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� DFA of MEG data may aid in the identification of the epileptogenic zone.
� Aberrant LRTC correlates with resection area and interictal epileptiform discharges.
� Relationship between aberrant LRTCs and resection area showed etiological dependence.

a b s t r a c t

Objective: To examine the usability of long-range temporal correlations (LRTCs) in non-invasive localiza-
tion of the epileptogenic zone (EZ) in refractory parietal lobe epilepsy (RPLE) patients.
Methods: We analyzed 10 RPLE patients who had presurgical MEG and underwent epilepsy surgery. We
quantified LRTCs with detrended fluctuation analysis (DFA) at four frequency bands for 200 cortical
regions estimated using individual source models. We correlated individually the DFA maps to the dis-
tance from the resection area and from cortical locations of interictal epileptiform discharges (IEDs).
Additionally, three clinical experts inspected the DFA maps to visually assess the most likely EZ locations.
Results: The DFA maps correlated with the distance to resection area in patients with type II focal cortical
dysplasia (FCD) (p < 0:05), but not in other etiologies. Similarly, the DFA maps correlated with the IED
locations only in the FCD II patients. Visual analysis of the DFA maps showed high interobserver agree-
ment and accuracy in FCD patients in assigning the affected hemisphere and lobe.
Conclusions: Aberrant LRTCs correlate with the resection areas and IED locations.
Significance: This methodological pilot study demonstrates the feasibility of approximating cortical
LRTCs from MEG that may aid in the EZ localization and provide new non-invasive insight into the
presurgical evaluation of epilepsy.
� 2021 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. This is an open

access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

More than 30% of all patients with epilepsy continue to have
seizures despite medication (Del Felice et al., 2010). Epilepsy sur-
gery offers an important treatment option for these patients (de
Tisi et al., 2011). However, the success of surgery is heavily depen-
dent on the accuracy of presurgical localization of the epilepto-
genic zone (EZ). The cornerstones of presurgical evaluation are
seizure semiology, magnetic resonance imaging (MRI), positron
emission tomography (PET), and scalp electroencephalography
(EEG) that may be complemented with magnetoencephalography
(MEG). The final delineation of the EZ is in many cases performed
with intracranial EEG, such as stereotactic EEG (SEEG) (Vakharia
et al., 2018), which requires a reasonably accurate hypothesis of
the EZ to guide electrode implantation (Kovac et al., 2017). Non-
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invasive localization of the EZ prior to invasive studies is a genuine
challenge for the conventional visual EEG reading. It is especially
challenging in extratemporal epilepsies, such as parietal lobe epi-
lepsy, because these cases often exhibit barely recognizable EEG
seizure activity or a very fast spread of ictal activity to other corti-
cal areas (Taylor, 2003; Beleza and Pinho, 2011; Ristic et al., 2012;
Salanova, 2012; Francione et al., 2015).

In order to support the identification of EZ with interictal SEEG
and EEG/MEG data, novel computational tools have been used to
quantify various features in the spontaneous EEG activity, such
as high frequency oscillations (Jacobs et al., 2018), functional con-
nectivity (Staljanssens et al., 2017), or metrics of scale-free dynam-
ics (Ramon et al., 2008). The scale-free brain dynamics are
characterized by power-law long-range temporal correlations
(LRTCs), and they are ubiquitous in neuronal activity
(Linkenkaer-Hansen et al., 2001). They are often estimated by
detrended fluctuation analysis (DFA) (Peng et al., 1994). The scal-
ing exponents of the LRTCs are frequency-band specific, individu-
ally characteristic measures that are modulated by stimuli and
tasks (Linkenkaer-Hansen et al., 2004; Nikulin and Brismar,
2005; Palva et al., 2013). The LRTCs are an emergent feature of a
system that operates near a critical state (Linkenkaer-Hansen
et al., 2001; Hardstone et al., 2012; Chialvo, 2010). Indeed, the
presence of LRTCs in brain dynamics (Linkenkaer-Hansen et al.,
2001), as well as the presence of neuronal avalanches (Beggs and
Plenz, 2003) and the correlations among avalanches and LRTCs
(Palva et al., 2013; Zhigalov et al., 2015) suggest that the brain
operates near a critical state (Chialvo, 2010; Beggs and Plenz,
2003; Plenz and Thiagarajan, 2007; Werner, 2010). The dynamic
state is controlled at least by a balanced neuronal excitation and
inhibition (E/I) (Beggs and Plenz, 2003; Poil et al., 2012; Meisel
et al., 2015; Meisel et al., 2016). Aberrant LRTCs have been reported
in many brain disorders, including depression (Lee et al., 2007),
schizophrenia (Nikulin et al., 2012), Alzheimer’s disease (Stam
et al., 2005; Montez et al., 2009), Parkinson’s disease (Hohlefeld
et al., 2012), and epilepsy (Monto et al., 2007; Ramon and
Holmes, 2013), which among other lines of evidence, has lead to
the hypothesis that the imbalance of E/I plays a role in the patho-
physiological mechanisms of a variety of brain disorders. A shift in
E/I balance towards excitation can be seen as an increase in the
LRTCs (Poil et al., 2012) until the brain surpasses from the subcrit-
ical state (Priesemann et al., 2014) to the supercritical state after
which the LRTCs begin to decrease. Excessive excitability is also
seen in epilepsy, and indeed, previous interictal EEG and MEG
studies have shown an increase in the LRTCs in the vicinity of
epileptic brain areas (Parish et al., 2004; Monto et al., 2007;
Witton et al., 2019). Parish et al. (2004) showed with SEEG that
in unilateral mesial temporal lobe epilepsy the affected hippocam-
pus exhibits higher LRTCs than the contralateral hippocampus.
Similarly, an intracranial grid EEG study by Monto et al. (2007)
found higher LRTCs in the vicinity of the neocortical EZ compared
to the rest of the measured cortex. More recently, a case study by
Witton et al. (2019) showed an increase in the LRTCs in epilepto-
genic brain areas with MEG. The prospect of non-invasive applica-
tion of the LRTCs to localize the EZ is an appealing novel method to
supplement conventional methods in the presurgical evaluation of
epilepsy. However, non-invasive studies are still scarce and it is
unclear how the LRTCs correlate with more conventional non-
invasive methods for EZ localization.

