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A B S T R A C T   

Solar-induced Fluorescence (SIF) has an advantage over greenness-based Vegetation Indices in detecting 
drought. This advantage is the mechanistic coupling between SIF and Gross Primary Productivity (GPP). Under 
water stress, SIF tends to decrease with photosynthesis, due to an increase in non-photochemical quenching 
(NPQ), resulting in rapid and/or sustained reductions in the fluorescence quantum efficiency (ΦF). Water stress 
also affects vegetation structure via highly dynamic changes in leaf angular distributions (LAD) or slower 
changes in leaf area index (LAI). Critically, these responses are entangled in space and time and their relative 
contribution to SIF, or to the coupling between SIF and GPP, is unclear. In this study, we quantify the relative 
effect of structural and photosynthetic dynamics on the diurnal and spatial variation of canopy SIF in a potato 
crop in response to a replicated paired-plot water stress experiment. We measured SIF using two platforms: a 
hydraulic lift and an Unmanned Aerial Vehicle (UAV) to capture temporal and spatial variation, respectively. 
LAD parameters were estimated from point clouds and photographic data and used to assess structural dynamics. 
Leaf ΦF estimated from PAM fluorescence measurements were used to represent variations in photosynthetic 
regulation. We also measured foliar pigments, operating quantum yield of photosystem II (PSII), photosynthetic 
gas exchange, stomatal conductance and LAI. We used a radiative transfer model (SCOPE) to provide a means of 
decoupling structural and photosynthetic factors across the diurnal and spatial domains. The results demonstrate 
that diurnal variation in SIF is driven by photosynthetic and structural dynamics. The influence of ΦF was 
prominent in the diurnal SIF response to water stress, with reduced fluorescence efficiencies in stressed plants. 
Structural factors dominated the spatial response of SIF to water stress over and above ΦF. The results showed 
that the relationship between SIF and GPP is maintained in response to water stress where adjustments in NPQ 
and leaf angle co-operate to enhance the correlation between SIF and GPP. This study points to the complexity of 
interpreting and modelling the spatiotemporal connection between SIF and GPP which requires simultaneous 
knowledge of vegetation structural and photosynthetic dynamics.   
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1. Introduction 

Climate change poses several risks to agriculture, with drought 
identified as the single most important factor potentially limiting crop 
production in Europe (Olesen et al., 2011). Consequently, there is an 
urgent need for remote sensing products that quantify the impact of 
drought on productivity. Present insight into drought effects on pro
ductivity has been gained by fusing vegetation indices (VIs), repre
senting so called canopy greenness, with climatological dryness 
indicators such as the Palmer drought severity index (Alley, 1984). This 
combined approach has been used to estimate drought severity across 
space (Wardlow et al., 2012) and to quantify historical decreases in 
productivity on decadal time scales (Zhang et al., 2016). The main 
limitation of this approach is that greenness-based VIs do not capture 
shorter timescale changes in productivity that occur during a drought 
episode, as greenness potentially decouples from productivity at these 
scales. 

Unlike greenness-based VIs, solar-induced fluorescence (SIF) does 
respond near-instantaneously to rapid adjustments in the photosynthetic 
machinery (Porcar-Castell et al., 2014). Therefore researchers have 
begun to investigate the use of remote sensing retrievals of SIF for the 
detection of drought and water stress in crops. Zarco-Tejada et al. (2009) 
flew an Unmanned Aerial Vehicle (UAV) imaging spectroscopy platform 
to demonstrate a photosynthesis related SIF response to water stress in 
fruit trees. Using satellite data, Sun et al. (2015) found strong negative 
anomalies in SIF that captured large scale drought development across 
the USA. Sun et al. (2015) suggested that the response of SIF to extreme 
drought may be due to rapid photosynthetic related reductions in SIF, 
but also to canopy structure factors such as leaf wilting. Following from 
this, Zhang et al. (2019) found increased sensitivity of satellite SIF to 
drought in crops in Australia, relative to broadband VIs, suggesting that 
SIF could potentially be used as an improvement on the present drought 
detection approach. 

In contrast to the larger scale, where SIF is emerging as a reliable 
indicator of drought, evidence of leaf and canopy scale mechanisms to 
support this use is weaker. Although early work did show changes in 
steady state chlorophyll fluorescence (ChlF) in response to water stress, 
ChlF was measured with active fluorometers (Flexas et al., 2002), and 
nonlinear and species dependencies were noted between ChlF and sto
matal conductance. Helm et al. (2020) followed up on the earlier work 
with leaf level SIF instrumentation, and found that large drought-related 
reductions in net photosynthesis were followed by relatively smaller 
reductions in SIF. Also recently, Marrs et al. (2020) did not find 
consistent decreases in SIF following stomatal closure and related 
photosynthetic reductions in experimentally manipulated deciduous 
trees over a single day. These experimental results suggest that although 
SIF does respond to drought, the response may be weak. Hence there is 
an inconsistency between the satellite SIF evidence, which clearly cap
tures drought over and above the VIs, and leaf scale studies which 
suggest a muted response. 

ChlF is an emission of electromagnetic radiation in the red and far- 
red region of the spectrum by photosynthetic chlorophyll-containing 
predominantly leaf tissues exposed to visible light (Baker, 2008; Por
car-Castell et al., 2014). However, as satellite SIF retrievals of ChlF do 
not resolve individual leaves, the impact of canopy structure must be 
taken into account in addition to photosynthetic factors (Guanter et al., 
2014). At the canopy scale, the biophysical processes of SIF can be 
represented using a simple equation: 

SIF = APAR×ΦF × fesc (1)  

where APAR is absorbed photosynthetically active radiation (PAR) by 
green leaves which is decomposed into the product of the fraction of 
absorbed incident radiation (fPAR) and incident PAR (APAR = fPAR ×
PAR). ΦF is the fluorescence efficiency at the canopy level, and fesc is the 
probability that an emitted photon will escape the canopy in the 

direction of the sensor, i.e. the escape probability (Guanter et al., 2014; 
Huang et al., 2007; Zeng et al., 2019). Eq. (1) can be used to recast 
Monteith’s (1972) light use efficiency model in terms of SIF, as: 

GPP = APAR×LUE (2)  

where LUE is light use efficiency and defined as the ratio of Gross Pri
mary Productivity (GPP) to APAR, then from simple algebra we can 
combine Eq. (1) and Eq. (2) to arrive at the following expression: 

GPP =
LUE
ΦF

×
1

fesc
× SIF (3) 

Eq. (3) demonstrates that the relationship between GPP and SIF 
depends on both structural factors (fesc) and photosynthetic factors (ΦF, 
LUE) (Dechant et al., 2020; Martini et al., 2019; Zhang et al., 2020). 

Whereas LUE integrates the effect of dynamic responses across the 
whole photosynthetic process, ΦF responds to changes in light energy 
partitioning at the level of the light reactions of photosynthesis. Light 
energy absorbed by photosynthetic pigments has three main dissipating 
pathways: photosynthesis (or photochemical quenching, PQ), non- 
radiatively as heat (or non-photochemical quenching, NPQ) and fluo
rescence. Under limiting light conditions and in the absence of sustained 
stress, ΦF is mostly controlled by PQ. Then ΦF and the operating quan
tum yield of photochemistry in PSII (ΦP) are inversely related (Alonso 
et al., 2017; Porcar-Castell et al., 2014; Van der Tol et al., 2014). As 
radiation increases, or under stress conditions, the carbon reactions of 
photosynthesis gradually become light saturated and NPQ mechanisms 
are activated. Under these conditions, both ΦP and ΦF decrease pro
portionally under the action of NPQ (Frankenberg and Berry, 2018; 
Porcar-Castell et al., 2014; Van der Tol et al., 2014). 

The regulatory action of NPQ is the mechanistic connection between 
ΦF and LUE, that remote sensing of photosynthesis using SIF is precip
itated on. Critically, in addition to the interfering effect of PQ dynamics 
described above, the relationship between ΦF and LUE is further 
complicated by the dynamics of alternative energy sinks which compete 
for photosynthetic electron transport with GPP, reducing LUE, but 
which do not necessarily affect ΦF (Maxwell and Johnson, 2000; Porcar- 
Castell et al., 2014). Such interferences are expected in response to 
water stress, where stomatal closure results in an increase in the internal 
concentration of O2 relative to that of CO2, promoting the oxygenation 
of RuBisCO (Ribulose-1,5-bisphosphate carboxylase/oxygenase) at the 
expense of carboxylation in a process described as photorespiration 
(Flexas et al., 2000), which results in decreased LUE. Accordingly, and 
although ΦF has been repeatedly shown to decrease in response to water 
stress due to increasing levels of NPQ (Cendrero-Mateo et al., 2015; 
Flexas et al., 2002; Flexas et al., 2000; Magney et al., 2019b), factors 
such as photorespiration could dampen the relationship and explain the 
recent experimental results (Helm et al., 2020; Marrs et al., 2020). 

