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Abstract—Our communication networks have grown in size
and have witnessed an influx of heterogeneous devices and their
specialized device controllers. These devices include traditional
computers, light-weight Internet-of-Things devices and their con-
trollers, and also programmable switches and routers. Managing
and protecting networks used by these devices is non-trivial,
especially since the devices either use different standards or no
standards at all for control and management. In this article,
we discuss PraNA, an SDN-based architecture for managing
and orchestrating such heterogeneous networks. At the heart of
PraNA is the PraNA Orchestrator which offers a comprehensive
network-wide view of the devices by using the services of a wide
range of specialized controllers.

Index Terms—SDN, IoT, Network Management, Network Or-
chestration, Device Classification.

I. INTRODUCTION

We are witnessing an influx of connected devices such
as smart lights, smart energy meters, etc. Recent trends in-
dicate that the number of devices in our networks and the
density of devices around us will continue to increase [1].
These devices—commonly known as Internet-of-Things (IoT)
devices—share the networking resources used by our desktops,
laptops, and hand-held smartphones and tablets. However,
unlike our smartphones and laptops, IoT devices are typically
designed for specific use cases such as sensing, monitoring,
and automation; specifically, their computing, storage, and
networking capabilities are optimized for the use cases [2].

The term Internet of things implies that these devices require
Internet connectivity, and these devices typically prefer to use
Wi-Fi and/or cellular to perform their operations. While IoT
has been used to encompass devices that do not use IPv4 or
IPv6, in this article we limit ourselves to devices that can be
managed using IPv4 or IPv6 (§III). In spite of the influx of
these devices, networks continue to be managed using legacy
solutions that are incapable of scaling at the required pace,
and contemporary IoT gateways conflate network connectivity
with network services [3]. For instance, most networks are set
up using off-the-shelf commodity Wi-Fi access points with
minimal setup to enable Internet connectivity. While this can
scale to support a small number of laptops and smartphones,
the network performance and security of networks that do
not use programmable network management tools can quickly
deteriorate as the number of devices in the network increase.

We have identified two key challenges in improving the state
of networks where a majority of user devices are connected.

*This work was done by Julien Mineraud when he was working at the
University of Helsinki.

1) Some of the devices, primarily IoT devices, have
device-specific Wi-Fi controllers and hubs, which act as a
relay in connecting user devices to Internet [4]. This results
in silos where devices and their controllers work in isolation,
and consequently one cannot extract the full benefit of having
these devices working towards a common goal.

2) Although IoT devices collect a lot of data about their
users or their environment, they are generally not designed
with a security-first approach [5]. Consequently, these devices
and the networks to which they are connected are susceptible
to various types of network attacks [6]. While the tradi-
tional network security solutions, such as firewalls, intrusion
detection systems (IDS), typically installed at the network
perimeter, protect the networks against external threats, these
solutions are not effective against threats originating from
within the network [7]. These solutions do not monitor and
control the device-specific network activity. Therefore, if a
vulnerable device joins the network, it can access and poten-
tially infect other devices within the same network boundary.

In this paper, we posit that the availability of specialized off-
the-shelf controllers opens a path for building an orchestrator
that uses the services of these controllers to programmatically
manage and orchestrate the network. Our prior works on
IoT controllers [8], [4], securing IoT networks [5], [9], and
managing Wi-Fi networks using SDN controllers [10], [11]
provide the cornerstone for such an orchestrator, which we
name PraNA . As detailed in §III, our PraNA Orchestrator uses
the north-bound APIs of SDN controllers, Wi-Fi controllers,
and IoT hubs to compile a comprehensive network-wide view,
and uses it to ensure that the network conforms to the desired
policies. For instance, our PraNA Orchestrator can use REST
or other APIs of the Wi-Fi controllers to get up-to-date
information on the wireless network. It is also capable of
using machine learning based device classification solutions
to identify the device, and enforce device-specific network
policies. In our prototype, we use our custom random forest
based classification engine [12], and we believe that this can
be easily swapped with other device classification solutions
such as the one used by IoT Sentinel [7]. We believe that our
PraNA Orchestrator can provide an integration point for third-
party services to enhance the security and performance of the
network without requiring changes to end-user devices.

