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ABSTRACT
When an object enters the atmosphere it may be detected as a meteor. A bright meteor, called a fireball, may be a sign of a
meteorite fall. Instrumentally observed meteorite falls provide unique opportunities to recover and analyse unweathered planetary
samples supplemented with the knowledge on the Solar system orbit they had. To recover a meteorite from a fireball event, it
is essential that recovery teams can be directed to a well-defined search area. Until recently, simulations showing the realistic
mapping of a strewn field were difficult, in particular due to the large number of unknowns not directly retrieved from the
fireball observations. These unknowns include the number of fragments and their aerodynamic properties, for which the masses
of the fragments need to be assumed in a traditional approach. Here, we describe a new Monte Carlo model, which has already
successfully assisted in several meteorite recoveries. The model is the first of its kind as it provides an adequate representation of
the processes occurring during the luminous trajectory coupled together with the dark flight. In particular, the model comprises a
novel approach to fragmentation modelling that leads to a realistic fragment mass distribution on the ground. We present strewn
field simulations for the well-documented Košice and Neuschwanstein meteorite falls, which demonstrate good matches to the
observations. We foresee that our model can be used to revise the flux of extra-terrestrial matter onto the Earth, as it provides a
possibility of estimating the terminal mass of meteorite fragments reaching the ground.

Key words: methods: analytical – methods: data analysis – Earth – meteorites, meteors, meteoroids – planets and satellites:
atmospheres.

1 IN T RO D U C T I O N

Meteorite falls with well-documented atmospheric trajectories are of
paramount importance for planetary science as they yield tangible
planetary samples supported by comprehensive spatial context. With
appropriate registration of a fireball entry, the pre-impact orbit of
the meteoroid in the Solar system can be calculated and a possible
connection to its parent body may be established (Dmitriev, Lupovka
& Gritsevich 2015).

The count of currently known asteroids has passed the 1 million
mark (NASA 2020; MPC 2021). It has been estimated that the
Solar system has over 150 million asteroids larger than 100 m
and a countless amount of smaller ones. The Meteoritical Bulletin
Database holds records of 65 184 valid meteorite names (MBD 2021)
including those, which ‘sample’ the parent objects that do not longer
exist in the Solar system in their original form (Vinković & Gritsevich
2020). Comparing the number of known meteorites to the numbers
of known asteroids implies that at present our sampling of the Solar
system objects is very limited.

When an object enters the Earth’s atmosphere, it produces a lumi-
nous event called a meteor (Silber et al. 2018; Vinković & Gritsevich

� E-mail: jarmo.moilanen@nls.fi (JM); maria.gritsevich@helsinki.fi (MG)
†Deceased.

2020). We illustrate the phenomena and associated processes in
Fig. 1. The objective of this study is to present a first of its kind
model that encompasses a description of the processes that have an
influence on the resulting strewn field. Naturally, these processes
occur during both, the luminous and dark flight.

The trajectory of a fireball (an exceptionally bright meteor) can be
resolved from photographic or video recordings. It is a geometrical
triangulation task with difficulties of its own (Ceplecha 1987;
Borovička et al. 2013; Lyytinen & Gritsevich 2013, 2016a; Spurný
et al. 2014; Sansom et al. 2019a; Jansen-Sturgeon et al. 2020; Peña-
Asensio et al. 2021). The next question to answer based on the
analysis of the fireball is deciding its probable fate and if any part
of the object has survived the atmospheric entry (Gritsevich, Stulov
& Turchak 2012; Turchak & Gritsevich 2014; Sansom et al. 2019b;
Moreno-Ibáñez et al. 2020). Most meteor events undergo complete
ablation, hence in most cases nothing or only a negligible amount of
matter reaches the ground. For a prominent meteorite fall, the next
question arises – where can it be found?

It is possible to solve the dark flight path of a meteorite nu-
merically, assuming a single projectile and using the data derived
from the fireball trajectory supplemented with atmospheric data.
Such calculations produce a single impact point on the ground. By
repeating the calculation for different assumed masses, a polyline
can be drawn on the map (Spurný et al. 2012; Brown et al. 2019).
This is a nominal or central line of the strewn field, sometimes
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Figure 1. Different stages and phenomena related to a meteoroid entering the Earth’s atmosphere. The pre-atmospheric (or initial) mass of the meteoroid is the
mass that a meteoroid possesses on its orbit before it starts to interact with the Earth’s atmosphere. The starting mass of the meteoroid is defined here as the
mass that it has at the starting point of our MC simulation, following initial ablation but prior to any fragmentation to occur. The terminal mass is the cumulative
mass of meteorite fragments that land on the Earth’s surface.

called the highest probability line (Spurný et al. 2014). This line is
traditionally taken as a good place to start any meteorite recovery
efforts.

However, the central line of the strewn field derived this way
is not the highest probability line to find a meteorite fragment.
Fragmentation of the projectile, shapes of individual fragments, and
actual atmospheric winds during the dark flight distribute fragments
over a wide area. This creates a need for the generation of probability
heat maps (Devillepoix et al. 2018). Another (practical) problem is
that this central line does not always fall in favourable terrain for the
search of meteorites.

Monte Carlo (MC) methods are used when complex physical
phenomena with several degrees of freedom need to be simulated.
MC simulations became a widely used approach to solve different
kinds of complex problems in physics and have also been proposed
to simulate the dark flight of meteorites.

The main argument towards using the MC methods for strewn field
simulations is that the exact atmospheric condition profile for the fall
trajectory of each individual fragment is not possible to obtain. In
addition to that simulations should also account for great variations
in shapes and sizes of the fragments.

Our first dark flight Monte Carlo (DFMC) simulations were done
in 2010 January. The model was tested with several falls where the
trajectory of a fireball and distribution of meteorites were known.
The most illustrative case study was the Košice meteorite fall that
occurred on 2010 February 28. This well-documented fall produced
data of 218 different sized fragments from 0.3 g up to 2.37 kg in
addition to the fragments recovered by private meteorite hunters
(Borovička et al. 2013; Gritsevich et al. 2014c).

The first DFMC simulation leading to the successful field cam-
paign for a new fall was made in 2014 when two pieces of the
Annama meteorite were found inside the predicted strewn field in
Russia (Gritsevich et al. 2014a, b).

In this study, we describe how to determine a realistic strewn field
map using the MC methods and the real corresponding atmospheric
measurements for the time, heights, and location of the fall. As in
our earlier study of the luminous part of the trajectory (Lyytinen
& Gritsevich 2016b), the atmospheric data comes from the GFS,
Global Forecast System, and from the ECMWF, the European
Centre for Medium-Range Weather Forecasts, and is provided by
national weather services. The performance of the DFMC model
is demonstrated using the example of the Košice meteorite fall by
comparing the simulated strewn field with the actual positions of
the recovered fragments. Possible implications of the model are
then discussed by also studying the example of the Neuschwanstein
meteorite fall.