To quantify the response of SIF to drought at scales larger than a leaf 
requires understanding of canopy structural parameters that encapsu
late canopy radiative transfer processes and mechanisms. Multiple 
scattering and reabsorption of emitted SIF is parameterized using fesc, 
which is related to structure, gap fraction, reabsorption, but also 
viewing and illumination geometry, and is dynamic across time and 
space. The near-infrared reflectance of vegetation (NIRv) and fluores
cence correction vegetation index (FCVI) can be used to estimate fesc 
from reflectance measurements (Yang et al., 2020; Zeng et al., 2019). 
Once estimated, fesc can be used to correct observed SIF to total emitted 
SIF, which when combined with knowledge of APAR provides a method 
to retrieve ΦF remotely via Eq. (1). 

In addition to facilitating the remote retrieval of ΦF, the structural 
parameters, APAR and fesc, play a critical role in the relationship be
tween GPP and SIF in crops (Miao et al., 2018; Yang et al., 2021). 
Dechant et al. (2020) conducted a re-analysis of crop datasets and found 
that variability in structural factors explained the relationship between 
SIF and GPP, over and above ΦF, in rice, wheat and corn. Dechant et al.’s 
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(2020) study provides solid evidence for the marginal role of ΦF driving 
the seasonality of SIF in crops growing under optimal conditions; how
ever the role of ΦF under plant stress, exemplified by drought, is un
certain. There is also the dichotomy between the satellite SIF evidence 
which demonstrates a strong drought response, and the contrasting re
sults from the leaf level studies discussed earlier (Helm et al., 2020; 
Marrs et al., 2020). Resolving this scale dichotomy, especially for non- 
woody crops, requires concurrent observations of structural and 
photosynthetic dynamics under stress conditions, and a questioning of 
the assumptions on which our current understanding of the stress 
response of SIF rests. Such an effort may go some way to explaining 
differences in the linearity of SIF-GPP observed across studies which are 
rooted in the spatial and temporal context of the measurements (Magney 
et al., 2020). 

The importance of leaf inclination angles in modulating the SIF 
signal is well known, yet little studied especially at shorter time-scales 
(Dechant et al., 2020; Pinto et al., 2017). Leaf and canopy movements 
in non-woody crops, such as potato, are wide-ranging and occur for 
many reasons including drought driven changes in turgor and circadian 
rhythms (Inoue et al., 2018; Treshow, 1970). Therefore, if we are to use 
SIF to follow the impacts of drought in crops, a simultaneous evaluation 
of the response of SIF to photosynthetic and structural factors is 
required, with both of these groupings considered dynamic in time and 
space. Only then can we reveal the mechanisms behind the drought 
response of SIF retrieved from space (Sun et al., 2015; Zhang et al., 
2019). 

We use a water stress experiment in a potato crop as a case study to 
quantify the relative effect of photosynthetic and structural factors on 
the spatiotemporal variation of top of canopy (TOC) SIF. Potato was 
used for two reasons, firstly potato is an economically important crop 
across Northern Europe (Walker et al., 1999), and secondly, the leaves of 
potatoes have the capacity for a relatively large degree of movement 
under the regulation of the circadian clock (Inoue et al., 2018; Yanovsky 
et al., 2000). Additionally, and as with most non-woody plants, leaf and 
shoot inclination angle are particularly sensitive to water potential due 
to changes in turgor (Treshow, 1970). Hence potato’s potential for 
considerable diurnal shoot and leaf movements, observable through 
changes in leaf inclination angle, parameterized as the Leaf Angular 
Distribution (LAD) in the remote sensing literature, provided an ideal 
model species. 

To decouple the effect of structure and photosynthetic factors on SIF 
we carried out a replicated paired sampling design water stress experi
ment on the potato crop. We used hydraulic lift and Unmanned Aerial 

Vehicle (UAV) measurement platforms to measure diurnal and spatial 
variation in SIF, as induced by the water stress treatment. We combined 
these observations with a comprehensive suite of field and proximal 
measurements including LAD and ΦF and Soil-Canopy Observation 
Photosynthesis and Energy fluxes (SCOPE) (Van der Tol et al., 2009) 
model simulations to address the following three objectives: (i) to reveal 
the relative contribution of LAD and ΦF on the daily pattern of variation 
in TOC SIF; (ii) to reveal the relative contribution of LAD and ΦF on the 
spatial variation in TOC SIF; and (iii) to determine the impact of LAD 
and ΦF dynamics on the relationship between GPP and TOC SIF during 
water stress. 

2. Materials and methods 

2.1. Experimental protocol and design 

A water stress experiment was conducted at the Viikki campus 
(University of Helsinki) experimental field site, Finland (60.2269◦ N, 
25.0186◦ E), in the summer of 2018 on potatoes (Solanum tuberosum L., 
variety ‘Lady Felicia’). A 6 × 6 m split-plot design with five replicates 
was used, which resulted in a total of 10 plots which were labelled W1- 
W10 (Fig. 1). Potato (4000 kg/ha, rows 70 cm apart) was planted on 23 
May and irrigated with 50 mm during the first two weeks using regular 
sprinklers. Potato shoots emerged on 11 June, and received an addi
tional 50 mm over the three weeks through natural rainfall. Irrigation 
treatments were randomly imposed on 2 July with five irrigated (con
trol, c) and five drought plots (treatment, t), where control plots were 
irrigated with 50 mm on the first week and 10 mm on the second week 
using furrow irrigation with a hose, whereas treatments were not irri
gated for a period of two weeks. Rainfall during the drought experiment 
period was ca. 10 mm. July 2018 was unusually warm in Helsinki, with 
average temperature of 21.1 ◦C versus 30-year average of 17.8 ◦C (www. 
fmi.fi). Proximal sensing and field data collection were conducted on 17 
and 18 July. To capture diurnal and spatial variation in TOC SIF, we 
used hydraulic lift and UAV platforms with the same optical instrument 
payload. 

2.2. Proximal sensing spectroscopy and SIF retrieval 

A dual field-of-view system composed of two spectrometers (Piccolo 
Doppio, PD) was used to measure canopy reflectance and SIF (Atherton 
et al., 2018; Porcar-Castell et al., 2015; MacArthur et al., 2014). A QE 
Pro spectrometer (Ocean Insight Inc., Dunedin, FL, USA) was used for 

Fig. 1. Scheme of our water exclusion paired-plot experimental design (c, irrigated control; t, water stress treatment) with images of the lift and UAV platforms used 
for spectral measurements at approxomately 8 m height above the canopy. Diurnal measurement using lift platform was conducted in W7(c) and W8(t). The black 
circle illustrates the approximated footprint of the down-looking sensor. Spatial measurements with the UAV platform were conducted in all plots. 
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SIF retrieval, with FWHM of 0.31 nm, spectral sampling interval of 0.16 
nm, and spectral range of 640–800 nm. A Flame spectrometer (Ocean 
Insight Inc., Dunedin, FL, USA) was used to estimate canopy reflectance 
in the visible to near-infrared range and derive vegetation indices, with 
FWHM of 1.3 nm, spectral sampling interval of 0.33 nm, and spectral 
range of 340–1000 nm. The PD system collects incident irradiance 
through a cosine corrected diffuser fore-optic attached to one fiber optic 
leg and upwelling radiance through a down-looking bare optic fiber with 
a field-of-view of 25◦. 

2.2.1. Measurements of diurnal and spatial SIF dynamics 
The diurnal dynamics of SIF were measured on 18 July with the PD 

system attached to a rotatable hydraulic lift at a height approximately 8 
m above canopy, which yielded a footprint radius approximately 1.77 m 
as viewed in the nadir direction. Measurements were switched between 
control and treatment plot by rotating the lift every 20 min. Data were 
collected in batches of 20 measurements which were bookended by dark 
current measurements collected with the integrated electronic shutter 
system of the PD and subsequently averaged. The integration times of 
spectrometers were automatically optimized based on brightness for 
upwelling and downwelling radiance. During diurnal measurements, 
the integration times of the QE pro spectrometer for the upwelling and 
downwelling radiation measurements were between 0.18 and 0.34 s, 
and 0.34–0.55 s, respectively. The PD system had a small tilt compared 
to nadir direction because of drift in the hydraulic system of the lift. The 
small tilt resulted in an irradiance error that depended on the horizontal 
location of the lift platform. We developed and applied a simple tilt 
correction method to compensate for this error using a nearby PAR 
sensor which is described in Appendix A. We assumed a negligible 
(pseudo-Lambertian) radiance (L) tilt effect. 

