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Abstract

The temperature changes for the future climate are predicted
to be the most pronounced in boreal and arctic regions,
affecting the stability of permafrost and fire dynamics of these
areas. Fires can affect soil microbiome (archaea, bacteria,
fungi, and protists) directly via generated heat, whereas fire-
altered soil properties have an indirect effect on soil micro-
biome. Fires usually decrease microbial biomass and alter
microbial community composition. These changes can take
decades to recover to prefire states. As the fire occurrence
times are expected to change in the future, and the fire return
intervals, intensity, and severity are expected to increase in
boreal environments, the fire-related changes in the soil
microbiome, including its recovery and resilience, are
inevitable.
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Introduction

Fire is one of the most important natural disturbances in
boreal environments, driving carbon (C) cycling and
storage [1*], restructuring microbiome [2*], and forest
plant species composition [3]. Currently, approximately
1% of the boreal forests is burning annually (Figure 1).
As boreal forests comprise roughly one-third of global
forested area and terrestrial C stocks, possible climate,
vegetation, and fire interactions in that area are of the
global importance to the future C dynamics [4]. Various
studies have projected changes in future fire regime,
including changes in the fire season length [5] and
occurrence time (spring vs summer fires) [6], increase
in fire frequency (return interval), intensity, and
severity [7,8]. In turn, these changes could change also
the forest stands domain by shifting the treeline
toward the north, increasing the share of deciduous
species in the currently conifer governed stands, and
affecting the permafrost regime, all contributing to the
regulation of climate stability [9,10].

Most of the boreal forest area is underlain by permafrost
[15], of which about 25% is predicted to thaw during the
21st century because of climate change [16]. Projected
increases in fire activity and subsequent changes in soil
properties may reinforce the deepening of the active
layer and thawing of the near-surface permafrost
[17,18*]. This exposes frozen organic matter to micro-
bial decomposition, causing a positive feedback to global
warming and fire activity [16]. The microbial decom-
position, in turn, is affected by both permafrost thaw
and fire regime.

Soils of boreal forests contain a large diversity of mi-
crobes, and the transformation of the soil organic matter
(SOM) in these soils depends on the activity of micro-
organisms, mainly fungi and bacteria [19]. The soil
microbiome is one of the main agents responsible for the
long-term sustainability of soil ecosystems [20], and
compared with soil chemical and/or physical properties,
it responds faster to different disturbances through
changes in biomass, metabolic activity, and community
structure [21]. Wildfires in different ecosystems usually
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Annual burned areas (10° ha) in boreal forests (2005—-2019): North America, including Canada (data from Canadian National Fire Database and from
Hanes et al., [11]) and Alaska (data from Alaska Department of Natural Resources and Moreno-Ruiz et al., [12]); Russia (data from Bondur and Gordo,
[6]); Scandinavia (data from Lindberg et al., [13], and San-Miguel-Ayanz et al., [14]).

decrease soil microbial biomass [22—26] and alter the
microbial species composition [2*]. The effects of fire
on soil microbiome (archaea, bacteria, fungi, and pro-
tists) are direct via combustion and generated heat
[27%*] or indirect through changes in soil properties and
vegetation [17]. It can take decades for microbial com-
munities to recover to prefire states [18%,24,26,28].

This review aims to synthesize both direct and indirect
effects of fires on soil microbial composition and func-
tion in boreal forests and to point out the possible
prospects for future studies to complement existing
knowledge.

Direct effects of fires on soil microbiome

In boreal forests, wildfires range from low-intensity
surface fires with no tree mortality (non-stand-replac-
ing fires) to high-intensity fires that kill all trees and
remove most of the soil organic layer (stand-replacing
fires) [3,29]. Depending on the degree of fire-induced
changes to vegetation and soils, fires are divided into
low-, moderate- and high-severity fires [2*]. In general,
extensive non-stand-replacing (low severity) fires of
low- and high-intensity dominate the fire regime in larch
(e.g. Larix sibirica and Larix gmeliini)- and pine (e.g. Pinus
syloestris)-dominated forests of the nonpermafrost re-
gions in Scandinavia, Russia, and Northern China,
whereas stand-replacing (high-severity) high-intensity
fires predominate in spruce (e.g. Picea mariana)- and pine
(e.g. Pinus banksiana)-dominated forests of Canada and
Alaska and in larch forests growing in permafrost soils of

Russia [30,31]. A typical fire creates a mosaic of
completely burned to scarcely burned or unburned
patches, which reinforces the spatial heterogeneity of
soil microbial communities.

