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A B S T R A C T   

Background: Extensive epidemiological studies have established the association between exposure to early-life 
adversity and health status and diseases in adults. Epigenetic regulation is considered as a key mediator for 
this phenomenon but analysis on humans is sparse. The Great Chinese Famine lasting from 1958 to 1961 is a 
natural string of disasters offering a precious opportunity for elucidating the underlying epigenetic mechanism of 
the long-term effect of early adversity. 
Methods: Using a high-throughput array platform for DNA methylome profiling, we conducted a case-control 
epigenome-wide association study on early-life exposure to Chinese famine in 79 adults born during 
1959–1961 and compared to 105 unexposed subjects born 1963–1964. 
Results: The single CpG site analysis of whole epigenome revealed a predominant pattern of decreased DNA 
methylation levels associated with fetal exposure to famine. Four CpG sites were detected with p < 1e-06 (linked 
to EHMT1, CNR1, UBXN7 and ESM1 genes), 16 CpGs detected with 1e-06 < p < 1e-05 and 157 CpGs with 1e-05 
< p < 1e-04, with a predominant pattern of hypomethylation. Functional annotation to genes and their enriched 
biological pathways mainly involved neurodevelopment, neuropsychological disorders and metabolism. Multiple 
sites analysis detected two top-rank differentially methylated regions harboring RNF39 on chromosome 6 and 
PTPRN2 on chromosome 7, both showing epigenetic association with stress-related conditions. 
Conclusion: Early-life exposure to famine could mediate DNA methylation regulations that persist into adulthood 
with broad impacts in the activities of genes and biological pathways. Results from this study provide new clues 
to the epigenetic embedding of early-life adversity and its impacts on adult health.   

1. Introduction 

Susceptibility to certain common diseases may have been embeded 
in the genome through epigenetic reprogramming by early-life adversity 
[14,16,41]. Poor fetal and early postnatal nutrition during critical 
growth phases may alter the structural and physiologic functional 
development of vital organs thus “program” the susceptibility to dis-
eases in adulthood. Animal studies have provided strong evidence that 
poor fetal nutrition leads to low birth weight in offspring and increased 

blood pressure in adulthood [4,25] and altered glucose tolerance [26]. 
In humans, however, direct experimental evidence on early-life adver-
sity and adult health and diseases is not available due to ethical and 
practical issues. An opportunity for conducting human studies is to 
assess the impact of a natural disaster, when fetus and infant suffered 
from the adverse effects of food shortage and undernutrition [42,44]. 
Famine provides quasi-experimental conditions to examine the effect of 
early-life adversity on epigenetic “programing” and health conse-
quences in humans. One example is studies on the health effects of early- 
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life exposure to the Dutch Famine in World War II from November 1944 
to April 1945 [10,43,45,55,64]. The Dutch famine lasted about 6 
months with relatively short exposure by victims. However, the Dutch 
famine occurred in the context of an otherwise well-nourished popula-
tion that may have been somewhat buffered. The Great Chinese Famine 
between the spring of 1959 and the end of 1961 was the largest in 
human history spanning approximately 3 years [50]. All provinces in 
China were affected with more devastating conditions in the rural areas. 
In contrast to the relatively brief Dutch famine, the exceptionally long 
Chinese famine provides a unique opportunity to examine the “pro-
gramming” effects of poor nutrition during fetal development and in-
fancy in modifying the risk of adult-onset diseases. With increasing 
available data on the cohorts affected, there has been an emerging body 
of epidemiological studies on the long-term health consequences of 
early-life exposure to the Great Chinese Famine covering overweight 
[67], metabolic syndrome [30], type II diabetes [31], hypertension [65], 
schizophrenia [53,54,70] and mortality [7,38,52]. Overall, the studies 
suggest that exposure to the Great Chinese Famine during pregnancy 
and/or infancy increased the risk of common diseases in adulthood. 
Unfortunately only few studies have investigated the molecular basis of 
the “programing” of health effects in Chinese famine [17,49]. 

Different from traditional epidemiologic approaches that seek 
observational evidence by associating environmental exposure with 
disease outcome, epigenetic epidemiology searches for molecular me-
diators between environmental factors (especially early-life events) and 
functional regulation of genes and diseases with epigenetics serving as 
the link between nature (genome) and nurture (environment) [59,60]. 
The unique “natural experiment” of Great Chinese Famine [50] is ideal 
for conducting unmatched epigenetic studies on the molecular basis for 
the reported association between early-life adversity and adult-age 
health advantaged by the large population affected and the long expo-
sure time (about 3 years). By using a microarray technology platform for 
high throughput genomic DNA methylation analysis, we performed an 
epigenome-wide association study (EWAS) to identify and characterize 
the epigenetic signatures of prenatal exposure to the Chinese famine. 
This paper reports findings from the study to provide potential epige-
netic insights for the reported epidemiological observations concerning 
early-life adversity and adult-age health and diseases. 

2. Methods 

2.1. Study samples 

Participants of the study were randomly recruited from a large 
project on diabetes prevention jointly at Qingdao Center for Disease 
Control and Prevention and Qingdao University Medical College, China. 
The population-based cross-sectional surveys on diabetes prevention 
were conducted in 2001–2002 and 2006 in Qingdao, China [40]. We 
first randomly recruited 186 subjects born during famine (born from 
Jan. 1, 1959 to Dec. 31, 1961) as cases and then recruited 401 subjects 
born after famine (born from Jan. 1, 1963 to Dec. 31, 1964) as controls, 
with date of birth based on civil registration (Supplementary Fig. S1). 
The controls were matched with cases by village, residential, and eco-
nomic factors. Two-hundred seventy-eight participants with a history of 
hypertension, diabetes, chronic obstructive pulmonary disease, cancer, 
stroke, severe mental disorders, tuberculosis, hepatitis, other infectious 
diseases, and occupational diseases were excluded. Fifteen participants 
having myocardial infarction, stroke, chronic obstructive pulmonary 
disease, and cancer during the survey were further dropped. Based on 
the clinical indicators from examination, 110 subjects with diabetes or 
hypertension were also excluded. The remaining samples were inter-
viewed in 2017 when blood samples were taken for blood testing and 
stored under − 80 ◦C for DNA methylation analysis. In total, 79 partic-
ipants who were born from January 3, 1959 to December 21, 1961 
during the famine and 105 participants who were born after the famine 
(at least one year later than the exposure group) from January 18, 1963 