2 ME T H O D S

2.1 General considerations

MC simulations are based on repeating calculations multiple times
using phenomena related equations and rules with variations in initial
parameters. Plausible variations in parameters are produced using
appropriate distributions. In our model, two probability distributions
are used. Most variations are achieved by using the normal distri-
bution (equation 1) as a probability function and some – by using
a variation of the exponential distribution (equation 2), which for
continuous random variable χ can be defined as

f (x) = 1

σ
√

(2π )
e
− 1

2

(
χ−μ

σ

)2

, (1)

f (x) = (1 − μ)i (1 − χ ) + χ. (2)
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Determination of strewn fields 3339

Table 1. Parameters of the start point and the lowest observed height of the fireball are used as input data for a DFMC simulation. In
the parameter file for our code, there are several other inputs, like time code and limit to calculated trajectories, but they are part of the
programme execution and do not belong to the algorithm of the simulation.

Symbols Parameter Unit Remarks Default error

λ0 Longitude degrees WGS84 (west < 0◦ < east) Included in e0

ϕ0 Latitude degrees WGS84 (south < 0◦ < north) Included in e0

h0 Altitude m Above the sea level Included in e0

e0 Spatial error at the start point m An uncertainty sphere ±300 m
δ0 Direction of trajectory degrees 0◦–360◦ (0◦ = N, clockwise) ±1.◦8
γ 0 Trajectory slope degrees 0◦–90◦ (90◦ = vertical) ±1.◦8
V0 Velocity m s−1 Velocity at the start point ±300 m s−1

a0 Deceleration limit m s−2 Defines acceptable deceleration at the start point a ≥ 0.99a0

he End height of fireball m Lowest observed altitude No variations
ρm Density of meteoroid kg m−3 For chondrites 3300 kg m−3 ±500 kg m−3

The parameters of the normal distribution are the mean, or the
expectation of the distribution (μ), which determines the location of
the peak, and the standard deviation (σ ), which indicates the spread
of the values around the mean. In equation (2), (μ) is the location
parameter, which determines the ‘location’ or shift of the distribution.
The shape of the probability curve is controlled by the rate parameter
(ί).

MC methods can also be used to simplify or speed up the computa-
tions. Modelling a dark flight of a supersonic projectile can be a time
consuming task. The most difficult part in dark flight simulations are
aerodynamic forces often involving factors like Reynolds number
(Vinnikov, Gritsevich & Turchak 2016). These forces depend on the
fragment shape, orientation, and character of motion. Subsequently,
forces influenced by these properties are unique for each individual
fragment. For example, the Magnus effect occurs when an airborne
body rotates. Yet, not all meteorite fragments rotate so fast that they
experience it.

Aerodynamic forces, which cannot be ignored while simulating
a dark flight of a meteorite, are drag and atmospheric winds.
Aerodynamic drag is a force, which slows down an object moving
through the atmosphere. This force appears due to the air resistance
and acts opposite to the relative motion of the object with respect to
the surrounding media. If the actual shape and orientation of an object
are ignored in the simulation, air drag does not modify the direction of
the trajectory. Ignoring some of these more random factors affecting
dark flight is an MC technique known as importance sampling.

To produce plausible DFMC simulations, there has to be a variation
in fragment shapes to represent different drag forces induced by
differently shaped meteorite fragments. This can be implemented by
using different values for the drag coefficient and ignoring forces
which may deviate the fragment from the original trajectory.

Our DFMC simulation model is based on a programme that
calculates a ballistic free fall trajectory. The programme accounts for
gravity, air drag, curvature of the Earth and can be further extended
to also account for the Coriolis force. A new spatial position and the
forces acting on a simulated fragment are recalculated after every
time-step. Our time-step interval is 0.04 s due to the video frame rate
of some fireball cameras. The free fall simulation is then enhanced
by adding the atmospheric winds and MC variations. A horizontal
force caused by winds is calculated as air drag using equation (4).
Also, the mass-loss and change in cross-section area are recalculated
after every time-step as described in Section 2.4.

Inputs for our DFMC simulation are parameters of the meteor
trajectory (Table 1) and atmospheric data (Table 2).

We do not go into details of the DFMC code in this work, though
a flowchart of a typical execution is shown in Fig. 2.

Table 2. Parameters of the atmospheric data used in the DFMC model.
Units are given as used in the calculations. Atmospheric data uploaded from
a weather data base may also include other parameters like a dew point
temperature.

Symbols Parameter Units Remarks

ha Altitude m Above the sea level
ta Temperature ◦C (May be K in data)
pa Air pressure kPa (May be hPa in data)
ρa Air density kg m−3 (Can be calculated)
δw Wind direction degrees 0◦–360◦ (0◦ = N, clockwise)
vw Wind speed m s−1 (May be knots in data)

2.2 Start point

The start point is the point where a simulation run begins. It is
advisable to set the start point on a luminous trajectory point where
the most accurate parameters can be calculated from the fireball
observations. This is almost never the point of maximum fireball
brightness, because images are often overexposed so that the exact
projectile location cannot be determined accurately enough. The
starting point should also not be too close to the end of a luminous
flight because fragments that separated from the main body earlier
will not be simulated.

Higher precision of the luminous trajectory reconstruction also
implies higher accuracy in the DFMC model. Spurný et al. (2014)
estimated that they achieve 12 m accuracy (one standard deviation)
for the Benešov fireball trajectory. However, the study by Sansom
et al. (2019a) revealed that a meteoroid’s trajectory during luminous
flight does not fit a straight line. It can deviate from a straight line by
hundreds of meters or even up to 3 km.

Parameters for the start point of a simulation are taken from the
fireball observations and MC variations used for most of the start
point parameters are thus error margins of the trajectory calculations.
Using a normal distribution (equation 1) as a probability function,
the start point values for the location and flight direction for each
simulated fragment can be calculated. The calculated precise location
and direction for the trajectory gives the average absolute deviation
or the mean deviation (μ). Error margins can be added as a standard
deviation (σ ) of the distribution. If error margins are not known for
the start position, some default values can be used as error margins.
In Table 1, we summarize the default errors used in our DFMC
simulations.

Fireball trajectory calculations usually give error margins for the
start point coordinates and altitude. These errors can be notable,
especially in the case when observation sites are unfavourably located
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3340 J. Moilanen, M. Gritsevich and E. Lyytinen

Figure 2. A flowchart of the DFMC simulation code presents the main stages of the code as they are usually executed. The first fragment (or the starting mass)
is defined as the nominal body (see Section 2.3) for which the trajectory code execution is presented on the grey background. No MC variations are applied
for the nominal body case. After the calculation of the nominal body trajectory, a trajectory of a fragment is simulated in the main loop. The main loop ends
when the total mass of simulated fragments at the start point exceeds the starting mass or the maximum number of fragments allowed is reached. Letters in the
flowchart are Y for yes and N for no.
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Determination of strewn fields 3341

with respect to the fireball trajectory geometry. Naturally these error
margins can be used as MC deviations for the start point parameters.
However, that will cause a skewed box-like space where possible start
points of simulated trajectories are located. That can cause artefacts
to the strewn field prediction and that is why we combined altitude
and coordinate error margins into one spatial error parameter (e0) of
the start point position (Table 1).