Here, we aimed to determine whether LRTCs estimated by DFA
from presurgical interictal MEG recordings correlate with conven-
tionally defined EZ in patients with refractory parietal lobe epi-
lepsy. We also assessed whether DFA scaling exponents correlate
with the conventionally identified locations of interictal epilepti-
form discharges (IED). Additionally, we assessed whether the
visual assessment of the spatial maps of the DFA scaling exponents
1516
could be used to identify the EZ in a manner that is analogous to
conventional radiological assessment. We aimed to emulate a situ-
ation where the DFA scaling exponent maps were assessed as any
other radiological imaging modality images as per the clinical
pipeline.
2. Methods

2.1. Patients

Helsinki University Hospital epilepsy surgery register was
searched for patients that had undergone resective parietal lobe
epilepsy surgery during a 25-year time period between 1991–
2016. The inclusion criteria for this study were that the patient
had: (1) undergone resective parietal lobe epilepsy surgery; (2) a
minimum of two years of post-operative follow-up; (3) pre-
operative MEG recordings with a minimum of 10 min of continu-
ous data without ictal events; (4) no previous cortical resection
or large cortical malformations; (5) availability of pre- and post-
operative T1-weighted MR images.

In total 10 patients fulfilled these criteria. 25 patients were
identified of whom 18 had preoperative MEG recordings. The
MEG data of one of these patients was irretrievable. Out of the
17 patients left, 14 had at least 10 min of continuous MEG data.
Four patients were additionally excluded due to a previous cortical
resection, a large cortical malformation that extended over most of
the affected parietal lobe complicating segmentation, absence of
post-operative MRIs, or excessive edema in the MRI that precluded
accurate delineation of resection area.

All patients had multiple MEG measurements with different
conditions performed as per clinical protocol. In these cases, all
measurements that complied with the inclusion criteria were
included. In total 16 MEG measurements of 10 patients were
included (Table 1).

We grouped patients according to etiology into three categories,
namely ”FCD I”, ”FCD II”, and ”Other”. These groups contained 3, 4,
and 3 patients respectively (Table 1). The Other group included
patients with perinatal infarction, intraventricular hemorrhage,
and one patient with simultaneous perinatal infarction and FCD
type III.

The study was approved by the HUS Medical Imaging Center,
University of Helsinki and Helsinki University Hospital. All data
were collected retrospectively from the patient records and from
the studies which had been carried out as part of the routine pre-
operative evaluation.

2.2. Measurements

Electrophysiological recordings were performed with 306-
channel Elekta VectorviewTM (MEGIN (Elekta Oy), Helsinki, Finland)
consisting of 204 planar gradiometers and 102 magnetometers at
600 Hz sampling rate. An online digital band-pass filter of 0:1 to
200 Hz was applied in every recording. Head position indicator
(HPI) coils were used to determine the head position within the
MEG gantry. The HPI coils were referenced to three anatomical
fiducial points (left and right preauricular points, and nasion)
before the MEG measurements. Seven patients had continuous
head position tracking during the measurements.

2.3. Data preprocessing

The raw MEG data were processed with tSSS using MaxFilter
software (MEGIN) (Taulu et al., 2005; Taulu and Simola, 2006).
We inspected the recordings visually to exclude bad channels
and ictal events. Ocular and heartbeat artifacts were detected with



Table 1
Information on the patients included in this study. Abbreviations: AED, anti-epileptic drug; AZA, acetazolamide; CBZ, carbamazepine; CPN, common peroneal nerve; CLB,
clobazam; CP, centro-parietal; CZP, clonazepam; ECoG, electrocorticography; FCD, focal cortical dysplasia; FPHT, fosphenytoin; FTP, fronto-temporo-parietal; IntraOP,
intraoperative; IVH, intraventricular hemorrhage; LEV, levetiracetam; LP, left parietal; LTG, lamotrigine; MN, median nerve; OXC, oxcarbazepine; P, parietal; PI, parieto-insular;
PVL, periventricular leukomalacia; RH, right hemisphere; RP, right parietal; RTP, right temporo-parietal; SEEG, stereoelectroencephalography; SEF, somatosensory evoked field;
SPL, superior parietal lobule; STM, sultiame; T, temporal; TN, tibial nerve; TPM, topiramate; VEEG, video electroencephalogram; VPA, valproic acid; ZNS, zonisamide.

