1)

P1 0.96 0.60 2.65 2.53 4.95 4.83 9.41 9.89 21.7 23.5
P2 1.09 0.60 2.77 2.41 3.98 3.86 8.08 7.48 23.6 24.5
P3 1.21 0.96 2.65 2.29 5.07 4.83 9.89 9.89 22.4 23.4
P4 0.84 0.48 2.77 2.53 5.43 5.43 9.53 9.65 21.5 22.2
P5 1.09 0.60 2.77 2.65 4.34 4.22 9.17 9.41 23.0 23.8
P6 1.21 0.72 2.41 2.17 4.70 4.46 9.05 9.53 21.5 22.7

av. 1.067 0.660 2.670 2.430 4.745 4.605 9.188 9.308 22.28 23.35

Mean excess shortfall (L2)

P1 1.84 2.28 1.57 1.44 1.63 1.64 1.69 1.67 2.01 1.96
P2 0.94 1.33 0.85 0.85 1.10 1.07 1.01 1.05 1.02 1.03
P3 1.45 1.39 1.42 1.48 1.37 1.39 1.36 1.37 1.65 1.65
P4 1.95 2.67 1.44 1.42 1.69 1.70 2.06 2.09 2.41 2.42
P5 2.37 3.51 2.14 2.03 2.49 2.53 2.28 2.30 2.47 2.49
P6 1.24 1.35 1.41 1.35 1.38 1.39 1.41 1.37 1.64 1.63

IQR coverage (L3)

P1 .125 .400 .682 .476 .488 .550 .436 .451 .539 .523
P2 .444 .600 .522 .600 .545 .531 .448 .484 .520 .522
P3 .300 .500 .500 .526 .429 .500 .415 .451 .511 .500
P4 .000 .750 .565 .333 .511 .578 .456 .475 .449 .446
P5 .333 .600 .652 .455 .528 .514 .500 .513 .503 .518
P6 .400 .500 .500 .611 .513 .568 .480 .468 .506 .511

av. .267 .558 .570 .500 .502 .540 .456 .474 .505 .503

Empirical coverage (M1)

P1 25.9 26.5 8.44 8.56 3.74 4.10 1.81 1.45 .603 .603
P2 22.4 24.7 7.24 8.69 3.86 4.34 1.81 1.67 .603 .724
P3 22.7 23.2 8.56 7.24 3.74 3.62 1.81 1.93 .965 .844
P4 26.2 26.4 8.69 8.69 4.70 4.46 1.93 1.57 .603 .603
P5 22.8 25.0 7.36 9.41 3.98 4.58 2.05 1.93 .844 .724
P6 23.3 24.0 8.93 7.84 4.34 4.10 2.05 2.05 .844 .603

av. 23.9 25.0 8.20 8.41 4.06 4.20 1.91 1.77 0.74 0.68

IQR coverage (M2)

P1 .447 .473 .529 .521 .613 .559 .333 .333 .000 .600
P2 .446 .551 .450 .514 .500 .528 .667 .571 .600 .500
P3 .468 .458 .521 .483 .484 .567 .400 .500 .125 .286
P4 .456 .475 .556 .569 .513 .541 .313 .462 .600 .600
P5 .481 .536 .475 .538 .606 .526 .588 .500 .429 .333
P6 .466 .442 .514 .477 .472 .559 .353 .529 .429 .600

av. .474 .476 .505 .524 .541 .535 .471 .458 .333 .486

Summary loss statistics for all stylized portfolios are also displayed in the lower panel of Table 3. Empirical frequencies
f kurtosis risks in excess of the specified thresholds are closer to the nominal counterparts for the asymmetric models.
oreover, the coverage of the interquartile range of simulated excessive risks is generally closer to the nominal 50%
overage for the asymmetric specification. While extreme events characterized by γ = 0.99 are rare for a given portfolio,
ggregating the number of respective threshold violations over all six portfolios obtains that empirical statistics m̃2

t exceed
he thresholds implied by the asymmetric and symmetric model in 35 and 36 cases, respectively. From these instances
f quite strong surprises to risk (in total) 48.6% and 33.3% are covered by the model specific interquartile ranges. While
he former statistic is in line with the nominal coverage, the latter differs from its nominal reference with 5% significance.
imilar to outcomes for the empirical modelling of first order risk, summarizing the alternative model performance for
000 portfolios with random compositions yields largely similar conclusions as the set of stylized portfolios.

. Conclusions

We provide a newmethodology to identify structural MGARCHmodels, which is shown to be consistent if the structural
nalysis follows consistent QML estimation and innovations are not normally distributed. Simulation based evidence
onfirms our theoretical results and evaluates the sensitivity to deviations from the unidentified Gaussian model.
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Fig. 2. First order risk modelling. First row: Equal weight portfolio returns. Second and third row: Conditional VaR estimates with 2.5% and 1%
nominal coverage. Fourth and fifth row: Excess ES statistics for nominal coverage levels 2.5% and 1%, respectively. Time varying estimates for the
symmetric (asymmetric) model are shown in solid (dashed) curves. To facilitate the comparison with empirical returns VaR and ES estimates are
multiplied with minus unity.