MC variations for the start position and direction for a simulated
fragment are introduced by applying the MC algorithm as follows.
First, a random number is generated. Most random number gen-
erators return a number ranging between 0 and 1. This number is
set as our test value. Next, a random number is generated for the
parameter constrained by the range defined by the parameter value
as a mean value and the error margins of the parameter as a deviation.
If the value of the normal distribution function (equation 1) for this
parameter value exceeds or equals our test value, we have found a
value of the parameter for this simulated fragment.

If the test value is greater than the value of normal distribution
function, a new test value and parameter value will be generated and
the test will be repeated. This loop will be repeated until the test is
passed. The efficiency of the code can be improved by normalizing
the mean value of the normal distribution function to be 1. In this
case every time when the random parameter value is the same as the
mean value the test will be passed.

2.3 Mass of a meteoroid at the start point

The main question related to a meteorite fall is how much meteoritic
material one can expect to find on the ground. Here, we will
demonstrate that this question can be answered with the DFMC
simulation when MC methods are limited to simulate only a single
trajectory instead of distribution map of probabilities for multiple
fragment trajectories.

How do we know the total mass of the meteoroid at the start
point of simulation? Existing trajectory reconstruction methods
allow us to reproduce the preatmospheric masses of meteoroids
relatively well, based on fireball aerodynamics, so that these agree
with the diameter estimates obtained in the laboratory based on
cosmogenic radionuclide analysis done on recovered meteorites
(Gritsevich 2008a; Gritsevich et al. 2017; Kohout et al. 2017; Meier
et al. 2017). Pre-atmospheric size (defined as the physical radius
× bulk density, with a unit of g cm−2) can then be translated to
the preatmospheric meteoroid mass involving assumptions about the
bulk density and initial meteoroid shape. Further calculations of
mass of the main body along the luminous trajectory become more
challenging as they require the knowledge of the mass loss parameter
(or ablation coefficient) as well as the knowledge or assumption
of the shape change coefficient, which generally ranges between
0 and 2/3 (Gritsevich & Stulov 2006; Gritsevich 2008c; Bouquet
et al. 2014; Drolshagen et al. 2020). The mass of a meteoroid
can also be estimated using Bayesian filtering techniques (Sansom,
Rutten & Bland 2017). In practice, mass estimates will change even
when varying assumptions on the atmospheric model (Lyytinen &
Gritsevich 2016b).

Alternatively the meteoroid mass can be resolved using photome-
try, by analysing which fraction of the kinetic energy is transformed
into the light emitted by the fireball (McCrosky 1967). However,
determination of the photometric mass this way roots into the
assumption of constant velocity (Gritsevich & Koschny 2011) and
relies on poorly assumed luminous efficiency coefficient (Gritsevich
2008b), making it barely acceptable for fireballs producing mete-
orites.

The starting mass, defined here as the total mass of a meteoroid at
the start point of a DFMC simulation, can be solved using observed
velocity and deceleration. The mass of a meteoroid can be calculated
when its shape and bulk density are fixed. We ‘fix’ the shape at the
start point by fixing the drag coefficient of the meteoroid to be 1.5
and, as a default, we set bulk density of a typical ordinary chondrite
as 3300 kg m−3.

The drag coefficient (Cd) reflects the dependence of the drag force
on shape, orientation, and air flow conditions. It is calculated by
equation (3), where A is the shape factor, V is velocity in m s−1, and
ta is the ambient temperature in ◦C corresponding to the altitude. The
specific heat ratio γ is defined as 1.4 for air at STP (T = 273.15 K or
0 ◦C, P = 101.325 kPa), the gas constant R is 286 m2 s−2 K−1, and
the constant T = 273.15 K is used to convert the ambient temperature
from the Celsius to Kelvin scale.

Cd = AV /(γR(T + ta))1/2. (3)

The cross-section area (S) is estimated by calculating the char-
acteristic radius corresponding to the mass. This is needed for the
air drag equation (equation 4) to relate the mass to the produced
deceleration (equation 5).

Fd = 1/2CdρaSV 2, (4)

dV

dt
= F

M
. (5)

Hence, the starting mass is the mass that matches the deceleration
observed at the start point.

This starting mass is used as the total cumulative mass of fragments
at the start point. We refer to this virtual, non-fragmenting meteoroid
as the nominal body. The nominal body at the start point should have
the slowest observed deceleration (thus also highest velocity) what
is calculated from the fireball observations.

In order to cross-check that the simulation is plausible, we
calculate the full bright and dark flight trajectory for the nominal
body. The trajectory of the nominal body is calculated without any
variations in wind speed or in wind direction, so the nominal body
lands on the central line of the strewn field. In this computation,
only mass-loss occurring due to ablation will apply to the nominal
body during the passage through the atmosphere. This optional
computation reveals how much mass can be ablated during the
atmospheric passage. The nominal body is not allowed to break
up, so the terminal mass estimate resulting from this trial is usually
significantly bigger than any meteorite fragment resulting from the
complete simulation loop with the start point parameters described
in Section 2.2.

2.4 Ablation

The start point of the simulation is on the luminous path of the fireball,
as this is also the observable part of the trajectory. This implies that
the meteoroid is still experiencing mass-loss, in particular due to
ablation. As fireballs are relatively rapid phenomena, even shortly
after the fireball terminates, surviving fragments still undergo minor
ablation (Fig. 1). The velocity of the projectile is high at this
point and deceleration is high. Ablation will end in seconds after
the fireball fades away (given there are surviving fragments). The
term ablation also usually includes ablation due to spallation, but
spallation is considered here as a part of the fragmentation process.

How fast the meteoroid loses its mass due to ablation can be
calculated using the ablation coefficient. The ablation coefficient
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of a meteoroid is difficult to observe directly but it can be obtained
from the fireball observations (Gritsevich 2009; Bouquet et al. 2014).
Using the same ablation coefficient with meteoroids of different
bulk densities, for example, for iron and carbonaceous chondrite,
simulations give about the same strewn field results, but sizes and
therefore masses of the simulated fragments will be different. For
obtaining a more realistic mass distribution, the ablation coefficient
should be corrected to account for the meteoritic material. The
problem is that the meteoroid material is not known for sure,
before recovering any of its fragments on the ground. The use of
chondritic material as a default for the simulations is a good choice
since statistically over 80 per cent of the known meteorite falls are
chondrites. Below the start point, the default ablation coefficient for
the chondritic material in our code is 0.0018 s2 km−2, though it is
more the lower bound for chondritic material. In theory, the ablation
coefficient σ can also be related to the mass-loss parameter β as
σ = 2β[(1 −μ)Ve

2]−1. However, the mass-loss parameter β when
determined based on fireball observations is often used to account
for all the mass-loss mechanisms accompanying the phenomenon
(including any fragmentation), while ablation and fragmentation are
modelled independently in the present work.

