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Abstract

Radial diffusion in planetary radiation belts is a dominant transport mechanism resulting in the energization and
losses of charged particles by large-scale electromagnetic fluctuations. In this study, we revisit the radial
diffusion formalism by relaxing the assumption of zero correlation time in the spectrum of fluctuations
responsible for the transport of charged particles. We derive a diffusion coefficient by assuming fluctuations that
(1) are time homogeneous, (2) too small to trap the particles, and (3) can decorrelate on timescales comparable to
the transit time of the particles. We demonstrate through self-similar solutions of the Fokker–Planck equation
that autocorrelation time τc much larger than the linear transit time/particle drift period t = W-

L D
1 results

in characteristic time for transport independent of the drift frequency and faster than for short correlation time.
In both instances, that is for short (τL? τc) and long (τL= τc) autocorrelation time, the diffusion of particles
is subdiffusive since the variance of increments along the magnetic drift shells L*, scales as 〈ΔL*2〉∼ t s,
with s< 1. However, in the absence of sources and sinks, particle transport for both short and long
autocorrelation times result in equilibrium distribution along L* with differences of less than 10% across lower
magnetic drift shells. The main consequence of incorporating finite correlation time appears in intermediate
times much longer than the drift period but before the distribution function reaches equilibrium and indicates the
importance of quantifying observationally the spectral properties of fluctuations for the modeling of planetary
radiation belts.

Unified Astronomy Thesaurus concepts: Plasma astrophysics (1261); Space plasmas (1544); Plasma physics
(2089); Alfven waves (23); Van Allen radiation belt (1758)

1. Introduction

The interaction of the solar wind plasma with planetary
magnetic fields gives rise to a cavity in which charged particles
are magnetically confined and accelerated to relativistic
energies. The confinement of these particles is the result of
the geomagnetic field topology characterized by magnetic field
lines that converge at high latitudes toward the poles. In the
absence of electromagnetic perturbations, the motion of the
trapped particles can be decomposed in terms of three adiabatic
invariants. The first and second adiabatic invariants μ and J
map the quasi-periodic motion of the particle around and along
the field line. The third adiabatic invariant, here denoted as Φ,
is the magnetic field enclosed by the azimuthal drift orbit.
However, the quasi-periodic orbits can become chaotic in the
presence of electromagnetic fluctuations that can violate one or
more of the adiabatic invariants. Breaking one or multiple
adiabatic invariants by electromagnetic fluctuations results in
the irreversible transfer of energy from the fields to the
particles. Observationally, this translates into the enhancement
of suprathermal particles confined in planetary environments
and known as radiation belts (Walt 2005).

In the Earth’s radiation belts trapped electrons with energies
of less than 1 keV to 10MeV are commonly measured.
Consequently, the Earth’s radiation belts are the closest natural
astrophysical laboratory in which we can track in situ the
energization of charged particles to relativistic energies. The
past decades of in situ measurements have highlighted two
dominant mechanisms: radial diffusion by large-scale fluctua-
tions that violate the third adiabatic invariant Φ (Lejosne &
Kollmann 2020) and local wave–particle interactions resulting

in the violation of the first and second adiabatic invariants by
kinetic-scale fluctuations (Ukhorskiy & Sitnov 2013; Reeves
et al. 2013; Thorne 2013). Incidentally, both mechanisms are
stochastic and rely on equivalent assumptions to derive a
Fokker–Planck equation in their respective phase space, that is,
(1) time and space homogeneity of the force field fluctuations,
(2) unperturbed particle orbits, and (3) correlation times much
smaller than the transit time (Taylor 1922; Parker 1960;
Sturrock 1966; Fälthammar 1965; Diamond et al. 2010;
Adkins 2018). For radial diffusion the transit time corresponds
to the azimuthal drift period, whereas for local wave–particle
interactions in a magnetized plasmas it is the time for a particle
with speed vP to cross one wavelength λP, i.e., τL; λP/vP. It is
therefore common practice to consider that the characteristic
time for the variations of the signal is very small in comparison
with the transit time of the particles considered and to describe
the effect of these field variations on a timescale that is greater
than both the transit time of the particle, and the autocorrelation
of the fluctuations, i.e., τc= τL= t.
However, unlike in fluid dynamics and for the specific

problem treated by Taylor (1922), MHD fluctuations cannot
simply random walk as this would have the consequence of
increasing field-line tensions. In a stable plasma the field-line
tension tries to return the fluid element to the unperturbed
equilibrium position, and plasma fluid elements are therefore
subject to a spring-back effect. This elasticity inherent to MHD
plasmas has the consequence of allowing long-time correla-
tions in the fluctuations. The consequences of relaxing the
assumptions made by Taylor (1922) for particles experiencing
radial diffusion (Fälthammar 1965) remains an open theoretical
question relevant to modeling the Earth’s radiation belts. The
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primary aim of this communication is to characterize the
stochastic transport when the autocorrelation time becomes
comparable (τc; τL) or much longer than the transit time
(τc? τL). Decay of the fluctuations as experienced by a
particle interacting with a wave packet can be treated
analytically by accounting for at least one of two separate
processes. One such process originates in fluctuation ampli-
tudes or wavevectors being stochastic while assuming that the
particle orbits remain unperturbed. Another one is in the
nonlinear scattering of the particle orbits while assuming that
the fields’ amplitudes remain constant.3