The spatial dynamics of SIF were measured on the 17 July with the 
same PD system, this time mounted on a UAV via a gimbal system 
(Photohigher, Wellington, New Zealand) for simultaneous stabilization 
of both the upwards and downwards view directions. The UAV was 
based around a Gryphon Dynamics frame and Pixhawk autopilot. The 
UAV flew over each plot at a similar height as the lift platform, resulting 
in comparable footprints. The UAV hovered above each plot for 
approximately 1 min where it collected batches of 25 measurements, 
bookended by dark current measurements, which were subsequently 
averaged. Integration times of the QE pro spectrometer measurements 
were between 0.19 and 0.25 s and 0.34–0.36 s for the upwelling and 
downwelling channels, respectively. A GoPro camera was mounted in 
nadir position in the gimbal and used during quality control to make 
sure the UAV was appropriately positioned above the plot center. The 
bare soil plot (Fig. 1) provided a zero SIF target to validate our retrievals. 

In addition to the PD, the UAV was equipped with two Sony A7R II 
digital cameras having a Sony FE 35 mm f/2.8 ZA Carl Zeiss Sonnar T* 
lens and an Applanix APX-15-EI UAV direct georeferencing system. The 
cameras were tilted in the flight direction to 15◦ oblique angles from the 
vertical to enable detailed 3D object reconstruction. For this purpose, 
the UAV was flown at a height of 50 m which yielded a ground spatial 
resolution of 0.64 cm. The flight time was 11:22–11:50 AM. The data 
was gathered using a double grid pattern consisting of 6 north to south 
and 9 east to west flight lines, ensuring a minimum of 9 overlapping 
images covering the whole experimental area. The dataset was subse
quently used to retrieve dense point clouds with point densities of 
2.26–2.43 points/cm using the Agisoft PhotoScan Professional com
mercial software (AgiSoft LLC, St. Petersburg, Russia). The details of the 
photogrammetric processing protocol are described by Viljanen et al. 
(2018). 

2.2.2. SIF processing and retrieval 
Spectral data were converted from digital numbers to calibrated 

radiometric values using laboratory calibration coefficients processed 
with custom Matlab scripts (The Mathworks Inc., Natick, Massachu
setts). The scripts and data are available online at https://doi.org/10. 

5281/zenodo.4607784. There was a small offset in the spectral sam
pling locations of the upwelling and downwelling calibrated radiances 
which we estimated as 0.03 nm at the O2-A feature. We corrected this 
offset using an interpolation-based technique which is described in 
Atherton et al. (2019) where the smoothing parameter value was set to 
0.99. TOC SIF in the two oxygen absorption bands (i.e., O2− A and O2− B) 
located at 760.77 nm and 687.12 nm were retrieved using Spectral 
Fitting Methods (SFM) with the spectral ranges of 685.93–691.17 nm 
and 756.57–768.84 nm for O2− B and O2− A, respectively (Meroni et al., 
2010). Linear and quadratic polynomials were used to represent the 
shapes of the fluorescence and reflectance curves, respectively. SIF from 
these two bands is expressed as F687 and F760 hereafter. 

2.3. Leaf level measurements 

2.3.1. PAM measurements 
A Pulse-Amplitude-Modulated PAM-2500 (Heinz Walz GmbH, 

Effeltrich, Germany) was used to measure instantaneous steady state 
fluorescence (Ft) and maximum fluorescence (Fm

′) values of fully 
developed leaves from the sun exposed top canopy (N = 10 replicates 
per plot). A saturating pulse of 800 ms and c. 8000 μmol PAR was used to 
reach the maximal fluorescence level. These measurements were con
ducted in sync with the UAV or lift spectral measurements (within 5 min 
after TOC SIF was measured). The Photosystem II (PSII) operating effi
ciency ΦP was estimated as: 

ΦP =
F′

m − Ft

F′

m
(4) 

Additionally, NPQ was also estimated as: 

NPQ =
FMR − F′

m

F′

m
(5)  

where FmR is the reference maximal fluorescence estimated in the 
absence of regulatory non-photochemical thermal dissipation or NPQ 
(Appendix C). In addition we measured the maximum quantum yield of 
photochemistry, or Fv/Fm, in top canopy leaves by dark adapting the 
leaves for at least 30 min using dark acclimation clips (N = 3 replicates 
per plot), where Fv = Fm − Fo, and Fo and Fm are minimal and maximal 
fluorescence signal as measured with PAM fluorometry in the dark, 
respectively. 

2.3.2. Leaf fluorescence yield estimation 
Although PAM fluorescence dynamics are proportional to the vari

ation in fluorescence yield at the level of photosystem II (ΦF_PSII) they do 
not provide a direct measure of it. First, PAM fluorescence includes also 
a significant fluorescence contribution from chlorophyll a molecules 
associated to photosystem I (PSI) (especially in the far-red bands as 
measured with most PAM fluorometers). Second, absolute PAM fluo
rescence levels (typically in arbitrary units or mV) will also depend on 
fluorometer settings and sample properties which complicate the esti
mation of fluorescence yield at the level of PSII ΦF_PSII. Fortunately, PAM 
fluorescence levels can be corrected for PSI fluorescence, normalized 
and benchmarked to a theoretical value to facilitate the estimation of 
separated ΦF_PSII and ΦF_PSI (fluorescence yield at the level of PSI). This 
method is fully described in Appendix C. 

2.3.3. Leaf stomatal conductance and photosynthesis 
Photosynthetic gas exchange measurements conducted with a 

portable IRGA are time consuming. Accordingly, because we were 
interested in following a large number of leaves within a small period of 
time and in sync with lift SIF measurements, we measured instead leaf 
stomatal conductance (gs) with a leaf porometer (AP4 Porometer, Delta- 
T Devices, Cambridge, U.K.) from 10 randomly selected fully developed 
top canopy leaves. Additionally, light responses and A-Ci curves were 
conducted separately in three replicates across control and treatment 
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plots using a Walz GFS-3000 portable IRGA (Heinz Walz GmbH, Effel
trich, Germany). From these data, net photosynthesis (A) was estimated 
based on Ball-Berry model (Ball et al., 1987) as: 

gs = m×
A × RH

Cs
+ g0 (6)  

where RH is relative humidity, Cs is CO2 concentration at the leaf sur
face, m is the slope of the relationship between gs and A×RH/ Cs (the 
Ball-index), and g0 is the residual stomatal conductance when A ap
proaches zero, here we set g0 as 0 as the original Ball-Berry model (Ball 
et al., 1987). The slope m was estimated using gas exchange measure
ments of GFS-3000. To estimate actual A, we assumed Cs as air CO2 
concentration (415 ppm), RH was measured from a nearby weather 
station (SMEAR III, Helsinki) located approximately 3.9 km away from 
the experiment site, and gs corresponded to the leaf porometer mea
surements. GPP was then estimated as: 

GPP = A+Rd =
gs × Cs
m × RH

+Rd (7)  

where Rd is daytime respiration, assumed here to correspond with the 
rate of CO2 measured with the IRGA at zero PAR and similar tempera
ture, for simplicity. However, this assumption may result in slight 
overestimation of GPP due to the Kok effect (Sharp et al., 1984), but we 
assume this will affect equally all plots. These stomatal conductance- 
based estimates of GPP were acquired during the diurnal cycles and 
across experimental plots and used to investigate the effect of ΦF_PSII and 
LAD on the relationship between SIF and GPP during water stress 
(objective 3). 

2.3.4. Leaf spectral and biochemical measurements 
Fully-developed and top canopy leaves were randomly sampled 

across three separate plants (N = 3 replicates per plot) in each of the 
plots during the morning of the 16 July and used for spectral and 
biochemical analysis. Leaf directional-hemispherical reflectance (R) and 
transmittance (T) factors (325–1000 nm) were measured indoors using 
freshly cut leaves kept in water. Then leaf absorption (Abs) were esti
mated as integration of 1 − R − T over 400–700 nm. The setup consisted 
of an ASD Hand-Held Spectroradiometer (ASD Inc., Boulder, CO, USA) 
with spectral sampling of 1.6 nm and FWHM of 3.5 nm connected to an 
RTS-3ZC Integrating Sphere (ASD Inc., Boulder, CO, USA) through an 
optical fiber. 

Chlorophyll a and b contents (Cab) were estimated from leaf samples 
collected across the same plants as the spectral measurements. Five 
circular pieces were cut from each leaf in situ using a cork borer, pooled 
together into a cryotube and immediately frozen in liquid nitrogen using 
a portable dewar (CX-100, Taylor Wharton International LLC, Minne
tonka, MN). When taken out of the cryotubes, the samples were 
extracted in an oven at 50 ◦C for four hours, after which, Chlorophyll a 
and b extraction and estimation were conducted after Wellburn (Well
burn, 1994), using dimethyl sulfoxide (DMSO) and analyzed using a 
Shimadzu UV-1800 spectrometer (Shimadzu Corporation, Kyoto, 
Japan). Leaf spectral measurements were used for Fluspect model 
inversion (see Appendix D). Leaf chlorophyll contents were used to 
validate the inversion of Cab (Fig. D1 in Appendix D). 