To calculate mass-loss during the ablation stage, we use equation 6
described in Gritsevich (2009):

M =Meexp(−3β(1−(V /Ve)2)). (6)

Here, Me and Ve stand for the pre-atmospheric mass and velocity
of the meteoroid, respectively, and β is the mass-loss parameter
defined from the analysis of the luminous segment of the trajectory
(Lyytinen & Gritsevich 2016b). In equation (6), we have adopted
the value of the shape change coefficient μ = 2/3, because this
assumption is consistent with ablation occurring evenly over the
fragment surface. A value of μ = 2/3 was also found to be the
most common result based on the analysis of the MORP fireballs by
Bouquet et al. (2014) and it is nearly so for the FRIPON meteors
(Drolshagen et al. 2020). That also corresponds to the assumption
that the fragments have a spherical shape and they are tumbling
randomly during the atmospheric passage.

By applying equation (6) twice: (1) for the (current) point with
mass M and velocity V, and (2) for the intermediate (reference) point
with mass M0 and velocity V0, we arrive at the following:

M = M0exp(−3β(V0/Ve)2(1−(V /V0)2)). (7)

As demonstrated in Fig. 1, the end of the luminous flight (ter-
mination of the fireball) precedes the end of ablation. Even after
the luminous flight ends, the temperature at the stagnation point
exceeds melting temperatures of most minerals found in meteorites.
For example, the melting temperature range of olivine is from 1478 to
2163 K depending on the composition and is similar for plagioclase
feldspar, but some minerals melt at even lower temperatures (Wenk
& Bulakh 2011). We have chosen a temperature of 1800 K as the end
of ablation threshold.

The final dark flight stage starts when ablation of a meteorite
fragment ends (Fig. 1). After that point, the fragment size and shape
do not change unless it breaks up due to thermal shock or centrifugal
force induced by fast rotation.

2.5 Transition to subsonic flight

Subsonic flight refers to local aerodynamic flow conditions Ma < 1,
where Mach number (Ma) is defined as the ratio of the local flow
velocity to the local speed of sound. Aerodynamic flow conditions
when Ma > 1 correspond to supersonic flight. In practice, the greatest

degree of aerodynamic unpredictability is associated with a Mach
number range 0.8 < Ma < 1.2 called transonic flight conditions
(Cook 2013).

When ablation ends and a fragment enters into the dark flight stage
it is still supersonic for a short period. Transition from supersonic
flight to subsonic flight has an effect on the drag coefficient. When a
fragment is slowing down below Mach 5 the drag coefficient begins
to increase slowly. It reaches its maximum at Mach 1.5–1.8. When
slowing down from there, the drag coefficient will decrease steadily
so that around Mach 1 the drag coefficient is about the same as above
Mach 5. The drag coefficient changes by a factor of 2 between Mach
0 and Mach 1.5. We have applied a change of drag coefficient in
our DFMC code following the best-fitting function for a sphere by
Carter, Jandir & Kress (2009). In our model, the drag coefficient has
a maximum of 1. When Ma > 5 the drag coefficient is 0.92 and gets
as low as 0.43 when Ma < 0.1.

2.6 Wind drift

The shape and location of a meteorite strewn field are the result of
the atmospheric winds occurring during the luminous flight of the
fireball and the dark flight free fall stage of the meteorite in the lower
part of the atmosphere. Wind is the effective horizontal force during
the trajectory and even more so at the lower altitudes during the free
fall stage of the dark flight.

The wind speed and direction are incorporated into the DFMC
model using the atmospheric data that can be randomized using the
normal distribution function (equation 1). But how much does the
wind speed and direction vary? An atmospheric data profile gives
only one averaged value for each altitude, however wind data vary
between different radiosonde measurements.

To understand the effect of wind drift on the width of the
resulting strewn field, we have studied the maps of known meteorite
strewn fields (manuscript in preparation). After studying 29 different
meteorite strewn field maps the following conclusions have been
reached:

(i) In many cases, it is not clear if all meteorite fragments have
been recovered or was the full extent of the (actual) strewn field
even searched for. For this reason, only the strewn fields with over
10 individual meteorite fragments were selected for the study and
average width of their strewn field was measured.

(ii) Many of the narrow, less than 2 km wide, strewn fields were
produced by iron meteorites like Sikhote Alin. The mean width of the
strewn fields of stony meteorites are 1–7 km and over half of them
are 2–4 km wide. On average, the mean width of a stony meteorite
strewn field is 3.8 km.

(iii) The length of the strewn field is mainly a result of the entry
angle of the meteoroid and wind direction. In most cases, meteorite
fragments have spread more or less sporadically and any trace of
highest probability line mentioned by Spurný et al. (2014) inside the
strewn field is difficult to see.

(iv) In many strewn fields, clusters of meteorite finds exist. They
are likely the results of fragmentation events during the trajectory.

To produce strewn fields with a width comparable to the known
meteorite strewn fields, variations of wind speed have to be at least
±10 per cent and probably closer to ±20 per cent. In our models,
wind speed deviation is randomized for each simulated fragment so
that the wind speed deviation for the fragment will stay the same
from the start point to the ground. If variations are made for each
position change of the falling fragment, random wind speed changes
tend to cancel each other out.
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Variation to wind direction has been implemented in a similar way.
However, it is even more uncertain how much wind direction can vary
from radiosonde data and during a free fall trajectory. We use ±10◦

or ±20◦ variation in wind direction. Variation in wind directions
causes the redistribution of fragments’ masses inside the strewn
field. Variations of wind speed and wind direction used are about
the same as breakthrough uncertainty requirements for radiosonde
measurements by World Meteorological Organization (Nash 2015),
although we use a per cent value instead of meters per second for the
wind speed.

Horizontal components of the winds are applied to the trajectory
as a horizontal force by using equations (4) and (5). The atmospheric
data or the profile of the atmospheric conditions for the meteorite
fall location and time can be generated from a weather observation
data base or radiosonde readings from nearby stations can be used.
However, usually vertical resolution of radiosonde data is not very
good and often the highest altitude of soundings are below the starting
point of a DFMC simulation. Also, if the nearest weather station
is too far from the fall location, atmospheric data may be simply
incorrect for the fall site. In many cases, the radiosonde data and the
atmospheric data generated from the weather data base have given
us almost the same result. Subsequently, the use of radiosonde data
is far better than not accounting for the real atmospheric data at all.

We use an atmospheric profile forecasts corresponding to the
meteorite fall time and coordinates from the GFS data base. Vertical
resolution of our atmospheric data is 200 m. Parameters are listed
in Table 2. More sophisticated 3D model of the atmosphere using
the Weather Research and Forecasting (WRF) software with the
Advanced Research WRF dynamic solver has been used by the
Desert Fireball Network team (Devillepoix et al. 2018). Large
variations in wind speed and direction which our DFMC applies
to the wind data hides possible benefits of using the 3D atmospheric
model. When predicting only the central line of the strewn field then
the use of the 3D model of the atmosphere may enhance precision of
the result.