to May 29, 1964 were collected for the study. In addition to exposure to 
famine, multiple anthropometric including age, sex, weight, height, 
BMI, marriage, education, and health variables including blood pres-
sure, blood glucose, triglycerides, total cholesterol, high-density lipo-
protein cholesterol (HDL-C) and low-density lipoprotein cholesterol 
(LDL-C) were collected. This study was approved by the Ethics Com-
mittee of Qingdao CDC with approval number WDF-07-308. Written 
informed consent was obtained from each participant. The study was 
conducted in accordance with the principles of the Helsinki Declaration. 

2.2. Quantification of DNA methylation 

Genomic DNA (0.2–1.0 μg) was bisulfite converted using an EZ DNA 
Methylation-Direct Kit (Zymo Research). DNA samples were bisulfite 
converted by incubation with the CT conversion reagent for 8 min at 
98 ◦C, 3.5 h at 64 ◦C, followed by 18 h at 4 ◦C in a thermocycler. The 
treated DNA was added to a Zymo-Spin IC Column, desulfonated using 
M-desulphonation buffer, and then eluted from the column in 12 μl of M- 
elution buffer. 

Methylation profiling of the bisulfite-treated DNA was performed 
using Illumina Infinium MethylationEPIC BeadChip (Illumina) accord-
ing to standard protocol. In brief, 4 μl of bisulfite-treated DNA was de-
natured, neutralized and amplified with an overnight whole-genome 
amplification reaction. The amplified DNA was then enzymatically 
fragmented, precipitated and re-suspended in hybridization buffer 
before being dispensed onto the MethylationEPIC BeadChips for hy-
bridization. After hybridization, the BeadChips were processed through 
a primer-extension protocol and subsequently stained. Finally, the 
BeadChips were coated and imaged using Illumina's HiScan System. 
DNA methylation analysis was performed by BioMiao Biological Tech-
nology (Beijing) Co., Ltd., 100044, Beijing, China. 

2.3. Data preprocessing 

The raw methylation data cover 866,091 CpG sites across the 
genome of each individual. The R package minfi [1] was used for data 
preprocessing including quality control (QC) and normalization, with 
the pipeline for raw data processing illustrated in Supplementary 
Fig. S2. For each CpG site of a sample, a detection p-value was first 
calculated as 1 − p-value computed from the background model char-
acterizing the chance that the signal was distinguishable from negative 
controls. We filtered out 2386 CpGs with detection p-value >0.01 in 
more than 5% of the overall samples (i.e. 9 samples). After QC, a total of 
863,705 CpG sites remained. We further removed all CpGs on the sex 
chromosomes and CpGs physically overlapping with SNPs leaving 
695,536 CpGs. QC at sample level was done by plotting the log median 
intensity in the methylated (M) against that of the unmethylated (U) 
channels using getQC and plotQC functions in minfi, with no bad sample 
found using a default cut-off. Data normalization was performed using 
subset-quantile within array normalization (SWAN) [33] implemented 
in R package minfi. At each CpG site, DNA methylation level was sum-
marized by calculating a methylation “beta” value defined by the Illu-
mina's formula as β = M/(M + U + 100). Before statistical testing, we 
filtered out CpGs of very low methylation variation by calculating 
standard deviations (SD) based on methylation beta values [66] and 
dropping CpGs with SD < 0.02 with 487,229 CpGs remaining for sub-
sequent analysis. Before statistical analysis, the β-values were converted 
to methylation M-values for better statistical properties by logit trans-
formation with M = log2(β/(1- β)) [11]. 

2.4. Estimating cell-type composition 

Since the target tissue is whole blood comprising multiple cell types, 
cellular heterogeneity among samples can be an important confounding 
factor in epigenetic association analysis due to cell specificity of DNA 
methylation. To control for cell-type composition effect, the proportions 
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of major leukocytes were estimated using the Houseman's method [21] 
implemented in the R package minfi. Based on the DNA methylation 
data, the method estimated blood cell composition in each individual for 
6 blood cell types: CD8T, CD4T, natural killer cell, B cell, monocyte, and 
granulocyte. The estimated cell type proportions were included in 
downstream statistical analysis to adjust for cell composition effects. 

2.5. Handling age-affected methylation sites 

In a systematic literature review on epidemiological studies of the 
Chinese famine, Li and Lumey [29] demonstrated a common bias in 
health-related risk estimates for famine exposure using post-famine born 
controls. The mean age difference of 4 years between the exposed and 
unexposed groups could also affect DNA methylation levels of age- 
related methylation sites. To handle this problem, we drop the age- 
affected methylation sites by.  

(1) extracting all 177 samples with ages from 51 to 60 years (about 
the same sample size and same age range of the studied samples 
52–59 years) from a large in-house cohort with DNA methylation 
data measured by the Illumina EPIC (850 K) methylation array; 

(2) performing an epigenome-wide association analysis to find sig-
nificant age-dependent methylation sites (after correcting for 
multiple testing);  

(3) removing the significant age-affected sites from the famine study 
and report only results without the age-affected sites. 

To detect age-affected CpGs, we apply an assumption-free general-
ized correlation coefficient to test the correlation between age and 
methylation [37]. The method is able to capture all patterns of age- 
dependent DNA methylation unlimited to linear correlation. A total of 
18,023 CpGs were found to associate with age after correcting for 
multiple testing using FDR < 0.05. These CpGs were then removed 
leaving a total of 469,206 CpGs for subsequent statistical analysis. 

