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We study the empirical realization of the memory effect in Yang-Mills theory with an axionlike particle,
especially in view of the classical vs quantum nature of the theory. We solve for the coupled equations of
motion iteratively in the axionic contributions and explicitly display the gauge-invariant effects in terms of
field strengths. We apply our results in the context of heavy-ion collisions, in the thin nuclear sheet limit,
and point out that a probe particle traversing radiation train acquires a longitudinal null memory kick in
addition to the usual transverse kick.

DOI: 10.1103/PhysRevD.104.074029

I. INTRODUCTION

Yoshida and Soda have studied [1] how a possible
cosmological axion background would affect measurements
of the electromagnetic memory effect [2–7]. Not surprisingly,
a new radiation mode became observable. On the other hand,
the extension of electromagnetic memory to non-Abelian
theories has been studied in Refs. [8–11]. The purpose of this
article is to study how non-Abelian memory would be
affected by a simultaneous excitation of a color singlet
axionlike (called axionic in the following) degree of freedom.
Physically, non-Abelian theories develop a gap and do not

propagate as massless radiation. Nevertheless, classical radi-
ationlike color-field configurations appear in the framework of
analyzing the dynamics of collisions of ultrarelativistic large
nuclei in terms of theMcLerran-Venugopalan model [12] and
color glass condensate (CGC) [13]. A single collision can be
interpreted as a burst of classical non-Abelian radiation for
which the memory effect can be formulated. However, to
obtain physical gauge choice independent results one has to
average over an ensemble of color-field configurations.
We shall set up the problem by studying the case in

which there is one large nucleus, the wave function of
which is excited by a weak probe, like a single nucleon. We
assume an axionic degree of freedom is also excited, write
down the coupled equations of mode and solve [14] the
fluctuations of the gauge fields induced by the axion and

finally compute the effect on the memory, total transverse
kick of a test particle. The outcome is that there on the
classical level indeed is a new parity-violating mode, in
analogy with [1]. However, when going over to quantum
theory, the effect averages itself out in the infinitely
contracted nucleus limit. We list several effects which
could contribute in the finite width limit but are so far
unable to compute them. These can be addressed in future
studies, using, for example, the subeikonal correction
techniques developed in Refs. [15–18].
In cosmology, the motivation for studying an axionic

background is, for example, dark matter. In non-Abelian
field theory, QCD, the motivation is the anomalous
nonconservation of the axial Uð1Þ current. There is an
extensive literature on the appearance of these phenom-
ena in nucleus-nucleus collisions [19]. Axionlike effects
can appear in the single-nucleus case in a very subtle way
in polarized deep inelastic scattering [20]. Non-Abelian
gauge fields together with axions appear also in studies of
inflationary cosmology [21,22].
The rest of this paper is organized as follows. Coupled

equations of motion and solution iterative in the axion are
written down in Sec. II; leading-order equations are solved
in Sec. III, and next-to-leading ones in Sec. IV, at the end
of which axion-corrected gauge fields are summarized.
Effect on the memory is derived in Sec. V and Sec. VI
contains our conclusions. Two appendixes contain addi-
tional details.
Color conventions are Dμ ¼ ∂μ − igAμ ≡DμðAÞ,

Aμ ¼ Aa
μTa, ½Ta; Tb� ¼ ifabcTc, a; b; c ¼ 1;…; N2

c − 1,
Fμν ¼ i=g½Dμ; Dν� ¼ ∂μAν − ∂νAμ − ig½Aμ; Aν�≡ FμνðAÞ.
Under a unitary gauge transformation UðxÞ

Aμ → A0
μ ¼ UAμU† þ i=gU∂μU†;

Fμν → F0
μν ¼ UFμνU†: ð1:1Þ
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The adjoint representation is defined by ðTaÞbc ¼ −ifabc. For
commutators of color matricesM ¼ MaTa in any representa-
tion we use ½M;N�c ¼ ifabcMaNb ≡Madj

cbNb ¼ ðMadjNÞc,
where in the rhsMadj is inadjoint representationandN ¼ ðNbÞ
is a color vector. In a related projection we may have a matrix
equation UMU† ¼ J in any representation, M, J are Lie
algebra elements,M ¼ MaTa, TrTaTb ¼ TRδab. Then the a
component of the equation is

Ja ¼
1

TR
Tr½TaUTbU†�Mb ≡ CðUÞabMb; ð1:2Þ

and the equation is written as a matrix × vector equation
CðUÞM ¼ J with a new adjoint matrix CðUÞ. The trans-
formationCðUÞ formsarepresentationofthegroupinthesense
that CðUVÞ ¼ CðUÞCðVÞ. However, if U; Ta are in the
adjoint representation, the new matrix is exactly the same as
the original U matrix,

CðUÞ ¼ 1

TR
Tr½TaUTbU†� ¼ Uab: ð1:3Þ

This iseasy toverify infinitesimally,bywritingU ≈ 1þ iθaTa
and doing the trace. Thematrix equationUMU† ¼ J then has
become a matrix × vector equation UM ¼ J.
The metric convention is using mostly plus light cone

coordinates, v≡ vμ ¼ ðvþ; v−; vÞ, vþ ¼ 1ffiffi
2

p ðv0 þ v1Þ ¼
−v−, vi ¼ vi, v · u ¼ −vþu− − v−uþ þ v · u, and
vT ¼ jvj. Here we have taken x1 ¼ x1 ¼ xL as the longi-
tudinal coordinate; xi ¼ xi ¼ ðx2; x3Þ are then the trans-
verse ones.

II. EQUATIONS OF MOTION

The action of Nf ¼ 0 QCD with a pseudoscalar axion
χ is

S½Aμ
a; χ� ¼

Z
d4x

�
−
1

4
Fa
μνF

μν
a −

λ

4
χFa

μνF̃
μν
a

−
f2

2
∂μχ∂μχ − VðχÞ þ JaμA

μ
a

�
: ð2:1Þ

We focus the attention on the coupling of axions with the
gluon sector and omit quarks from consideration. Here Fa

μν

is the field tensor of SU(Nc) Yang-Mills theory, F̃a
μν its

dual, λ is a dimensionless parameter counting the number
of axion interactions, f is a parameter of dimension 1, VðχÞ
is axion potential, often chosen as μ4ð1 − cos χÞ to retain
some shift symmetry and J is a color current. Without the
axion, χ → 0, this action and its extensions has been used to
study [9,10] the possibility and even phenomenology of
YM memory [8,11] in heavy ion collisions in which
particularly large densities of gluons and thus classical
gluon fields are involved. The aim of the present study is to
investigate how possible existence of an axionic interaction
would affect these considerations.

In the cosmological context the effect of a cosmic axion
background on the usualUð1Þ electromagnetic memory has
been studied in Refs. [1,5,6]. While the usual memory is of
E type [2], parity-breaking properties of the axion lead also
to the appearance of B-type memory. Interactions between
YM fields and axions have also been studied in cosmology
in the context of inflation [21,22].
In the spirit of [9,10] we shall assume the classical YM

fields are those appearing in a nuclear wave function
excited by a weak probe. Associating an axion with these
phenomena is speculative. However, in the study of deep
inelastic scattering on polarized hadrons a momentum
structure ϵμναβpμqαχðp; qÞ, analogous to that in (2.1),
naturally enters. This is due to the appearance of chiral
triangle anomaly in polarized deep inelastic scattering,
discussed, for example, in Ref. [20]. We suggest that it
would be useful to study how the assumption of a particle-
like axion state would fit in the framework of classical
fields in large nuclei in the infinite momentum frame.
Before writing down and perturbatively solving the

equations of motion we summarize the field content and
the reason for its existence. The large fields are the color
singlet pseudoscalar massive axion χ0ðxÞ and the YM vector
potential Aa

μðxÞ, with associated field tensor Fa
μν. The

existence of the former is assumed; the latter is determined
by classical YM equations sourced by a nuclear current on
the light cone. Two different gauges, leading to the same
physical results, are used. A homogeneous component in the
gauge field is not permitted. To first order the axion
contributes via derivative coupling of ∂μχ to the dual gauge
field F̃μν. Via YM fluctuation equations this gives rise to a
first-order fluctuation aaμ of the gauge field, from which, for
example, the effect on memory can be computed.
The action (2.1) leads to the equations of motion

DμFμν ¼ Jν − λ∂μχF̃μν; DμF̃μν ¼ 0 ð2:2Þ

f2□χ − V 0ðχÞ ¼ λ

4
FμνF̃μν: ð2:3Þ

Defining the axion current

jνax ¼ −∂μχF̃μν ð2:4Þ

we have automatically (χ is color singlet)