2.4. Canopy and structural measurements 

2.4.1. LAI and canopy temperature 
LAI was estimated using the pin-point method (Jonasson, 1988; 

Mänd et al., 2010). Firstly, we drew a line diagonally across the plots and 
marked sampling nodes at 50 cm intervals. These marks produced 14 
randomly distributed points across the plot. Next we counted the num
ber of leaves that intercepted with a sharp pin weight vertically hanging 
from the diagonal line at every node as it descended through the canopy. 
This number corresponds with a direct measurement of LAI at that 

particular point (ranging from 0 for points between rows, to up to 4 for 
points directly over a potato plant). The canopy LAI was estimated as the 
average of all readings. It is important to note however that this method 
provides only a measure of directional effective LAI and will tend to 
underestimate total projected LAI (as in SCOPE). 

An Infrared camera (Optris P450, Optris GmbH, Germany) mounted 
adjacent to the PD system was used to register diurnal patterns in canopy 
temperature every two minutes during spectral data collection. The 
average temperature within the estimated Piccolo fiber footprint was 
used as canopy temperature. 

2.4.2. Leaf angular distribution estimation 
We used two methods to estimate LAD. Firstly, we used a ground- 

based photographic method (Pisek et al., 2011) for collection of 
diurnal-temporal datasets of LAD variation in W7 and W8. In addition, 
we developed a new method to estimate LAD from the photogram
metrically derived point clouds using UAV image data for spatial data
sets (Xu et al., 2020). 

The photographic method was used to estimate leaf inclination angle 
during diurnal measurements in control and treatment plots. Photo
graphs were taken with a cell phone camera (Honor 9, Huawei Tech
nology Co., Ltd., Shenzhen, PRC) fixed on a tripod perpendicular to the 
ground. The cell phone was placed outside the plots at a distance 
approximately 50 cm from the plot edge. We took repeated photographs 
of three potato sections in sync (within 5 min) with lift level measure
ments of SIF every 1 h. The leaf inclination angle was determined from 
photographs using the ImageJ software (http://rsb.info.nih.gov/ij/) 
following the standard approach (Pisek et al., 2011). Average leaf 
inclination angle (ALA) from 3 pictures in a total of 12 leaves were 
estimated at each time-point. For diurnal LAD estimation, we use a two- 
parameter leaf inclination distribution function to model LAD. We used 
ALA to estimate the parameter LIDFa as (Verhoef, 1998): 

LIDFa =
(45◦ − ALA) × π2

360
(8) 

Another parameter LIDFb was fitted from Verhoef’s leaf angle al
gorithm combining LAD estimated from dense point clouds data (see 
below description), and was assumed as constant during diurnal mea
surements. We estimated LAD using these two parameters: LIDFa and 
LIDFb through Verhoef’s leaf angle algorithm, which links ALA to LAD. 

A UAV based Structure from Motion (SfM) photogrammetric method 
was used to obtain LAD directly (i.e. without application of Eq. 8) for 
each of the 10 plots in the spatial analysis. The method and equations are 
fully described in Xu et al. (2020). In brief, before retrieving LAD, first 
we classified leaf and soil according to point height by setting a 
threshold value which was plot dependent. Then, and referring to Xu 
et al. (2020), we used the Agisoft normal vectors directly, rather than the 
SVD method, as we found that the SVD method produced unreliable 
results for leaves demonstrating extreme wilting angles. Finally, the SfM 
method returned a small proportion of zenith angles greater than 90◦

(Fig. B1), which is outside the SCOPE defined inclination angle range of 
0–90◦. In these cases, the negative of the leaf normal vector was used as 
a substitute in SCOPE modelling e.g. 92◦ was replaced with 88◦. 

2.5. Investigating the relative role of LAD and ΦF of TOC SIF with 
radiative transfer simulations 

We conducted a SCOPE (v1.73) scenario-based sensitivity analysis to 
disentangle the causes of SIF variation (Fig. 2) (see Appendix D for de
tails on SCOPE implementation). The analysis focused on the variables 
that we hypothesized to control SIF variation across the diurnal and 
spatial domains: ΦF_PSII and LAD. The analysis was structured to address 
our 3 objectives (see Table 1 for a summary): quantify the relative role of 
ΦF_PSII and LAD in 1) the diurnal and 2) spatial variation in TOC SIF; as 
well as 3) the relationship between SIF and GPP. Several model sce
narios were generated by either keeping ΦF_PSII and LAD fixed to a 
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reference value or allowing them to follow the measured dynamics. SIF 
differences between scenarios were used to calculated sensitivity indices 
which quantified the relative influence of ΦF_PSII or LAD on diurnal and 
spatial (between treatment pairs) SIF variation. Scenario output was also 
used to explore the correlation between SIF and GPP as a function of 
varying ΦF_PSII or LAD. 

Sensitivity indices, S, were calculated from absolute differences 
(∆SIF) in SIF scenario values. For brevity, we refer to ΦF_PSII and LAD as F 
and L respectively, and scenarios are characterized by the binary state of 
L and F which is either dynamic (in time or space) or fixed. We used two 
sets of scenarios to generate ∆SIF which each have corresponding binary 
states. The first set of scenarios (s1-s4) were used to evaluate the role of F 
and L in driving diurnal SIF (Objective 1) and their impact on the SIF: 
GPP relationship both over the diurnal and spatial scales (Objective 3). 
The scenarios separated the diurnal variation in SIF from that driven by 
changing PAR alone, which we labelled as APARSUN. Variability of F and 
L are denoted with symbol + and constancy with symbol − . For diurnal 
analysis, fixed values corresponded to first point observations in the 
morning. For the spatial analysis fixed F and L values corresponded to 
the maximum F and minimum average leaf angle (ALA) registered across 
plots. As an example, in scenario 3 we vary ΦF_PSII diurnally and keep 
LAD fixed, hence this scenario is denoted as: s3 : F(+), L(− ) and the SIF 
difference between this scenario and baseline scenario s1 where both 
ΦF_PSII and LAD are fixed, i.e. the scenario in which SIF is driven by 
APARSUN, is: 

∆SIF(ΦF PSII)= |SIF(s1 :F( − ) ,L( − )) − SIF(s3 :F(+) ,L( − ))| (9) 

In the second set of scenarios (s5-s9, see Table 1 and Fig. 3), the 
difference in SIF between pairs of control (c) and treatment (t) was 
analyzed. In these scenarios difference between control and treatment 
plots were analyzed diurnally using data from plot W7 and W8, and 
spatially using data across all paired plots. An equivalent to Eq. (9) to 
denote the change in SIF due to ΦF_PSII in these scenarios is 

∆SIF(ΦF PSII)= |SIF(s5 :F(c) ,L(c))− SIF(s7 :F(t) ,L(c))| (10) 

Given the described notation and returning to the first set of sce
narios (s1-s4), then the sensitivity index characterizing the relative in
fluence of ΦF_PSII on diurnal variation in SIF over and above APARSUN 
was calculated as: 

Sd
F =

∆SIF(ΦF PSII)

∆SIF(ΦF PSII) + ∆SIF(LAD)

=
|SIF(s1 : F( − ) , L( − ) ) − SIF(s3 : F( + ) ,L( − ) ) |

|SIF(s1 : F( − ) , L( − ) ) − SIF(s4 : F( + ) ,L( + ) ) |
(11) 

Fig. 2. Flow diagram used for the simula
tion of TOC SIF scenarios based on combi
nations between fixed (− ) and dynamic (+) 
ΦF_PSII (F) and LAD (L). The results from 
these scenarios were used to estimate the 
relative role of ΦF and LAD on the diurnal 
and between-plot-pairs spatial dynamics of 
TOC SIF. Measured variables are displayed 
in blue, simulated variables in red. RTMo 
and RTMf are two submodules of SCOPE. 
See section 2.5 text for details. (For inter
pretation of the references to color in this 
figure legend, the reader is referred to the 
web version of this article.)   

Table 1 
SCOPE scenario simulations and their relation to the objectives.  

Objective Scenario ΦF_PSII LAD Designation 

Objectives 1 and 3: Role of 
ΦF_PSII and LAD on the 
diurnal response to water 
stress; and diurnal/ 
spatial coupling between 
SIF:GPP 

s1 Fixed Fixed F(− ), L(− ) 
s2 Fixed Dynamic F (− ), L(+) 
s3 Dynamic Fixed F (+), L(− ) 
s4 Dynamic Dynamic F (+), L(+) 

Objective 2: Role of ΦF_PSII 

and LAD on the spatial 
response to water stress 
(see Fig. 3) 

s5 Control Control F (c), L(c) 
s6 Control Treatment F (c), L(t) 
s7 Treatment Control F (t), L(c) 
s8 Treatment Treatment F (t), L(t) 
s9 Control Control F (c), L(c)  

Fig. 3. Graphic representation exemplifying the estimation of the relative role 
of factors controlling the spatial variation in TOC SIF between treatment (t) and 
control (c) plot-pairs, using SCOPE simulated scenarios (s) with diverging 
values for ΦF_PSII (F) and LAD (L). Scenarios s5-s8 correspond to treatment plots, 
in which symbol ‘t’ indicates that the value originated from the very same 
treatment plot, and symbol ‘c’ indicated that the value was taken from the 
control plot paired to that treatment. For example, in scenario s5 we use the F 
and L values recorded in the control plot to simulate treatment plot SIF, hence 
the SIF difference between this scenario and baseline scenario s9 control SIF, 
reflects the impact of factors other than F and L, namely LAI and Cab ∆SIF 
(LAI, Cab). 
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Similar to Eq. (11), the sensitivity index characterizing the relative 
influence of LAD on diurnal variation in SIF relative to APARSUN was 
calculated as. 