2.6. Statistical analysis 

For each CpG site, a linear regression model was fitted regressing 
DNA methylation M-value on famine exposure adjusting for age, sex and 
cell proportions. Correction for multiple testing on the 469, 206 CpGs 
was done by calculating the false discovery rate (FDR) [3] and define 
FDR < 0.05 as genome-wide significant. For CpGs with FDR ≥ 0.05, we 
define p < 1e-06 for suggestive significance and 1e-06 ≤ p < 1e-05 for 
weaker-than-suggestive significance. In addition to single site testing, 
we also performed multiple site analysis by introducing the bum-
phunting approach [22] implemented in R package minfi. The bum-
phunting approach is a region-based analysis that detects and tests 
differentially methylated regions (DMRs) enriched by multiple CpGs 
exhibiting same direction of effects. The method starts with regressing 
the DNA methylation M-value at each CpG site on exposure variables. It 
assumes that at the population level, the locus-specific slope estimates of 
the exposure variable are smooth along the strand of a chromosome and 
applies a smoothing technique to smooth estimated slope coefficients for 
CpGs within a pre-defined region. We then calculated the 99th percen-
tile of the smoothed coefficients across all regions to obtain upper and 
lower thresholds. The thresholds were used to define hyper- or hypo- 
methylated DMRs with smoothed peaks above or below the thresh-
olds. For each identified DMR, the method took the sum of the absolute 
values of all the smoothed coefficients within that region. This sum 
statistic was then used to rank all DMRs (high to low). Statistical sig-
nificance of each DMR was determined by assessing random DMRs from 
each of 1000 permutations. Adjusting for multiple testing was done by 
computing the family-wise error rate (FWER) for each DMR area as the 
proportion of maximum area values per permutation larger than the 
observed area. A significant DMR was defined as FWER<0.1. Empirical 
uncorrected p-value for a single DMR was computed as the proportion of 

all random DMRs from 1000 permutations that are larger than the area 
of the observed DMR. The R packages chromoMap was used for plotting 
the differentially methylated CpGs and Gviz for plotting the DMRs [15] 
along the chromosomes. 

2.7. EWAS power analysis 

We have recently published a computer simulation study on power of 
EWAS using different study designs [32]. According to the study, even 
for the lowest simulated effect size of 10% methylation variance 
explained by the environmental exposure, a sample size of about 80 
exposed (total sample with equal number of unexposed 2 × 80 = 160, 
about the same sample size as our famine study) would have a statistical 
power of 80%. Another power study for EWAS [62] estimated that a 
sample size of 50 cases (plus equal number of controls 2 × 50 = 100) 
would have a statistical power of 80% in capturing a percentage of 
methylation difference of 6%. In sum, the power studies on EWAS 
estimated sufficient power for detecting even low effect size of prenatal 
famine exposure. 

2.8. Functional annotations 

The identified CpGs were linked to nearest genes and tested for over- 
representation of gene-sets (pathways) using the Molecular Signatures 
Database through Gene Set Enrichment Analysis (GSEA) [56] based on 
canonical pathways at https://www.gsea-msigdb.org/gsea/index.jsp. 
The over-representation analysis calculates a probability from the hy-
pergeometric distribution for testing if the submitted list of genes con-
tains more genes from a pathway or gene set than would be expected by 
chance, i.e. 

p(X ≥ k) = 1 −
∑k

r=0

(
m
r

)(
N − m
n − r

)/(
N
n

)

where N is the number of genes annotated to all CpGs on the Epic 
array, m is the number of genes linked to the detected CpGs, n is the 
number of genes in a particular biological pathway, k is the number of 
genes belonging to both the pathway under testing and the list of genes 
linked to the detected CpGs. The test produces a probability score for 
each pathway or gene set, which is corrected by calculating FDR using 
the Benjamini-Hochberg method [3]. 

In addition to the above gene-based over-representation analysis, 
functional annotation was also conducted by submitting the chromo-
somal coordinates of the detected DMRs to the Genomic Regions 
Enrichment of Annotations Tool (GREAT) [36] at (http://bejerano.st 
anford.edu/great/public/html/) to analyze the functional significance 
of cis-regulatory regions identified by localized measurements of DNA 
binding events across an entire genome [36] using the Genome Refer-
ence Consortium Human Build 37 (GRCh37) as the RefSeq database. 
GREAT incorporates annotations from 20 ontologies and associates 
genomic regions with genes by defining a ‘regulatory domain’ for each 
gene such that all non-coding sequences that lie within the regulatory 
domain are assumed to regulate that gene. The ‘two nearest genes’ was 
assigned as the association rule from genomic regions to genes, which 
extends each gene's regulatory domain from its transcription start site 
(TSS) to the nearest upstream and downstream TSS, up to 1 MB in each 
direction. GREAT uses a binomial test over genomic regions to provide a 
more accurate picture of annotation enrichments [36]. 

2.9. Replication analysis 

For the detected top significant methylation sites, we performed a 
replication analysis using the Danish birth-weight discordant twin pairs 
[58] representing an independent adult cohort exposed to neonatal 
stress from a different population. The sample consisted of 78 pairs of 
male and 72 pairs of female monozygotic twins with a median age of 57 
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years, a total of 300 twins. The average percentage of birth-weight 
discordance (defined as ∆(birthweight)

max(birthweight)*100 for a twin pair) was 17.73% 
(range: 5.26%–47.06%). DNA methylation data was measured using the 
Illumina Infinium HumanMethylation450 BeadChip. Raw data pre-
processing was described in detail in Tan et al. [58] which used a similar 
pipeline and criteria as described in the current study. The association of 
DNA methylation with birthweight discordance was assessed by the 
mixed effect model assigning birth-weight and discordance (larger or 
smaller) together with their interaction as fixed effect variables while 
twin pairing and experimental factors as random effect variables using 
the R package lme4. 

3. Results 

Table 1 presents the basic description of the study samples and their 
general health-related parameters from anthropometry, blood pressure 
to clinical biochemical tests. The exposure and the control groups did 
not show statistically significant difference in most of the variables. The 
mean age of unexposed group was 4 years younger than the exposed 
group. Although weight of the unexposed group was slightly heavier 
than the exposed group (p = 0.02), the BMI did not significantly differ (p 
= 0.08). To minimize the effect age difference between the exposure and 
control groups, we remove the 18,023 age-associated CpGs and focused 
on the 469, 206 CpGs in subsequent analysis. 