Direct effects of fires on soil microbiota include con-
sumption of litter and soil humus—that is, loss of
habitat and killing living organisms by heat, which often
translate into decreased microbial biomass (Figure 2). In
theory, most of the living soil microorganisms will die in
temperatures close to 50 °C [32] due to the misfunc-
tioning of their enzymes and other essential cell com-
ponents. Although the soil heating temperature during
fire is inversely proportional to microbial survival, with
complete sterilization at low soil moisture levels and at
temperatures higher than 200 °C [23], longer heating
duration may cause significant microbial mortality at
much lower temperatures. The effect of heating is also
conditional on the microbial taxa, for instance, mycor-
rhizal fungi are considered to be more sensitive to heat
compared with bacteria, due to slower growth, and
essential association with living plants [26,33], whereas
some thermophilic microbial species such as archaea
have a higher resilience toward heating. At the same
time, we can find from fire areas fungi that have been
surviving fires—these extremophile fungi present after
fire can influence C dynamics, as plant—fungal re-
lationships are often species specific [34]. A future in-
crease in the severity of fire could potentially increase
local bacterial and saprotrophic fungal competition.
Lately, it has been also found that the stand-replacing
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Soil microbiome responses to forest fires. The positive and negative effects of direct and indirect effects on soil microbiome are presented with “+” and “-,

respectively.

crown fires in Eurasia have a smaller effect on the soil
microbiome than the surface fires [35]. It might be that
although the stand-replacing crown fires have much
higher burning temperatures, they are moving really
fast, and the high temperatures are not on the soil
surface but in the upper parts of the canopy. Although in
case of slowly moving surface fires, the burning tem-
peratures are lower, but fire has more time to affect
different soil properties.

Indirect effects of fires on soil microbiome
Although fires may directly cause microbial mortality,
the indirect fire effects on soil physiochemical condi-
tions and plant communities may surpass or counteract
the direct effects of fire (Figure 2). Currently, one of the
most important discussions in changing fire regime is on
the microbial sensitivity to fire severity. Although some
studies only identified negligible effects of soil severity
on bacterial community composition [36], generally,
increased fire severity has been observed to reduce the
microbial species richness in the microbiome and/or
alter the community composition [2%,23,37].

Fire changes the soil environment by combusting and
charring the organic matter (Figure 2). At temperatures
around 300 °C, it can alter the structure of SOM com-
plexes, producing pyrogenic compounds (e.g. alkaline
ash and charcoal) [38]. However, it already results in
significant reductions of the structure of SOM, reducing
the decomposition ability of microbes, at temperatures
lower than 300 °C. Fires also tend to increase postfire
soil temperature and decrease soil moisture. Soil mi-
crobial communities may respond to fire-caused tem-
perature changes by shifting their distribution in the soil

profile, moving deeper in the soil profile if surrounding
temperatures are outside of their optimal thermal range
[39]. Because of the effect of combined temperature
and moisture on microorganisms, postfire microbial ac-
tivity in warmer soils will change depending on the
water availability of the pre- and post-fire soil [27%*].
Hydrophobic nature of charred material may also result
in faster drying of the soil surface. In addition to hy-
drophobic material and removal of the protective forest
floor vegetation and organic matter, fire exposes surface
soils to increasing runoff and/or erosion [40]. If roots are
dying and decompose, they no longer bind the soil in
place, and the erosion happens both through wind and
water.

Soil pH is one of the major drivers of soil microbial di-
versity and richness [41—43]. It has been observed that
presumably because of the increase in postfire pH, soil
fungal diversity in boreal forests increased after the
fire and then started to decline over time [33]. However,
Whitman et al. [2*] and Hui et al. [28] observed that
soil bacterial communities were more strongly struc-
tured by pH compared with soil C, whereas soil C stock
was a stronger predictor for soil fungal communities. In
case of low-severity surface fires, the postfire increase in
fungal diversity [33] might be associated with a litter
pulse from the dead vegetation. In such case, the ma-
terial is rapidly colonized by fungi specializing to the
carly stages of substrate decomposition. In later stages
of the postfire succession, the remaining organic frac-
tions of C become more recalcitrant, and the mycor-
rhizal abundance increases as the easily decomposable
compounds are consumed. In addition, global-scale
studies have found that the fungal-to-bacterial ratios are
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highly correlated with soil C:N ratio [44]. Although the
pyrogenic matter generated after the fire is high in C:N
ratio, soil available C:N of the burned forest is lower
than that of the unburned, resulting in lower fungal
biomass compared with bacteria [18%].