Dνjνax ¼ 0; ð2:5Þ

so that the current Jν has to satisfy the condition

DνJν ¼ 0: ð2:6Þ

We shall further split the current J in components corre-
sponding to a nucleus A and probe p moving along
opposite light cones:
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J ¼ JA þ jp; ð2:7Þ

where JA has only a þ and jp only a − component.
To approximately solve Eqs. (2.2) and (2.3) we write

Aμ ¼ Að0Þ
μ þ λAð1Þ

μ þ � � � ; χ ¼ χ0 þ λχ1 þ � � � ; ð2:8Þ

and iterate to first order in λ, treating jνp asOðλ1Þ. The intent
is to include only the fluctuations caused by the axion;
more generally there will be quantum fluctuations with
different momentum spectra. For economy of notation, we
shall from now on write

Að0Þ
μ → Aμ; Að1Þ

μ → aμ:

Expanding in λ,

DμðAþ λaÞFμνðAþ λaÞ ¼ JνA þ λjνp þ λjνax; ð2:9Þ

f2□ðχ0 þ λχ1Þ − V 0ðχ0 þ λχ1Þ

¼ λ

4
FμνðAþ λaÞF̃μνðAþ λaÞ; ð2:10Þ

DνðAþ λaÞðJνA þ λjνp þ λjνaxÞ ¼ 0; ð2:11Þ

leads to:
Oðλ0Þ equations:

DμðAÞFμνðAÞ ¼ JνA; ð2:12Þ

f2□χ0 − V 0ðχ0Þ ¼ 0; ð2:13Þ

DνðAÞJνA ¼ 0: ð2:14Þ

Oðλ1Þ equations:

½D2aν −DνD · aþ 2igFμνaμ�c
¼ jνpc − ∂μχ0 · F̃

μν
c ; ð2:15Þ

f2□χ1 − χ1V 00ðχ0Þ ¼ Fa
μνF̃

μν
a ; ð2:16Þ

DνðAÞðjνp þ jνaxÞ − igaνJνA ¼ 0: ð2:17Þ

In Eqs. (2.15)–(2.17) Dν; Fμν; F̃μν are adjoint representa-
tion matrices, F ¼ FaTa, Ta

bc ¼ −ifabc, evaluated at Aμ,
the solution of (2.12), acμ is a color vector. Note that in
(2.16) the rhs actually vanishes. Nonzero contributions will
enter to higher orders in λ, where corrections of the type
λF̃μνDμaν will appear.
Note that λ is here intended as a parameter counting

axionic interactions. Perturbatively, there are also quantum
fluctuations of order g, which are neglected here; the
background field A is taken to be a purely classical YM
field. Quantum effects will enter by integrating over an
ensemble of color currents.
We shall now apply these equations for a process in which

a weakly interacting probe p moves along the x− axis and
collides with a large nucleusAmoving along the xþ axis; see
Fig. 1 (left). On an event-by-event basis the collision excites

FIG. 1. Left: Aweak probe pmoving along the x− axis (current jνp) collides with a large nucleus moving along the xþ axis (current JνA)
spread over a distance ϵ in the x− direction. As discussed in Secs. III and IV, a colored-field configuration with an axionic component
with the current jνax is excited in the strip 0 < x− < ϵ. Computations are carried out in the limit ϵ → 0. Memory is the kick experienced
by a test particle (vertical red line, Sec. V). Right: For comparison, a Penrose diagram presentation of the memory effect in
electrodynamics. A radiator at r ¼ 0 sends a pulse of radiation to null infinity Iþ during the time interval ui < u < uf. The time
integrated pulse of transverse electric field gives a total momentum kick in (5.14) to a test charge at null infinity.
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the nucleus to an effective color- field configuration together,
as is assumed in this work, with a weak axionic configu-
ration. We shall solve these configurations in order to check
whether they can be represented in the framework of a
memory effect.
Weshallworkhere in theveryhigh-energyapproximationof

aLorentzcontracted infinitely thinnuclear sheet.The thickness
parameter ϵ is taken to zero at the end of the computation. In
usual discussions of the memory effect the coordinate
xμ ¼ ðu; r; θ;ϕÞ, u ¼ t − r, with the line element

ds2 ¼ −du2 − 2dudrþ r2ðdθ2 þ sin2 θdϕ2Þ; ð2:18Þ

isanaturalone touse; for theangularpart,amoregeneralmetric
ds2 ¼ hABdθAdθB,A; B ¼ 1, 2 onS2. The relation to the light
cone coordinates is simplyxL ¼ r cos θwithθ → 0 so that the
surface of S2 is flattened. Then

ffiffiffi
2

p
x− ¼ uþ r − r cos θ ≈ u; ð2:19Þ

and the t; xL space-time diagram and the flat-space Penrose
diagram can be qualitatively related as in Fig. 1. In the Penrose
diagram the null infinity is brought to a finite distance by a
conformal transformation; in the t; xL space-time diagram the
dominant field configuration is xþ independent and the “null
infinity” is at some large value of xþ.

III. LEADING-ORDER EQUATIONS

The Oðλ0Þ equation for the gauge field Aμ is, in color
matrix × color vector notation,

DμFμν ¼ JνA ¼ δνþρðx−;xÞ: ð3:1Þ

Here ρ is the color current of a nucleus A moving in the xþ
direction in the infinite momentum frame. In the extreme
thin-sheet approximation one is tempted to write
ρðx−;xÞ ¼ δðx−ÞρðxÞ, but when integrating over x− one
should first take a finite range and then let the upper limit go
to zero; see remarks around (3.20). Thus ρ is concentrated in
the range 0 < x− < ϵ, ϵ → 0. It is also crucial for the
following that there is no xþ dependence, due to infinite time
dilatation. Below we shall keep track of xþ dependence, too.
For a nucleus moving in the xþ direction it is convenient to
choose the light cone gauge1 A− ¼ −Aþ ¼ 0. Then a current
with only þ component and no xþ dependence automati-
cally satisfies DμJμ ¼ ∂þJþðx−;xÞ ¼ 0, as required
by (3.1).
Imposing first just the gauge condition A− ¼ 0, Aμ ¼

ðAþ; 0; A2; A3Þ the field tensor is, in the ðþ;−; 2; 3Þ basis,

Fμν ¼

0
BBBBB@

0 −∂þAþ ∂þA2 ∂þA3

∂þAþ 0 F−2 F−3

−∂þA2 −F−2 0 F23

−∂þA3 −F−3 −F23 0

1
CCCCCA

¼ 1ffiffiffi
2

p

0
BBBBB@

0 −
ffiffiffi
2

p
EL E2 −B3 E3 þB2ffiffiffi

2
p

EL 0 E2 þB3 E3 −B2

−E2 þB3 −E3 −B2 0 −
ffiffiffi
2

p
BL

−E3 −B2 −E2 þB3

ffiffiffi
2

p
BL 0

1
CCCCCA
:

ð3:2Þ

Here the second form of Fμν records what the color electric
and magnetic fields would be with the usual 3D associa-
tions F0i ¼ Ei; Fij ¼ −ϵijkBk, where i, j, k ¼ 1, 2, 3, and
remembering that x1 ≡ xL is the longitudinal coordinate.
These explicit forms emphasize the strong effect of the

approximation of xþ independence, putting ∂þ ¼ 0.
Firstly, the longitudinal electric field vanishes, EL ¼ 0.
Secondly, the transverse electric and magnetic fields are
related:

ðE2; E3Þ ¼ ðB3;−B2Þ; Ei ¼ ϵijBj;

Bi ¼ −ϵijEj; EiBi ¼ 0; ð3:3Þ

and orthogonal, F̃μνFμν ¼ 0 (see below). With no xþ
dependence, the only nonzero components of Fμν are
Fij and F−i ¼ Fiþ ¼ ∂−Ai þDiAþ and the field tensor is

Fμν ¼

0
BBBB@

0 0 0 0

0 0 F−2 F−3

0 −F−2 0 F23

0 −F−3 −F23 0

1
CCCCCA
: ð3:4Þ

For the dual tensor we have (F̃þi ¼ −ϵijF−j),

F̃μν ¼ 1

2
ϵμναβFαβ ¼

0
BBBBB@

0 F23 −F−3 F−2

−F23 0 ∂þA3 −∂þA2

F−3 −∂þA3 0 −∂þAþ

−F−2 ∂þA2 ∂þAþ 0

1
CCCCCA

¼
ffiffiffi
2

p

0
BBBBB@

0 0 B2 B3

0 0 0 0

−B2 0 0 0

−B3 0 0 0

1
CCCCCA
; ð3:5Þ

with

1The logic of naming gauges is as follows. Since one �
component is fixed (A− ¼ 0) the gauge is a light cone (LC)
gauge. This comes in two variants, either as a longitudinal LC
gauge, also called Aþ gauge (Aþ nonzero) or as a transverse LC
gauge, also called Ai gauge (Ai nonzero).
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F̃μνFμν¼
1