3.1. Single CpG site EWAS 

Each CpG was tested by fitting a linear regression model on the DNA 
methylation M-value and famine exposure adjusting for age, sex and cell 
proportions. The Manhattan plot and the Q-Q plot for the single CpG site 
EWAS results are shown in Fig. 1 (1a, 1b) with detailed test statistics 
showing in Supplementary Table S1 (p < 0.05) and Table 2 (p < 1e-05, 
20 CpGs). After correcting for multiple testing, no CpG reached genome- 
wide significance as defined by FDR < 0.05. Fig. 2 is a volcano plot for 
the estimated coefficients for famine exposure against their inverse-log 
transformed p-values. The 4 CpGs (marked red) on the very top of the 
volcano are cg16187328 (p = 1.74e-07, FDR = 0.08), cg06077226 (p =
3.37e-07, FDR = 0.08), cg24875889 (p = 5.43e-07, FDR = 0.09) and 
cg20451680 (p = 8.96e-07, FDR = 0.11), all show suggestive signifi-
cance with p < 1e-06. There are 16 CpGs (marked purple) detected as 
showing weaker-than-suggestive significance (1e-06 ≤ p < 1e-05). One 
important phenomenon in the estimates was that the CpGs on top of the 
volcano (colored dots for 177 CpGs with p < 1e-04) in Fig. 2 are pre-
dominantly hypomethylated (only 8 CpGs hypermethylated) by famine 
exposure. This is also illustrated by the chromosome map in Fig. 1c 

displaying the locations of the 177 CpGs with p < 1e-04 (blue color for 
hypomethylated, red color for hypermethylated sites). In Supplemen-
tary Fig. S3, we plot the distribution of CpGs hypermethylated (red line) 
or hypomethylated (blue line) with famine exposure (p < 1e-04) over 
gene regions (S3a for relative proportions, S3b for absolute proportions) 
or positions relative to CpG island (CGI) (S3c for relative proportion, S3d 
for absolute proportion). The hypermethylated sites are more allocated 
to 5′UTR, while hypomethylated sites to gene body and intergenic re-
gions (S3a, S3b). In Supplementary Fig. S3c and S3d, the hyper-
methylated sites are distributed to CGIs and shelf, but the 
hypomethylated site to the open sea and other positions. The absolute 
proportions in Supplementary Fig. S3 b and d show predominant 
hypomethylation over gene regions and positions. 

3.2. Analysis of differentially methylated regions (DMRs) 

We performed DMR analysis on 4482 CpGs with p < 0.005. A total of 
58 regions were enriched with p < 0.05. In Supplementary Table S2, we 
show the list of 887 detected regions ranked by corresponding p-values. 
After controlling for multiple testing, we found only one DMR reached 
predefined statistical significance (FWER<0.1), but at borderline level 
(FWER<0.101, p < 1.24e-04). For comparison purpose, we also calcu-
lated ̌Sidák corrected p values for the DMRs which are interestingly very 
close to our estimated FWERs (Supplementary Table S2). We obtained a 
Šidák p value for this region as 0.104. The region is located on chro-
mosome 6 with base pair (bp) position 30,039,374-30,039,476. The 
position falls into the middle of the human MHC region (28,477,797 bp- 
33,448,354 bp. assembly: GRCh37). Interestingly, there is another 
detected region nearby the aforementioned DMR on chromosome 6 
positioned at 30,039,142 bp-30,039,206 bp (FDR < 0.57, p < 1.09e-03). 
Fig. 3 displays the genomic region harboring the 2 DMRs on chromo-
some 6. They are hosted by a coding region (exon) of the RNF39 gene, 
and also in the vicinity of the PPP1R11 gene. The rank two DMR in 
Supplementary Table S2 is located at 157,369,895 bp-157,369,960 bp 
on chromosome 7 in the intron region of PTPRN2 gene (FDR < 0.28, p <
3.99e-04) (Supplementary Fig. S4). 

3.3. Functional annotations 

From GREAT analysis, genomic regions of the transcriptional domain 
covered by CpGs with p < 0.005 were enriched by 12 GO biological 
processes with FDR < 0.05, as shown in Table 3. The GO terms included 
negative regulation of leukocyte proliferation, ventral spinal cord 
interneuron fate commitment, spinal cord dorsal/ventral patterning, 
dendritic cell chemotaxis, etc. Supplementary Fig. S5 is a hierarchical 
visualization of the GO terms from GREAT in Table 3. As an alternative, 
1223 genes were linked to CpGs with p < 0.005 and which were sub-
mitted to GSEA for over-representation analysis. This resulted in 10 gene 
sets enriched with FDR < 0.05 (Table 4). The top significant gene sets 
were dominated by pathways involved in nervous system development, 
neuron differentiation and progression, etc. 

3.4. DNA methylation of the IGF2 and INSR genes 

DNA methylation levels of the IGF2 and INSR have been associated 
with fetus exposure to the Dutch [18,61]. In the current study, we 
perform an independent replication analysis using a total of 122 CpGs 
mapped to the IGF2 gene and 75 CpGs mapped to the INSR gene. Fig. 4 
plots the distribution of the 122 CpGs in the genomic region of IGF2 on 
chromosome 11. Most of them (94 CpGs) are located in the promoter 
region and less than half (54 CpGs) reside in the gene body, with 41 
CpGs sitting in both promoter and gene body of the isoforms of IGF2 
(Fig. 4). Fig. 5 is a volcano plot displaying the coefficients for famine 
exposure against statistical significance. Because of the 41 CpGs over-
lapping between gene body and promoter, we tested the methylation 
patterns associated with famine exposure at the promoter and at the 

Table 1 
Sample description (count, mean and standard deviation) and comparison of 
health variables.  