Sd
L =

∆SIF(LAD)

∆SIF(ΦF PSII) + ∆SIF(LAD)

=
|SIF(s1 : F( − ) ,L( − ) ) − SIF(s2 : F( − ) , L( + ) ) |

|SIF(s1 : F( − ) ,L( − ) ) − SIF(s4 : F( + ) , L( + ) ) |
(12) 

The diurnal sensitivity indices, SF
d and SL

d, were calculated for both 
treatment and control plots W7 and W8 to investigate the comparative 
influence of ΦF_PSII and LAD during water treatment and control condi
tions relative to the baseline state of APARSUN. 

In the second set of scenarios (s5-s9), which characterize the differ
ence in SIF between control and treatment plots, the control scenario 
replaces the baseline APARSUN scenario used in Eq. (11) and (12) 
(Fig. 3). In s5-s9, there was an additional source of variation that must 
be considered. That is variation in LAI and Cab. The sensitivity index 
characterizing the relative influence of ΦF_PSII on variation in SIF was 
calculated as: 

Sc:t
F =

∆SIF(ΦF PSII)

∆SIF(ΦF PSII) + ∆SIF(LAD) + ∆SIF(LAI,Cab)

=
|SIF(s5 : F(c) ,L(c) ) − SIF(s7 : F(t) , L(c) ) |
|SIF(s9 : F(c) ,L(c) ) − SIF(s8 : F(t) , L(t) ) |

(13) 

Similarly, the sensitivity index characterizing the relative influence 
of LAD on spatial variation in SIF was calculated as: 

Sc:t
L =

∆SIF(LAD)

∆SIF(ΦF PSII) + ∆SIF(LAD) + ∆SIF(LAI,Cab)

=
|SIF(s5 : F(c) ,L(c) ) − SIF(s6 : F(c) , L(t) ) |
|SIF(s9 : F(c) , L(c) ) − SIF(s8 : F(t) ,L(t) ) |

(14) 

The above two indices were applied to plot differences in diurnal 
(W7, W8) and pair-wise spatial plots (W1-W10). The difference being 
that in the diurnal case the influence of LAI and Cab was constant 
through time, whereas these values varied in the spatial case. 

The dynamics of LAD can impact SIF via two main mechanisms. 
These two mechanisms are LAD induced changes in APAR, which we 
denote at APARLAD, and LAD induced changes in escape probability, fes
c
LAD. To separate SIF variability between these two mechanisms we use 

an additional output, total SIF emitted at photosystem level (SIFtotal), 
where the ratio between TOC SIF and SIFtotal is the SIF escape proba
bility, fesc. We then combine SIFtotal and fesc output from multiple sce
narios to separate between APARLAD and fescLAD mechanisms. As such, the 
following sensitivity index is used to assess APARLAD influence between 
control and treatment plots: 

Sc:t
L:APAR =

∆SIF(LAD :APAR)
∆SIF(LAD)

=
|SIF(s5 :F(c),L(c)) − SIFtotal(s6 :F(c),L(t) )× fesc(s5 :F(c) ,L(c)) |

|SIF(s5 :F(c),L(c)) − SIF(s6 :F(c),L(t))|
(15) 

And the following index to assess the influence of LAD induced 
variation in fescLAD on SIF between control and treatment plots: 

Sc:t
L:fesc

=
∆SIF(LAD : fesc)

∆SIF(LAD)

=
|SIF(s5 :F(c),L(c)) − SIFtotal(s5 :F(c) ,L(c) )× fesc(s6 :F(c),L(t)) |

|SIF(s5 :F(c) ,L(c)) − SIF(s6 :F(c),L(t))|
(16) 

The relative contributions of APARLAD and fescLAD were also assessed for 
diurnal data over and above the APARSUN baseline where scenarios s5, 
s6 were substituted with s1 and s2 to calculate the indices SL:APAR

d and SL: 

fesc
d. 
SIF scenario predictions were validated against the lift platform 

observations in the diurnal domain, and UAV observations in the spatial 
domain. When validating model performance, we compared diurnal 
trends in observed SIF to simulated SIF using normalized (relative) 
values, due to a bias error between simulated and observed data 
(simulated SIF have higher value, see Figs. B2 and B3). This bias and 
differences are expanded on in the discussion. Relative diurnal patterns 
of SIF were calculated by normalizing SIF data using the first value in the 
morning for the observed and simulated to evaluate simulation perfor
mance by comparing their variation trends. Under validation, we ex
pected those scenarios where all variation was accounted for, e.g. 
scenario 4 in the diurnal and spatial domain, to have the highest R2 

when compared to observations. As a final note, Eq. (11–16) assumes 
linear superposition of individual variables. There were small errors due 
to the violation of this assumption. For example, the interaction between 
variables results in errors of 5% in the diurnal variation characterization 
and 0.5% in the spatial characterization. As the errors were relatively 
small, we did not analyze these higher order interactions further. 

2.6. Estimation of the fluorescence escape probability, fesc 

The relationship between GPP and SIF depends on the fluorescence 
escape probability, fesc, which itself depends on the LAD. Therefore, and 
in addition to the sensitivity analysis outlined above, we estimated fesc at 
760 nm using observations of NIRv and FCVI and the approach 
described by Zeng and Yang (Yang et al., 2020; Zeng et al., 2019). The 
estimation of fesc via NIRv and FCVI, requires fPAR. Here, we use 
Rededge_NDVI as a proxy of fPAR using Eq. (17) and (18) (Miao et al., 
2018; Viña and Gitelson, 2005): 

Rededge_NDVI =
R750 − R705

R750 + R705
(17)  

fPAR = 1.37 × Rededge_NDVI − 0.17 (18)  

where R750 and R705 are canopy reflectance at 750 nm and 705 nm. 
Then, fesc based on NIRv and FCVI can be estimated using NIRv

fPAR and FCVI
fPAR, 

respectively. In addition, fPAR was used to normalize SIF, prior to 
comparison with the leaf-based GPP estimates. 

We also calculated fesc from our model simulation using Eq. (19): 

fesc =
π × SIFobs

SIFtotal
(19)  

where, SIFobs is observed TOC SIF, and SIFtotal is total SIF at photosystem 
level. 

3. Results 

3.1. Spatial and diurnal response of photosynthetic and canopy structural 
parameters to water stress 

Differences in photosynthetic and canopy structural parameters were 
observed between control and treatment plots in response to the water 
stress treatment (Fig. 4). As expected, photosynthetic parameters ΦP, 
ΦF_PSII, Fv/Fm, and estimated GPP tended to be higher in control relative 
to treatment plots. UAV retrieved SIF, F760, was also higher in control 
plots. Interestingly, total chlorophyll (Cab) contents in top leaves were 
higher in the treatment plots than in the controls. In terms of structural 
responses, LAI was increased in control plots relative to treatment plots 
and, as expected, the ALA of the controls was lower than in the treatment 
plots. 

The diurnal time series of canopy mean temperature, gs, NPQ, ΦP, 
ΦF_PSII, and ALA for plots W7(c) and W8(t) is reported in Fig. 5. Due to a 
temporary failure in the lift platform, measurements for the control plot 
stopped at 16:30. However, clear temporal patterns could be observed in 
both treatment and control plots. Canopy mean temperature, ALA and 
NPQ increased during the morning and gradually decreased or remained 
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high during the afternoon. In treatment and control plots, ΦF_PSII and ΦP 
show similar patterns with a decreasing trend for most of the day, fol
lowed by a smaller increase in the late afternoon. Consistent with the 

spatial data, treatment plots showed higher values in ALA and NPQ, and 
gs, ΦP and ΦF_PSII were reduced compared with control plots. 

3.2. Sensitivity of diurnal SIF variation to LAD and ΦF_PSII 

Diurnal patterns of measured and simulated SIF are shown in Fig. 6. 
To facilitate the visual comparison of patterns between measurements 
and simulations, data were normalized by first time series values; results 
without normalization are shown in Fig. B2. Simulations accounting for 
variation in both LAD and ΦF_PSII (F(+), L(+)) tended to better reproduce 
the diurnal pattern of observed SIF compared to scenarios where only 
LAD (F(− ), L(+)), ΦF_PSII ((F(+), L(− )) or neither variable (F(− ), L(− )) 
was allowed to vary (Fig. 6), which tended to overestimate SIF. The only 
exception was the case of F687 in the control plots where (F(+), L(+)) 
underestimated measured SIF in the afternoon. 