Patient Sex Age at onset/ MRI lesion VEEG SEEG/
Grid/

Etiology AEDs at MEG Resection Engel MEG Analysis

Age at
operation

IntraOP
ECoG

outcome measurement length
(s)

01 F 12y=22y - RH, hand Grid FCD IIb OXC, LEV,
CZP

RP lateral Ia 01. MN SEF 986

sensorimotor
area

AZA, FPHT,
VPAa

02 F 6m=4y5m RH, pre- and RH, CP IntraOP
ECoG

FCD I VPA, LTG RP lateralb IIIac 02. CPN SEF 888
post-central
gyrus
dysplasia

03 M 8y=17y - LH, FTP Grid FCD IIa CBZ, LTG,
LEV

LP lateral IIb 03. TN SEF 977

and mesial
04 M 3y6m=24y - RH, posterior Grid FCD IIb OXC, TPM RTP lateral Ia 04. Spontaneous 1323

T or P
05 F 5y=16y LH, SPL LH, mesial P Grid FCD IIb OXC LP lateral Ib 05. MN SEF 674

parasagittal and mesial 06. TN SEF 768
cortical
dysplasia

06 F 1w=7y RH, TP
ischemia

RH, P IntraOP
ECoG

Perinatal IVH VPA, STM,
CLB

RP lateral IIIa 07. TN SEF 1 1198

and mesial 08. TN SEF 2 938
07 M 9y=15y LH, P

ischemia
LH, CP Grid Perinatal

infarction
OXC, VPA LP lateral Ia 09. Tactile 837

and FCD IIId 10. TN SEF 688
08 M 5y6m=16y LH, PI

ischemia
LH, P Grid Perinatal

infarction
OXC, VPA,
ZNS

LP lateralb IIIa 11. Sleep 1377
12. Tactile 1 848
13. Tactile 2 1199

09 F 3-4y=14y - RH, mesial FP Grid FCD I OXC, ZNS,
CLB

RP lateral IVb 14.
Hyperventilation

692

and mesial 15. Tactile 873
10 M 6y=13y - Left/right/ 2 x SEEG + FCD I OXC, VPA RP

operculum
IVb 16. Spontaneous 1059

nonlocalizing Grid

a MEG study during focal status epilepticus; FPHT and VPA given as loading doses.
b extent of the resection limited by the proximity of the primary sensorimotor cortex.
c based on the effect on cognition; no significant reduction in seizures.

S. Auno, L. Lauronen, J. Wilenius et al. Clinical Neurophysiology 132 (2021) 1515–1525
electrooculogram and electrocardiogram respectively when avail-
able. We isolated these components with signal-space projection
as implemented in Brainstorm, and they were subsequently
removed.

We band-pass filtered the data with finite impulse response
(FIR) filter to four bandwidths of 1:00;6:25½ �Hz, 4:00;16:00½ �Hz,
11:00;44:00½ �Hz, and 3:00;48:00½ �Hz, which are here referred to
as delta, alpha, beta, and broadband (BB) bands respectively. The
FIR filter was based on a Kaiser window design as implemented
in Brainstorm. The ripple in pass and attenuation in stopband were
set to 10�3 and 60dB respectively. We excluded the band-pass
transients at the beginning and the end of the data from further
analysis.
2.4. Source projection and surface parcellation

Pre-operative anatomical MR images were processed with the
FreeSurfer software suite (https://surfer.nmr.mgh.harvard.edu/).
For individual MR protocols see Supplemental Information. The
processing pipeline included volumetric segmentation, surface
reconstruction, and cortical parcellation and labeling with Schaefer
2018 atlas (Schaefer et al., 2018) with the resolution of 200 parcels.

We performed the MEG-MRI coregistration and all subsequent
analysis with Brainstorm (Tadel et al., 2011) MATLAB toolbox
(MathWorks, Natick, MA, USA). The three fiducial points were
automatically placed in Brainstorm on the individual MRIs and
1517
MEG was coregistered by corresponding points. Further refining
was performed using digitized head surface points. One patient
(patient 02) did not have a digitized head surface, and in their case,
only fiducial points were used.

Brainstorm was used to compute overlapping spheres forward
models and cortically constrained source models. We performed
cortically constrained source estimation with the sLORETA method
(Pascual-Marqui, 2002) to estimate time series for 15000 source
vertices with an average vertex resolution of 4:4mm. Due to the
lack of empty room measurements, identity matrices were used
as noise covariance matrices. The source vertices were then col-
lapsed into parcel times series by calculating the average of the
sign-flipped time series of the vertices within the parcel. The sign
flipping depended on the source orientation so that the sign of
the time series of a source was flipped if the orientation of the
source was against the dominant orientation. We defined the dom-
inant orientation of a parcel by singular value decomposition of all
source dipoles within the parcel.
2.5. Detrended fluctuation analysis

Detrended fluctuation analysis was used to estimate the LRTC
scaling exponents (Peng et al., 1994; Linkenkaer-Hansen et al.,
2001). DFA implementation was adapted from the implementation
published earlier by Hardstone et al. (2012). First, we calculated
the amplitude envelope A tð Þ via the Hilbert transform. Then, we
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calculated the cumulative sum of the amplitude envelope to get
the signal profile:

Y tð Þ ¼
Xt

t0¼1

A t0ð Þ ð1Þ

We divided the signal profile (Y tð Þ) into W windows of size s with
50% overlap. A linear trend within each window was calculated
using a least-squares fit and subsequently removed from the signal
profile:

Ydtr t; sð Þ ¼ detrend Y t; sð Þð Þ ð2Þ

We then computed the fluctuation F sð Þ by taking the standard devi-
ation of the detrended signal profile Ydtr t; sð Þ for each window:

F sð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
N sð Þ � 1

XN sð Þ
t¼1

Ydtr t; sð Þ � Ydtr sð Þ� �2s
ð3Þ

where N sð Þ is the number of samples within the time window of
size s. The median of the fluctuation F sð Þh i was calculated and this
process was repeated for 20 logarithmically spaced time windows
between 10 and 60 s.

The rationale for using median instead of mean as was used in
Hardstone et al. (2012) was to exclude the possible effects of large-
amplitude artifacts that may bias the mean.

We then plotted the median fluctuation values against the time
windows on logarithmic axes (Fig. 1B). These quantities were lin-
early correlated and the slope was defined as the DFA exponent a:

log F sð Þh i ¼ a log sð Þ ð4Þ

We use a as an estimate for the LRTC scaling exponent.
We calculated DFA exponents for each parcel time series of each

frequency band of each measurement. With 16 measurements all
band-pass filtered into 4 frequency bands, this resulted in 64
DFA exponent distributions. The DFA exponents were then mapped
onto the pial surface of each patient to form DFA maps for
visualization.
Fig. 1. Overview of data acquisition and analysis. (A) MEG measurements and MRIs, an
epilepsy were acquired as part of clinical protocol. (B) The MRIs were used to create indiv
bandpass filtered MEG. The cortical surface was parcellated into 200 parcels and the sou
was performed for each parcel signal resulting in cortical DFA exponent (a) distribution.
patients for quantitative and visual analyses. In the quantitative analysis the distance
locations, and the magnitude of the DFA exponents were correlated and cross-correlated.
cortical DFA distribution visualizations and determined the most likely location of seizur
of these analyses by the etiology of the patients.
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2.6. Interictal epileptiform discharge analysis

IED detection and localization were performed separately in an
independent study by Wilenius et al. (2020). In brief, thirty min-
utes of interictal MEG data were selected from the measurements
of each patient. The MEG epochs used for the IED detection were
generally longer and only partly overlapping the epochs used for
the DFA. IEDs were identified visually from the MEG data and clas-
sified to spike types by an experienced clinical neurophysiologist
(JW). Further IED identification based on the spike types were per-
formed with a pattern search function in BESA Research 6.1 (BESA
GmbH, Gräfelfing, Germany). The IEDs of each patient were aver-
aged based on the spike type. Equivalent current dipole with a
single-shell spherical conductor model was performed using the
FieldTrip MATLAB toolbox (Oostenveld et al., 2011). The time inter-
val for dipole fitting was selected to start at the onset of the dis-
charge and to end at the earliest peak of the spike.

2.7. Visual assessment of DFA maps by clinical experts

Three experienced clinical neurophysiologists (LL, MP, and SV)
reviewed the DFA exponent distributions projected on individual
3D cortical images. The DFA maps were shown to them in the same
session without any other clinical information. Everyone gave their
assessment independently and blinded from each other’s assess-
ment. With the assumption that the DFA exponent is increased
near the EZ, they were tasked to visually assess the most likely
hemisphere and lobe for the EZ, based solely on the spatial distri-
bution of the DFA exponents. Then, the experts were tasked to
assess the most likely hemisphere and sub-lobe (superior or infe-
rior) given that the lobe is parietal in these patients. In ambiguous
cases, the experts had an option to answer ”I do not know”, which
was treated as missing data.

2.8. Data analysis and statistics

We assessed the relationship between the DFA exponents and
distance to the resection area and the IED locations by linear
regression and correlation coefficients. Since we sought to examine
d the relevant clinical information of 10 patients with drug-resistant parietal lobe
idual head models, which were used in the calculate of cortical source signals from
rce signals were collapsed into these parcels. detrended fluctuation analysis (DFA)
(C) These DFA exponent distributions were visualized on the cortical models of the
from the resection area, the distance from interictal epileptiform discharge (IED)
In the visual analysis three experienced clinical neurophysiologists assessed the 3D
e onset zone based on the DFA exponent distributions. We then grouped the results



Fig. 2. (A) Example figures demonstrating the collinearity of median fluctuation (F) and time window (s) at different parabolic indices (b). b-value was used to assess the
deviation from power law behavior (see Methods). Each example represents data from one parcel at one frequency band of one measurement. The three b-values correspond
to 50%;75%, and 95% cut-points of all b-values. Low b-value indicates power law behavior. (B) The distribution of b-values at different frequency bands. (C) The relationship
between Pearson correlation coefficient (r) and b-value. (D) The distribution of the detrended fluctuation analysis (DFA) exponents (a) in different MEG measurements. The
gray zone indicates the range of DFA a values that indicate long-range temporal correlations. The horizontal axis shows the measurement number and the corresponding
patient number. Some patients had multiple MEG measurements performed as part of the clinical routine. The Pearson correlation coefficients (r) above the repeated
measurements indicate the repeatability of each measurement pair.
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the intrapatient correlations between the DFA exponent distribu-
tion and the resection area while maintaining ease of comparison
between patients, we rescaled the DFA exponents linearly between
0 and 1 for each patient and frequency band. We defined the nor-
malized DFA exponent a0 as:

a0 ¼ a�min Að Þ
max Að Þ �min Að Þ ð5Þ

where A is the set of DFA exponents of one measurement at one fre-
quency band, and a is a member of A.