Variables Unexposed 
(n = 105) 

Exposed 
(n = 79) 

Z score P value 

Age, year 53 57 4.17 3.08E-05 
Sex (male) 48 30 0.74 4.59E-01 
Height, cm 165 (6.80) 162.05 (6.87) − 1.51 1.30E-01 
Weight, kg 68.55 (12.97) 65 (9.28) − 2.32 2.03E-02 
BMI, kg/m2 24.91 (4.55) 24.63 (3.02) − 1.73 8.32E-02 
SBP, mmHg 125 (8.82) 127.5 (8.64) 1.08 2.80E-01 
DBP, mmHg 79 (5.95) 80 (6.08) 1.29 1.98E-01 
Pulse, mmHg 73 (6.14) 72.25 (7.63) − 0.73 4.66E-01 
FBG, mmol/L 5.06 (0.68) 5.24 (0.74) 1.25 2.12E-01 
TC, mmol/L 5.125 (1.01) 5.35 (0.89) 0.29 7.73E-01 
TG, mmol/L 1.48 (1.17) 1.31 (0.87) − 1.07 2.84E-01 
HDL-C, mmol/L 1.51 (0.39) 1.53 (0.34) 0.11 9.15E-01 
LDL-C, mmol/L 2.11 (0.53) 2.28 (0.56) 0.61 5.43E-01 

FBG: fasting blood glucose; TC: total cholesterol; TG: triglyceride; HDL-C: high- 
density lipoprotein cholesterol; LDL-C: low-density lipoprotein cholesterol; BMI: 
body mass index. 
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gene body separately. In the Fig. 5a, the 94 warm colored dots (red for 
CpGs only from promoter, pink for CpGs from both promoter and gene 
body) are mostly hypermethylated (65 CpGs, 69.15%) which are in 
contrast to the 28 cold colored dots (cyan for CpGs only from gene body, 
black for CpGs from other regions) (10 CpGs, 35.71%). A chi-squared 
test showed a highly significant difference in the proportions of hyper-
methylation at promoter and non-promoter regions (χ2 = 8.82, p <
2.98e-03). A similar test for gene body versus outside gene body showed 
no difference in their exposure associated methylation patterns (χ2 =

2.6, p < 0.107). Fig. 5b displays the results on CpGs of INSR gene. The 
CpGs are mostly from the gene body both hyper- or hypo-methylated 
with low statistical significance except cg10473041 (hypomethylated 
at gene body with p < 1.39e-04). 

3.5. Replication using Danish birth-weight discordant twins 

As an effort for replication, we used birth-weight discordant twin 
pairs described in Methods to verify the identified sites in Table 2. 

Among the top 4 CpGs with p < 1e-06, 2 (cg20451680, cg24875889) 
were matched to the 450 k array. As shown in Supplementary Table S3, 
both CpGs were hypomethylated showing same direction as in Table 2 
with p = 4.16e-03 for cg20451680 and p = 0.12 for cg24875889. Among 
the 20 CpGs with p < 1e-05 (Table 2), 10 were matched to the 450 k 
array data for Danish twins with eight hypomethylated. Seven out of the 
10 CpGs were replicated in the same direction as in Table 2, with 4 of 
them replicated with p < 0.09 (Supplementary Table S3). One CpG, 
cg15821562, was replicated with p < 5.32e-03 but showing an opposite 
direction of effect. Overall, the replication showed clear consistency of 
hypomethylation associated with prenatal adversity in the two inde-
pendent samples from different populations. 

4. Discussion 

We have performed a genome-wide analysis of DNA methylation 
patterns in association with early-life exposure to the largest famine in 
human history [50] using the Illumina Epic 850 K array. The results 

Fig. 1. EWAS results for fetal exposure to famine shown by a Manhattan plot plotting log-scaled p value of CpGs against their chromosome locations (1a), by a QQ- 
plot plotting observed p-values (top 177 CpGs with p < 1e-06 colored red, 1e-06 < p < 1e-05 colored pink, 1e-05 < p < 1e-04 colored green) against a random 
distribution (1b), and by a chromosome location map for the 177 CpGs with blue color indicating hypomethylation, red color indicating hypermethylation (1c). (For 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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from our epigenetic analysis of this unique natural experiment may shed 
insight into epigenetic sites which are altered in response to sustained 
adversity as a result of famine. 

According to EWAS results from this study, deprived nutritional 
environment early in life as induced by fetal exposure to famine is 
associated with regulatory modification of the epigenome characterized 
by predominant hypomethylation of the DNA methylome (Fig. 1). As 
most of the CpG sites are methylated except at CpG islands of promoters 
in the general population, the pattern of extensive hypomethylation by 
famine exposure could indicate a systematic epigenetic remodeling in 
response to early-life stress due to fetal programming. Interestingly, 
Krishna et al. [24] very recently reported a global hypomethylation 
pattern in their EWAS on intrauterine growth restriction (IUGR) which is 
a disease characterized by retarded fetus growth. 

The predominant pattern of hypomethylation for the 20 CpGs in 
Table 2 was replicated by the 10 CpGs mapped to the 450 k array for the 
Danish twin data, with 7 CpGs consistently replicated for their direction 
of effect (hypomethylation) (Supplementary Table S3). Some of the 
CpGs were replicated with low p values, for example, cg20451680 (p <
4.16e-03) and cg20083839 (p < 1.74e-2). The consistent pattern of 
hypomethylation suggests both conditions could have introduced 
similar epigenetic responses associated with neonatal stress. Note that 
the replication results were obtained from a different population 
(Danish) for a less severe condition (birth-weight discordance in twin 
pairs). Besides, for the replication samples e.g. birth weight discordant 
twins, the nutritional or blood supply deprivation for the smaller twin 
terminated after birth while exposure to famine covered both prenatal 
and postnatal periods. All the differences could result in the less pro-
nounced effect size and significance in the replication analysis. Future 

EWASs on early-life adversity (famine or the like) should help to further 
verify our results. 