2
ϵμναβFμνFαβ

¼4½∂þA3 ·F−2−∂þA2 ·F−3−∂þAþ ·F23�: ð3:6Þ

The second form of the dual follows from xþ independence
and choosing Aþ gauge in which F23 ¼ 0 (see below). One
sees concretely how the vanishing of F̃F follows from xþ
independence.
We can now return to solving the YM equations (3.1)

choosing A− ¼ 0 and assuming xþ independence. The ν ¼
− component of (3.1), DþFþ− þDiFi− ¼ J−A ¼ 0, is
identically satisfied since the field-tensor components
vanish. The þ; i components of (3.1) are

DiFiþ ¼ Di∂−Ai þDiDiAþ ¼ ρðx−;xÞ; ð3:7Þ

DjFji ¼ 0: ð3:8Þ

We remind that an equation DF ¼ ρ is short for a matrix
equation DabFb ¼ ρa. Using the associations in (3.4) we
can equally write

DiFiþ ¼
ffiffiffi
2

p
DiEi ¼

ffiffiffi
2

p
ϵijDiBj ¼ ρ: ð3:9Þ

Further discussion of Eqs. (3.7) and (3.8) splits naturally
in two branches; one can find solutions with either the
longitudinal light cone gauge (LLC) Ai ¼ 0, which we call
Aþ gauge, this being the only non-zero component:

Aμ¼ðÃþðx−;xiÞ;0;0;0Þ; Dμ¼ð∂þ;∂−þ igÃþ;∂iÞ;
Dμ¼ð−∂−− igÃþ;−∂þ;þ∂iÞ; D2¼□−2igÃþ∂þ;

Fþ−¼F−i¼0; F−i¼∂iÃ
þ¼

ffiffiffi
2

p
Ẽi¼ ϵij

ffiffiffi
2

p
B̃j; ð3:10Þ

or the transverse light cone gauge Aþ ¼ 0, which we call Ai
gauge, these being the only nonzero components:

Aμ¼
�
0;0;Ai¼ i

g
U∂iU†ðx−;xjÞ

�
; ∂−U¼ igUÃþ;

Dμ¼ð∂þ;∂−;∂i− igAiÞ; D2¼−2∂þ∂−þDiDi; ð3:11Þ

Fþ−¼F−i¼0; F−i¼∂−Ai¼
ffiffiffi
2

p
Ei¼ ϵij

ffiffiffi
2

p
Bj: ð3:12Þ

From now on, quantities in the Aþ gauge will be appended
with a tilde. In these equations, Ãþ is determined from the
equation of motion (3.7) with Ai ¼ 0:

DμFμþ ¼ DiFiþ ¼ ∂i∂iÃ
þðx−; xiÞ ¼ ρ̃ðx−; xiÞ; ð3:13Þ

i.e., by inverting a 2D transverse Poisson equation,

Ãþðx−;xÞ ¼
Z

d2yGðx − yÞρ̃ðx−; yÞ

¼ 1

2π

Z
d2y logðjx − yjΛÞρ̃ðx−; yÞ; ð3:14Þ

where Λ is an IR cutoff parameter. A key role in the
following is played by the adjoint matrix Uðx−;xÞ trans-
forming from Aþ to Ai gauge, i.e., transforming Ãþ to zero.
According to (1.1) this matrix U has to satisfy

∂−U† þ igÃþU† ¼ D−U† ¼ 0; ð3:15Þ

i.e.,

Uðx−;xiÞ¼Pexp

�
ig
Z

x−

0

dy−Ãþðy−;xiÞ
�
Uð0;xiÞ; ð3:16Þ

transforms Ãþ to zero. Note that we define U with þig in
the exponent. Since

∂þUðx−;xÞ ¼ 0; ð3:17Þ

A− ¼ 0 is intact and one transforms from the longitudinal
to the transverse LC gauge. Since the first-order matrix
equation (3.15) is homogeneous, its solution (3.16) could
be multiplied with an arbitrary matrix function Mðxþ;xÞ.
The transverse field Ai given in (3.11) is then generated and
the field tensors transform, in matrix notation, as

Fiþ ¼ ∂−Ai ¼ UF̃iþU† ¼ U∂iÃ
þU†: ð3:18Þ

In component form we can as well write, using (1.3),

∂−Aia¼Uab∂iÃ
þ
b ; ∂iÃ

þ
a ¼ðU−1Þab∂−Aib

¼Uba∂−Aib: ð3:19Þ

As discussed above ρ and Aþ are confined in the range
0 < x− < ϵ → 0, due to Lorentz contraction, and one might
be tempted to insert δðx−Þ for the x− dependence. However,
then U in Eq. (3.16) would be ∼

exp½−igAþð0;xÞ�θðx−Þ þ θð−x−Þ; ð3:20Þ

and this form does not satisfy (3.15). One should keep the
path-ordered integral and only at the end take the range
to zero.
The field configuration excited by a weak probe is thus

very simple, just radiationlike mutually orthogonal color
electric and magnetic fields. The situation is quite different
in glasma, the state excited in a collision of two large
systems [23]. Then also longitudinal fields are excited.
Consider then the axion equation (2.3) or its expanded

versions (2.13) and (2.16). Since the leading term for FF̃
vanishes, the equation to order λ0 and to order λ1 is simply
the free scalar equation,
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□χ −m2χ ¼ 0: ð3:21Þ

The simplest approximation VðχÞ ¼ 1
2
f2m2χ2, m ¼ axion

mass, is used for the potential. Actually the axion will
induce an order λ2 inhomogeneous term λ2

f2 ∂þðai
ffiffiffi
2

p
BiÞ to

the rhs [see later Eq. (4.37)]. Thus toOðλÞ the axion simply
is a plane-wave state χ0ðkÞeik·x, 2kþk− ¼ k2T þm2. Since
the inhomogeneous term is of higher order the normaliza-
tion is unknown; actually it is too much to expect that the
normalization could be determined. If the axion is an
exponential in time, ∼eimt, then along x− ¼ 0, just after the
nuclear sheet, where we really need it,

χ0ðmxþ; 0;xÞ ¼ χ0ðxÞei
mffiffi
2

p xþ : ð3:22Þ

We will also need the combination

1

∂þ
∂þχ0 ¼ χ0ðmxþ; 0;xÞ − χ0ð0; 0;xÞ

≡ χ̄0ðmxþ; 0;xÞ; ð3:23Þ

using the normalization (4.11) of inverse ∂þ. This vanishes
whenm → 0 [24]. Of course, the xþ integration constant in
(4.11) is basically unknown.
Since the equation for χ above is a homogeneous one

[see also Eq. (2.13)], one may ask what would be the role of
a similar homogeneous solution added to the gauge field
equation (3.1). The answer is that these gauge fields would
be totally irrelevant for the problem at hand, defined by
coupling to the nuclear current in Eq. (3.1). The axion is
coupled via the axion current in Eq. (2.2).
At this point one may also compare the situation in QCD

and cosmological contexts, in view of Fig. 1. In the
cosmological context [1] one has an emitter at r ¼ 0 which
during a time interval uf − ui sends a pulse to null infinity.
Actually the emitted radiation is cosmological background
radiation and null infinity is here, where the radiation is
observed. In the course of its propagation the radiation
passes through a (tentative) axionic dark matter background
and this affects the polarization properties of the radiation
so that not only E-mode radiation but also B-mode one is
observed. This is a memory effect. There is only one
universe, but the observed effect is still an average over
many subsystems. In the QCD case, the field configuration
is excited by a probe colliding with the nucleus. The
transverse radiation potential Ai grows within the shock
wave 0 < x− < ϵ essentially ∼θϵðx−;xÞ, so that the fields,
derivatives of Ai are ∼δϵðx−;xÞ and can produce a finite
result when integrated over 0 < x− < ϵ → 0. The required
parity violation resides in the anomalous nonconservation
of the axial current. It has been extensively discussed, in the
form of the chiral magnetic effect, mainly in the central
region of nucleus-nucleus collisions, less so in phenomena
involving a single nuclear sheet (see, however, [20]).