2.7 Account for fragmentation

Most of the small meteoroids entering the Earth’s atmosphere will
be vapourized. Larger meteoroids, which do not meet this fate, will
be eroded by heat, subsequent ablation, and spallation. Large bodies
may also break up into smaller fragments. Disintegration of a meteor
body takes place when dynamic pressure exceeds the compression
strength of the meteoroid (e.g. Silber et al. 2018; Tabetah & Melosh
2018). Some of the smaller fragments produced by spallation or in
fragmentation events will be vaporized. Most large meteoroids will
break up in the atmosphere and some break ups are catastrophic.

Several theories describing fragmentation have been developed,
including the splitting time concepts (Park & Brown 2012). It is
arguable why time has any major role in splitting or fragmenting
the meteoroid. Splitting time can be studied statistically but in
a structural sense, meteoroids, even two meteoroids made of the
same composition, may have very different histories and structural
strength. Structural differences can also be seen in different parts
within one meteoroid. We also question the idea of the incubation
process described by Park & Brown (2012) where melted rock
permeates through cracks of the meteoroid body, as there is lack of
petrological evidence for that. If a crack opens under the atmospheric
entry conditions it will cause the meteoroid to break apart and
exposed fresh surfaces will rapidly be coated by a fusion crust. Dark
shock melt veins seen in many stony meteorites are not produced
during the atmospheric passage but much earlier, in space (see e.g.

Kohout et al. 2014a). Melt veins form by shock-metamorphosis
due to high pressure. To shock-melt a rock, peak pressures have
to reach above 50GPa, which by far exceeds the maximum pressure
meteoroids can withstand without breaking up (French 1998; Sharp
& DeCarli 2006).

In case of the Košice meteoroid it has been suggested, and some
evidence supports, that the meteoroid was composed of two pieces
before entering the Earth’s atmosphere (Borovička et al. 2013;
Gritsevich et al. 2014c). This may well be the case as most meteoroids
have experienced impact(s) during their existence. Hence, assuming
one solid body for a large meteoroid may not be the default case.

Even a small, space-based impact can fracture a large meteoroid
body so that it will break up during the subsequent atmospheric
passage. This may happen already in considerably low air pressure
flow regimes characterized by the dimensionless parameter called
the Knudsen number (Moreno-Ibáñez et al. 2018). Photos of recent
asteroid and comet flybys have shown that fractures, lithic breccia,
and porous rubble piles are probably quite common among larger
asteroids. Observed very low fragmentation pressures may be a sign
of the porosity of a material (Meier et al. 2017), which decreases
compression strength, or peeling of unconsolidated surface regolith
as seen on the photos of the asteroid Bennu (Molaro et al. 2020).

When fragmentation occurs, velocity components are added into
the fragment’s flight trajectory, which cause it to deviate away from
the original trajectory. These velocity components are so small that
atmospheric drag will zero them very fast. That is why pieces from a
fragmented fireball seem to continue along their original trajectory.
Sometimes deviation downwards from the original trajectory can be
clearly seen because air drag slows down and gravity assists smaller
trailing fragments.

After any fragmentation, ablation will decrease the fragments in
size and some will completely vapourize/disappear. This will reveal
how much mass and how many fragments could be expected to
reach the ground. However, uncertainty of strength of the meteoritic
material in a fall means that error margins are notable. Running
several separate DFMC simulations is recommended to figure out an
average outcome.

When the fireball experiences multiple fragmentation events, it
is preferable to initiate several simulations from different starting
points. If the fireball has broken up into several individual fireballs, it
may be worth running separate simulations for few of them. Although
the result is usually that the strewn fields will overlap with each other,
these simulations may provide additional information of the mass
distribution within the strewn field. One solution would be that all
break ups and tailing fragments are included in the simulations. This
is doable and can provide more details about the mass distribution in
the strewn field.

Gritsevich et al. (2014c) provided insight of distribution laws for
the Košice meteorite fall. Based on this, the bimodal lognormal
distribution was initially used as the fragmentation probability
function in our MC model to give a more realistic mass distribution
for simulations. Later, this was replaced with the more generic
distribution described by equation (2). One reason was that the
observation of the distribution of fragment sizes on the ground is
not necessarily the same as the distribution of fragment sizes during
the luminous trajectory. Another reason was that the model is meant
to be generic – able to produce the forward prediction – and not
restricted only to reproducing the scenario of the Košice meteorite
fall. However, when the model gives large masses (tens of kilos) it
tends to produce very few small fragments. This can be adjusted by
additional runs. In the case of the Košice fall, it is good to recall
that besides all the search efforts it is probable that a lot of fragments
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have not been found or properly documented (Gritsevich et al. 2014c;
Tóth et al. 2015).

In our DFMC model, fragmentation is triggered at the start point or
very soon after that. Every simulated fragment undergoes some level
of fragmentation. This approach was chosen to account for possible
surviving fragments from early fragmentation events.

To model the fragmentation, we use the exponential distribution
function described by equation (2), where μ determines the ratio of
cumulative mass of the produced largest fragments to the mass of
the progenitor. Variable χ is a random test value between 0 and 1.
The value of the exponent ί determines the shape of the probability
curve.

Depending on the scenario, there may be a need to adjust μ and ί

to get a more even distribution of the fragments, since our goal is to
produce a map of the strewn field indicating the locations and sizes
of the survived meteorite fragments. We usually use values between
0.02 and 0.05 for μ. If the value is too high, there are lots of large
fragments and fewer small fragments. We usually adopt values from
4 to 7 for ί, which has a similar effect with low values.

The mass of the newly produced fragment is introduced as
follows. A random number between 0 and 1 is generated. If the
number is less or equal to the result of equation (2), this random
number will be the normalized mass value we use for the fragment
after the fragmentation. The fragment’s new mass is simply this
random number multiplied by the mass of the progenitor. After mass
determination of the fragment, its size has to be recalculated for the
air drag equation (equation 4).

Fragmentation changes the direction and velocity of the fragment.
The separation velocity depends on the size of the fragment. For
a larger fragment, the separation velocity is lower than for smaller
fragments. The separation velocity of the fragment is moderate. It
is usually a few tens or couple of hundreds of meters per second.
We use separation velocities of 10–190 m s−1 with a mean value of
100 m s−1. A separation direction of the fragment and its velocity is
added to the original velocity and direction of the fragment.

Small fragments with masses below 1 g do not play a useful role
in meteorite recovery. Occasionally they can be found, but there is no
sense to go after them. The mass of the smallest recovered fragment
documented in the Košice meteorite fall is 0.3 g (Gritsevich et al.
2014c). In our code, fragments weighing less than 0.3 g will be
deleted. One reason to dismiss very small fragments is that they may
end up in a nearly suspension-like state leading to an excessively
long settling time. This usually happens when a small fragment gets
‘attached’ to a high drag coefficient value and air drag will produce
the force which is about the same as the gravitational force.