In particular, we would like to know if the equilibrium
distribution and diffusion coefficient is affected by a nonzero
correlation time of the fluctuations. On the basis of observa-
tional in situ measurements and numerical experiments the
diffusion coefficient for radial transport spans four orders of
magnitude and is strongly dependent on the geomagnetic
activity (Brautigam & Albert 2000; Huang et al. 2010). In a
more recent study using Bayesian inference and the Van Allen
Probe measurements, Sarma et al. (2020) empirically deter-
mined the parametric dependence of the diffusion coefficient.
They find a bimodal distribution for the exponent of L* in the
diffusion coefficient, with one peak centered above a value of
10 and another, slightly more pronounced, below 10. To the
best of our knowledge, a physical explanation for the
parametric change of the diffusion coefficient reported by
Sarma et al. (2020) in terms of the statistical properties of the
electromagnetic fluctuations has not been studied.4 Our
hypothesis is that the appearance of finite correlation times in
the electromagnetic fluctuations could translate into a diffusion
coefficient with a parametric dependence in the L* exponent
consistent with in situ measurements.

In the following study we use the recipe of Taylor (1922) to
quantify the transport of passive particles in a turbulent field.
We modify the calculation of Taylor (1922) by only relaxing
the assumption of zero autocorrelation times.5 In other words,
we still assume that electrons sample small amplitude and
stationary turbulent fluctuations as postulated by Taylor (1922).
We use a simple model for the electromagnetic fields in order
to be able to solve the transport equation analytically. In our
particular case, the electromagnetic turbulence consists of
Alfvénic fluctuations carried by the protons while the passive
tracers are the electrons. The magnetic field corresponds to a
background dipole field, to which small time-varying perturba-
tions with a dependence on magnetic local time, here expressed
in terms of phase j(t), are superimposed (Mead 1964;
Fälthammar 1965). With a representation of the perturbation
in terms of a symmetric component S(t) and an antisymmetric
one jA t r cos( ) ( ), it is possible to show that an ensemble of
particles with adiabatic invariant Φ (Ukhorskiy & Sitnov 2013),
corresponding to the magnetic flux bounded by the drift
contour of a trapped particle, can only experience irreversible

changes in the presence of nonzero antisymmetric fluctuations,
i.e., A(t)≠ 0.6 Symmetric fluctuations S(t) do not contribute
statistically to the change in the third adiabatic invariant
(Lejosne 2019; Lejosne & Kollmann 2020).

2. Theoretical Model

2.1. Equation of Motion and Dispersion in L*

The third adiabatic invariant Φ is the magnetic flux sampled
by an azimuthally drifting orbit:

ò òF = =
G

B n A ldA d , 1· · ( )

in which the drift contour Γ bounds the surface  upon which the
flux of the magnetic field B=∇×A with magnetic potential
vector A is computed. It is convenient to track the evolution of the
third adiabatic invariant Φ in terms of L* since for a dipole
magnetic field the latter corresponds to drift shell radial distance
from the Earth’s magnetic equatorial plane:

p
=

F
L

B R2
. 2E E

2

* ( )

In the above equations, BE represents the amplitude of the
equatorial magnetic field at one Earth radii RE; 6370 km. It
should be kept in mind that L*, and therefore Φ, are adiabatic
invariants and that a change in L* along a drift orbit can result
in irreversible energization of electrons. The reader unfamiliar
with radial diffusion can find a Hamiltonian description of the
problem in Lejosne & Kollmann (2020). Our starting point is
Equation (54) of Lejosne (2019) for the radial motion of an
electron drifting around the equator of a dipolar background
magnetic field:

j= -
dL

dt

L R

B

dA

dt

5

7
cos . 3E

E

5* * ( ) ( )

We first make a change of notation by writing d =
~
B R AE .

The quantity d
~
B has units of Tesla and will be treated as a

continuous random variable with a zero time average dá ñ =
~
B

ò d =
~
Bdt 0

T

T1

0
,7 and finite variance òd dá ñ = < ¥

~ ~
B B dt

T

T2 1

0

2
.