IV. NEXT-TO-LEADING ORDER EQUATIONS

Inserting the computed background field to Eq. (2.15)
we have the fluctuation equation

D2aν −DνD · aþ 2igFμνaμ ¼ jνp þ jνax; ð4:1Þ

where

jνp ¼ δν−δðxþÞρpðxÞ;
jνax ¼ ϵik∂kÃ

þðδνi∂þχ0 − δνþ∂iχ0Þ ð4:2Þ

and

jνp þ jνax ¼ ð
ffiffiffi
2

p
B̃i∂iχ0; δðxþÞρpðxÞ;−

ffiffiffi
2

p
B̃i∂þχ0Þ; ð4:3Þ

where we introduced the magnetic field from Eq. (3.3),ffiffiffi
2

p
B̃i ¼ −ϵij∂jÃ

þ, and recall χ0 ¼ χ0ðmxþ; 0;xÞ in
Eq. (3.22). We will discuss these equations in the Aþ
gauge modified by a fluctuation field, for which we choose
the gauge ã− ¼ 0:

Aμ þ aμ ¼ ðÃþðx−;xÞ þ ãþ; 0; ãiÞ; ð4:4Þ

in which they have the explicit form (D · a ¼ Dμaμ ¼∂þaþ þ ∂iai)

ν ¼ −∂þð∂þãþ þ ∂iãiÞ ¼ j−p; ð4:5Þ

ν ¼ i□ãi − 2igÃþ∂þãi − ∂ið∂þãþ þ ∂iãiÞ ¼ jiax; ð4:6Þ

ν ¼ þ□ãþ − 2igÃþ∂þãþ þ ð∂− þ igÃþÞð∂þãþ þ ∂iãiÞ
þ 2ig∂iÃ

þ · ãi ¼ jþax: ð4:7Þ

One is interested in solving these equations for the
fluctuation field aμ ¼ ðãþ; ã− ¼ 0; ãiÞ by integrating over
the region depicted in Fig. 1, starting from vanishing values
at x− ¼ −∞ and then integrating in the direction of x−. The
main effect is what happens when crossing the nucleus, in
the range 0 < x− < ϵ → 0. Note that this x− integration is
in exact analogy when integrating over u at large r when
computing the ED memory in ðu; r; θAÞ coordinates.
Let us first check the current conservation condition

(2.17) explicitly. First, aνJνA ¼ 0 since JA has only the þ
component and ãþ ¼ −ã− ¼ 0. Contracting the current
(4.3) with Dν ¼ ð∂þ; D−; ∂iÞ cancels the axionic terms [as
it should, according to (2.5)], but the condition

D−j−p ¼ ð∂− þ igÃþÞj−p
¼ ð∂− þ igÃþÞδðxþÞρðxÞ ¼ 0 ð4:8Þ

remains. It is satisfied whenever Ãþ ¼ 0, but on the nuclear
sheet at 0 < x− < ϵ we are back to Eq. (3.15); the collision
with the nuclear sheet rotates the color of the probe by
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multiplying j−p by the conjugate of the matrix U† in
Eq. (3.16). We thus have to write the probe current in
the form

j−p ¼δðxþÞ½θðx−ÞU†ðx−;xÞρpðxÞþθð−x−ÞρpðxÞ�: ð4:9Þ

Returning to the fluctuation equations (4.5)–(4.7), one
first sees that the ν ¼ − Eq. (4.5) can be integrated to

D · a ¼ ∂þãþ þ ∂iãi ¼
1

∂þ
j−p

¼ θðxþÞ½θðx−ÞU†ðx−;xÞρpðxÞ þ θð−x−ÞρpðxÞ�;
ð4:10Þ

using

1

∂þ
fðxþÞ ¼

Z
xþ

0

dyþfðyþÞ: ð4:11Þ

The lower limit is at xþ ¼ 0 since that is when the collision
takes place. In view of Eq. (4.8), D · a also is covariantly
conserved:

D−ðD · aÞ ¼ 0; ð4:12Þ

as is expected of a “time” x− independent constraint.
Before the collision, at x− < 0, we have Ãþ ¼ 0 and all

the fields are simple to solve. First,

ð−2∂þ∂− þ ∂2
TÞai − θðxþÞθð−x−Þ∂iρpðxÞ ¼ 0; ð4:13Þ

so that

ãi ¼ θðxþÞθð−x−Þ ∂i

∂2
T
ρpðxÞ

¼ θðxþÞθð−x−Þ
Z

d2y
2π

xi − yi
jx − yj2 ρpðyÞ;

ãþ ¼ 0; D · a ¼ ∂iãi: ð4:14Þ

Actually for this solution ∂þ∂−ãi ∼ δðxþÞδðx−Þ so that it
only satisfies (4.13) away from the collision point
xþ ¼ x− ¼ 0. The most general solution of (4.12) would
contain U† multiplied by a matrix function Mðxþ;xÞ,
independent of x− [25].
Writing □ explicitly and dividing by −2∂þ the two last

ones, Eqs. (4.6) and (4.7), become

ν ¼ i∂−ãi þ igÃþãi

¼ −
1

2∂þ
ð−∂2

Tãi þ ∂iðD · aÞ þ jiaxÞ; ð4:15Þ

ν ¼ þ∂−ãþ þ igÃþãþ

¼ −
1

2∂þ
ð−∂2

Tã
þ − 2ig∂iÃ

þ · ãi −D−ðD · aÞ þ jþaxÞ:

ð4:16Þ

We are particularly interested in integrating these across the
nuclear sheet, 0 < x− < ϵ. Inserting what we learned of
D · a these in this range, and for xþ > 0, are, in Aþ gauge,

ν ¼ iD−ãi ¼ ∂−ãi þ igÃþãi

¼ 1

2∂þ
ð∂2

Tãi − ∂iðU†ρpÞ þ
ffiffiffi
2

p
B̃i∂þχ0Þ; ð4:17Þ

ν ¼ þD−ãþ ¼ ∂−ãþ þ igÃþãþ

¼ 1

2∂þ
ð∂2

Tã
þ þ 2ig∂iÃ

þ · ãi −
ffiffiffi
2

p
B̃i∂iχ0Þ: ð4:18Þ

As a check of the consistency of Eqs. (4.17) and (4.18)
one may compute that their solutions indeed satisfy

D−D · a ¼ D−∂þãþ þD−∂iãi ¼ 0: ð4:19Þ

Equations (4.17) and (4.18) are first-order inhomo-
geneous matrix equations which are solved by first solving
the homogeneous equation and adding an inhomogeneous
term. If M, F are vectors and A a matrix, the equation is of
type

∂xMðxÞ þ AðxÞMðxÞ ¼ FðxÞ: ð4:20Þ

The homogeneous equation ∂xMðxÞ þ AðxÞMðxÞ ¼ 0 is
solved by

M0ðxÞ¼Pexp

�
−
Z

x

0

dyAðyÞ
�
M0ð0Þ≡U†ðxÞMð0Þ ð4:21Þ

and the general solution is (C is a constant)

MaðxÞ ¼ CU†
abðxÞMbð0Þ

þ U†
abðxÞ

Z
x

0

dyUbcðyÞFcðyÞ: ð4:22Þ

Consider now Eq. (4.17) for ãi. In it Ãþ and B̃i, as a
spatial derivative of Aþ, contain a δðx−Þ singularity,
regulated by ϵ. We expect that these singular terms
dominate over the two transverse spatial derivative terms
on the rhs. We shall therefore neglect these regular trans-
verse terms (as was done in Ref. [14] in an analogous
computation). Note that their sum ∂2

Tãi − ∂iðU†ρpÞ van-
ishes if ãi ¼ 1

∂2T ∂iðU†ρpÞ. The equation then basically
becomes an equation for ∂þãi, but the rhs also depends
on ∂þχ0. Dividing out ∂þ we have to use Eq. (3.23) for the
inverse. The equation for ai then becomes
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∂−ãi þ igÃþãi ¼
1ffiffiffi
2

p B̃iχ̄0ðmxþÞ;
ffiffiffi
2

p
B̃i ¼ −ϵij∂jÃ

þ: ð4:23Þ

To solve this, we first need the homogeneous solution for ai
with the initial condition (4.14):

að0Þi ðx−;xÞ ¼ U†ðx−;xÞaið0;xÞ;

aið0;xÞ ¼
1

∂2
T
∂iρpðxÞ: ð4:24Þ

Then Eq. (4.22) gives the transverse fluctuation field in Aþ
gauge:

ãiðxþ; x−;xÞ ¼ U†ðx−;xÞãið0;xÞ

þU†ðx−;xÞ
Z

x−

0

dy−Uðy−;xÞ

×
1ffiffiffi
2

p B̃iðy−;xÞχ̄0ðmxþ; y−;xÞ: ð4:25Þ

Here the upper limit x− is within the range 0 < x− < ϵ.
As the final step, we want this solution at the exit from

the nuclear sheet, at ϵ → 0. That the integral does not
vanish in this limit follows from the fact that there
effectively is a δðx−Þ singularity in Bi on the nuclear sheet:

a large background field Ai ∼ θðx−Þ is created and Bi is a
derivative thereof. In the second term, according to (3.18),
the field derivatives are mathematically related by ∂−Ai ¼
U∂iÃ

þU† or, in terms of color vector components [see
Eq. (1.3)], by

∂−Ai
a ¼

1

Nc
TrðTaUTbU†Þ∂iÃ

þ
b ¼ Uab∂iÃ

þ
b : ð4:26Þ

The axion is effectively constant in the y− integration so
that in the second term we can write

Z
ϵ

0

dy−Uðy−;xÞ∂jÃ
þðy−;xÞχ̄0

≈
Z

ϵ→0

0

dy−∂−Ajðy−;xÞχ̄0≈Ajðϵ;xÞχ̄0ðxþ;0;xÞ: ð4:27Þ

Note that we are automatically led to the adjoint color
vector component

Ajb ¼
1

Nc
TrTbAj ð4:28Þ

of the background field Aj ¼ i
g U∂jU† in the Ai gauge.

Thus, the transverse axion-induced fluctuation field, in
the Aþ gauge, at the exit from the nucleus is

ãiaðxþ; ϵ;xÞ ¼ U†
abðϵ;xÞ

�
−
1

2
ϵijAjbðϵ;xÞχ̄0ðmxþ; 0;xÞ þ 1

∂2
∂iρpbðxÞ

�
: ð4:29Þ

We have written down the color components explicitly to
emphasize the fact that one should take the color compo-
nent b of the vector Aj, not the matrix. In the second term
the color index b comes from the color density ρpb of the
incident probe. This is rotated by the matrix U† while
crossing the nucleus. In the axionic first term the axion is
color singlet and the color index b is that of a gluonic
transverse field ∼Aib excited from the background. Its color
is further rotated by U† while traversing the sheet.
When gauge transforming the background plus fluc-

tuation system from the Aþ to the Ai gauge some correction
terms arise, relative to transforming only the background
field [12,25,26]. These terms are computed in Appendix A,
but they can be neglected in the thin-sheet limit. The result
in the Ai gauge is thus simple to obtain: just left multiply
the Aþ gauge result byU. This cancels the matrixU† on the
right hand side and

aiaðxþ;ϵ;xÞ¼−
1

2
ϵijAjaðϵ;xÞχ̄0ðmxþ;0;xÞ

þ 1

∂2
∂iρpaðxÞ: ð4:30Þ

This result implies that the axion has induced an xþ
dependence

∂þaia ¼ −
1

2
ϵij∂þðAjaχ̄0Þ

¼ i
mffiffiffi
2

p χ0ðmxþÞ
�
−
1

2
ϵijAja

�
ð4:31Þ

to the transverse field. There is also an interesting property
of probe-nuclear sheet interactions contained in the second
term on the rhs of Eq. (4.30): the nonaxionic transverse
fluctuation is not at all affected by the sheet [27]. The last
term is simply the vacuum solution (4.14) before the
collision.
The ãþ fluctuation (actually one only needs its derivative

∂þãþ) should now be solved from Eq. (4.18):

∂−ãþþ igÃþãþ¼ 1

∂þ

�
þig∂iÃ

þ · ãi−
1ffiffiffi
2

p B̃i∂iχ0

�
; ð4:32Þ

where the nonsingular term ∂2
Tã

þ has been neglected.
Solving this equation is straightforward but complicated by
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the fact that on the rhs we must first solve ãi from
Eq. (4.29) or from Eq. (4.25). This brings in the interesting
axionic effects from two sources, first from B̃i in the rhs of
(4.32) and also from the B̃i in the solution for ãi. The
former has one singular integral over the nuclear sheet; the
latter iterates this and has two integrals.
The solution can be directly written down from the

general formula (4.22). Since the initial condition is
aþð0Þ ¼ 0 [Eq. (4.14)], there is no homogeneous solution.
Inserting ãi from (4.29) one has to begin with a nonaxionic
contribution from the homogeneous term of ãi. This,
written for ∂þãþ, is

∂þãþ¼U†ðx−Þ
Z

x−

0

dy−ðUðy−Þig∂iÃ
þ ·U†ðy−Þaið0ÞÞ

¼U†igAiaið0Þ¼−∂iU†aið0Þ; ð4:33Þ

in agreement with Ref. [14] (there U† is defined as U). The
relevant new axionic terms come from the inhomogeneous
axionic term in Eq. (4.29) and the last term in Eq. (4.32).
The singular integrals can be done as in Eq. (4.27); even the
iterated integral can be done in closed form. To avoid
confusion between matrix and vector representations, we
give the result with color indices:

∂þãþa ¼ U†
ab

�
igAibeaieð0Þ −

1

2
ϵijig

Z
ϵ

0

dy−∂−AibeAjeχ̄0 þ
1

2
ϵijAjb∂iχ0

�

¼ U†
ab

�
igAibeaieð0Þ −

1

2
ϵijð∂iAjbÞχ̄0 þ

1

2
ϵijAjb∂iχ0

�
; ð4:34Þ

where the arguments x− ¼ ϵ; y−; y are omitted, χ0 ¼
χ0ðmxþ; 0;xÞ is as given in Eq. (3.22), χ̄0 has the value
at xþ ¼ 0 subtracted.
Looking at the outcome, one immediately notes that with

different sign of the middle term, the axionic terms would
combine to 1

2
ϵij∂iðAjbχ̄0Þ. This is even more suggestive since

the same background field combination 1
2
ϵijAiχ̄0 appears in

Eq. (4.31) for ∂þai. However, the sign of the middle term in
the second line arises as follows. By using symmetries the y−

integral in the first line simply is 1
2
AibeAje so that the whole

middle term is − 1
4
ϵijigAibeAjeχ̄0 (Ai appears both as a

matrix and a vector here). However, one further has
igAibeAje ¼ ig½Ai; Aj�b ¼ ∂iAjb − ∂jAib since the back-
ground solution is Fij ¼ 0. Thus the middle term reduces
to − 1

4
ϵijigAibeAjeχ̄0 ¼ − 1

2
ϵij∂iAjbχ̄0. With a different sign

the axionic terms would combine to 1
2
ϵij∂iðAjbχ̄0Þ. Note also

how the sources of the two terms are different: the middle
term comes from the interaction with the transverse fluc-
tuation, the last term from the interaction of the aþ fluctuation
with the background field; see Eq. (4.32).
In summary, at the exit from the crossing of the nuclear

sheet, in the Ai gauge, the total transverse field and the xþ
derivative of the longitudinal gluon field are given by

Aiaðϵ;xÞþaiaðxþ;ϵ;xÞ

¼
�
δij−

1

2
ϵijχ̄0ðmxþ;0;xÞ

�
Ajaðϵ;xÞþaiað0;xÞ: ð4:35Þ

∂þaþb ðxþ; ϵ;xÞ ¼
1

2
ϵijAjb∂iχ0ðmxþ; 0;xÞ

−
1

2
ϵijð∂iAjbÞχ̄0 þ igAibeaieð0Þ: ð4:36Þ

In the Aþ gauge the fluctuation fields are in Eqs. (4.29) and
(4.34). The corresponding field tensors, in the þ;−; 2, 3
basis, are, in the Ai gauge

FμνðAþ aÞ ¼

0
BBB@

0 −∂þaþ ∂þai
∂þaþ 0 ∂−ðAi þ aiÞ þDiaþ

−∂þai antis Diaj −Djai

1
CCCA;

ð4:37Þ
or in the Aþ gauge

FμνðÃþ ãÞ¼

0
BBB@

0 −∂þãþ ∂þãi
∂þãþ 0 ∂iðÃþþ ãþÞþD−ãi

−∂þãi antis ∂iãj−∂jãi

1
CCCA:

ð4:38Þ
All the fields are evaluated at x− ¼ ϵ → 0, just after
crossing the thin nuclear sheet, aiað0;xÞ ¼ ∂−2