With this holistic view of the network, the PraNA Orches-
trator can support additional services, such as, device classifi-
cation, threat monitoring, quality-of-service (QoS) guarantees.
In this paper, we use device classification service as an
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example use case. With access to inbound and outbound traffic
at device-level granularity, the PraNA Orchestrator can use
a third-party classification service to detect what devices are
connected to the network. Using this information, it can also
assign network profiles to specific devices which can be used
to restrict device communications to devices and services
within and across the network.

Our key contributions are as follows.

1) Design and architecture of the modular PraNA framework.
As discussed in §II, prior works have focused on con-
trolling individual network elements. For instance, SDN
controllers are designed and optimized for managing
forwarding elements such as switches and routers, Wi-Fi
controllers are aimed at managing Wi-Fi networks, and
IoT Hubs are aimed at managing the IoT devices that
are configured to be managed by the hub. In §III, we
show that by leveraging the north-bound APIs of these
controllers it is possible to compile a comprehensive view
of the network and enforce policies that encompass a
wide range of devices including SDN switches, Wi-Fi
APs, and IoT hubs.

2) Empirical analysis of network performance with PraNA
Orchestrator to identify performance pain-points. Not all
controllers expose well-defined north-bound APIs, and
these APIs can evolve over time. For the state-of-the-
art practice, we introduce a SHIM layer that enables
our PraNA Orchestrator to exchange information with
the controllers, and this SHIM layer uses MQTT for
message exchange. In §IV, we present the results of our
evaluation. We present the latency incurred by using this
message bus, and also identify the latency incurred for
device classification and for enforcing the policy. We
observe that the time required to capture packets required
for device classification is significant compared to other
operations in the network orchestration.

3) Design guidelines for developing flexible network man-
agement system which can scale from small office home
offices (SOHO) networks to enterprise networks. Our
prototype PraNA Orchestrator was primarily designed
to explore the issues that can arise when leveraging the
north-bound APIs of off-the-shelf network controllers for
orchestrating networks that serve devices with hetero-
geneous capabilities and requirements. We believe that
given the siloed nature of IoT devices, orchestrating
future networks would require a similar approach, and
in §IV and §V we discuss the performance impact of
the interactions between these controllers. Specifically,
we observe that the packet capture required for device
classification takes the most amount of time, while other
operations can be performed in a fraction of time com-
pared to the capture.

In summary, we believe that our modular open-source PraNA
Orchestrator provides a vantage point to explore the design
space of combining various network controllers to orchestrate
the network. As discussed in the next section, the need for
combining network controllers arises because of siloes, and
our PraNA controller builds on the insights of modular tools

like Home Assistant [13] and IFTTT [14] that have been
designed to work across the siloes.

II. BACKGROUND AND RELATED WORK

In this section, we take a look into the background of key
aspects of PraNA . These aspects include network management
and orchestration, detecting and classifying the devices inside
the network, and securing them.

TABLE I
CONTROL INTERFACES OF WI-FI CONTROLLERS.

Vendor SNMP Proprietary REST Command
Line

Cisco Wireless LAN
Controller X X X
Aruba Mobility
Controller X X X X
Ubiquiti UniFI X X X X

PreAll controllers support both SNMP and command line interfaces in addition
to proprietary API. Some controllers also support REST APIs.

a) Network Orchestration: Our wireless networks have
grown in size over the last few years. Larger networks require
provisioning and channel management, which can no longer be
managed by hand. Many commercial vendors offer managed
wireless networks, which are managed by their controllers.
These include offerings from Cisco, Ubiquiti, and Aruba
to name a few. All these vendors provide their wireless
controllers either in physical or virtual form. While these
are proprietary systems, all of them offer at least Simple
Network Management Protocol (SNMP) [15] and command
line interfaces for monitoring and managing the wireless
network events as shown in Table I.

For controlling these controllers remotely, a REST API
is typically the preferred way to control and configure the
controllers, as long as there is a reference available. The
command line interface can also be utilized in automation by
using tools like Ansible [16] to configure the controllers.