The equation of motion we will use can now be written as

d
j= -

~
dL

dt
L

d

dt

B

B

5

7
cos . 4

E

5*
* ⎜ ⎟

⎛

⎝

⎞

⎠
( ) ( )

Assuming small distortions in the particle trajectory as it
interacts with the fluctuations, we write d= +L L L0* * * and

+ dL L 1 5 L

L
5

0
5

0
* * *

*
( ) . We also assume that the azimuthal drift

is uniform, i.e., independent on local time. This assumption can

3 We resort to the first effect but the correlation time τc appearing in the
diffusion coefficient (14) can encode decay occurring due to turbulent
scattering as well. For a recent pedagogical discussion on the topic the reader
can consult Bian et al. (2014) and find references therein.
4 A similar problem has been addressed for a Vlasov–Poisson system by
Adkins (2018) that shows that it is possible to modify the properties of the
diffusion coefficient by accounting for the finite correlation time of turbulent
stochastic fluctuations.
5 The statement zero correlation time should not be taken literally but as a
limit with respect to another timescale. In our case, the correlation time is zero
in the limit where t/τL ? τc/τL → 0, i.e., when the transit time is much longer
than the autocorrelation time τc

6 A more sophisticated model for the fluctuations could also be taken into
account. However, Schulz & Eviatar (1969) showed that our Equation (3) is a
good first approximation to analyze radial diffusion. They found that in the case
of a slightly asymmetric background field, the value of the radial diffusion
coefficient is proportional to the power spectrum of the field fluctuations at all
harmonics of the drift frequency, although the first harmonic remains the main
contributor.
7 On the basis of our assumption of stationarity, the mean is constant, and
independent of time. However, observationally, the mean is not necessarily 0
since the magnetic field is always a bit stretched, 〈A(t)〉 ≠ 0, and does not
necessarily average to a dipole. In that case, dá ñ = - á ñ

~
B R A t A tE ( ( ) ( ) ), and the

formulas provided below are still valid.
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be written as j(t)= j0+ΩDt.
8 Using these assumptions we

seek to compute the increment ΔL
*

and dispersion ΔL*2 for an
ensemble of particles with initial conditions = =L t L0 0* *( )
and j(t= 0)= j0. We first determine the drift in terms of the
fluctuation amplitude of the signal d

~
B, instead of its derivative.9

Integrating by part, we find

ò

d j

d j d j

D = - W +

- + W W +

~

~ ~

L t
L

B
B t t

B B u u du

5

7
cos

0 cos sin . 5

E
D

D

t

D

5

0

0
0

0

*
* ⎡

⎣

⎤
⎦

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

Taking the square of Equation (5) and performing the ensemble
average over the initial phase j0, we find

ò

ò

ò ò

d

d d d

d d

d d

d d

áD ñ =

+ - W

+ W W -

- W W

+
W

W -

~

~ ~ ~

~ ~

~ ~

~ ~

jL
L

B
B t

B B t B t

B t B u u t du

B u B u du

B u B v u v dudv

25

49

1

2

1

2
0 0 cos

sin

0 sin

2
cos .

6

E

D

D

t

D

D

t

D

D
t t

D

2
10

2

2

2

0

0

2

0 0

*
* ⎡⎣

⎤
⎦⎥

( )

( ) ( ) ( ) ( )

( ) ( ) ( ( ))

( ) ( ) ( )

( ) ( ) ( ( ))

( )

We distinguish time averages from averages over the phase
with as follows: á ñjX

0
denotes an average over the phase j0,

and á ñj d
~X B, an ensemble average over the phase followed by a

time average over the fluctuation d
~
B. If we now assume time

homogeneous fluctuations,10 we find the following integral:

ò

ò

ò ò

d d d

d d

d d

d d

áD ñ = á ñ - á ñ W

+ W á ñ W -

- W á ñ W +
W

á ñ W -

~ ~ ~

~ ~

~ ~

~ ~

j d~L
L

B
B B t B t

B t B u u t du

B u B u du

B u B v u v dudv

25

49
0 cos

sin

0 sin
2

cos .

7

B
E

D

D

t

D

D

t

D
D

t t

D

2
,

10

2

2

0

0

2

0 0

*
* ⎡

⎣

⎤
⎦

( ) ( ) ( )

( ) ( ) ( ( ))

( ) ( ) ( )

( ) ( ) ( ( ))

( )

Making a change of variables in the first integrals, and taking
advantage of the stationarity of the signal in the double integral,
one finds

ò

ò

d d d

d d

d d

áD ñ = á ñ - á ñ W

- W á ñ W

+ W á ñ W

~ ~ ~

~ ~

~ ~

j d~L
L

B
B B t B t

B B u u du

t B u B u du

25

49
0 cos

2 0 sin

0 cos . 8

B
E

D

D

t

D

D

t

D

2
,

10

2

2

0

2

0

*
* ⎡

⎣

⎤
⎦

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

For a given form of the autocorrelation function we can compute
the time-dependent diffusion coefficient = áD ñj d

~D Ld

dt B
1

2
2

,0
*

(Taylor 1922). If the covariance of the fluctuations has zero
correlation time, we can set the limit of the integral to t=∞, the
autocorrelation function to a delta function d d tá ñ =

~ ~
B B0( ) ( )

d d t tá ñ
~
B c

2 ( )/ , and recover the traditional linear time dependence

of the dispersion (Taylor 1922): táD ñ = Wj d
dá ñ~
~

L L tB D c
B

B
2

,
25

49
10 2

E0

2

2* * .