We defined distance as the shortest distance between the cen-
troids of adjacent parcels (Dijkstra, 1959). The results were
grouped by the three etiologies and by frequency bands. We calcu-
lated the coefficient of linear regression and the Pearson correla-
tion coefficient for the first 10cm from the most central parcel of
the resection area and the IED location to the centroid of every
other parcel. Ideally, the change in the DFA exponents would be
very focal in the vicinity of the resection area. This implies that
including the whole hemisphere in larger brains would bias the
linear regression towards the baseline levels. To avoid this bias, lin-
ear regression was estimated only up to a standard distance from
the parcel of interest; it was aimed to cover the largest distance
from the resection center to the furthest adjacent non-resected
parcel in all patients (5:8cm), while also being less than the small-
est distance from the resection center to the furthest parcel over all
patients (17:5cm). A compromise between these needs was chosen
at 10cm.

The results of the visual assessment were likewise grouped by
etiology. We calculated accuracy relative to the resection area
and respective interobserver agreement (IOA) for each group and
each frequency band separately. The IOA was quantified by using
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the Krippendorff’s alpha (Ka) (Krippendorff, 1970; Krippendorff
et al., 2004). Ka measures observed disagreement relative to the
disagreement expected by chance. It was used instead of Cohen’s
kappa due to Ka allowing more than two observers and being able
to deal with missing data.

In order to assess the collinearity of the fluctuation values
against time windows and the deviation from the power law, we
calculated Pearson correlation coefficient and a parabolic index,
b, for each a (Monto et al., 2007). We defined the parabolic index
as:

b ¼ 1� E2

E1
ð6Þ

where E1 and E2 are the mean-squared errors (MSE) of the 1st- and
2nd-order least-squares fits of log F sð Þh i against log sð Þ respectively
(Fig. 2A). The values of b range from 0 to 1. If the data follows a lin-
ear trend, i.e. the fluctuations obey the power law, the 1st-order
MSE is low and b tends to 0. High b-values could indicate that the
data does not conform to power law.

In order to inherently and rigorously account for multiple com-
parisons, we generated surrogate data by randomly permuting the
locations of the resection centers and the IED location of a ran-
domly chosen patient, and performing the aforementioned analy-
ses on the surrogate data. For each set of surrogate data, we took
the greatest magnitude statistic between the four bandwidths as
the maximal statistic. We repeated this until all possible permuta-
tions or a sufficient sample of different permutations were
included to generate maximal statistic distribution against which
the experimental statistics could be compared to (Nichols and
Holmes, 2002). For further details on the maximal statistic
approach, see Supplemental Information. The 95%-confidence



Table 2
Results of the visual inspection by three experts. The experts were tasked to independently mark the hemisphere and the lobe that visually appeared to have the highest detrended fluctuation analysis (DFA) exponents. Then, given the
correct lobe but not hemisphere, they were to mark the hemisphere and sub-lobe (superior or inferior part of the lobe) based on the same criterion. The uncertainty of accuracy is the 95%-confidence interval. The interobserver
agreement is quantified by Krippendorff’s alpha. In bold are those accuracy-values that statistically significant (family-wise error rate -adjusted two-tailed p < 0:05). The asterisk signifies those values where the significance level is at
the minimum. Abbreviations: FCD, focal cortical dysplasia.

Correct hemisphere (expected accuracy: 0:50)

All FCD I or II Only FCD I Only FCD II Other MRI negative MRI positive

Bandwidth Accuracy Agreement Accuracy Agreement Accuracy Agreement Accuracy Agreement Accuracy Agreement Accuracy Agreement Accuracy Agreement

delta 0:72� 0:23 0:73 0:93� � 0:12 0:86 0:86� � 0:21 0:69 1:00� � 0:00 1:00 0:44� 0:30 0:40 0:90� � 0:16 0:79 0:62� 0:32 0:70
alpha 0:70� 0:14 0:74 0:82� 0:16 0:84 0:78� 0:31 1:00 0:87� � 0:12 0:71 0:53� 0:11 0:63 0:79� 0:22 0:78 0:64� 0:17 0:73
beta 0:61� 0:21 0:81 0:71� 0:20 0:83 0:62� 0:34 1:00 0:81� � 0:17 0:69 0:49� 0:38 0:71 0:68� 0:26 0:76 0:58� 0:29 0:81
bb 0:74� 0:19 1:00 0:86� 0:17 1:00 0:78� 0:31 1:00 0:94� � 0:09 1:00 0:59� 0:32 1:00 0:85� 0:24 1:00 0:68� 0:26 1:00