However, if the cloud based networks are brought into the
picture, orchestrating the network efficiently is far from easy.
In [17], a survey of different network orchestration systems
provides possible methods for orchestration.

b) Behavioral Fingerprinting and Categorization: In re-
cent years, there have been several proposals for device
fingerprinting by capturing network traffic from the device
and using Machine Learning (ML) to classify and identify
the device [18]. The data and fingerprints collected from the
devices can be used to train the ML models. Using automatic
device classification allows the network users to be aware of
what devices are inside the network, and pairing the informa-
tion with security services, classifying allows detection and
mitigation of possibly malicious devices inside the network.

To our best knowledge, [9] was the first system to de-
tect and classify devices based on the network traces using
cloud services. However, this brings privacy and performance
problems as the classification is done in a remote location.
More advanced systems such as IoT Sentinel [7] and IoT
Keeper [5] solve this by performing the classification at the
edge gateways.
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In addition to detecting devices when they connect to the
network, it is also needed to detect attacks and changes
in device behavior during their normal operations. For this,
approaches such as Kitsune [19] or AuDI [20] can be used to
detect changes in the network traffic. The output of these can
then be disseminated to the network orchestration systems to
automatically isolate devices and react to attacks.

c) Controlling and Securing the Networks Using SDN:
SDN can be used to secure networks, provided that the
network is SDN capable. One large survey [21] presents an
overview of different methods to secure the network.

In general, the SDN controllers can be used to segment
parts of the networks, even with the granularity of a single
device [22]. For example, IoT-Keeper [5] is capable of seg-
menting the network where malicious IoT devices are detected.

One key problem here is that the network should be SDN
capable. However, currently there are almost no Wi-Fi access
points that support SDN. To alleviate this, Swift [10] can be
used to bring SDN capabilities to the Wi-Fi access points that
do not otherwise support SDN.

d) Managing Devices in the Network: The IoT and
similar devices have a multitude of different standards and
other methods for accessing them. While some of the devices
have their own controllers, not all of them support standardized
methods [8]. In addition to Wi-Fi, many of the devices
support standards like ZigBee [23] or Z-Wave [24], which
allows them to communicate with their respective controllers
and other devices using these standards. For example, the
ZigBee standard includes device categories such as lights and
switches, which can allow device controllers from different
vendors to communicate with them.

One way for controlling and managing the IoT devices is to
use software controllers like Home Assistant (HA) [13]. Home
Assistant provides a platform, which supports the integration
of different devices either directly using their APIs, or using
a custom shim layer between the HA and the device. For
example, if the HA does not have direct access to a device,
an agent that can communicate with the device can expose the
device’s data over the MQTT bus for HA.

III. ARCHITECTURE

The goal of our PraNA framework is to provide network
orchestration for networks that contain different kinds of
heterogeneous devices, hubs, and controllers. Furthermore,
security is not an after-thought and our orchestrator is capable
of orchestrating network security because these networks
are inherently insecure, even when the network borders are
protected from outside threats. Our PraNA Orchestrator, that
is at the heart of our PraNA framework, is designed to scale
to networks that are large enough to require management and
orchestration. Such networks require different controllers, for
example large Wi-Fi deployments require their own wireless
controllers.

An example network is shown in Figure 1, which is split
into control and data planes. Each of the components shown
in the figure manages their own parts of the network with
PraNA Orchestrator orchestrating the efforts. Each component
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Fig. 1. PraNA architecture. Flows traversing the network are controlled by
our SDN Controller, while Wi-Fi APs are managed by the Wi-Fi Controllers
and IoT devices are managed by their respective controllers.

supports APIs that can be leveraged to gather information
about their operations, and to control them. The architecture
is designed to support both modularity and decentralization,
allowing the control plane to be customized and deploying
control plane components in different locations, both inside
the network and outside for example in the cloud.

In this section, we describe components of the control and
data plane and provide an example of how PraNA operates.