Among the top sites in Table 2, cg16187328 (p < 1.74e-07) is located 
in the body of EHMT1. Heterozygous mutations or deletions of the gene 
are the main causes of Kleefstra syndrome, a neurodevelopmental dis-
order characterized by impaired memory, autistic features and mostly 
severe intellectual disability [23]. de Boer et al. [9] found that in-
dividuals with EHMT1 mosaicism seem to have increased vulnerability 
for developing severe psychopathology, especially ASD and mood dis-
orders. The decreased methylation of cg16187328 in the body of EHMT1 
could suppress expression of the gene and increase the susceptibility of 
neurodevelopmental disorders. The second site cg06077226 (p < 3.37e- 
07) is at 3′UTR of CNR1 gene. As an endocannabinoid system gene, 
genetic variation in CNR1 has been associated with neurological phe-
notypes in humans [51], and to Tourette syndrome [57]. The third site, 
cg24875889 (p < 5.43e-07) is at 3′UTR of UBXN7 gene. This gene has 
been shown to be expressed in brain, however its role is poorly under-
stood at the moment [39]. Other interesting genes linked to the top CpGs 
include BLK (hosting cg13440894 at TSS1500) with mutation linked to 
maturity onset diabetes of the young and β-cell dysfunction [5]; GNAS 
(cg20083839 at 3′UTR) shown to have important roles in the regulation 
of energy metabolism [69]. The fourth CpG in Table 2 is located at the 
first exon of ESM1 gene. In a EWAS on offspring of women with gesta-
tional diabetes mellitus (GDM) using the Illumina 450 k array, Hjort 
et al. [19] reported 2 hypomethylated CpGs (cg09452568 at gene body; 
cg00992687 at 3′UTR) comparing offspring of GDM mothers with con-
trols. Considering that DNA methylation in the region of the first exon is 
reportedly much more tightly linked to transcriptional silencing than is 
methylation in the upstream promoter region [6], the overlap with their 
findings could suggest implication of early-life adversity on epigenetic 
modifications concerning the metabolic domain. 

Likewise, gene-set enrichment analysis of genes linked to CpGs of 
low p-values revealed significant gene sets concerning neuron differen-
tiation and development [34] (Table 4). The long-lasting effect of early- 
life adversity on the risk for developing various psychiatric illnesses has 
been addressed by a rich body of literature throughout the 20th century, 
which has become a new field of neuroepigenetics emerging as one 
possible mechanism for the far reaching effects of early-life adversity on 
adult phenotypes, behavior [48] and risk for psychiatric illness [28]. It is 
assumed that maternal famine during pregnancy could lead to prenatal 
folate deficiency which influences risk of schizophrenia in offspring [35] 
through dysregulation of DNA methylation given the critical role of 
folate as a key source of the one carbon group used to methylate DNA 
[8]. Neonatal exposure to famine could influence the epigenome of the 
fetus and modulate neuronal gene transcription to functionally alter 
multiple neuroendocrine and neurotransmitter systems. Consequently, 
these changes could impact behavior, responses to diverse environ-
ments, as well as predisposition to developing various psychiatric ill-
nesses under certain environmental circumstances [63]. As an 
alternative, functional annotation based on the transcriptional domain 
using GREAT revealed significantly enriched GO biological processes 
reportedly to involve again in early adversity and development 
(Table 3), for example, negative regulation of leukocyte proliferation. 
Early-life adversity could impact immune phenotypes characterized by 
inflammation, impaired cellular immunity, and immunosenescence 
[12]. The high enrichment of the GO terms appears sensible as the im-
mune system is a common denominator for a wide range of mental and 
physical symptoms overreached by early-life adversity. Similar to 
Table 4, the rest of the significant GO terms in Table 3 represent the 
neurodevelopmental consequences of maternal distress (famine) [47]. 

The top DMR found by our region-based association analysis is 
hypomethylated with famine exposure and is located in the exons of 
RNF39 gene as shown in Fig. 3. It is interesting that decreased methyl-
ation in the same region has been associated with increased suscepti-
bility for post-traumatic stress disorder in military servicemen [46]. Our 
finding reconfirms the involvement of this region in mediating the 

Fig. 2. A volcano plot displaying log-scaled p value of each CpG against dif-
ference in M value between exposed and unexposed groups. CpGs with p < 1e- 
06 colored red, 1e-06 < p < 1e-05 colored pink, 1e-05 < p < 1e-04 colored 
green. (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.) 
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epigenetic response to stress conditions but further reveals the long- 
lasting effect of early-life adversity that persists into adulthood. The 
second top rank DMR is hypomethylated in the intron of PTPRN2 gene 
on chromosome 7 (Supplementary Fig. S4). A recent study reported 
altered methylation of the gene in neonates of IUGR (intrauterine 
growth restriction) which is a pregnancy-associated disease manifested 
by decreased growth rate of fetus than the normal genetic growth 

potential [24]. The consistent finding is a reflection that prenatal 
exposure to famine could have introduced a stressful condition that 
mimics IUGR. Furthermore, the study also reported a global shift toward 
reduced methylation in IUGR neonates providing independent support 
to the pattern in Fig. 2. The PTPRN2 gene encodes a major autoantigen 
and is usually considered as a metabolic gene seen in type 1 diabetes 
mellitus with genetically controlled CpG methylation of the gene 

Fig. 3. Structured visualization of integrated genomic features for the top significant DMR on chromosome 6. A pattern of hypomethylation in the region of the DMR 
is shown at the bottom. 

Table 2 
List of DNA methylation sites with p < 1e-05.  