2.2. Incorporating an Autocorrelation Function Time

We now introduce a conceptually simple autocorrelation
function with finite autocorrelation time τc:

11

d d t dá ñ = á ñ
~ ~ ~ - t

tB B B e0 . 9
2

c( ) ( ) ( )

The parameter τc is a constant and denotes the characteristic
time for fluctuations to decorrelate. Inserting the autocorrela-
tion in Equation (9) into Equation (8) we can solve the integral
analytically:

d

t
t

t t

t
t

t

áD ñ =
á ñ

- W

+
W

W +
W W + W - W

+
W

W +
- W + W W

~
j d

-

- -

- -

~ t

t t

t t

L L
B

B
e t

e t e t

t
e t e t

25

49
1 cos

2

1
cos sin

1
1 cos sin .

10

B
E

D

d c

D c
D c D D D c

D c

D c
D D c D

2
,

10
2

2

2 2

2

2 2

t
c

t
c

t
c

t
c

t
c

0
* * ⎡

⎣⎢

⎤
⎦⎥

( )

( ( ) ( ) )

( ( ) ( ))

( )

In the limit t t< W-t c L D
1  the dispersion of an ensemble

of particles is linear in time:

d
t

áD ñ =
á ñ
~

j d~L L
B

B

t25

49
. 11B

E c

2
,

10
2

20
* * ( )

However, the introduction of finite correlation times leads to
transient oscillatory dispersion if τL< t� τc and linear
dispersion if t? τc:

d t
t

áD ñ =
á ñ W

+ W

~
j d~L L

B

B

t25

49 1
. 12B

E

D c

c D

2
,

10
2

2

2

2 20
* * ( )

8 In the case of a simplified Mead field, the increment in the azimuthal
phase is written in terms of the first adiabatic invariant μ and symmetric
and antisymmetric fluctuations, S(t) and A(t), respectively: jD =t( )

ò j j t- + + +m
g

m t
g

m t
g t

t d4 cos sin
qr

t S r

qB R

A r

qB R

r

B R

dA

d

3 3 1

7E E E E E E
2 3

2

3

4

3
⎛
⎝

⎞
⎠

( ) ( )( ) ( ) . It is typically

considered that W = - m
gD qr

3
2 , but it is clear that the Alfvénic fluctuations can

affect the angular drift frequency.
9 We can do the same analysis for the time derivative of the signal, i.e., dA/dt,
but it is preferable to determine the transport coefficients in terms of the
magnetic field fluctuations A(t) since it can be implemented in terms of
magnetopause location and its statistical properties obtained from in situ
measurements (Schulz & Eviatar 1969). Observationally, it is also unnecessa-
rily arduous to extract the Lagrangian time derivative of the signal, when A(t)
and its associated statistical properties suffice.
10 That is, stationarity in the sense that the autocorrelation function of the
fluctuations d dá ñ

~ ~
B t B t1 2( ) ( ) depends solely on the lag τ = t2 − t1.

11 Lejosne et al. (2013) estimate empirically the autocorrelation function as a
sum of two exponentials with parameters dependent on the Kp index. Our
choice of an exponential autocorrelation function is coherent with previous
empirical estimates and our results can easily be extrapolated to a sum of two
exponentials composed of both short and long autocorrelation times.
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Computing the time-dependent radial diffusion coefficient
= áD ñj d

~D LLL
d

dt B
1

2
2

,0
* from Equation (10) we find

d t
t

t
t
t

t
t

=
á ñ

W
W
+ W

+ W

´
W

+ W -
W
+ W

- W

´ -
W
+ W

~
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-

t

t

D
B

B
L e t

t e t
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98 1
cos

1

1
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1
1

.
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D
D c

c D
D

D c
D

D c

D c
D

D c

D c

2

2
10

2 2

2 2

2 2

2 2

t
c

t
c

*

⎜ ⎟

⎜ ⎟

⎡
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⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎤

⎦
⎥

( )

( )

( )

Similarly as for dispersion, the introduction of finite correlation
times leads to transient oscillatory diffusion for an ensemble of
particles. The time dependence of the function in brackets in
Equation (13) is shown in Figure 1. For t/τc; 1 and ΩDτc> 1,
the diffusion coefficient has an oscillatory time dependence
with period W-

D
1. But as t� c? τc the diffusion coefficient

takes the following time-independent form:

t
d t

t
=

á ñ W
+ W

~
D t L

B

B

25

98 1
. 14LL c

E

D c

c D

10
2

2

2

2 2
*( ) ( )

2.3. Equilibrium Distribution Function along L* for Finite
Correlation Time τc ≠ 0

We now seek equilibrium solutions with the diffusion
coefficient that incorporates the effect of finite correlation times
τc≠ 0, in the limit where t? τc for the the diffusion coefficient in
Equation (14). To find the most general solution, let us assume
a linear dependence of the drift frequency ΩD= βL−2,12 an
assumption that is realistic in a mean dipole field with magnetic
drifts dominating over the electric drifts. The coefficient
b m ,( ) has units of (s−1) and has a dependence on the first
adiabatic invariant and the energy of the electron g= m ce