Clear differences in the diurnal patterns of relative sensitivity of TOC 
SIF to LAD and ΦF_PSII were found between control and treatment plots, 
as shown in Fig. 7. In the control plot, the sensitivity to LAD and ΦF_PSII 
was relatively constant and equal in magnitude over the course of a day. 
After accounting for APARSUN approximately 42%–56% of simulated 
control plot diurnal F760 variation was driven by LAD, and 44%–58% by 
ΦF_PSII. In contrast, the relative contribution of these two factors was 
dynamic over the course of the day for the treatment plots. However, it 
should be kept in mind that Fig. 7 only shows a partial diurnal cycle. This 
is important as LAD under stress probably adjusted prior to the 10 am 

Fig. 4. Values of key variables in control and treatment plots (Mean ± SE, N =
5) measured around noon two weeks after removal of irrigation. From left to 
right: operating quantum yield of photochemistry ΦP, quantum yield of fluo
rescence in PSII ΦF_PSII, maximum quantum yield of PSII photochemistry Fv/Fm, 
leaf total chlorophyll (Cab) (μg cm− 2), leaf PAR absorption Abs, leaf area index 
(LAI), average leaf angle (ALA) (degrees), UAV F760 (W m− 2 μm− 1 sr− 1), UAV 
F687 (W m− 2 μm− 1 sr− 1) and GPP (μmol m− 2 s− 1). Asterisks means the param
eters are significantly different using the Kruskall-Wallis test (p < 0.05). All leaf 
level variables were measured in top canopy leaves. 

Fig. 5. Diurnal patterns in canopy temperature, photosynthetic and structural variables in potato plants for the control (W7) and treatment (W8) plot pair. From 
panel A to F, canopy temperature (◦C), stomatal conductance (mmol m− 2s− 1), non-photochemical quenching (NPQ), operating quantum yield of photochemistry ΦP, 
quantum yield of fluorescence in PSII ΦF_PSII, and average leaf angle (ALA) (degrees). 
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start of observations. 

3.3. Sensitivity of SIF variation to LAD and ΦF_PSII in control and 
treatment pairs 

Next, we used the sensitivity analysis to evaluate the factors that 
drove the observed diurnal differences in SIF between the control and 
treatment pair W7 and W8 (Fig. 8, Table 2). The differences were due to 
a number of factors including LAI and Cab which impacted APAR 
(APARLAI,Cab); LAD which impacted both APAR (APARLAD) and fesc; and 
ΦF_PSII. In F760, APARLAI,Cab variations between treatment and control 
plots explained 39% of the differences in SIF. Secondly, about 30%–36% 
of SIF decrease between treatment and control plots was caused by 
ΦF_PSII, and LAD variation accounted for 25%–31% of the decrease, 
distributed as: 3% APARLAD and 22–28% fesc. 

To complement the diurnal sensitivity testing, we also evaluated the 
spatial drivers of differences in SIF between control and treatment plots 
at a fixed point in time (Fig. 9). Here we analyzed simulations of F760 for 
five control pair plots. The comparison of simulated and UAV observed 
F760 is shown in Fig. B3 (R2 = 0.81). A general decrease in F760 in 
response to the water stress could be seen across plot pairs both in ob
servations (∆F760_Obs) and simulations (∆F760_Mod). In individual plot- 
pairs, the model underestimated the decrease by up to 0.23 W m− 2 

μm− 1 sr− 1 in W1/W2, and overestimated the difference by up to 0.55 W 
m− 2 μm− 1 sr− 1 in plot pair W9/W10 (Fig. 9). 

The simulation-based sensitivity analysis revealed that the water 
stress treatment expressed itself in multiple ways depending on the plot 
pair under consideration. According to the simulations, the background 
contribution of APARLAI,Cab explained 20% to 72% of variability be
tween control and treatment plots, mainly determined by differences in 
LAI. Spatially the ΦF_PSII contribution for F760 varies from 10% to 30%. 
The LAD mediated fesc contribution also changes from 5% to 39%. In 

short, although SIF consistently decreased in the treatment plots two 
weeks into the water stress experiment and compared to control plots, 
the simulated decrease was not attributable to a single driver or 
mechanism. 

3.4. The link between SIF and GPP 

To conclude our analyses, we assessed the impact of variation in LAD 
and ΦF_PSII on the SIF:GPP relationship. Fig. 10 shows relationships be
tween F760 normalized by fPAR and leaf level GPP estimated from sto
matal conductance across diurnal and spatial scales. We normalized SIF 
by fPAR, as the GPP measurements were conducted at the leaf level and 
are therefore free of soil/gaps. In the diurnal analysis, a moderate linear 
relationship was found between simulated F760/fPAR and GPP, when 
LAD or ΦF_PSII were set to constant using the first timeseries values. 
When either LAD or ΦF_PSII was set to observed values, these relation
ships increased with almost the same slope and R2 (0.52 and 0.51, 
respectively) (Fig. 10A). The scenario which considered variation in 
both LAD and ΦF_PSII had the best performance (R2 = 0.61). In the spatial 
analysis, similar results were found in the comparison between simu
lated SIF and GPP. Again, the scenario which accounted for variation in 
both LAD and ΦF_PSII accounted for the largest fraction of observed 
variance (R2 = 0.68). The relationships between measured SIF/fPAR and 
GPP were weaker than the simulated values, with R2 = 0.36 (Fig. 10B 
and D) for both diurnal lift and spatial UAV platforms. It is also 
important to note that we observed a substantial increase in the stomatal 
conductance measurements between days, which explains the higher 
GPP levels in the spatial dataset relative to the diurnal. These differences 
probably related to differences in the calibration of the porometer be
tween the two days and do not affect the comparison of scenarios pre
sented in Fig. 10, but do point to possible inaccuracies in the absolute 
GPP values. 

Fig. 6. Diurnal patterns of variation of observed SIF and SCOPE simulated SIF scenarios for the control (panels A-B, W7) and treatment (panels C–D, W8) plot pair. 
SIF are normalized by first time series values. SIF scenarios (see Table 1 s1-s4) were simulated using either measured dynamic (+) or fixed (− ) values for the quantum 
yield of fluorescence in PSII ΦF_PSII (F) and LAD (L). 
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4. Discussion 

Our aim was to investigate how structural and photosynthetic factors 
mediate the response of SIF to water stress in a potato crop. Our results 
showed reductions in SIF, observed using lift and UAV platforms, 
coincident with the build-up of a stress response that expressed itself 
across the diurnal and spatial domains, the latter reflecting the expres
sion of water stress two weeks upon the onset of the treatment. Further, 
the stress manifested itself as photosynthetic and structural variation 

which simultaneously decreased SIF in water limited plots. 

4.1. The role of photosynthetic physiology in SIF variation under water 
stress 

As an isohydric plant, potato is prone to close stomata to prevent 
excessive water loss and maintain main physiological processes under 
low soil water potential or water stress conditions, resulting in reduced 
stomatal conductance (shown in Fig. 5B) (Obidiegwu et al., 2015). 

Fig. 7. Sensitivity of diurnal simulated normalized F760 to the quantum yield of fluorescence in PSII (ΦF_PSII) and leaf angle distribution (LAD) for the control (W7, 
panels A-B) and treatment (W8, panels C–D) plot pair. Shaded areas (panels A, C) and relative contributions (B, D) were calculated using simulated data. Measured 
points provide qualitative validation of the simulated diurnal patterns. Sensitivities were calculated using a baseline scenario of no structural or photosynthetic 
dynamics (APARSUN). Left two panels display the effect of ΦF_PSII and APARLAD and fesc in driving SIF change. Right two panels show the relative contribution of ΦF_PSII 
and LAD to diurnal F760 change. 

Fig. 8. Diurnal sensitivity of simulated SIF 
to photosynthetic and structural variables, 
calculated using the differences between the 
control (W7) and treatment (W8) plots. F687 
is shown in panel A and F760 in panel B. 
Variables included changes in canopy light 
absorption caused by differences in LAI and 
Cab (APARLAI,Cab) or LAD (APARLAD), as well 
as differences in the quantum yield of fluo
rescence in PSII ΦF_PSII, and fesc. The vertical 
dashed lines marks the time of the UAV 
spatial measurements, which were carried 
out on the previous day (see Fig. 9).   
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Stomatal closure leads to a decrease in evaporative cooling and a 
following increase in leaf temperature due to reduction in transpiration 
rates (Reynolds-Henne et al., 2010), which we observed using infrared 
imagery shown in Fig. 5A. Stomatal closure also results in a decrease of 
the intercellular CO2 concentration (Farquhar et al., 1980), which not 

only reduces the rate of photosynthetic carbon fixation (decreasing LUE 
and, via increase in NPQ, decreasing also the fluorescence yield) but, for 
C3 plants, will also affect the partitioning between carboxylation/ 
oxygenation of Rubisco in favor of photorespiration (Flexas et al., 2000), 
further decreasing LUE but, this time, without any direct effect on the 
fluorescence yield. As a result, despite evidence that stomatal closure 
induced by water stress has been repeatedly associated with a decrease 
in fluorescence yields (Cendrero-Mateo et al., 2015; Flexas et al., 2002; 
Flexas et al., 2000), and consistent also with our results (Fig. 4 and 
Fig. 5F), the decrease ΦF should not be linearly related to that of LUE 
during water stress. This is due to the action of alternative energy sinks 
such as photorespiration, which affect the slope LUE/ΦF in Eq. (3) and 
add non-linearity to relationship between GPP and SIF in response to 
water stress (Flexas et al., 2002; Helm et al., 2020). 