CpGs Coef. SE p value FDR Chr. Position Gene names UCSC RefGene Group 

cg16187328 − 0.390 0.072 1.74E-07 0.082 9 140639428 EHMT1 Body 
cg06077226 − 0.348 0.066 3.37E-07 0.082 6 88851970 CNR1 3′UTR 
cg24875889 − 0.294 0.057 5.43E-07 0.088 3 196082185 UBXN7 3′UTR 
cg20451680 − 0.455 0.089 8.96E-07 0.109 5 54281336 ESM1 1stExon 
cg13440894 − 0.133 0.027 1.68E-06 0.164 8 11351135 BLK TSS1500 
cg20083839 − 0.317 0.065 2.21E-06 0.180 20 57485940 GNAS 3′UTR 
cg13672106 0.336 0.070 3.05E-06 0.184 17 38984421 TMEM99 5′UTR 
cg11231670 − 0.178 0.037 3.68E-06 0.184 16 2947301 FLYWCH2 Body 
cg24042313 − 0.250 0.053 4.47E-06 0.184 3 11079491 SLC6A1 3′UTR 
cg15821562 0.229 0.048 4.53E-06 0.184 14 90083275 FOXN3 5′UTR 
cg26859716 − 0.457 0.097 4.62E-06 0.184 6 157365102 ARID1B Body 
cg15958366 − 0.303 0.064 5.24E-06 0.184 3 187957027 LPP 5′UTR 
cg26487422 − 0.255 0.054 5.29E-06 0.184 7 155549270 RBM33 Body 
cg04243827 − 0.623 0.133 5.60E-06 0.184 5 3103718   
cg20376123 − 0.229 0.049 5.68E-06 0.184 22 46760595 CELSR1 Body 
cg06018748 − 0.385 0.083 6.21E-06 0.189 12 59315217 LRIG3 TSS1500 
cg24558480 − 0.246 0.053 6.69E-06 0.192 15 101467705 LRRK1 Body 
cg05083630 − 0.326 0.070 7.09E-06 0.192 9 72169851 APBA1 5′UTR 
cg18477248 − 0.149 0.032 8.02E-06 0.192 14 62547992 SYT16 ExonBnd; 

Body 
cg13727277 − 0.505 0.110 8.67E-06 0.192 7 1062871 MIR339; 

C7orf50 
TSS1500; 
Body  
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associated with childhood obesity [27]. 
It is interesting that the identified differentially regulated genomic 

sites, DMRs and enriched functional pathways are commonly involved 
in early neurodevelopment and neuropsychological disorders. Li and 
Lumey [29] reported in a systematic review that schizophrenia was the 
only significant disorder stably more common among adults born during 
the famine compared with post-famine or post- plus pre-famine born 
controls. Their finding is in agreement with the functional in-
terpretations of our EWAS results. We can postulate that prenatal 
exposure to famine could interrupt normal brain development early in 
life which is a sensitive period when the brain underwent its most rapid 
development. The identified epigenetic biomarkers could serve as mo-
lecular targets for early intervention to prevent the long-term conse-
quences in mental health of the exposed individuals. 

IGF2 is an imprinted gene that is expressed from the paternally- 
derived chromosome [13]. Methylation level of the gene has been 
shown to associate with fetus exposure to Dutch [18] and Chinese [49] 
famine. The CpGs analyzed by their studies were from a region located 
upstream of the three major imprinted promoters of IGF2 in humans. 
While the Dutch study found reduced methylation specific for peri-
conceptional exposure, the Chinese study reported elevated methylation 
in the same region. Different from their candidate gene analysis, the 
CpGs annotated to IGF2 on the genome-wide array of this study do not 
overlap with their analyzed region converted to GRCh37/hg19 assembly 
(chr11:2169459-2169796). However, we observed a clear trend of 
increased methylation (coefficients for exposure >0) over the promoter 

Table 3 
GREAT bionomial test results for enrichment of GO terms#.  

Term Name P- 
Value 

FDR 
Q-Val 

Fold 
Enrichment 

Observed 
region hits 

Region 
set 
coverage 

Negative 
regulation of 
leukocyte 
proliferation 

4.86e- 
8 

8.08e- 
6 

2.0446 70 1.54% 

Ventral spinal cord 
interneuron fate 
commitment 

2.53e- 
6 

2.27e- 
4 

2.5697 32 0.71% 

Spinal cord dorsal/ 
ventral 
patterning 

1.12e- 
5 

7.59e- 
4 

2.1949 38 0.84% 

Ventral spinal cord 
interneuron 
specification 

1.44e- 
5 

9.41e- 
4 

2.5727 27 0.60% 

Dendritic cell 
chemotaxis 

1.56e- 
5 

9.99e- 
4 

3.1911 19 0.42% 

Regulation of pri- 
miRNA 
transcription 
from RNA 
polymerase II 
promoter 

1.84e- 
5 

1.15e- 
3 

2.1205 39 0.86% 

Brush border 
assembly 

2.21e- 
5 

1.37e- 
3 

11.0681 6 0.13% 

Spinal cord 
patterning 

2.43e- 
5 

1.46e- 
3 

2.0928 39 0.86% 

Ventral spinal cord 
interneuron 
differentiation 

3.72e- 
5 

2.04e- 
3 

2.2047 33 0.73% 

Cerebellar granule 
cell precursor 
proliferation 

5.11e- 
4 

1.50e- 
2 

2.5720 17 0.37% 

Cell proliferation 
in hindbrain 

5.84e- 
4 

1.67e- 
2 

2.5407 17 0.37% 

Carbohydrate 
phosphorylation 

1.09e- 
3 

2.70e- 
2 

2.3967 17 0.37% 

# The test set of 4535 genomic regions picked 5188 (28%) of all 18,549 genes.GO

Biological Process has 13,145 terms covering 16,621 (90%) of all 18,549 genes, and

1,251,831 term - gene associations.13,145 ontology terms (100%) were tested using an

annotation count range of [1, Inf].

Table 4 
List of gene sets over-represented by genes linked to CpGs with p < 0.005.  

Gene Set 
[# Genes (K)] 

Description Genes in 
Overlap 
(k) 

p- 
value 

FDR 

NEUROGENESIS 
[1674] 

Generation of cells 
within the nervous 
system 

144 2.52 
e− 29 

2.59 
e− 25 

REGULATION OF 
NERVOUS SYSTEM 
DEVELOPMENT 
[957] 

Any process that 
modulates the 
frequency, rate or 
extent of nervous 
system development, 
the origin and 
formation of nervous 
tissue 

98 1.23 
e− 25 

6.3 
e− 22 

CELL 
MORPHOGENESIS 
[1041] 

The developmental 
process in which the 
size or shape of a cell is 
generated and 
organized 

100 5 
e− 24 

1.71 
e− 20 

NEURON 
DIFFERENTIATION 
[1406] 

The process in which a 
relatively unspecialized 
cell acquires 
specialized features of a 
neuron 

118 3.43 
e− 23 

8.81 
e− 20 

REGULATION OF CELL 
DEVELOPMENT 
[982] 