T ∂iρpaðxÞ
[Eq. (4.24)], χ̄0 is in Eq. (3.23).
Axion-induced effects are as follows. The large trans-

verse gauge field Ai is corrected by a perpendicular vector,
the − 1

2
ϵijAjχ̄0 term in Eq.(4.35). This implies that the

length of the color vector Aia is only changed by a very
small color-independent amount,

AiaAia →

�
1þ 1

4
χ̄20ðmxþ; ϵ;xÞ

�
AiaAia ≈ AiaAia: ð4:39Þ

This correction may decouple in the limit m → 0. The aþ
fluctuation is corrected by a term with a very similar
structure in Eq. (4.36).
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The corrections to the color electric and magnetic fields
induced by the axion can be read from Eqs. (4.37),(4.38)
together with Eq. (3.2):

ffiffiffi
2

p
Ei ¼ ∂−Ai þ ∂þai þ ∂−ai þDiaþ;

Bi ¼ −ϵijðEj −
ffiffiffi
2

p ∂þajÞ; ð4:40Þ
ffiffiffi
2

p
EL ¼ ∂þaþ; BL ¼ −Diaj þDjai: ð4:41Þ

In particular, a nonzero FF̃ is induced:

1

4
FμνF̃μν ¼ −ϵij∂þãi∂jÃ

þ ¼ ∂þãi
ffiffiffi
2

p
B̃i

¼ −ϵij∂þai∂−Aj ¼ ∂þai
ffiffiffi
2

p
Bi ð4:42Þ

in the two gauges. These are analogous to writing E · B ¼
∂tA ·B (3d vectors) in electrodynamics. One sees how xþ
dependence of the transverse fluctuation leads to a nonzero
FF̃. The term ∂þaþ in Eq. (3.6) does not contribute since it
is multiplied by F23 which also is of first order. Using
Eq. (4.31) we can further write

1

4
Fa
μνF̃

μν
a ¼ ∂þaia ·

ffiffiffi
2

p
Bia ¼ −

1

2
imχ0ϵijAjaBia

¼ 1

2
imχ0ðmxþÞAiaEia: ð4:43Þ

Remember that here Ai, Ei, Bi are independent of xþ. This
is valid as it stands in Ai gauge but going over to Aþ
gauge, where there is no background Ai field, one must
transform Aja in Eq. (4.43) to U†

abAjb ¼ ðU†AjUÞa ¼
− i

g ðU†∂jUÞa. This is in agreement with Ãia ¼
ðU†AiUÞa þ i

g ðU†∂iUÞa ¼ 0.
Many of the qualitatively important effects induced by

the axion seem to come from the xþ dependence of the
fluctuations. The large background fields were independent
of xþ.

V. MEMORY

In the setup of Fig. 1 the memory of YM radiation is the
permanent effect this radiation burst has on some property
of a test particle crossed by the burst. Without the axion the
simplest type of memory [8–11] is the transverse momen-
tum change of the test particle, caused by the transverse
electric field of the burst. We set out to study how the
introduction of an axionlike particle would modify this
pattern. We have now computed the color fields in the
infinitesimally thin nuclear sheet approximation and the
response of a test particle to these fields can, in principle, be
computed from Wong’s equations [28].
Wong’s equations give the motion xμ ¼ xμðτÞ of a

particle of mass M with an adjoint color vector Qa in a
given background field. Defining first

pμ ¼ Muμ ¼ M
dxμ

dτ
; ð5:1Þ

they are (Q · F≡QaFa)

dpμ

dτ
¼ gQ · Fμν dxν

dτ
;

dQa

dτ
¼ −gfabcuμAb

μQc: ð5:2Þ

Note that the equation for pμ explicitly conserves the mass
shell condition pμpμ ¼ −2pþp− þ p2

i ¼ −M2. The color
equation expresses its covariant conservation: In matrix
form (uμ∂μ ¼ ∂τ)

_Q − iguμAμQ ¼ uμð∂μ − igAμÞQ ¼ uμDμQ ¼ 0: ð5:3Þ

The −; i;þ components of the equations of motion are

M
dp−

dτ
¼ −gQ · ðFþ−p− þ FþipiÞ
¼ gQ · ðp−∂þaþ − pi∂þaiÞ: ð5:4Þ

M
dpi

dτ
¼ gQ · ðp−Fi− þ pþFiþ þ pjFijÞ
¼ gQ · ½−p−ð∂−ðAi þ aiÞ þDiaþÞ
− pþ∂þai þ pjðDiaj −DjaiÞ� ð5:5Þ

¼ gQ̃ · ½−p−ð∂iðÃþ þ ãþÞ þD−ãiÞ − pþ∂þãi
þ pjð∂iãj − ∂jãiÞ� ð5:6Þ

pþ ¼ pipi þM2

2p− : ð5:7Þ

We know the fields from the front of the nucleus at x− ¼ 0
to its tail end at x− ¼ ϵ and we should compute the
cumulative effect integrated over the nuclear sheet on a
test particle starting at x− ¼ 0 with some initial velocity
u−ð0Þ, the fate of the red line in Fig. 1. All the fields are
constructed on the basis of the large background transverse
field Aiðx−;xÞ together with the axion χ0ðxþ; x−;xÞ. There
is no reason to expect any strong variation as a function of
x− in the axion wave function so that one can as well set
x− ¼ 0 there. The transverse field Aiðx−;xÞ grows rapidly
across the nuclear sheet, behaves ∼θϵðx−Þ. There also the
integral over the burst, over the range 0 < x− < ϵ will
produce something of the order of ϵ. However, there is one
term containing a singularity in the range of integration, the
x− derivative ∂−ðAi þ aiÞ in dpi=dτ, goes ∼δðx−Þ and
produces a finite result in the limit ϵ → 0. This feeds itself
further into the behavior of pþ. Similarly, the Aþ gauge
equation (5.6) has a δðx−Þ singularity in Ãþ; this will be
discussed in Appendix B.
We thus conclude that in the thin-sheet limit we can

concentrate on the ∂−ðAi þ aiÞ term in dpi=dτ; the rest will
produceOðϵÞ effects. However, this is a limit and in serious
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modeling the OðϵÞ effects should be quantitatively studied.
There are also further OðϵÞ effects, like the one coming
from careful gauge transformation between Aþ and Ai
gauges when also fluctuations are included, studied in
Appendix A. Quantitative conclusions are only possible by
numerical means. Solving Wong’s equations numerically
has been extensively studied [29–31].
Consider then Eq. (5.4) for Mdp−=dτ. The rhs is, from

the point of view of the axion, particularly interesting since
it is entirely induced by the xþ dependence of the axionic
fluctuation. Its coefficients, given in Eqs. (4.31) and (4.36),
have a reasonably simple structure, but the equation is not
obviously integrable. It is nevertheless nonsingular and
produces negligible OðϵÞ effects. We thus have

dp−

dτ
¼ 0 ⇒ p− ¼ Mu− ¼ M

dx−

dτ

¼ constant ⇒ x−ðτÞ ¼ p−

M
τ: ð5:8Þ

Of course, it will be a very interesting problem to ultimately
sort out how the now neglected coefficients in Eqs. (4.31)
and (4.36) affect the constancy of p−, but this requires a
good numerical control of the fields as well as a better
knowledge of the axion wave function.
Assume then that the test particle is initially at rest,

p− ¼ M=
ffiffiffi
2

p
. The equations of motion conserve the mass

shell condition so that all the time during motion across the
sheet

ffiffiffi
2

p
p− ¼ E − pL ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
L þ p2

T þM2

q
− pL

¼ MTe−y ¼ M: ð5:9Þ

From this one can solve

pL ¼ p2
T

2M
; y ¼ log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
T þM2

p
M

; ð5:10Þ

so that the momentum of the test particle is [in
ðE; pL; p2; p3Þ coordinates]

pμ ¼
�
p2
T

2M
þM;

p2
T

2M
;pi

�
; ð5:11Þ

pipi ¼ p2
T . Computing pi as a function of time, this gives

the fate of the red line in Fig. 1. Passage through the sheet
develops some pT and associated with thus some pL. This
is negligible in the nonrelativistic limit, pT ≪ M. How this
affects the Uð1Þ memory analogy is discussed later
after Eq. (5.18).
Thus the primary quantity is transverse motion; the rest

follows from it. The equation for xiðτÞ is

_pi ¼ MẍiðτÞ ¼ −gQ · Eiðτ;xÞ; ð5:12Þ

where the color electric field is Ei ¼ F−i=
ffiffiffi
2

p
as given by

Eq. (4.38) or (4.37). Solving from here xiðτÞ one gets
xLðτÞ by integrating _xL ¼ 1