A prediction of how much material has landed on the ground can
be made by using the starting mass as the total cumulative mass of
fragments in the model. At the start point DFMC simulation will
include a number of fragments satisfying this criterion. In cases
where there is evidence for, or suspect for, some fragments trailing
the main mass at the start point, an adjustment upwards can be made.

In our DFMC model, the breaking of a fragment at the free fall
stage is not allowed, although it does happen in reality. Fragments
that break off after the ablation stage in mid-air or when impacting
on the ground can be easily recognized based on the presence of
fresh fractures not covered with a fusion crust.

2.8 Terminal height filter

A strewn field produced by the DFMC simulation may be tens of
kilometres long with lots of large fragments. A long strewn field is
a common result in the case of a shallow entry angle, but in many

cases that may not be the reality. A long strewn field may be due
to the fact that simulations produce unrealistically big fragments. A
filter to prevent these large fragments is the terminal height filter.
It can be set to the lowest altitude where the fireball was observed.
The observed terminal velocity (usually 2–4 km s−1 if a meteorite
is going to survive) at the end of the luminous trajectory can be
used as a terminal height filter. In that case, fragments that have
higher velocity at the terminal height than velocity retrieved from
the observations, should be removed from consideration. In cases
where terminal velocity is not available from observations, we use
3 km s−1 as a default threshold for the terminal height filter.

An alternative algorithm to estimating the terminal height can
be based on predicting its value based on the properties of the
meteor trajectory (derived, for example, based on observations).
Such methods were earlier developed by Gritsevich & Popelenskaya
(2008) and Moreno-Ibáñez, Gritsevich & Trigo-Rodrı́guez (2015,
2017).

3 R ESULTS

The described DFMC model has successfully assisted in the recovery
of three recent meteorite fall cases – Annama, the asteroid 2018 LA,
and Ozerki (Gritsevich et al. 2014a, b; Trigo-Rodrı́guez et al. 2015;
Kohout et al. 2017; Maksimova et al. 2020; Jenniskens et al. 2021).
Also, our simulations for the Flensburg meteorite produced a match
before it was revealed that the meteorite had been found. Our code
has worked well for several other meteorite falls when tested after
the first meteorite recoveries have been made.

3.1 Košice meteorite fall

In this study, we demonstrate our results by analysing the example of
the Košice meteorite fall. The Košice meteorite, a well-documented
H5 ordinary chondrite, fell on the 2010 February 28 at 22:25 UT.
The fireball was fortunately caught by several surveillance cameras
when actual fireball cameras from the European Fireball Network
were under overcast sky (Borovička et al. 2013; Kohout et al. 2014b;
Gritsevich et al. 2014c; Tóth et al. 2015; Gritsevich et al. 2017). This
meteorite fall produced a large number of fragments. Fragmentation
started at an altitude of 56.8 km and the last noted fragmentation
was at an altitude of 21.6 km. Borovička et al. (2013) concluded
that some of the meteorite fragments may have experienced up to six
fragmentation events along the trajectory.

3.2 Input data

The exact GPS locations and weights for 79 meteorites out of over
218 found of the Košice fall have been published by Tóth et al. (2015)
and are shown in Fig. 3. The remaining fragments coordinates were
kindly provided by Juraj Tóth (private communication) and are used
here for visualization purpose (Fig. 3). A coordinate fixed map of
218 meteorites has also been published in Borovička et al. (2013)
where values for the fireball trajectory were also presented. These
values are used as the start point parameters for the MC simulations
presented in this work (Table 3).

The accuracy of the two given points on the luminous trajectory
of the Košice fireball has some limitations. This is due to the fact
that the cameras that captured this fireball were security cameras
not dedicated to the observation of fireballs. In table 4 in Borovička
et al. (2013), the height for the first point is 68.3 ±1.4 km and for the
terminal point it is 17.4 ±0.6 km. The coordinates have error margins
±2.3 km for the latitude and ±0.8 km for the longitude for the first
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Figure 3 The Košice strewn field. Black solid circles represent the recovered meteorite fragments (Tóth et al. 2015; Tóth, personal communication). In this
set of 218 meteorite fragments, the two largest ones have masses of 2.374 kg (A) and 2.167 kg (B). The total number of the recovered fragments exceeds
218 fragments (Gritsevich et al. 2014c). Open circles are the (91) fragments simulated in this work using the trajectory parameters for the beginning height
of 68.3 km from Borovička et al. (2013). Red square (N) stands for the virtual 38.8 kg nominal body, defined in Section 2.3, and the two largest red circles
correspond to 2.344 kg (C) and 2.183 kg (D) simulated fragments. Vertical axis shows degrees (north) in latitude and horizontal axis shows degrees (east) in
longitude.

Table 3. The DFMC input parameters for the Košice meteorite fall. The trajectory data are taken from Borovička et al. (2013). In the DFMC code, error margins
are not applied individually to the coordinates of the start point. The error in the coordinates of the start location is accounted for as a cumulative spatial error at
the start point.

Symbol Parameter Mean value Error margins Remarks

λ0 Longitude 20.705◦E (±0.◦011/∼600 m) WGS84 (error margins used as e0)
ϕ0 Latitude 48.667◦N (±0.◦021/∼2300 m) WGS84 (error margins not used in simulation)
h0 Altitude 68 300 m (±1400 m) (Error margins not used in simulation)
e0 Spatial error at the start point 0 m ±600 m Error used here is the error from longitude
δ0 Direction of trajectory 71◦ ±4◦ 0◦–360◦ (0◦ = N, clockwise)
γ 0 Trajectory slope 59.◦8 ±2◦ 0◦–90◦ (90◦ = vertical)
V0 Velocity 15 000 m s−1 ±300 m s−1 Velocity at the start point
a0 Deceleration limit 8 m s−2 a ≥ 0.99 × 8 m s−2 Deceleration at the start point
heh End height of fireball 17 000 m – Lowest observed altitude rounded downward
ρm Density of meteoroid 3300 kg m−3 ±500 kg m−3 Our default for chondrites
σ Ablation coefficient 0.005 s2 km−2 – From Borovička et al. (2013)

point and error margins are ±1.1 and ±0.36 km for the latitude and
the longitude of the terminal point.

The first given point of the trajectory at an altitude of 68.3 km was
chosen as the start point for the DFMC simulation. We used the error
margins given by Borovička et al. (2013) as one σ deviation for the
parameters (Table 3). We use the latitude and the longitude values as
given, and set the error margin for the start point. We use the error
margin of the longitude as a deviation for the start point location,
which in this case is ±0.6 km. Alternatively, we could use here the
error margins of the latitude or height as deviation for the location,
but in case of Košice those are so large that they would cause an
unnecessary spread in the resulting strewn field.