A. Control and Management Plane

In Figure 1 we present an example of the PraNA con-
trol and management plane. This plane consists of multiple
different controllers and other network functions that control
and manage their respective siloes. Some of these network
functions may also be capable of providing additional services;
the hubs interacting with the Home Assistant [13] exemplify
some of the popular services. Regardless, these controllers
exchange control plane messages with the PraNA Orchestrator
via a management bus that uses MQTT [25]. This bus is also
designed to allow individual controllers to communicate with
the other network elements and controllers. Next, we detail
the functions of the shown control elements.

a) The Wireless LAN Controller (WLC): This controller
is responsible for managing the Wi-Fi access points (APs) in
the network. In large Wi-Fi deployments, individual APs can-
not be managed manually and require a dedicated controller
that manages the AP configuration and deployment including
that Wi-Fi channels used by the APs.

b) IoT hubs and gateways: These hubs manage their
own IoT devices. Many IoT devices are proprietary, and
use different communication technologies such as ZigBee.
Furthermore, some of these devices may not be part of the IP
network and only interact with their hubs and gateways [3].
Managing such IoT devices requires gateways that expose
open APIs that provide access to the IoT devices and their
data. Mineraud et al. [8] provide several examples of such
hubs and gateways.
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c) The Cellular Core: 5G networks and their successors
are expected to open and slice their cellular infrastructure
to enable enterprises and factories to run their own cellular
networks [1], [26], [27]. The base stations that offer cellular
connectivity are also expected to support both cellular network
and Wi-Fi connectivity [28]. The cellular base stations require
a cellular core for managing the connectivity, and OpenAir
exemplifies of open cellular cores that provide a north-bound
API for integrating with network orchestrators [29].

d) The SDN controller: In PraNA we envision a pro-
grammable network in which the network traffic flows are
managed using SDN controllers. In our prototype we use our
custom SDN controller based on Ryu [30] and its design and
implementation are presented in our previous work on man-
aging commodity Wi-Fi APs using an SDN controller [10].
This controller implements the features required by the PraNA
Orchestrator including message exchange via management
bus. This message exchange enables our orchestrator to a)
receive the network-wide view of the devices in the network,
and b) provide network policies that are implemented by our
SDN controller.

e) Elastic Engines: We abstract out machine learning
based activities such as device classification as activities
performed by elastic engines. In our prototype, this engine
provides our PraNA Orchestrator with device classification
services. Specifically, it consumes the packet traces generated
by forwarding elements such as APs to classify the devices
connected to the network. In our prototype, we use a random
forest based classifier, the details of which are presented by
Aluthge[12]. Note that machine-learning based device clas-
sification is not the primary focus of our work. Instead, our
system is designed such that this engine can be easily swapped
by other device classification solutions such as the one used
by IoT Sentinel [7].

f) Management bus: The management bus ties different
elements, including our PraNA Orchestrator, together. We
implemented the management bus using MQTT, which is
a publish-subscribe protocol [25]. We chose the publish-
subscribe model because it allows the system to scale by
decoupling the message production/generation by its con-
sumption. Specifically, multiple control plane elements may
subscribe to the same message topic, and we present examples
of the message topics in Table II. Each of the network elements
registers to the bus, and subscribes to the relevant topics. After
an element has received a command encapsulated in an MQTT
message it can act upon it and publish its response via an
MQTT message. Furthermore, it can also publish an MQTT
message in other situations, for instance, after it has acted
upon information received through its APIs.

g) PraNA Orchestrator: Its main functions include re-
ceiving information from different sources such as network
events from the SDN controller, classification results from
the elastic engines, and creating network policies such as
isolating or allowing a client to communicate. In addition to
these, the PraNA Orchestrator also provides a user interface
that shows the network state and allows administrators to
manually set policies. For implementing the policies, the
PraNA orchestrator provides the other controllers with the

policy along with the required information. We provide three
example network policies in §III-C.