Correct hemisphere and lobe (expected accuracy: 0:125)
All FCD I or II Only FCD I Only FCD II Other MRI negative MRI positive

Bandwidth Accuracy Agreement Accuracy Agreement Accuracy Agreement Accuracy Agreement Accuracy Agreement Accuracy Agreement Accuracy Agreement
delta 0:28� 0:20 0:57 0:41� 0:26 0:73 0:43� 0:41 0:39 0:39� 0:36 1:00 0:10� 0:17 0:27 0:27� 0:30 0:61 0:28� 0:27 0:52
alpha 0:42� 0:24 0:63 0:59� 0:29 0:78 0:43� 0:41 0:76 0:73� 0:36 0:78 0:19� 0:23 0:44 0:45� 0:36 0:71 0:42� 0:32 0:58
beta 0:13� 0:17 0:51 0:22� 0:25 0:51 0:20� 0:33 0:39 0:24� 0:36 0:58 0:00� 0:00 0:42 0:00� 0:00 0:49 0:21� 0:27 0:58
bb 0:32� 0:22 0:61 0:44� 0:26 0:53 0:35� 0:44 0:69 0:51� 0:27 0:36 0:15� 0:26 0:65 0:23� 0:11 0:37 0:38� 0:35 0:80

Correct hemisphere when the correct lobe is given (expected accuracy: 0:50)
All FCD I or II Only FCD I Only FCD II Other MRI negative MRI positive

Bandwidth Accuracy Agreement Accuracy Agreement Accuracy Agreement Accuracy Agreement Accuracy Agreement Accuracy Agreement Accuracy Agreement
delta 0:70� 0:22 0:65 0:93� � 0:08 0:85 0:93� � 0:10 0:66 0:93� 0:13 1:00 0:39� 0:21 0:40 0:89� � 0:11 0:77 0:58� 0:30 0:58
alpha 0:59� 0:25 0:74 0:74� 0:25 0:84 0:69� 0:24 0:64 0:78� 0:39 1:00 0:40� 0:35 0:60 0:62� 0:29 0:77 0:58� 0:36 0:72
beta 0:55� 0:23 0:81 0:71� 0:17 0:83 0:69� 0:24 1:00 0:74� 0:24 0:66 0:35� 0:35 0:70 0:68� 0:23 0:77 0:49� 0:31 0:81
bb 0:61� 0:27 0:91 0:79� 0:17 0:84 0:69� 0:24 0:69 0:88� 0:18 1:00 0:40� 0:48 1:00 0:79� 0:22 0:79 0:52� 0:38 1:00

Correct hemisphere and sub-lobe when the correct lobe is given (expected accuracy: 0:25)
All FCD I or II Only FCD I Only FCD II Other MRI negative MRI positive

Bandwidth Accuracy Agreement Accuracy Agreement Accuracy Agreement Accuracy Agreement Accuracy Agreement Accuracy Agreement Accuracy Agreement
delta 0:47� 0:28 0:69 0:67� 0:27 0:79 0:43� 0:41 0:76 0:86� 0:17 0:78 0:20� 0:34 0:56 0:68� 0:26 0:70 0:34� 0:38 0:67
alpha 0:34� 0:26 0:62 0:52� 0:37 0:88 0:19� 0:34 0:71 0:78� 0:39 1:00 0:10� 0:07 0:22 0:47� 0:42 0:84 0:27� 0:33 0:50
beta 0:28� 0:20 0:59 0:45� 0:23 0:65 0:26� 0:29 0:71 0:60� 0:24 0:53 0:05� 0:09 0:45 0:46� 0:27 0:52 0:17� 0:23 0:61
bb 0:32� 0:24 0:87 0:45� 0:31 0:87 0:20� 0:34 0:71 0:67� 0:35 1:00 0:15� 0:26 0:86 0:47� 0:42 0:84 0:24� 0:26 0:89
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Fig. 3. Relation between detrended fluctuation analysis (DFA) exponent and distance from resection center at different bandwidths and different etiology groups. The linear
regression was performed with normalized DFA exponents and non-normalized distance. The leftmost y-axis represents the mean maximum, mean, and minimum non-
normalized DFA exponent values for each bandwidth. Binning was performed after the regression analysis. Each bin is 1cm wide. The whiskers correspond to 1:5 times the
interquartile range. The significance is tested against the resection center being in any other parcel. The significance level is represented by family-wise error rate -adjusted
two-tailed p-value. Abbreviations: FCD, focal cortical dysplasia.
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intervals for accuracy of visual inspection analysis were calculated
by bootstrapping (Efron, 1979). The usage of surrogate data enables
estimating the chance level without assumptions on the distribution
of data, and using the maximal statistic approach controls the
family-wise error rate (FWER) (Nichols and Holmes, 2002).
1521
3. Results

3.1. Visual assessment of DFA maps

The visual assessment of the DFA maps showed typically one or
a few clusters of higher DFA values. Hence, akin to the clinical