2
_xi _xi and finally (from

E ¼ pL þM) x0ðτÞ ¼ τ þ xLðτÞ.
To do the first integral over τ or x− it is simplest to use

the Ai gauge since then
ffiffiffi
2

p
Ei ¼ ∂−Ai and one integral can

be immediately carried out. Including just the x− derivative
term in Eq. (5.5) the pi equation is simply

∂−piðx−Þ¼−gQaFiþ
a ðAþaÞ¼−gQa∂−ðAi

aþaiaÞ: ð5:13Þ

In the Ai gauge D−Qa ¼ ∂−Qa ¼ 0 and the color does not
rotate. This is a key property of the gauge choice since
then we can immediately integrate over x−. Choosing the
initial value pið0Þ ¼ 0 and taking the transverse fluc-
tuation from Eq. (4.35) [the weak probe initial field
aiað0;xÞ is inessential and can be neglected], the final
result for the transverse kick is2

piðxþ;xÞ¼−gQaðAi
aþaiaÞ

¼−g
�
δij−

1

2
ϵijχ̄0ðmxþ;0;xÞ

�
QaAjaðxÞ: ð5:14Þ

Thus, in analogy with Ref. [1], there is a new parity-
breaking mode. Both Aia and pi have the same parity
(P−) and since χ0 is pseudoscalar, the ϵij term has
opposite parity. For given colors (5.14) is a definite
prediction for the transverse kick on an event-by-event
basis, for one element of the nuclear color densities, given
concretely in Eq. (B2). Note that Aia as an adjoint color
vector is real. Colors and momentum dependencies
remain unspecified, though, and in this sense this result
may be mathematically correct but is unphysical.
Geometrically, the axion-dependent correction in

Eq. (5.14) is a small perpendicular addition to the 2d
vector Ai. Thus to first order, as already discussed in
Eq. (4.39), the length of the vector Ai is unchanged.
The result (5.14) should now be (complex) squared and

averaged over an ensemble of color densities. For a
Gaussian ensemble, see Eq. (B4). In this heavy-ion
collision analog model, this averaging is concretely
carried out in Appendix B. One has to evaluate expect-
ation values of the type [one takes different points x ¼
ðxþ;xÞ; y ¼ ðyþ; yÞ since there will be a logarithmic
divergence when y → x]

hpiðxþ;xÞpiðyþ; yÞi ð5:15Þ

2Of course, one can as well use the Aþ gauge, i.e., start from
Eq. (5.6). This is done in Appendix B. For the consistency of the
approach it is important that a gauge-invariant answer is obtained.
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¼ g2
��

δjk −
1

2
ϵjkðχ̄0ðmxþ; 0;xÞ − χ̄0ðmyþ; 0; yÞÞ þ 1

4
δjkχ̄0ðxÞχ̄0ðyÞ

�
QaQbAjaðxÞAkbðyÞ

�
ρ

→
y→x

g2
�
1þ 1

4
χ̄20ðmxþ; 0;xÞ

�
hTr½AiðxÞAiðyÞ�iρ; ð5:16Þ

where we on the second line have taken y → x in the
axionic factor and used the fact that the field expectation
values are diagonal in color so that one can replace
QaQa → CA ¼ Nc, the adjoint Casimir, and write the color
sum as a trace. Equation (5.16) shows that unless there are
some special effects in the xþ direction, the first-order
axionic correction to the displacement memory vanishes.
Note that this vanishing happens on the tree level, even
before computing the expectation value. There will be
corrections to next order. Physically, when traversing the
thin nuclear sheet the color neutral axion had to pick up an
adjoint color vector and there was only one available, Ai.
To relate the result to phenomenology, the leading

memory term was evaluated in Ref. [10]:

g2hTr½AiðxÞAiðyÞ�iρ ¼ lim
y→x

hpiðxÞpiðyÞi ¼
1

π
Q2

s log
Qs;
Λ
ð5:17Þ

whereQs is a saturation scale (of the order of 2 GeV) and Λ
(of the order of ΛQCD ≈mπ) regulates the divergence at
y → x. The derivation was carried out in the Ai gauge and
required a computation of the expectation value of a string
of U matrices. This has more accurately been carried out in
Ref. [32]. As shown by Ref. [33], it is simplest to use the
Aþ gauge; then one gets not only the expectation value but
the entire distribution (see Appendix B). The results
coincide, which shows the consistency of the scheme.
Further, this analog model predicts that in addition to the

transverse displacement memory there is a longitudinal
memory due to Eq. (5.9)

hpLiρ ¼
�
p2
T

2M

�
ρ

; ð5:18Þ

whereM is the mass of the test particle. This effect is there
already on an event-by-event basis [see Eq. (5.11)] and
survives averaging over an ensemble of collisions. The
appearance of the infrared sensitive quantity M indicates
that the longitudinal component of the memory is not as
controllable as the transverse one.
That the longitudinal memory does not appear in usual

discussions [3,5–7,11] is due to the fact that this analog
model is inherently relativistic with equal Ei, Bi while in
the usual Lorentz factor Eþ 1

c v × cB with E ∼ cB (3
vectors) the magnetic field term is negligible at non-
relativistic velocities. It is this term which produces
longitudinal motion.

To analyze this from another angle, note that from
Eq. (5.11) the velocities are

vT ¼ 2MpT

p2
T þ 2M2

; vL ¼ p2
T

p2
T þ 2M2

;

vLð1 − vLÞ ¼
1

2
v2T: ð5:19Þ

These velocities form an ellipse plotted on the ðvT; vLÞ
plane in Fig. 2. In the nonrelativistic limit pT ≪ M, we
have vT ¼ pT=M; vL ¼ p2

T=ð2M2Þ ¼ 1
2
v2T so that the

longitudinal effect is negligible. Increasing pT vT grows
and reaches its maximum value vT ¼ 1=

ffiffiffi
2

p
at

pT ¼ M
ffiffiffi
2

p
; vL ¼ 1

2
. Increasing pT further, vT decreases

and finally vanishes as 2M=pT when vL → 1. It may seem
paradoxical that the transverse velocity decreases in the
large momentum limit; this of course is due to energy
increasing.
In discussions of Uð1Þ memory [3] there are two types of

memory: an ordinary memory caused by a radial electric
field (sourced by a collection of charged particles which end
up in the future timelike infinity, not in null infinity) and a
null memory caused by transverse electric and magnetic
fields (sourced by massless charged particles going to null
infinity). In this analog model there are longitudinal fields
sourced by the axion, but all sources go to null infinity. In
this sense the model is the analog of the null memory only,
caused by transverse fields. Longitudinal memory in
Eq. (5.18) is a relativistic effect in the observation of null

FIG. 2. The velocities in Eq. (5.19) plotted on the ðvT; vLÞ
plane as functions of pT=M.
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memory. Also longitudinal fields are induced by the axion
but we are so far unable to compute their effect. Longitudinal
fields enter in the central region of nucleus-nucleus collisions
[19,23,32] or in phenomenological analyses of η0 produc-
tion [34].

VI. CONCLUSIONS

This article was motivated by a cosmological study [1] in
which the effect of a cosmological axion background on
electromagnetic memory was computed. This gave a
motivation to ask how an axionlike particle, called axion,
coupling to QCD matter would affect the Yang-Mills
radiation memory in Refs. [8–11]. Operationally, answer-
ing this required sorting out how an axion could coexist
with a CGC.
Another physical way of expressing the problem is as

follows. Assume there is a speculative axionlike degree of
freedom in QCD matter, interacting with QCD as axions
are expected to do. How does it affect the motion of a test
quark passing through a large nucleus, in the infinite
momentum frame?
This problem has been studied in the setting of a weak

probe, a proton, an offshell photon, exciting the wave
function of a single nucleus. Of course, there is no
observational evidence of this type of dynamics, Subtle
analyses of spin effects in deep inelastic scattering may,
nevertheless, lead to some related effects [20].
The effect of the axion on the CGC in the form of axion-

induced fluctuations of the gauge potentials in the CGC has
been computed in the thin-sheet limit. These effects can be
measured by the effect of the nuclear sheet on the motion of
a test quark. There is a clear parity-violating memory effect
on the classical event-by-event level, but summing over an
ensemble of events, the axionic effect averages out. The
treatment is inherently relativistic and the memory, in
addition to the usual transverse one [3], has a longitudinal
component also. In any case, the memory here is an analog
of the null memory only; all the charges reach null infinity.
There are many finite width effects to modify the

averaging out of the axionic signal; with bigger width
there is more space and time for interesting phenomena to
take place. In particular, spin effects can then enter. While
we now computed an axion-induced correction to a vector
Ai one should then compute the same for the spin
pseudovector Si or to a polarization asymmetry. A sys-
tematic way of treating these would be to use the non-
eikonal correction techniques developed, for example, in
Refs. [15–18]. Proceeding further in this direction would be
a well-motivated entirely new project.
Technically, the work presented here is largely based on

the methods and approximations developed in Ref. [14].
There also gluon production in the process was computed.
The same can be done here, too, on the amplitude level, but
averaging over an ensemble would need computing very

complicated correlators. The level of complication is set by
a related computation of η0 production [34].
One knows of the axion little beyond the assumed free

pseudoscalar massive field equation. It has one interesting
effect: through its mass dependence it induces xþ, “time”,
dependence to the CGC. Inherently, due to time dilatation,
the CGC is xþ independent. Altogether, of course the whole
appearance of the axion is still speculative, but we hope that
our theoretical exercise will pave the road to its exper-
imental realization.
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APPENDIX A: TRANSFORMATION
BETWEEN GAUGES