Each control plane element is autonomous, and it can
perform its duties independently using preset default policies
if the PraNA Orchestrator is not online. This means that if
an element is offline, the network still functions, although not
as efficiently. For example, if elastic engines are offline, the
network still detects new devices and assigns them default
classification. However, as the elastic engines are offline, the
default values for the classification and the corresponding
network policies need to be set manually. Similarly, if the
PraNA Orchestrator is offline, the network can still continue
to be operational using these default presets. In our future
work, we envision to extend our PraNA Orchestrator using
past work on the IoT Sentinel [7] for building Elastic Data
Analytics Engines which offer network analytic services.

B. Data Plane

The PraNA data plane consists of programmable network
forwarding elements and the devices connected to the network.
These devices communicate either over wireless links such
as cellular, Wi-Fi, or ZigBee, or over wired links such as
Ethernet.

In our testbed, we use our past work [10] to allow SDN
controllers to manage the flows traversing existing enterprise
and commodity access points. This is done to simplify the
integration of our system into existing networks. Our current
implementation is restricted to devices that communicate using
IP protocols over Wi-Fi or Ethernet. Devices using protocols
other than IP are currently not managed directly by our PraNA
controller; instead, our PraNA controller can manage them via
their IoT hubs.

C. Network Policies

A key aspect of orchestrating a network is the network
policies that govern how devices can communicate. We base
our policies based on a Zero Trust approach, i.e. we do not
trust any devices more than we need to [31]. Each device
or device type can either have a predefined default policy, or
a fine-tuned policy. The default policies include Restricted,
Allowed, and Blocked.
Restricted. Restricted policy is granted to those devices that
are unknown to the orchestrator, i.e. not in the device registry,
but do not have known vulnerabilities. This policy allows the
devices to have similar access to the network as typical guest
network devices, i.e. access to only a limited set of relevant
services such as DNS, and limited access to the Internet. For
instance, Restricted devices cannot access services such as
printing, or communicating with other devices in the network.
Allowed. Allowed policy grants the device full access to the
network, including services that are otherwise restricted. To
get this privilege, the device must be registered and contain
no known vulnerabilities.
Blocked. A device is blocked when it is known to be vulner-
able, it is known to be malicious or due to other reasons set
by the administrators. A blocked device cannot communicate
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Fig. 2. Sequence of messages over the management bus. OpenFlow control
messages between the SDN controller and the network are denoted in blue.

TABLE II
EXAMPLE PraNA MQTT TOPICS.

Topic Description
prana/status Status of network elements.
prana/network/device/switch/new New switch added.
prana/network/device/switch/update Update switch information.
prana/network/device/switch/remove Switch removed from network.
prana/network/topology/links/new New link between switches or be-

tween a switch and a device.
prana/network/topology/links/update Update link information.
prana/network/topology/links/remove Removed link from the network.
prana/network/device/host/new New host added to the network.
prana/network/device/host/update Update host information.
prana/network/device/hosts/remove A host is removed from the network.
prana/classification/result Result of the classification.
prana/classification/update Update classification information.
prana/classification/pcap/request Request a capture from a host.
prana/classification/pcap/response Capture available for classification.
prana/policy/allow Change device policy to Allow.
prana/policy/block Change device policy to Block.
prana/policy/restrict Change device policy to Restrict.
prana/policy/implemented A policy has been implemented.

The MQTT topics shown in this table are currently implemented in our PraNA
framework. These topics allow network orchestration and management.

with other devices, and all traffic either to or from it is dropped
by the network.

We chose these three policies in our prototype because they
lay the cornerstone to create and implement complex custom
policies that are beyond the scope of this work.

D. Example PraNA Orchestration

Our PraNA Orchestrator implements the policies described
in §III-C by leveraging the north-bound APIs of the con-
trol plane elements described in §III-A. These control plane
elements can send and receive messages using either the
management bus, or using their specific protocols and APIs.
For example, the SDN controller communicates with the
programmable forwarding elements such as switches and
APs using OpenFlow, while using the management bus to
communicate with other control plane elements.

In the Figure 2, we show an example sequence of messages
traversing the management bus when a new device joins the

Fig. 3. The network view created by the PraNA Orchestrator. In this
example, the PraNA Orchestrator shows the network topology with known
information of the devices.