Fig. 4. Relation between detrended fluctuation analysis (DFA) exponent and distance from interictal epileptiform discharge (IED) location. The linear regression was
performed with normalized DFA exponents and non-normalized distance. Patients with in ”FCD I” and ”Other” categories had multiple different IED locations. In these cases
the IEDs with overall best agreement with DFA exponent is shown. The leftmost y-axis represents the mean maximum, mean, and minimum non-normalized DFA exponent
values for each bandwidth. Binning was performed after the regression analysis. Each bin is 1 cm wide. The whiskers correspond to 1:5 times the interquartile range. The
significance is tested against the resection center being in any other parcel. The significance level is represented by family-wise error rate -adjusted two-tailed p-value.
Abbreviations: FCD, focal cortical dysplasia.
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visual assessment of any processed neuroimaging data, we sought
out to first determine whether a visual assessment of the DFA
maps could provide a reliable prediction of the EZ. To this end,
three experts assessed the DFA maps from all frequencies, while
being blinded to each other as well as to the patient information.
We estimated the accuracies, related p-values, and interobserver
agreements for all frequency bands (Table 2).
1522
3.1.1. Hemisphere and lobe
The correct hemisphere was identified with an accuracy of

0:69� 0:18 (p < 0:05) and an interobserver agreement (IOA) of
0:82 when averaging over all frequency bands and etiologies. Etiol-
ogy wise, significantly above chance level lateralization accuracy
and high interobserver agreement was achieved only in the FCD
groups, whereas in the other etiologies the accuracy was at chance



Fig. 5. (A) Pearson correlation coefficients (r) and partial correlation coefficients
between three variables, namely detrended fluctuation analysis (DFA) exponent (a),
distance to the resection center (Ddr), and distance to interictal epileptiform
discharge (IED) location (Dds). In each patient, the IED location closest to the
resection area center was considered. The correlations are mean correlations over
all frequency bandwidths and the uncertainty is the corresponding standard
deviation. Values in bold red are statistically significant (two-tailed p-value < 0:05).
(B) Two examples (Patient 04 Spontaneous and patient 05 MN SEF) of DFA exponent
distributions at broadband bandwidth. The green outlines show the extent of the
surgical resection. Abbreviations: FCD, focal cortical dysplasia.
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level (average accuracy: 0:51� 0:27). The two FCD groups were not
significantly different in lateralization accuracy (p > 0:05).

The correct hemisphere and the correct lobe were identified
with an accuracy of 0:29� 0:19 (p < 0:05) and IOA of 0:59 over
all patients. The change-level accuracy was 0:125. The accuracy
was better in the FCD groups than in the other etiologies
(0:41� 0:23 and 0:11� 0:16 respectively) and the two FCD groups
were again not significantly different (p > 0:05).

3.1.2. Hemisphere and sub-lobe
When lateralizing the known parietal lobe, the lateralization

accuracy was slightly poorer than when the lobe was not known
(0:61� 0:22; p > 0:05). However, this difference was not signifi-
cant (p > 0:05). High lateralization accuracy was achieved in the
combined FCD group but not in the other etiologies (0:79� 0:14
and 0:39� 0:32 respectively). The two FCD groups were not signif-
icantly different in accuracy (p > 0:05) when compared to each
other.

Visually identifying both the correct hemisphere and the correct
sub-lobe (inferior or superior) of the known lobe was feasible only
in the delta band (Table 2) when all etiologies were taken into
account. Out of the three etiology groups, the FCD II group was
the only group where both the correct hemisphere and the correct
sublobar region of the known lobe ware consistently identified
(0:73� 0:24; p < 0:05; IOA ¼ 0:80, chance-level accuracy: 0:25).

3.2. Distribution of DFA exponents against resection area and IED
locations

The DFA exponents had a significant (p < 0:05) negative linear
correlation with the distance to the resection area in all frequency
bands in the FCD II patient group (Fig. 3). A similar negative corre-
lation was observed in the FCD I etiology group, although the effect
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was less pronounced and statistically significant only at the beta
band. The group with the other etiologies showed no correlation
between the DFA exponents and the distance to the resection area.
The magnitude of slope and correlation coefficients were the high-
est in delta and broadband bands over all patients.

All patients with FCD II had one IED location per patient and
their IED location correlated strongly with the DFA exponent distri-
bution. Concurrently, the DFA exponents also correlated strongly
with their IED locations in all but beta frequency band (Figs. 4
and 5).

Among the 3 FCD I patients, 7 distinct IED locations were
observed of which 5 localized on the operated hemisphere. We
observed no correlation between the DFA exponents and the IED
locations in FCD I patients (Figs. 4 and 5).

Similarly, among the 3 patients with etiologies other than FCD,
we observed 8 distinct IED locations. 3 of these localized on the
operated hemisphere. We observed no correlation between the
DFA exponents and the IED locations in this etiology group.
4. Discussion

Our work shows that the LRTCs are increased near the epilepto-
genic zone defined by the surgical resection area. This relationship
was observed both with correlation analyses and in a clinical visual
inspection of the cortical DFA exponent maps. The findings are in
line with previously reported results (Parish et al., 2004; Monto
et al., 2007;Witton et al., 2019). However, here we extend the prior
results by presenting the analysis using non-invasive recordings in
a clinically difficult-to-assess group of extratemporal epilepsies.
Our data also suggest that relationship between the cortical LRTCs
and the EZ may be dependent on etiology, which may offer new
insights into the understanding of the neural network mechanisms
associated with different etiological subgroups.