The atmospheric data generated (for the coordinates 48.5◦N,
21.0◦E on 2010 February 28 at 21Z) for the simulation unfortunately
only cover heights from 30.6 km downward. Radiosonde data from

Poprad-Gánovce observatory (station 11952, at 00Z 2010 March 1) in
Slovakia reach up to 27.9 km only. The upper part of the simulation
is therefore following the standard atmosphere model adjusted to
continue seamlessly with the generated atmospheric data. In this
case, we used radiosonde data downloaded from the University of
Wisconsin Atmospheric sounding page as well, since the difference
between these data and the generated atmospheric data is negligible.
We provide these atmospheric data in the supplementary material.

Borovička et al. (2013) provide all the luminous segment of the
trajectory parameters needed for a DFMC simulation (Table 3) except
the deceleration values. This is a common problem since at high
altitude at the beginning of the luminous trajectory, deceleration is
low and it is often difficult to numerically estimate from observations
(Halliday, Griffin & Blackwell 1996). Deceleration at the start point
of the simulation can be calculated by using the known velocity
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and height of the meteor. Also, analytical methods to calculate
deceleration exist (Gritsevich 2008a, 2009); Gritsevich & Stulov
(2006) and can be used to assist in computations. Other methods,
like the terminal height filter described in the previous section, can
additionally be applied. For this study, we adjust the ‘observed’
deceleration value in the start point so that the largest masses we
get are around 3 kg which is a little bit more than the largest known
Košice meteorite fragments, because our model allows only a single
fragmentation event per fragment. We chose to set deceleration at
the start point as 8 km s−2. We also apply an ablation coefficient of
0.005 s2 km−2 from Borovička et al. (2013) instead of our 0.0018
s2 km−2 default value.

3.3 Initial mass estimate

With these parameters, our starting mass value at the start point is
derived as 1056 kg (see Section 2.3). This is more than three times less
than 3500 kg initial mass estimated by Borovička et al. (2013). On the
other hand, our mass estimate is closer to the preatmospheric Košice
mass estimate of 1840 kg by Povinec et al. (2015) and 1850 kg by
Gritsevich et al. (2017). These differences in mass estimates can
already be explained by the differences in the initial assumptions. For
example, the product of the pre-atmospheric shape factor and the drag
coefficient is required in the preatmospheric mass estimate approach
described in Gritsevich et al. (2017). This value was set to 1.8, similar
to the calculations for the Annama and the Park Forest meteoroids
(Trigo-Rodrı́guez et al. 2015; Lyytinen & Gritsevich 2016b; Meier
et al. 2017). If however, we were to recalculate this for the spherical
shape assumption in this paper, the 1850 kg estimate by Gritsevich
et al. (2017) could be subsequently revised by a factor of 1.21/1.8,
which yields 1244 kg.

3.4 Strewn field prediction

Fig. 3 shows the result of the DFMC simulation for the Košice
fall using the input trajectory parameters shown in Table 3. A
good match is observed with the actual strewn field reconstructed
using the coordinates of the recovered Košice fragments (Tóth et al.
2015). This simulation produced 91 fragments on the ground with a
cumulative mass of 19.498 kg. The largest simulated fragment (C)
in Fig. 3 is 2.345 kg. The simulation yielded another three large
fragments [2.18 kg (D), 1.98 kg, and 1.73 kg] . In reality, some
of those fragments have probably fragmented further into smaller
pieces as our code in its present configuration allows no more than
one fragmentation event per fragment. Accounting for the secondary
fragmentation events is beyond the scope of the present paper.
Although it would likely yield a better match between the number
of the collected and simulated fragments, it would not drastically
improve the quality of the produced map.

The simulation in Fig. 3 shows the typical strewn field map
that would usually be used to guide any search effort in the
field. If/when meteorites are found, as happened in this case,
prediction of the strewn field can be seen as subject to further
adjustments/improvements. For example, by accounting for the
measured bulk density of fragments and other peculiarities. However,
in our case (and as can be seen in the results in Fig. 3) there is
no need for adjustment, hence the given input parameters for the
trajectory (Table 3) are good enough to produce a realistic strewn
field fit. The simulated fragments provide excellent representation of
the meteorite fall as they fully cover the area on the ground where
the Košice fragments have been found.

Despite the good match to the known strewn field, its extent
may seem to be larger than the extent of the documented meteorite
finds (Fig. 3). Our overarching aim is to be able to realistically
reproduce the strewn field for any meteorite fall (rather than cover
one particular case with unprecedented detail) and therefore we
categorize this outcome as the most appropriate. This result is
natural due to the error margins imposed by the reconstruction of the
observed fireball trajectory. Future studies may be focused, however,
on fitting simulation results more closely to the known distribution
of meteorites on the ground by restricting some of the trajectory
parameters. For example, in this study we used our default bulk
density (3300 ± 500 kg m−3) of chondritic material, although the bulk
density of the Košice meteorite has been measured as 3430 kg m−3

with standard deviation of 110 kg m−3 (Kohout et al. 2014b) and it
could be used instead when seeking a perfect fit.

Although finding the perfect fit is not the aim of this study, we
noticed that if we apply our default error margins (±1.◦8) for the
slope angle and direction of the trajectory with the mean slope angle
as 59.◦5, the fit is nearly perfect.

To estimate the total mass of the fragments on the ground, we
ran a total of 21 individual DFMC simulations with the same
initial parameter set (Table 3). Taking the average of the number
of fragments, the weight of the largest mass and terminal mass on
the ground, we get an estimate of how much material could be
recovered. The simulations produced on average 64.8 fragments to
survive down to the ground. The mean weight of largest meteorites
on the ground in each simulation is 3.65 kg and mean cumulative
terminal mass on the ground is 14.71 kg (deviation 3.03–26.50 kg).
That means that only 0.3–2.5 per cent of the starting mass survived
down to the ground according to our model. The average mass of
a fragment that reached the ground is 0.227 kg (out of all 1360
simulated fragments). This estimate likely represents the upper bound
due to the one fragmentation event per fragment limitation present
in our current version of the code. However, this is the best for a
current terminal mass estimate as it provides a closer match to what
is expected to be found on the ground compared to the earlier terminal
mass estimates obtained at the terminal point of a fireball.

4 IMPLI CATI ONS FOR METEORI TE
RECOVERY: EXAMPLE O F N EUSCHWANS TEIN

In the preceding section, we modelled the strewn field of the Košice
meteorite, which presents an excellent opportunity to demonstrate
performance of the model due to the large number of recovered
and well documented fragments. On the other hand, the Košice
fireball was poorly observed, and consequently the uncertainties
on the state vector of the meteoroid were high (Table 3). These
uncertainties imposed on the input data subsequently also enlarge
the calculated strewn field. In practice (and even more so under
conditions of constantly growing observational means), the opposite
situation is more likely: a well-observed meteorite fall from a well-
derived luminous trajectory of the fireball with tight margins, but
a poorly observed strewn field itself, due to the small number (or
absence) of recovered meteorite fragments.