TABLE III
DEVICES USED FOR PROTOTYPE EVALUATION.

Model Purpose
D-Link DCS-935L IP camera
D-Link Siren Wi-Fi Siren
Google Chromecast Video streaming
Lenovo X280 Laptop with Ubuntu
Nokia 9 Android smart phone
Nokia WBP02 IP camera and air quality sensor
Wemo Switch Smart power plug

The devices shown here are used in the evaluation and chosen to represent
different categories of devices. The categories range from general-purpose
devices (laptop and phone) to single-purpose connected devices with a small
amount of traffic (smart power plug).

network. The relevant management bus MQTT message topics
are shown in Table II.

First, the SDN switches in the network detect a new device
and inform the SDN controller using OpenFlow messages.
The SDN controller then applies the default Restrict net-
work policy to the detected device, and informs the PraNA
Orchestrator of the new device. The Orchestrator sets the
device default classification to unknown if the device does
not match any previously known devices. Note that Or-
chestrator does not rely only on the device MAC address
and instead uses the behavioral fingerprinting offered by our
Elastic Engines for device classification. Consequently, the
Orchestrator requests a packet trace for device classification.
The switch/AP publishes the availability of a packet trace, and
the classifier receives this message because it subscribes to
the prana/classification/pcap/response topic.
Finally, when the classification is ready, the classifiers inform
the PraNA Orchestrator of the result, which in turn tells
the SDN controller to apply specific network policy to the
device. Similarly other operations such as manually changing
the device policy or if the device roams into another location
in the network, are handled through the management bus using
relevant topics.

IV. EVALUATION

For our evaluation we consider a network orchestrated by
our PraNA Orchestrator where each device is classified upon
joining the network and is then assigned a network policy
based on the classification.
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A. Testbed and Methodology

We demonstrate our PraNA Orchestrator using our testbed
whose key network functions are shown in Figure 1. The
control plane of the testbed consists of the PraNA Orches-
trator, an SDN network controller, and a device classifier.
The control plane elements communicate over an MQTT bus,
where each element subscribes to the relevant topics and
publishes events. For instance, the SDN controller compiles
the network topology which is exported to the PraNA Orches-
trator using the messages summarized in Table II. For device
classification, each AP spawns our PraNA packet capture
agent which captures the first 20 packets of any new devices
joining the network, copies it to a location specified in its
configuration, and publishes the availability of the packet
trace. The data plane consists of five LinkSys WRT-3200ACM
access points and a FIT-PC3, each of them running OVS [32],
and are configured as Intelligent APs as described in our prior
work [10]. Our PraNA Orchestrator monitors the state of the
network, and we present an example network view in Figure 3.
This holistic network view allows the PraNA Orchestrator to
take decisions for implementing policies detailed in §III-C.
The PraNA Orchestrator sets the network-wide default policies
to Restricted, i.e., the client devices in our network will be
allowed to communicate with other hosts on the Internet, but
they will not be able to communicate with other clients unless
otherwise specified. An exception to this are flows such as
DHCP, DNS, and other flows required to manage the network
and assign IP addresses.

We connect devices listed in Table III to the network and
measure the duration of each step shown in Figure 2 over the
MQTT bus. These devices were chosen to represent different
categories of devices that are connected in modern networks,
from laptops to IoT devices. Each of the devices will generate
different amounts of traffic, which affects the time required
for device detection and classification.

Each device has its own way of generating traffic and using
services such as DHCP and DNS, and its network traffic
characteristics determine its fingerprint that is used by our
classifier. For example, a device might only request an IP
address and then start publishing sensor readings, causing the
capture to take a long time. Another device on the other hand
would check for updates and other services on connecting the
network, generating a larger stream of traffic.

B. Results

In Figure 4, we present the time taken for each step—packet
capture, device classification, and policy implementation—for
each device and also the total time, i.e. the time from device
detection to policy implementation. The policy implementation
duration is the time from device classification to the time when
the SDN switches have acknowledged that the rules have been
updated in their forwarding table.