2.
The Fokker–Planck equation describing the time-dependent
evolution of an ensemble of particles along L can be written as
(Lichtenberg & Lieberman 1983)

¶
¶

=
¶
¶

¶
¶

f

t L

D

L L
fL . 15LL

2
2⎛

⎝
⎞
⎠

( ) ( )

We will seek a steady-state solution for the function g(L)= L2f,
i.e.,

=
d

dL

D

L

dg

dL
0. 16LL

2
⎛
⎝

⎞
⎠

( )

The solution to this equation can be written in terms of the
constants c1 and c2, determined with the choice of boundary
conditions = =g L L 0min( ) and = =g L L gmmax( ) as

t
t

= + +
W

g L t c
c

L
, 3

7
. 17c

D c
1

2
7 2 2⎜ ⎟

⎛
⎝

⎞
⎠

( ) ( )

Thus, the equilibrium distribution is independent of the rms
magnetic fluctuation and depends solely on L and ΩDτc. In
order to characterize the dependence of the equilibrium
distribution in terms of the parameter βτc we can set the
boundary conditions at =L 1min and =L 8max with gm= 1.
The inner boundary condition indicates that particles beyond
L= 1 are efficiently lost to the neutral atmosphere, and the
outer boundary assumes a steady value corresponding to the
magnetopause boundary on the dayside of the magnetosphere.
Using the above solution we can determine the effect of the
parameterized finite correlation times βτc on the equilibrium
distribution. The results are shown in Figure 2 for g(L) (panel
a) and f (L) (panel b). We note that the shape of the equilibrium
distribution is not affected by the finite correlation time.
However for very short (long) correlation times βτc= 1
(βτc? 1) the distribution g(L) declines at a higher (lower) L
but values of βτc account for differences of at most ten percents
for L

*

< 3 and of less than a percent for L
*

> 4. This
dependence of the phase-space density on the parameter βτc
for fixed values of L= [2, 2.5, 3, 3.5] is more clearly shown on
panel (c) of Figure (2). Thus, finite correlation times do not
significantly affect the long term equilibrium distribution but
longer autocorrelation times result in a more efficient filling of
the inner belts. In the next sections we will seek solutions of the
Fokker–Planck equation on intermediate timescales.

2.4. Time-dependent Evolution of the Distribution Function
with τc ≠ 0

In this section we seek self-similar asymptotic solutions of the
time-dependent Equation (15) derived in the limit t? τc. Our aim
is to determine the time dependence of the variance along the third

Figure 1. Dependence of the diffusion coefficient as a function of time and correlation time τc. The center and right panels show transient oscillatory dependence for t/
τc � 5 and the convergence to the steady values for t? τc.

12 To simplify the notation we now write L
*

→ L.
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adiabatic invariant, i.e., 〈ΔL*2〉∼ t s, and therefore estimate
whether the transport of particles is diffusive (s= 1) or not
(s≠ 1). A quantitative description of the diffusion for short and
long autocorrelation time allows us to use a radiation belt model in
order to extract information of the fluctuations responsible for the
transport of electrons. Self-similar solutions describe intermediate
asymptotic behavior of solutions in the region where the solution
is no longer dependent on the details of the initial and boundary
conditions but the system is still far from being in a state of
equilibrium (Barenblatt 1996). By assuming an open external
boundary, i.e., L

*ä [0, ∞ ], it is shown that self-similar solutions
exist in the limits of small but finite autocorrelation times (i.e.,
τcΩd= 1) and long autocorrelation time (i.e., τcΩd? 1) and
allow us to quantify the diffusion rate under each respective
regime.

2.4.1. Self-similar Solutions for Ωdτc ? 1

Our starting point is the diffusion Equation (15) written in
terms of g(L

*

)= fL*2 and the inverse of L
*

−1= χ:

c
c

c
¶
¶

=
¶
¶

¶
¶

g

t
D

g
. 18LL

4
⎜ ⎟
⎛
⎝

⎞
⎠

( )

In the limit of long autocorrelation times (t W-
c d

1 ) the
diffusion coefficient (14) can be approximated as

d
t
c

á ñ
~

-D
B

B

25

98

1
, 19LL

E c

2

2
10 ( )

and the diffusion Equation (18) for magnetic field autocorrela-

tion dá ñ
~
B

2
independent of L* is written as

d
t c c c

¶
¶

=
á ñ ¶

¶
¶
¶

~
g

t

B

B

g25

98

1 1
. 20

E c

2

2 6
⎜ ⎟
⎛
⎝

⎞
⎠

( )

Normalizing time τ= σt with the parameter s t= dá ñ -
~
B

B c
25

98
1

E

2

2 the

diffusion equation can be written compactly as

t c c c
¶
¶

=
¶
¶

¶
¶

g g1
. 21

6
⎜ ⎟
⎛
⎝

⎞
⎠

( )