Our empirical analysis provides structural insights into volatility transmission and reception characterizing a four
dimensional system of US and Latin American stock markets (Argentina, Brazil, Chile). The devised structural model
obtains volatility transmission patterns which are better justified in economic terms in comparison with corresponding
profiles retrieved from a symmetric ad-hoc covariance decomposition. Moreover, the identified structural model turns out
to be preferable in terms of an active management of first order (conditional VaR, expected shortfall) and higher order
(conditional kurtosis) risk patterns inherent in portfolio returns.

There are risks we have not addressed in this paper, for example the risks of dynamic hedging strategies using
optimal hedge ratios (see, e.g., Chang et al., 2017). The optimal hedge ratio only depends on the conditional second order
moment structure and is, therefore, invariant with respect to orthogonal rotations. However, in the non-Gaussian case,
the distribution of the hedging error is not invariant with respect to orthogonal rotations, and higher order risk measures
would depend on the particular structural model. This is a promising line for future research.
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ppendix. Proofs

roof of Theorem 1. The proof proceeds in three steps. First, keeping the rotation angles δ0 fixed, we derive consistency of
the estimates Ŝt = (ψ̂

′

t , φ̂
′

t )
′. Second, we show the asymptotic properties of λTδ0 and λ̂Tδ0 . Third, we establish consistency of δ̂.

Consistency of the QML estimator for θ , and application of a continuous mapping theorem imply that Wt (θ̂ , δ0) −

Wt (θ, δ0)
p

→ 0. Thus,

ξ̂t − ξt =

(
Wt (θ̂ , δ0)−1

− Wt (θ, δ0)−1
)
et

p
→ 0 and ξ̂ 2t − ξ 2t

p
→ 0. (22)

In turn, this implies ψ̂t − ψt
p

→ 0 and φ̂t − φt
p

→ 0. By a weak law of large numbers, φ̄
p

→ E(φ) and ψ̄
p

→ E(ψ). For
example, 1

T

∑T
t=1 ξ

2
tiξ

2
tj

p
→ E(ξ 2i ξ

2
j ) = 1.

Assumption 2 implies that the structural model determination by means of the statistic in (9) also applies asymptot-
ically to estimated vectors of orthogonalized shocks ξ̂t , and hence ¯̂

φ
p

→ E(φ) and ¯̂
ψ

p
→ E(ψ). While we have derived

convergence under the assumption of δ = δ0, the results hold for any rotation angle δ ∈ [0, 2π ]. Consequently, for the
statistic in (9) it follows that for any rotation angle δ, |λTδ − λδ|

p
→ 0. The limit λδ measures the distance between the

xpected third and fourth moments under rotation angle δ and δ0.
Under independence, i.e. ST = Sδ0T ,

√
T (S̄T − E[St ])

d
→ N (0,Σ) by the Lindeberg–Levy central limit theorem.

Consequently,

T (S̄T − E[St ])′Σ−1(S̄T − E[St ])
d

→ χ2(q). (23)

By the consistency of Ŝ and Slutsky’s lemma, T (̂ST − E[St ])′Σ̂−1 (̂ST − E[St ])
d

→ χ2(q), which shows the first part of the
heorem.

We next show the consistency of δ̂. The decomposition Ht = WtW ′
t is unique for independent non-Gaussian

omponents ξk,t (Comon, 1994; Lancaster, 1954). Applying a result of Miettinen et al. (2015), the minimum of λδ0 is unique
p to permutation, sign-changes, and scaling. Thus, for independent ξt the criterion λδ is minimal, i.e. the minimum of λδ
s obtained at rotation angle δ0. We have λδ̂ ≥ λδ0 and λTδ0 ≥ λT

δ̂
. Therefore, λTδ0 − λδ0 ≥ λT

δ̂
− λδ0 ≥ λT

δ̂
− λδ̂ . This implies

|λT
δ̂

− λδ0 | ≤ max(|λTδ0 − λδ0 |, |λ
T
δ̂

− λδ̂|)

≤ supδ|λ
T
δ − λδ|

p
→ 0.

y continuity it follows that Rδ̂
p

→ Rδ0 and δ̂
p

→ δ0. □

roof of Theorem 2. Using result 11, p.98 of Lütkepohl (1996), the conditional fourth order moment of portfolio returns
s given by

E[τ 4t |Ft−1] = E[tr[ata′

t (ete
′

t )ata
′

t (ete
′

t )]|Ft−1]

= E[vec(ata′

t )
′(Wtξtξ

′

tW
′

t ⊗ Wtξtξ
′

tW
′

t )vec(ata
′

t )], (24)

here et has been replaced by its structural representation which is known conditional on Ft−1. Noticing that the
ronecker product in (24) involves identical matrices and using the results 7, 7.2(6) and 8(a) (Lütkepohl, 1996, p.97),
ne obtains

E[τ 4t |Ft−1] = E[vec(ata′

t )
′(Wt ⊗ Wt )vec(ξtξ ′

t )vec(ξtξ
′

t )
′(W ′

t ⊗ W ′

t )vec(ata
′

t )]
= vec(ata′

t )
′(Wt ⊗ Wt )E[vec(ξtξ ′

t )vec(ξtξ
′

t )
′(W ′

t ⊗ W ′

t )vec(ata
′

t )]

= vec(ata′

t )
′(Wt ⊗ Wt )Ψ (W ′

t ⊗ W ′

t )vec(ata
′

t ) =: ςt . (25)

where Ψ is defined in (8). This proves the stated result. □
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