Any process that 
modulates the rate, 
frequency or extent of 
the progression of the 
cell over time, from its 
formation to the mature 
structure. Cell 
development does not 
include the steps 
involved in committing 
a cell to a specific fate 

93 5.62 
e− 22 

1.15 
e− 18 

CELL PROJECTION 
ORGANIZATION 
[1588] 

A process that is carried 
out at the cellular level 
which results in the 
assembly, arrangement 
of constituent parts, or 
disassembly of a 
prolongation or process 
extending from a cell, e. 
g. a flagellum or axon 

124 1.15 
e− 21 

1.97 
e− 18 

NEURON 
DEVELOPMENT 
[1143] 

The process whose 
specific outcome is the 
progression of a neuron 
over time, from initial 
commitment of the cell 
to a specific fate, to the 
fully functional 
differentiated cell 

101 1.46 
e− 21 

2.14 
e− 18 

INTRINSIC 
COMPONENT OF 
PLASMA 
MEMBRANE 
[1731] 

The component of the 
plasma membrane 
consisting of the gene 
products and protein 
complexes having 
either part of their 
peptide sequence 
embedded in the 
hydrophobic region of 
the membrane or some 
other covalently 
attached group such as 
a GPI anchor that is 
similarly embedded in 
the membrane 

130 3.21 
e− 21 

4.12 
e− 18 

CELL 
MORPHOGENESIS 
INVOLVED IN 
DIFFERENTIATION 
[753] 

The change in form 
(cell shape and size) 
that occurs when 
relatively unspecialized 
cells, e.g. embryonic or 
regenerative cells, 
acquire specialized 
structural and/or 

78 6.63 
e− 21 

7.57 
e− 18 

(continued on next page) 
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region of IGF2, mixed also with some hypomethylated CpGs (Fig. 4). As 
shown in Fig. 5a, the elevated methylation with famine exposure pre-
dominates the CpGs from the promoter region (p < 2.98e-03) suggesting 
reduced activity of the gene which is in support to result from the Chi-
nese study by Shen et al. [49]. 

A candidate gene study on INSR gene found increased methylation 
level of the gene in adults born during the Chinese famine [68]. Similar 
finding was reported by a genome-scale methylation sequencing study 
on the Dutch famine [61]. The region analyzed by Wang et al. [68] is the 
intragenic enhancer region of INSR where high level of methylation is 
associated with repression of transcription of the gene. Although no 
significant association was found in the region in our analysis, as shown 
in Fig. 5b, there are 2 CpGs outside the region in the gene body that are 

hypomethylated with low p-values (cg10473041, p < 1.39e-04; 
cg09684021, p < 3.09e-03). Their reduced methylation within the gene 
body could suggest decreased activity [71] of INSR related to famine 
exposure in early-life which is in agreement with the direction of effect 
found by Wang et al. [68] and Tobi et al. [61]. INSR mediates IGF2 
signaling to initiate intracellular signaling for metabolic regulation in 
response to insulin in adults and to implicate development of diabetes, 
obesity, and cancer [20]. More researches are needed to clarify and to 
characterize the effect of early-life adversity on the activities of the two 
genes in modifying individual's epigenetic predisposition to metabolic 
disorders (type 2 diabetes, obesity) and other complex diseases. 

In the replication cohort of birth-weight discordant twin pairs, the 
smaller twin in a twin pair at birth is assumed to have been exposed to 
prenatal stressful factors as compared to the bigger twin of the pair; and 
this situation could mimic prenatal exposure to famine as both are early- 
life adversities that created stressful conditions during prenatal devel-
opment. Most importantly, among the top differentially methylated sites 
by famine that are matched to the replication data, many of them 
showed similar directions of effect as in the discovery cohort and some 
even with very low p values (Results section). Indeed, the replication 
samples are of a different population. But the fact that replication can be 
done in different populations could indicate that the discovery results 
represent more biological effects independent of populations. 

This study applied different filtering schemes to remove poorly 
detected CpGs using detection p value, CpGs on the sex chromosomes 
and CpGs physically overlapping with SNPs (CpG-SNPs). Although these 
are routine steps in DNA methylation microarray data analysis, dropping 
the sex chromosomes to avoid analytical difficulties due to their sex 
differences could miss important sites with sex-specific effects especially 
on the relatively large X-chromosome. Strategic modeling of the sex- 
chromosome data is needed to help with solving the issue. Moreover, 
dropping CpG-SNP sites could also remove methylation sites with allele- 
specific effects on gene expression or the methylation quantitative loci 

Table 4 (continued ) 

Gene Set 
[# Genes (K)] 

Description Genes in 
Overlap 
(k) 

p- 
value 

FDR 

functional features that 
characterize the cells, 
tissues, or organs of the 
mature organism or 
some other relatively 
stable phase of the 
organism's life history 

REGULATION OF CELL 
DIFFERENTIATION 
[1945] 

Any process that 
modulates the 
frequency, rate or 
extent of cell 
differentiation, the 
process in which 
relatively unspecialized 
cells acquire 
specialized structural 
and functional features 

139 1.03 
e− 20 

1.05  

Fig. 4. Structured visualization of integrated genomic features for CpGs annotated to IGF2 gene on chromosome 11.  
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(meQTLs). It would be interesting to explore the regulatory meQTLs 
showing interaction with prenatal famine exposure by joint analysis of 
the methylation data on CpG-SNPs and SNP genotype data to be 
collected. 

In conclusion, our genome-wide DNA methylation profiling on fetal 
exposure to Chinese famine identified a predominant pattern of hypo-
methylation in the differentially regulated genomic sites with top CpGs, 
DMRs and enriched functional pathways functionally implicated in early 
neurodevelopment, neuropsychological disorders and metabolism. The 
results from our epigenetic analysis of the “natural experiment” pro-
vided new clues to the epigenetic embedding of early-life adversity that 
could potentially impact adult health. Although current study is only 
observational in nature, findings from the study can be used as a refer-
ence for future studies employing a more causal framework. 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.ygeno.2021.09.018. 
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