We observe that the majority of the total time is taken by the
packet capture. The duration of the packet capture depends on
the amount of data required for packet classification and the
network traffic characteristics of the device. In our prototype,
our classification engine requires 30 packets, and this number

WeMo
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Cam
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D
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Fig. 4. Total time. We present a) total time taken by the PraNA Orchestrator
from the moment a device is detected to the time a network policy has been
implemented, b) time for the packet capture, and c) time for classification, and
d) time to implement the policy.

is similar to prior works [7]. This packet capture time can
be tuned by adjusting how much traffic is captured when the
device joins the network. The rest of the events, i.e. detection,
classification, and implementing the policy, take on average
about 80 ms in our testbed.

We acknowledge that our testbed is only designed to
demonstrate the PraNA orchestration in a small-scale test
environment, where network delays are small. Similarly, even
if the classification algorithm is optimized to reduce the
time required for classification, the proportional amount of
time taken still would continue to remain small compared
to the packet capture. In contrast, our results highlight that
classifiers requiring fewer packets for classification would have
a significantly larger impact on the total time.

Evaluating the performance of our PraNA Orchestrator in
large-scale enterprise networks is difficult primarily because
our solution is not enterprise-grade. However, a dataset con-
taining Wi-Fi device associations to eduroam from 2014 to
2015 gives a picture of how many network events we could
expect from a large network [33]. In September 2014, the
authors of the eduroam dataset observed 7657792 associations
from 36045 unique clients, and there were 9.6 events per
second during the peak hour. While this only accounts for
Wi-Fi devices, it gives us an estimate on how often devices
join a network. We believe that even our system could scale
to support 10s of events per second because the computational
load of our PraNA Orchestrator is negligible. This is primarily
because control plane services like classification and SDN con-
trollers can be performed on devices fine-tuned to support the
computational and network load required for those services.

V. CONCLUDING REMARKS AND FUTURE WORK

In this paper, we have presented our PraNA framework for
network orchestration. PraNA is a modular system, that allows
the usage of different off-the-shelf components to be tied
together over a common management bus. The decentralized
nature allows PraNA components to be deployed in different
locations or in a single server depending on the network size.

The key benefit of the PraNA is the network orchestration of
different components and controllers. In the example presented
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here, the PraNA brings together network management, device
classification, and network security. These components can
be outsourced from third-party vendors as long as there is
a way to use their available APIs to connect them to the
network management bus either directly or using a SHIM
layer. For example, the device classifiers could be provided
from a security vendor with a suitable shim layer between the
classifiers and PraNA .

Another example is different device controllers. Depending
on the controller, the high-end controllers such as Wi-Fi
controllers typically expose SNMP or REST APIs, while
lower-end IoT controllers may expose similar APIs, or use
their own custom APIs. Regardless of the controller, a shim
layer between the controller and PraNA Orchestrator can be
built to allow PraNA to communicate with the controller.
A good example of this is the Home Assistant, which uses
custom integrations to build and manage home automation
using off-the-shelf IoT devices.

Similarly, as the traffic is controlled through programmatic
network elements, instead of restricting or blocking the de-
vices, the traffic of the device can be redirected to different
network service chains. These chains can then be used for
more thorough traffic analysis and security.

If we take this even farther, the fundamentals of PraNA
can be also applied to containers. By using the PraNA , the
traffic originating from the containers can be redirected to for
example NIDS systems that could determine if the containers
are behaving as designed or are malicious. Similar principles
could also be applied to 6G networks, that will contain a large
variety of heterogeneous devices.

The PraNA framework is also scalable. In our test environ-
ment, each component except the packet capturers in the APs
are single-threaded. However, our evaluation and the insights
from the eduroam dataset show that PraNA can cope with
larger networks with only small tweaks such as parallelizing
the classification engines.

As the PraNA framework is modularized, it can be deployed
without all components. For example, if the network does not
support SDN, the device detection can be gleaned from other
network services such as DHCP or Wi-Fi controllers. While
the current protections in PraNA are implemented using SDN
and OpenFlow, other methods may be available to achieve
similar results such as quarantining a Wi-Fi client through the
Wi-Fi controller.
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