The relationships are further complicated at the canopy level where 
the slope between SIF and GPP is not only affected by photosynthetic 
factors (i.e. LUE/ΦF) but also by structural dynamics (1/fesc). We found 
clear water stress driven reductions in SIF, which were coincident with 
observed reductions in ΦF, but also changes in canopy structural pa
rameters (Fig. B6). Over the short term, reflected here by the diurnal 
response to water stress, our observations suggest that both ΦF and 
structural parameters adjust in response to environmental stress (Fig. 5 
D, F). Our simulation results suggest that, after accounting for changes in 
absorbed PAR driven by sun angle (APARSUN), LAD and ΦF dynamics are 
of similar importance in determining the diurnal response of SIF to 
water stress (Fig. 7 and Fig. B7). We speculate that multiple factors 
combine to determine the remotely sensed drought response of SIF. The 
structural factors in particular depend on the scale of the observation, 
which may go some way to explaining the discrepancy between the 
recent experimental results (Helm et al., 2020; Marrs et al., 2020) and 
satellite remote sensing observations (Magney et al., 2020; Sun et al., 
2015). 

We expected the long-term response to water stress, which was 
investigated two weeks after the onset of water exclusion using spatial 
data and simulations, to entail changes in canopy structural and 
photosynthetic properties. Accordingly, we found differences in LAI, 

Table 2 
Summary of results from SCOPE scenario sensitivity testing across diurnal and 
spatial domains. The symbology of the Sensitivity Indices is explained in detail 
in section 2.5. As an example, SF

d refers to the sensitivity of F760 to ΦF_PSII in 
diurnal simulations, relative to an assumed scenario of no structural or photo
synthetic dynamics (APARSUN). Likewise, SL:APAR

c:t is the variation due to LAD 
driven APAR of treatment relative to control plots, estimated using spatial 
simulations. This index was also calculated using temporal simulations, denoted 
as SL:APAR

c:t, d .  

Sensitivity Index F760 variance explained (%) Figure reference 

SF
d  44%–98% Fig. 7 

SL
d  2%–56% Fig. 7 

SL:APAR
d  5% Fig. 7 

SL:fesc
d  37%–51% Fig. 7 

SF
c:t, d  30%–36% Fig. 8 

SL
c:t, d  25%–31% Fig. 8 

SL:APAR
c:t, d  3% Fig. 8 

SL:fesc
c:t, d  22%–28% Fig. 8 

SL:APAR
c:t  1%–11% Fig. 9 

SL:fesc
c:t  5%–39% Fig. 9 

SF
c:t  10%–30% Fig. 9 

SL
c:t 6%–50% Fig. 9  

Fig. 9. Spatial sensitivity of simulated SIF 
(F760) to photosynthetic and structural vari
ables, calculated using the differences be
tween the control and treatment plots. The 
solid color blocks represent proportions of 
explained variation between treatment and 
control pairs. Differences in key variables 
between control and treatment plot pairs (∆ 
= c − t) are shown in the top blocks for 
average leaf angle (∆ALA, degrees), quan
tum yield of fluorescence in PSII (∆ΦF_PSII), 
top canopy leaf chlorophyll contents (∆Cab, 
μg cm− 2), and leaf area index (∆LAI, m2 m− 2) 
as well as observed (ΔF760_Obs, W m− 2 μm− 1 

sr− 1) and modelled F760 (ΔF760_Mod, W m− 2 

μm− 1 sr− 1).   
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ALA, Cab, as well as maximum photochemical efficiencies and fluores
cence yield between control and treatment plots (Fig. 4). F760 was lower 
in treatment plots, although this difference was not significant. Possible 
explanations for the lack of significance include measurement uncer
tainty in UAV observations and spatial variation of SIF due to hetero
geneity in soil properties. Unexpectedly, Cab content, measured in top 
canopy leaves, was higher in treatment relative to control plots. This 
observation could indicate certain relocation of mobile nutrients, such 
as nitrogen, to the younger top canopy leaves promoting increased 
chlorophyll contents (Yang et al., 2001). In fact, senescence of lower 
canopy leaves was observed in the treatment plots a few days after 
measurements supporting this scenario. Overall, our spatial modelling 
results suggested that the long-term expression of water stress on TOC 
SIF is mediated by a combination structural and physiological factors, 
with APARLAI,Cab explaining the largest proportion of variation in the 
spatial simulation, followed by ΦF and LAD-related fesc(Fig. 9). However, 
we must temper this interpretation based on our empirical observation 
that almost 90% of total (non-pairwise) spatial variation in far red SIF 
(F760) was explained by ALA (R2 = 0.89, Fig. B1) with LAI unrelated to 
F760 (R2 = 0.01, not shown). Conversely, and though only calculated 
over 5 points, plot-wise ΔF760 were strongly related to the plot-wise 
ΔLAI (R2 = 0.82). It is therefore likely that some of the spatial SIF 
variability assigned to LAI was caused instead by differences in LAD, 
resulting from limitations in our LAI measurement protocol. Conse
quently, with more accurate measurements, the role of LAD in Fig. 9 
could have been larger, and that of LAI smaller. 

4.2. The role of dynamic structure in SIF variation under water stress 

In non-woody crops, such as potato, dynamic adjustments in leaf 

angle or leaf folding help regulate temperature and APAR on daily 
timescales (Ehleringer and Comstock, 1987; Inoue et al., 2018; Treshow, 
1970; Yanovsky et al., 2000). Under drought conditions, non-woody 
crops are particularly prone to experience noon loss of shoot and leaf 
turgor, commonly referred to as wilting (Fig. B8), which manifests in 
terms of LAD changes (Puglielli et al., 2017; Xu et al., 2018). 

Leaf inclination, as parametrized by the LAD, has a surprisingly large 
degree of movement under the influence of leaf turgor and circadian 
rhythms, which is factor typically overlooked in remote sensing studies 
of crops. When considered, a (temporally) constant LAD parametrization 
is usually applied, either inverted from canopy reflectance and/or using 
default archetypal distributions; for example the spherical type is a 
popular choice (Hu et al., 2018; van der Tol et al., 2016; Zhang et al., 
2018). In this study, photographic methods and particularly the appli
cation of a SfM method (Xu et al., 2020) enabled us to retrieve canopy 
LAD and mean leaf inclination angle difference between treatment and 
control across spatial and diurnal scales demonstrating the importance 
of LAD variance in time and space. Using the photographic method, we 
observed diurnal variation in LAD that was largely coincident with 
changes in ΦF and SIF. Diurnal variation was larger in control plots, 
relative to treatment, although this could be because we missed early 
morning variation of LAD in treatment plot due to the start time of our 
diurnal measurements. 

In a previous study, Pinto et al. (2017), used a photogrammetric 
approach, but from a fixed platform, to highlight the importance of leaf 
inclination angles in controlling spatial variation of SIF imagery in a 
sugar beet crop. Using UAV-based SfM, we found that LAD was the 
dominant factor controlling SIF variation across the spatial domain in 
our experiment (Fig. B1). Critically, and given that LAD dynamics occur 
concomitantly with physiological adjustments, changes in SIF related to 

Fig. 10. The impacts of PSII ΦF_PSII (F) and LAD (L) on the diurnal (A, B) and spatial (C, D) relationship between F760 and GPP in response to water stress. Diurnal and 
spatial estimates of leaf-level GPP were derived from stomatal conductance measurements as described in Section 2.3.3. F760 scenarios, normalized by fPAR for better 
comparison with leaf-level GPP, were simulated with SCOPE using different combination of quantum yield of fluorescence in PSII ΦF_PSII (F) and LAD (L) (See Section 
2.5). Diurnal and spatial variability of F and L are denoted with symbol ‘+’ and constancy with symbol ‘-‘. Fixed values of F and L were taken from first morning 
observations (A, diurnal) or from maximum values of F and minimum ALA across experimental plots (C, spatial). The relationship between leaf-level GPP estimates 
and measured F760 in the diurnal and spatial scale are shown in panels B and D, respectively. 
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structural variance run the risk of being mis-interpreted as variance due 
to ΦF unless LAD is concomitantly estimated. 