We found the highest and the most focally increased DFA expo-
nents in patients who had type II FCD, most of whom also had
Engel I outcome in the two-year post-surgery follow-up. Addition-
ally, three out of four of the FCD II patients were MRI-negative
(Table 1). The DFA exponent was also observed to be increased
near the resection area in patients with type I FCD, although the
effect was not as pronounced as with FCD II patients. All FCD I
patients also had worse outcomes (III and IV) than the FCD II
patients. In patients with perinatal infarctions or double etiologies,
no correlation between the DFA exponents and the resection area
was observed. These findings were corroborated by visual inspec-
tion by expert clinical neurophysiologists. The hemisphere was
accurately and with high interobserver agreement recognized from
the DFA maps only in the FCD patients (both type I and type II). The
lobe or sub-lobe were reliably identified only in FCD type II
patients. With respect to the frequency band, the alpha and the
delta bands showed the highest congruence to the resection area,
whereas the beta band the worst. In previously reported intra-
cranial EEG results (Monto et al., 2007) the beta band was observed
to be the most sensitive to epileptic focus. However, detecting
high-frequency activity is more difficult with MEG than with
intra-cranial methods due to poor signal-to-noise ratio (Dalal
et al., 2009; Jerbi et al., 2009). Yet, we did observe statistically sig-
nificant correlation between the beta band DFA exponents and the
resection area in FCD patients, however, this did not materialize in
the visual assessment.

There are some limitations that affect the generalizability of the
present results. The cohort was relatively small and retrospective,
and we only included patients with parietal lobe epilepsy that had
undergone epilepsy surgery. A technical limitation in our data set
is the heterogeneity. The cohort included different etiologies with
a limited number of subjects in each category. In addition, patients’
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state could not be fully controlled in this retrospectively collected
cohort. Data segments included tactile or electric somatosensory
stimulations, hyperventilation, or sleep and awake resting-state
measurements. Linkenkaer-Hansen et al. (2004) showed that
external somatosensory stimulation decreases the magnitude of
the DFA exponent, particularly in the somatosensory cortex. On
the other hand behavioral state (sleep vs. awake) has been shown
to globally change the magnitude of the DFA exponent (Kim et al.,
2009; Lee et al., 2002). Anti-epileptic drug (AED) use was also not
controlled for (Meisel et al., 2015; Meisel et al., 2016). AEDs are
known to alter cortical dynamics and thus affect the DFA exponent
(Monto et al., 2007; Poil et al., 2011). Notably, these prior findings
report global effects on DFA by situational factors, hence they do
not directly challenge our present work showing spatially selective
DFA distributions. While these data provide proof of concept for
the potential of DFA to localize epileptogenic zone, these data do
not enable the estimation of the actual added value to the clinical
planning process of epilepsy surgery. Further studies are needed
with unselected and more variable patient population, including
such patients that were not eventually selected for surgery.

The apparent correlation with etiology is an interesting obser-
vation and solicits a closer investigation. To our knowledge, there
have not been previous reports on the etiological dependence of
the DFA exponents related to epilepsy. FCD II is known to exhibit
distinct interictal activity compared to other etiologies within the
cortical lesions as measured with SEEG (Tassi et al., 2012; Di
Giacomo et al., 2019). The EZ in the FCD II also tends to be more
focal whereas in the FCD I and in other etiologies it often involve
multiple lobes (Xue et al., 2016; Isler et al., 2017). This corroborates
our observations that the DFA exponent distributions were more
focal in the FCD II patients than in the other patients.

While promising, this is primarily a methodological pilot study
and there are several checkpoints that DFA-based assessment has
to pass before wider clinical adoption. At first, the specific use case
for DFA among the existing methodological repertoire in presurgi-
cal planning needs to be defined (Mouthaan et al., 2016). An obvi-
ous clinical need for such a method is in planning SEEG
implantation or subdural grid electrode placement. This requires
sufficient, but not necessarily perfect, accuracy in non-invasive sei-
zure onset zone localization. Our DFA pipeline is transparent and
automatizable. It may also be applied to high-density EEG record-
ings, preferably using source-level signals (Lai et al., 2018; Tokariev
et al., 2016). Our work showed quantifiable distribution patterns
speaking for an automated localization. Additionally, DFA may be
used in a more classical manner, akin to any common radiological
assessment: the DFA exponent maps can be assessed visually, as
was done in our present work. This could lift some of the concerns
that clinicians might have with the use of fully automated analysis
methods. Finally, the critical question before wider clinical adop-
tion is whether clinical experts will see a perceived added value
from DFA over other, already existing non-invasive methods.
5. Conclusions

DFA exponent as a measure of LRTC is a promising tool for
presurgical evaluation of epilepsy. It may aid in localizing the
epileptogenic zone from spontaneous EEG, thus providing a com-
plementary tool to IED localization in interictal recordings. We
found the LRTC in the epileptogenic zone to correlate with the epi-
lepsy etiology. As this was primarily a methodological pilot study,
further exploration of this observation is warranted and might
offer additional insight into the pathological dynamics in epilepsy
and thus provide new information of epilepsy, in addition to
potentially improving patient care.
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