Microbiome resilience and functional
recovery

As we presented, fires affect the soil microbiome
directly via heat-induced mortality and indirectly by
altering the postfire physicochemical and biological
environment of soil (Figure 2). Wildfires usually change
soil microbiome, and it can take decades to recover to its
prefire level. At the same time, soil microbiome shows
different levels of resistance (i.e. the degree to which
the microbiome remains unchanged) and resilience (i.e.
the rate at which microbiome returns to its original
composition after being disturbed) [45]. However,
microbiome resilience is not studied often probably
because of biases in sampling intensity or duration
[25%*]. Currently, there are not many studies known to
us that concentrate on the resilience of microbiome to
fire in boreal ecosystems.

For the recovery processes, postfire environmental
conditions of the area are critical. If the conditions are
not equal compared with prefire, then microbial com-
munities will not recover to the prefire state. This
concerns particularly pH-sensitive and host-associated
microbial species, such as mycorrhizac. The postfire
spatial heterogeneity of the soil environment also plays a
major role in the recovery by providing sources of inoc-
ulum [46]. As many microbes reproduce rapidly (in
hours or days) [2*,46], the setbacks to microbial com-
munities may be short term as long as some individuals
are spared. In such cases, the redistribution and
spreading of the microbiome in the area, along with
improving physicochemical conditions, is the critical
phase of functional recovery.

The long-term effects of wildfires on soil microbial
community are expected to increase because of
increasing fire frequency. For example, a shift in the age
of a forest stand will affect dramatically the structure of
the microbial community. Despite there are no clear
evidence on the recovery trends of microbial community
composition within the first 10 years after fire [25%*],
the recovery of microbial respiration and carbon cycling
activities to prefire levels might take decades. In gen-
eral, fungi are proved to be more sensitive to heat
compared with bacteria. At the same time, fungal growth
rate after a fire is lower than that of bacteria (bacteria
reproduce faster). In boreal forests, ectomycorrhizal
fungi are common and have been shown to decline after
a fire more drastically compared with other fungal
groups [23,33] because of the loss of vegetation. It may
take decades for ectomycorrhizal fungi to recover to

prefire levels
vegetation.

[47,48] along with the recovery of

Postfire plant recovery enriches the soil with organic
matter, eventually restoring the naturally low levels of
bacterial and fungal diversity. Thus, through postfire
ecosystem succession, environmental characteristics
become dominant drivers of microbial communities. Of
course, this trend can persist till we have sufficient time
between the fires. If the fire return intervals will
shorten, and the areas are not able to recover, there will
be less biomass (fuel) for the next burn. This will
decrease the burn severity, and studies of fire effects on
the soil microbiome face a completely new situation.

Conclusions

Responses of different microbial groups to forest fires
have been studied for decades [2*,25%*], but only a few
studies have considered the long-term recovery of
boreal, subarctic, and/or arctic forests after fires or the
coupled effect of climate change and more active fire
regimes on the soil microbiome.

Predicted changes in climate, such as warmer temper-
atures, dry summers, and earlier spring snowmelt, are
expected to change the fire dynamics in northern eco-
systems. Burn severity is predicted to increase in boreal
forests, and even greater effects on microbiome are ex-
pected to accompany. However, this might be
constrained in fire-prone areas where fire frequency is
also expected to increase.

As the soil microbiome plays a crucial role in the
mineralization of SOM, and the quality of SOM is
modified by both fire and soil microbes concomitantly,
the predictions rely on the understanding of the dy-
namics of the soil microbiome in changing fire regime in
the future climate. To understand and predict the
possible changes, more information is needed on the
functionality in the microbial community after the fire
and its relation to SOM quality, for example, recalci-
trance to decomposition. Also, it is important to un-
derstand the fire resilience of soil microbiome and how
microbial communities recover in these ecosystems and
how they are affected by the possible changes in fire
dynamics. Our current knowledge in the field suggests
that future studies dealing with forest fires in the
northern latitudes should focus on microbiome-relevant
subcomponents of burn severity metrics, classification
of specific ecological strategies of fire-responsive mi-
crobes, postfire successional stages and changes in
microbiome through these, and alterations of microbial
functions and ecosystem services.
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sensitive soil ecosystems. It also brings out the potential ways how soil
microorganisms can be harnessed to help mitigate the negative con-
sequences of climate change.
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