By dimensional analysis, a self-similar solution can be found in
terms of the function g>=Ψ(κ)/τλ 13 for the variable
κ= χ8/τ and the constant to be determined λ. This change
of variable from (χ, τ)→ (κ, τ) reduces the partial differential
Equation (21) into the following ordinary differential equation:

k k lY¢ + + Y¢ + Y =¢64 8 0. 22( ) ( )

In the absence of sources and sinks, we require that the phase-
space density along χ, or equivalently L*, be conserved for the
domain ÎL L0, max* *[ ], or equivalently c Î ¥-L ,max

1*[ ]. The
asymptotic limit in which our solution is valid is detailed below
in terms of the number density of particles ns. This translates
into the following condition:

ò c c =
¥

>-
g t d n, . 23

L
s

max
1

( ) ( )

Written in terms of the variable κ, the integral takes the
following form:

òt
k k kY =

l t-

¥
-

- -
d n

1

8

1
. 24

L
s1 8

7 8
1

max
8

( ) ( )

In order for the number of particles to be constant in time since
we have no sink nor source, we require our self-similar solution
to have λ= 1/8 and the lower bound of the integral to always
remain small, i.e., e t= - -L 11

max
8  . The second-order ODE in

Equation (22) can then be written in terms = Y¢ + YP 64 as

k ¢ + =P P
1

8
0, 25( )

with the solution P= c1κ
−1/8 and integration constant c1. The

general solution for Equation (22) can be written as

òk k kY = + ¢ ¢k
k

k-

-¥

- ¢e c c e d . 2664
2 1

1 8 64⎛
⎝

⎞
⎠

( ) ( )

Since the solution needs to be finite to conserve the number of
particles under the constraint (24), we set c1= 0.14 Using this

Figure 2. Panels (a) and (b) show the equilibrium distribution function g(L
*
) and f = g/L*2 as a function of L* for normalized autocorrelation times b m t, c( ) ranging

between 10−2 and 102. In panel (c) the phase-space density for fixed values L
*
= [2, 2.5, 3, 3.5] is plotted as a function of the parameter βτc.

13 The subscript symbol > indicates that we are looking at a solution for the
long autocorrelation time. In the next section, the distribution function for the
short autocorrelation time will be denoted with the subscript <, i.e., g<.
14 Inserting Equation (26) into Equation (24) results in a logarithmic divergent

integral ò k k
¥ - d

0
1 , so we have to set c1 = 0.
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same constraint, i.e., integral (24), we can find the value of c2
and the general solution for g(χ= 1/L

*

, t) in terms of the
gamma function òG =

¥ - -z x e dxz x
0

1( ) for >z 0( )R and the

identity p pG G - =z z z1 sin( ) ( ) ( ):

s
=

G
>

-
sg L t

n

t
e,

8
. 27s

3 4

1

8
1 8

L t
1

64 8* *( )( )
( )

( )

The solutions g>(L
*, t) and f>(L

*, t)= g>/L
*2 are plotted in

Figure 3 to highlight the flattening of phase-space density with
time. It should be kept in mind that in order to be consistent
with the lower bound integral limits in Equations (23) and (24),
this solution is valid for timescales:

t

d
W

W

á ñ
~

>t
L

B

B
3.92 , 28D

D c E

max
8

2

2

( ) ( )

with the notation tW >D c( ) indicating that the term is much larger
than 1 and corresponds to the value for long autocorrelation time.
Even though our solution is only valid in the asymptotic limit
defined above, it allows us to infer that the diffusion along χ or L*

is subdiffusive and independent of the drift frequency ΩD. The
subdiffusive transport for the long autocorrelation time can be
computed exactly from the variance in χ according to

ò ò

c c c

c c c c c c

s

áD ñ = á ñ - á ñ

= -

=
G
G

-
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G G

> > >
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⎛
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⎞
⎠
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( ) ( )
( )

( )
( ) ( )

( )

s
G
G

n t2
3 8

1 8
, 30s

3 2 1 4( )
( )

( ) ( )

Thus, the square root of the variance in χ scales as
cáD ñ ~ t2 1 8, instead of cáD ñ ~ t2 1 2 as would be

expected for standard diffusion.

2.4.2. Self-similar Solutions for Ωdτc = 1

In the limit of short autocorrelation times (t W-
c d

1 ) the
diffusion coefficient (14) can be approximated as

d
t c

á ñ
W

~
-D

B

B

25

98
, 31LL

E
d c

2

2
2 10 ( )

and the diffusion Equation (18) as

d
t c

t
c c

¶
¶

=
á ñ ¶

¶
W ¶
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~
g

t

B

B

g25
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1
. 32

E c
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6
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⎛
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⎤

⎦
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Normalizing time τ= σt with the parameter s t= dá ñ -
~
B

B c
25

98
1

E

2

2 and

assuming a dependence of the drift frequency Ωd= βL−2= βχ2

the diffusion equation can be written compactly as

b t t c c c
¶
¶

=
¶
¶

¶
¶

g g1 1
. 33

c
2 2 2

⎜ ⎟
⎛
⎝

⎞
⎠

( )