Let us work out in some detail the gauge transformation
from the gauge Aμ ¼ ðÃþ þ ãþ; 0; ãiÞ to the gauge
ð0; 0; Ai þ aiÞ [12,25,26]. Transforming the þ component
to zero requires

Aþ þ aþ ¼ 0 ¼ ŪðÃþ þ ãþÞŪ† −
i
g
Ū∂−Ū† ðA1Þ

or

∂−Ū† ¼ −igðÃþ þ ãþÞŪ†: ðA2Þ

Here the transformation matrix Ū is expected to be close to
U ¼ eiθ:

Ū ¼ eiðθþgδθÞ ¼ Uð1þ igδθÞ: ðA3Þ

Inserting this, expanding in g, using the leading relation
∂−U† ¼ −igÃþU†, one finds that δθ is determined from the
equation

D−ðÃþÞδθ ¼ ð∂− þ igÃþÞδθ ¼ ãþ; ðA4Þ

from which one solves

δθ ¼ U†δθð0Þ þ U†ðx−;xÞ
Z

x−

0

dy−Uðy−;xÞãþðy−;xÞ:

ðA5Þ

Since Ãþ vanishes for x− ≤ 0 one expects δθð0Þ ¼ 0 here.
The other components are transformed to
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A− þ a− ¼ −U∂þδθU† ¼ 0 if ∂þδθ ¼ 0; ðA6Þ

Ai þ ai ¼ i
g
U∂iU† þ Uðãi þ ∂iδθÞU†: ðA7Þ

Here the matrix ai is given as a product of three matrices
and to compare with earlier computations we have to
project out the color component aia, using adjoint repre-
sentation everywhere:

aia ¼
1

Nc
Tr½TaUTbU†�ðãi þ ∂iδθÞb

¼ Uabðãib þ ∂iδθbÞ

¼ −
1

2
ϵijA

j
aðϵ;xÞχ0ð0;xÞ þUab∂iδθb: ðA8Þ

Here the first term is what was computed in Eq. (4.27) by
simply applying to the small fluctuation field the same
gauge transformation U as to the big background field.
Transforming also ãþ in Eq. (4.34) to zero produces the
second term.
When computing the variation of δθ across the nuclear

sheet, 0 < x− < ϵ, from Eq. (A5) one observes that there is
no singularity in the integrand so that the integral will be of
the order of ϵ. There is a singularity in the evaluation of ãþ,
regulated as shown in Eq. (4.27). Taking for Aiðy−Þ a linear
growth over the interval 0 < x− < ϵ to the final value at ϵ
one can estimate

δθðϵÞ ¼ U†ðϵ;xÞAjðϵ;xÞ
1

∂þ
ϵ½igãkð0;xÞ

× δkj þ ϵkj∂kχ0ð0;xÞ�: ðA9Þ

The contribution to the transverse gauge field induced by
the gauge transformation then is Uðϵ;xÞ∂iδθ and has two
components, an axionic one inherently small and another
small due to the factor ig. Both are small due to the overall
factor ϵ, reflecting the narrowness of the nuclear sheet.

APPENDIX B: DISTRIBUTION
OF MEMORY KICKS

We have evaluated the expectation value of the magni-
tude of the kick by transforming to the physical Ai gauge;
see Eq. (5.14). One must be able to do the same in the Aþ
gauge, i.e., by integrating pi from Eq. (5.6). As shown by
Ref. [33], in this gauge one can also perform explicitly the
averaging over color distributions and compute not only the
magnitude but also their distribution. For brevity we
neglect here the axionic fluctuation.
According to Eq. (5.13), written in Aþ gauge in

Eq. (5.6),

∂−piðx−Þ ¼ −gQaFiþ
a ðAÞ ¼ −gQ̃a∂iÃ

þ
a ; ðB1Þ

with ∂2Ãþ ¼ ρ̃ solved in Eq. (3.14). In the thin-sheet
approximation Ãþ ∼ δðx−Þ and one can integrate (B1) over
x− so that δðx−Þ becomes θðx−Þ ¼ 1. Computing the
transverse derivative of the integral representation (3.14)
and taking x ¼ 0 one has the transverse kick for a fixed ρ:

piðx ¼ 0Þ ¼ gQ̃a

Z
d2y
2π

yi
y2

ρ̃aðyÞ: ðB2Þ

Here ρ̃ is a transverse density of dimension 2 so pi has the
correct dimension 1. The distribution of kicks, normalized
to 1, then is

dN
d2p

¼ dN
πdp2

T
¼
�
δð2Þ

�
pi−gQ̃a

Z
d2x
2π

xi
x2

ρ̃aðxÞ
��

ρ

¼
Z

d2s
ð2πÞ2e

ipisi

�
exp

�
−igQ̃a

Z
d2x
2π

xisi
x2

ρ̃aðxÞ
��

ρ

:

ðB3Þ

Physics enters in the specification of the ensemble of
color densities. With an exponential density the expectation
value is

hOiρ ¼
R
DρaðxÞOðxÞ exp ½− 1

2λ

P
a;xρ

2
aðxÞ�R

DρaðxÞ exp ½− 1
2λ

P
a;xρ

2
aðxÞ�

: ðB4Þ

Properties of the nuclear sheet are built in the parameter λ of
dimension 2, the saturation scale squared, conveniently
normalized by

Q2
s ¼

1

2
λg2Q̃aQ̃a ¼

1

2
λg2QaQa; ðB5Þ

where QaQa → CA ¼ Nc, the adjoint Casimir. The expect-
ation value in Eq. (B3) then becomes a Gaussian integral of
type

Z
Πdzke−A

2
kz

2
k−Bkzk ¼ exp

�
B2
k

4A2
k

� Z
Πdzke−A

2
kz

2
k ; ðB6Þ

where

A2
k ¼

1

2λ
; Bk ¼ ig

Q̃a

2π

sixi
x2

: ðB7Þ

This yields

−
B2
k

4A2
k

¼ 1

2
λ

Z
d2x

g2

4π2
QaQa

sisjxixj
x4

¼ 1

2
λg2QaQa

1

4π

Z
dx
x
s2 ¼ 1

4π
Q2

s log
Qs

Λ
s2: ðB8Þ

Here we have used the averaging xixj →
1
2
δij and regulated

transverse distance integral in the IR by the QCD Λ and in
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the UV by 1=Qs. Inserting this for the expectation value in
Eq. (B3) gives a Bessel function integral and

dN
d2p

¼ 1

πhp2
Ti

exp

�
−

p2
T

hp2
Ti
�
;

hp2
Ti ¼ hpið0Þpið0Þi ¼

1

π
Q2

s log
Qs

Λ
: ðB9Þ

Here hpið0Þpið0Þi is the regulated evaluation of
hpiðxÞpiðyÞi when y → x; see Eq. (5.15) (with no xþ
dependence). Using pL ¼ p2

T=ð2MÞ from Eq. (5.9) this is
immediately converted to

dN
dpL

¼ 1

hpLi
exp

�
−

pL

hpLi
�
; hpLi ¼

hp2
Ti

2M
; ðB10Þ

where M is the mass of the test particle.
The expectation value of the magnitude of kick squared

is exactly the same as the one obtained in Ref. [10] by
evaluating the correlator (5.17) in the Ai gauge (in Ref. [10]
the factor g2 was omitted from the correlator and jx − yj
should be regulated by 1=Qs). Obtaining the same result in
two different gauges shows the consistency of the scheme.
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