Variability in LAD affects TOC SIF via the escape probability, fesc. 
And as with LAD, fesc estimated from either reflectance indices (NIRv, 
FCVI) or using simulations varies temporally (Figs. B4, B5). Hence the 
assumption of static architecture does not hold for potatoes, and likely 
other crops and woody plants and, if neglected, changes in fesc could be 
wrongly interpreting in terms of photosynthetic physiology. The fact 
that diurnal variation in model simulated fesc was less than that in 
reflectance estimated fesc suggests that there is modelling error related to 
the canopy radiative transfer processes. Although the diurnal pattern of 
simulated (normalized) SIF compare well to observed SIF (Fig. 6), this 
was not the case for simulated diurnal variance in NIR reflectance (data 
not shown). This issue is not a limitation of SCOPE per se, but a limi
tation in our application of SCOPE to a non-homogenous canopy. We 
revisit this issue within the wider context of simulation observation 
discrepancies in the final section of the discussion (4.4). 

4.3. The relative roles of photosynthesis and structure in the relation 
between SIF and GPP 

Our first objective was to characterize the mechanisms behind the 
diurnal response of SIF under water stress. Our simulations showed a 
combined response of SIF to ΦF and LAD in the short-term diurnal data 
(Fig. 5). Our second objective was to characterize the mechanisms 
responsible for the spatial response of SIF under water stress. Our results 
show that structural dynamics, and in particular LAD, played an 
increasingly important role in mediating spatial SIF variation (Fig. 9, 
A1). In this section we tackle our final objective, do these changes couple 
or decouple the relationship between SIF and GPP? 

Ideally, if LUE and ΦF co-vary under the regulation of NPQ and 
canopy structure is fixed, the relationship between SIF and GPP should 
also co-vary as shown in Eq. (3). In reality, plants present additional 
mechanisms to respond to stress, such as photorespiration and leaf angle 
changes, which can also affect the relationship between SIF and GPP as 
shown in Fig. 11. According to our conceptual model shown in Fig. 11, 
GPP is regulated by both NPQ and photorespiration, and canopy SIF is 
regulated by both ΦF and fesc, which is related to LAD. Therefore, the 
relationship between SIF and GPP is affected by dynamic canopy 
structure and photosynthesis through LUE, ΦF, and fesc. Based on our 
results, we argue that changes in dynamic structure effectively couple 
GPP to SIF, rather than disrupt the relationship. 

In this study, leaf level GPP were estimated using leaf level stomatal 
conductance measurements (section 2.3.3) across a constant leaf area, 
while SIF was retrieved at the canopy scale under variable LAI. 
Accordingly, to assess the coupling/decoupling effect of ΦF and fesc on 
the relationship between SIF and GPP we normalized SIF by fPAR to 

exclude the impact of between plot APARLAI,Cab variation on SIF. Note 
that we did not measure canopy level GPP but only estimated GPP of top 
leaves. Accordingly, the purpose of this analysis was not to demonstrate 
the correlation between SIF and GPP but rather to assess whether short 
(diurnal cycle) and spatial (long term patterns) adjustments in ΦF, and 
LAD induced variation in fesc, couple or decouple SIF from GPP. The 
results (Fig. 10A, C) demonstrate that the simulated relationship be
tween SIF and GPP improves when measured variation in either ΦF and 
LAD are considered, but it is maximal when both the dynamics of ΦF and 
LAD are simultaneously considered, demonstrating that both factors 
strengthen the coupling between SIF and GPP. 

Although canopy SIF and GPP are well correlated at multiple scales 
(Damm et al., 2015; Guanter et al., 2014; Magney et al., 2019a; Sun 
et al., 2018), as we show here, assigning photosynthetic causality is 
problematic due to canopy structural effects which co-vary with physi
ological adjustments of photosynthesis. This may be an advantage in 
early warning systems where any drought response is desirable; how
ever more research is needed to better understand the dynamics of 
structure in satellite data. This effort should start on the ground, with 
more combined structural and photosynthetic observations across a 
wider range of species under drought. These observations should be used 
to test and further develop quantitative models such as SCOPE. In the 
final discussion section (4.4) we examine limitations of our approach 
and highlight potential areas of improvement for future studies. 

4.4. Accounting for the differences between simulated and measured SIF 

In several studies, SCOPE has demonstrated good performance when 
simulated SIF has been compared to measured values (Celesti et al., 
2018; Hu et al., 2018; Migliavacca et al., 2017; van der Tol et al., 2016; 
Yang et al., 2019). However, simulated SIF in our study was 70% higher 
than observed SIF. A similar positive bias has also been observed in a 
water stress study in pine trees by Wohlfahrt et al. (2018) who specu
lated that the cause was related to the parametrization of fluorescence 
yields. To a large extent, the mismatch in our study is related to the 
differences in the selection of the maximum fluorescence yield of PSII. 

We assumed a maximum fluorescence yield of PSII of 10% (Appendix 
C), whereas SCOPE uses a value of 5% (Van der Tol et al., 2014). This 
change alone will result in doubling the fluorescence emission at the 
photosystem level and can partly explain the differences. In fact, esti
mations of this parameter cited in the literature typically range from 7 to 
10% (Dau, 1994; Govindje, 1995; Pfündel, 1998) mostly rooted in life
time studies conducted in the 1950s (Brody and Rabinowitch, 1957). 
Clearly, this is a critical parameter for SIF modelling studies which de
serves further attention. However, this issue has no influence for esti
mating relative role of ΦF and LAD in controlling SIF variation using 
SCOPE model in this study. 

There are also a few other explanations for the overestimation. It is 
possible that SCOPE underestimates the reabsorption of SIF inside the 
leaf, being based on FLUSPECT/PROSPECT, chlorophyll is homoge
neously distributed inside the leaf whereas, in reality, chlorophyll is 
aggregated into light-harvesting complexes and thylakoids potentially 
enhancing reabsorption. Additionally, the SCOPE version used here 
employs a 1D turbid medium model to simulate radiative transfer, hence 
the effect of the row planting is not considered, and neither is irregular 
within row clumping of vegetation. Ignoring such structural in
homogeneities could mean that we underestimate the effect of structural 
parameters on the SIF signal, and potentially overstate the importance of 
ΦF in explaining SIF variability. In the current study we chose to use 
SCOPE as it is the standard tool in the SIF field, however more complex 
3D schemes (e.g. FluorWPS, DART) do exist (Liu et al., 2019; Zhao et al., 
2016) which could be applied in the future to further investigate the role 
of structural inhomogeneities on SIF. 

There were also factors relating to our retrieval which could have 
resulted in lower than expected SIF measurements. An instrumental 
factor which affected our retrievals was the spectral offset and resultant 

Fig. 11. Schematic of the response of SIF and GPP to drought in a potato crop. 
Water stress reduces stomatal conductance, increases the rate of photorespira
tion, and therefore, decreases LUE without a parallel decrease in SIF. This sit
uation will tend to decouple SIF from GPP because GPP decreases by a faster 
rate than SIF. Water stress causes also a loss of leaf turgor which translates into 
a reduction in fesc and subsequent decrease in SIF, with no direct effect on GPP. 
Overall, while separately each of these two mechanisms would decouple SIF 
from GPP, their decoupling effect tends to cancel out when combined. 
Accordingly, we hypothesize that the casual interaction between structural and 
physiological factors acts to retain the coupling between SIF and GPP in 
response to water stress. 
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correction that we applied; an error of approximately 12% was noted in 
our previous correction analysis based on synthetic data (Atherton et al., 
2019). 

As we didn’t perform atmospheric correction our SIF retrievals were 
lower than the true TOC values (Sabater et al., 2017). The reason we 
chose not to correct our data was due to the short path lengths between 
canopy top and sensors on UAV and lift platforms. We also found no 
relationship between UAV platform altitude and SIF at either Oxygen 
feature (data not shown). In addition, UAV retrieved SIF was 0.10 W m− 2 

μm− 1 sr− 1 at our bare earth validation plot, implying relatively small 
retrieval errors. Taken together these results suggest that the influence 
of the atmosphere was of secondary importance in controlling spatial 
variation of SIF in our study. Although atmospheric correction is 
possible for low altitude UAV retrievals (Wang et al., 2021), we reason 
that more research is needed on this topic before we can confidently 
apply model-based corrections to very short path lengths. 

5. Conclusions 

In this study we investigated the drivers of spatial and diurnal SIF 
variability in response to water stress in a potato crop. We found a 
combined response of SIF to ΦF and LAD at the diurnal scale. SIF vari
ation across space, which reflected longer term mechanisms, was 
dominated by structural factors. Finally, we found that variation in ΦF 
and LAD coupled SIF to GPP across water stress and controlled condi
tions. However, we also found that changes in SIF which relate to 
structure could potentially be mis-interpreted as relating to ΦF. We 
therefore recommend extending the focus on the relationship between 
canopy structure and SIF to include observations of diurnal and spatial 
leaf angular variation utilizing the field measurement approaches pre
sented here. 
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