Following the exact same procedure as in the previous section,
a self-similar solution can be found in terms of the function
g< =Ψ(κ)/τλ for the variable κ= χ4/τ. The second-order
ODE that needs to be solved can then be written in terms
= Y¢ + YP 16 and k ¢ + =P P 4 0. By enforcing the

constraint (23), it can be shown that time-dependent solutions
for small autocorrelation times can be written as

p s bt
=

G
<

<

-
bt s<g L t

n

t
e,

2 3 4
. 34s

c
1 4 1 2

L c t

1

16 4 2* *( ) ( )
( ) ( )

( )( )

The flattening of g<(L
*, t) and the spread f<(L

*

, t)= g</L
*2

across lower L* are shown in Figure 4. The above solution is
valid in the limit of

b
d btá ñ
~

<
t

L

B

B
3.92

1 1
, 35E

cmax
4

2

2 ( )
( )

or written in terms of the drift frequency as

d t
W

á ñ W~
<

t
L L

B

B
3.92

1 1
. 36D

E

D c
4

max
4

2

2 ( )
( )

We note from the temporal dependence in denominator that the
diffusion along χ for particles interacting with fluctuations that

Figure 3. Evolution of the distribution function g(L*, t) and f = g/L*2 as a function of L* and t for long autocorrelation times t W-
c D

1 . The rms magnetic fluctuation

is set to dá ñ =B B0.01 E
2 .
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have very short autocorrelation time is also subdiffusive but
dependent on the drift period through the term β. Similarly to
the case for long autocorrelation time, we compute the variance
in χ to find

ò ò

c c c

c c c c c c

p
bt s

áD ñ = á ñ - á ñ

= -

= G -

< < <
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<

¥
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n t
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2
3 4 1

2
37s c
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2 2 2
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2

3 2
2 1 2

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

( ) ( )

( ) ( ) ( )

s tW <n t L1.35 . 38s D c
1 2 2*( ) ( ) ( )

Thus, the square root of the variance in χ scales as
cáD ñ ~ t2 1 4, instead of cáD ñ ~ t2 1 2, as one would find

for standard diffusion. However, compared to the case for long
autocorrelation times, the appearance of the drift frequency

b mW = - L,D
2*( ) indicates that diffusion depends on the

adiabatic invariant and energy of the particles. Therefore,
particles of various energy and pitch-angle will experience
greater variations in their diffusion rate than for long
autocorrelation time.15

2.4.3. Numerical Comparison of Diffusion Time for Arbitrary Values
of Ωdτc

At this point we can also answer the following question: in
the absence of sinks or sources, do particles diffuse faster for
short or long autocorrelation time? A priori the dependence of
〈Δχ2〉< as t1/2 compared to t1/4 suggests that transport for
short autocorrelation is faster. However, taking the ratio of
Equation (37) with Equation (29) gives

c
c

d t
t

t t

áD ñ
áD ñ

=
á ñ

´ W W W

<

>

>

<

< <

B

B

t L L

1.07

.
39

E

c

c

D c D D c

2

2

2

2

1 4 1 4

3 4 1 4 2 3 4 2* *

⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
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( ) ( ) ( )
( )



With a ratio of long to short autocorrelation time of order
t
t

>

<
30c

c
 (Lejosne et al. 2013) the first four terms on the first

line are all comparable or smaller than 1 and the above
coefficient is much smaller than unity even for ΩDt? 1 and
L

* ä [1− 10].16 We therefore expect transport due to long
autocorrelation to be much faster than for short autocorrelation
times across typical radiation belts condition. We can test the
validity of this dimensional analysis numerically by seeking
numerical solutions for arbitrary values of ΩDτc of the diffusion
equation

¶
¶

=
¶
¶

¶
¶

< < >
g

t
L

L

D

L

g

L
L t, for 0 10, 0, 40LL2

2
⎛
⎝

⎞
⎠

( )

and subject to the boundary conditions g(L= 10, t)= g(L=
0, t)= 1 and the initial perturbation = = +g L t, 0 1*( )

- -L L0.2 exp 0.50
2 2* *[ ( ) ]. We run the simulation for para-

meterized correlation time βτc= [0.1, 1, 10] and for a
normalized time of βt= 10.17 Figures (5) and (6) show the
result to the numerical integration from the left (a), center (b),
and right (c) panels for βτc= [0.1, 1.10] and a perturbation
centered at L* = 7 and L

*

= 5, respectively. Consistent with the
above dimensional analysis, a longer autocorrelation time
(βτc? 1) results in a faster flattening of the distribution along
L than for a shorter autocorrelation time. As the parameter
βτc� 1 decreases it takes longer for the initial perturbation to
spread along L*. The flattening of the initial perturbation when
βτc∼ 1 is also faster than for βτc= 0.1. Additionally, we
notice that the flattening of the distribution takes longer when
the initial perturbation is centered at L

*

= 5, than L* = 7. In
other words, radial diffusion is slower toward the inner belts.
These difference can be interpreted in terms of the behavior of
a single particle motion with short and long autocorrelation
times. For long autocorrelation times τc? τL, particles of a

Figure 4. Evolution of the distribution function g(L
*

, t) and f = g/L*2 as a function of L* and t for short autocorrelation times t W-
c D

1 . The rms magnetic fluctuation

is set to dá ñ =B B0.01 E
2 and ΩDτcL

*2 = βτc = 0.1.

15 The reader might have noticed that even though the dispersion in L* given
by Equation (12) is linear in time, the diffusion Equation (18) for both long and
short autocorrelation times gives subdiffusive transport. In order to obtain a
classical diffusive transport that scales as 〈ΔL*2〉 ∼ t the diffusion coefficient
must have a dependence of DLL ∼ L*4.

16 For times t comparable to 100 or 1000 drift period W tD
1 4( ) is comparable to

1, whereas tW < 1D c
3 4( )  and dominates the inequality.

17 The equation can be solved in a few lines on Maple with PDEtools
>restart; with(PDEtools); with(plots) >DLL ≔(L)->
sigma ∗L6*βτc/(L b t-

c
4 2 2* * +1)>parabolic ≔diff(u(t, x), t)-

(x∗x)∗(diff(DLL(x)∗(diff(u(t, x), x))/x2, x)) = 0 >IBC
≔[u(0, x)= f(x), u(t, 0)=1, u(t, 10)= 1] >pdesol ≔pdsolve
(parabolic, IBC, numeric, timestep = 1/40, space-
step=1/40)
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wide range of drift frequencies will sample the antisymmetric
field independently of their drift period. However, for very
small autocorrelation times τc� τL, the sampling and interac-
tion time of the field by the particle is reduced.

3. Conclusion

In this study, we revisited the radial diffusion formalism of
planetary radiation belts by relaxing the assumption of zero
correlation time typically found in stochastic acceleration
models. We derived a diffusion coefficient and found self-
similar solutions of the Fokker–Planck equation in the limit of
short (τL? τc) and long (τL= τc) autocorrelation times. We
showed that intermediate solutions of the Fokker–Planck
equation for long autocorrelation time τc are subdiffusive with
a variance that scales as 〈ΔΦ2〉∼ t1/4 and result in transport
time independent of the drift frequency. On the other hand,
intermediate solutions of the Fokker–Planck equation for short
autocorrelation time τc depend on the drift frequency but result
in slower subdiffusive transport with a variance that scales as
〈ΔΦ2〉∼ t1/2. However, at least in the absence of sources and
sinks, particle transport for both short and long autocorrelation

times result in stationary distribution along L* with differences
of only less than 10% across lower magnetic drift shells. Thus,
the presence of turbulent fluctuations with long autocorrelation
time could result in faster diffusion of charged particles in
planetary radiation belts during intermediate times and before
the flattening of the distribution function across a broad range
of magnetic drift shells.
Our results are also indicative of a diffusion coefficient that

takes different parametric forms for short and long autocorrelation
times. For t W-

c D
1 the diffusion coefficient dependence on L*

scales as DLL; L*10, whereas for t W-
c D

1 the parametric
dependence scales as t tW ~D L LLL D c c

10 2 2 6 2* * . Thus, the
appearance of finite correlation times in the diffusion coefficient
should result in a parametric dependence in the L* exponent that is
less or equal than 10. Such dependence should be apparent from
observational studies inferring the parametric form of the diffusion
coefficient. Using Bayesian inference and the Van Allen Probe
measurements, Sarma et al. (2020) empirically determined the
parametric dependence of the diffusion coefficient. They find a
bimodal distribution for the exponent of L* in the diffusion
coefficient, with one peak centered above a value of 10 and
another, slightly more pronounced, below 10. Our study

Figure 5. Flattening of an initial perturbation g(L
*
, t = 0) centered at L* = 7 as a function of time and L*. The left, center, and right panels are plotted with

parameterized correlation time βτc = [0.1, 1, 10], respectively. The fluctuations’ variance are set to dá ñ =B B0.01 E
2 . The flattening of the initial perturbation at t = 0

takes longer for short autocorrelation time.

Figure 6. Same legend as in Figure 5, but with an initial perturbation centered at L
*

= 5.
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demonstrates that a spectrum of electromagnetic fluctuations with
an admixture of short and long autocorrelation times would
translate into a diffusion coefficient with a dependence in the L*

exponent less and equal than 10.
Despite the numerous simplifications (no drivers/sources or

sinks, time homogeneity, exponential autocorrelation function,
time-independent finite correlation time τc, constant in time and
space variance of the magnetic field fluctuations) our results
demonstrate the rich range of dynamical behavior possible
when only one of the assumptions for radial diffusion is
relaxed. However, previous studies also indicate that additional
assumptions, such as time homogeneity, are unjustified
(Lejosne et al. 2013) and that the autocorrelation function of
large-scale fluctuations is dependent on the geomagnetic
activity. Thus, in future studies, we will incorporate a loss
term and more realistic autocorrelation functions consistent
with empirical observations and parameterized in terms of
geomagnetic activity (Brautigam & Albert 2000; Lejosne et al.
2013).
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