To apply our model to such a meteorite fall with more accurate
trajectory parameters, we simulate the Neuschwanstein meteorite
fall on the 2002 April 6 at 20:20 UT. Spurný, Oberst & Heinlein
(2003) provide accurate measurements for the beginning and the
terminal point of the fireball trajectory (Table 4). This bright fireball
was recorded by several cameras and was unusually well docu-
mented by radiometers, infrasound detectors, and nearby seismic
arrays. Three rather large meteorite fragments are known to be
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Table 4. The DFMC input parameters for the Neuschwanstein meteorite fall. The trajectory data are after the table 1 in Spurný et al. (2003). These parameters
are for the beginning of the luminous trajectory.

Symbol Parameter Mean value Error margins Remarks

λ0 Longitude 11.5524◦E (±0.◦0009/∼70 m) WGS84 (error margins used as e0)
ϕ0 Latitude 47.3039◦N (±0.◦0006/∼70 m) WGS84 (error margins not used in simulation)
h0 Altitude 84 950 m (±40 m) (Error margins not used in simulation)
e0 Apatial error at the start point 0 m ±70 m Error used here is the error from longitude
δ0 Direction of trajectory 295.◦3 ±1.◦8 0◦–360◦ (0◦ = N, clockwise). Default error
γ 0 Trajectory slope 49.◦75 ±0.◦03 0◦–90◦ (90◦ = vertical)
V0 Velocity 20 950 m s−1 ±40 m s−1 Velocity at the start point
a0 Deceleration limit 3.5 m s−2 a ≥0.99 × 3.5 m s−2 Deceleration at the start point
heh End height of fireball 16 040 m (±30 m) Lowest observed altitude (error not used)
ρm Density of meteoroid 3300 kg m−3 ±500 kg m−3 Our default for ordinary chondrites
σ Ablation coefficient 0.0018 s2 km−2 – Our default value

recovered: Neuschwanstein I (1.750 kg) was found on 2002 July
14, Neuschwanstein II (1.625 kg) on 2003 May 27, and the largest
Neuschwanstein III (2.843 kg) fragment was found on 2003 June 29
(Heinlein 2004; Oberst et al. 2004; Gritsevich & Stulov 2008). The
fragments were found on both sides of the border between Germany
and Austria and the corresponding reported WGS84 coordinates of
the finding sites are: (I) 47.52392◦N 10.80803◦E, (II) 47.53386◦N
10.80817◦E, (III) 47.51618◦N 10.82158◦E (Fig. 4). Also as before,
these coordinates are not integrated with our model in any way and
are only shown here in the context of the ground truth comparison
with the theoretical results obtained using the DFMC model.

Simulation parameters for the start point of the Neuschwanstein
meteorite fall are listed in Table 4. As we present it here as a bench-
mark case, we have once again used our default bulk density value
for ordinary chondrites, although the Neuschwanstein meteorite is
an enstatite chondrite (EL6) with a bulk density of 3490 kg cm−3 and
this, in principle, could be specified. Values of ablation coefficient
and deceleration were not provided by Spurný et al. (2003). Hence, as
an ablation coefficient we used our default value of 0.0018 s2 km−2,
which in the course of the study, proved to be a reasonable estimate for
enstatite chondrites. Indeed, enstatite chondrites are usually harder
rocks when compared to most ordinary chondrites.

Deceleration at the start point was chosen so that simulations
produce largest meteorite fragments weighting 5–7 kg on average.
This range is based on the total known weight (6.218 kg) of the
recovered Neuschwanstein meteorites. Because the start point of this
simulation was at the altitude of 84.95 km, deceleration has to be
relatively low and a good match was obtained with a deceleration
value of 3.5 m s−2. This value corresponds to the mass at the start
point of 605.4 kg, which is consistent with the initial mass range
estimate of 540–672 kg given in table 7 by Gritsevich (2008a).
Lower deceleration values also give a good match, but would mean
a larger nominal mass at the start point. However, there is no reason
to make simulations look overly optimistic in terms of how much
mass could potentially be recovered. Alternatively, and when we are
predicting the strewn field before any meteorites are actually found,
deceleration is usually the integral part of a trajectory retrieval that
could be calculated analytically (Gritsevich 2008a, 2009). In the case
studied here for Neuschwanstein, the goal was to see how well our
model matches the meteorite masses which were already found on
the ground.

Atmospheric data for these simulations are provided in the sup-
plementary material. The data of München-Oberschlssheim weather
observatory (station 10868, at 00Z 2002 April 7) were obtained
from the University of Wyoming online weather data base (http:

//weather.uwyo.edu/upperair/sounding.html). Radiosonde data are
available up to altitude of 33189 m. Atmospheric conditions upwards
from that altitude are substituted with the standard atmospheric
model. Some readings are missing in the data below the mentioned
altitude, but those are not relevant for the simulations.

The direction of the trajectory and its error margins were not
provided by Spurný et al. (2003). Therefore, we have calculated
it as the direction (or azimuth) of a line connecting the beginning
and terminal points of the luminous trajectory. We first used error
of ±0.◦5 for the direction, which can be calculated using the error
margins given for the coordinates of the beginning and terminal
points. However, the resulting strewn field appeared rather narrow.
All three recovered meteorites were located on the edge of the
simulated strewn field. That could be the case also in reality. However,
in our demonstration in Fig. 4 we chose to use our default error margin
of ±1.◦8 for the direction of the trajectory. This increase of the error
margin stretches the predicted strewn field wider, as shown in Fig. 4.
In addition, we find the use of our default error margin of ±1.◦8 for
the direction of the trajectory sensible, since the DFMC simulations
are usually done before any meteorite has been found in the field.

Additional alteration of the width of the strewn field comes from
the variations in the wind direction and wind speed, some changes
may result also from the changes to the trajectory direction that occur
during the fragmentation events. As the case of the Neuschwanstein
demonstrates, error margins in well-documented fireball trajectories
can be very small [error given by Spurný et al. (2003) for the
trajectory slope is only ±0.◦03] and this is why, at first glance,
our default ±1.◦8 deviation in directions may not always seem well
founded. However, its primary function is to make the strewn field
prediction sensible – covering the full extent of the probable area
where meteorite fragments may have landed.

Already the first simulation produced a good match for the
Neuschwanstein case. We also got results where the larger meteorite
fragment landed close to the smaller ones, as was the case of
largest found Neuschwanstein III meteorite. In all cases, the DFMC
simulations illustrate where additional meteorite fragments could
have potentially been recovered.

We chose one simulation for the illustration in Fig. 4. It produced
a couple of fragments (D and E) that are larger than any of the
found Neuschwanstein meteorites. This shows an area where larger
meteorites may have landed after the fall. This also demonstrates
that if a second fragmentation event is allowed in the model, it could
produce Neuschwanstein I and II sized meteorites in the right area. In
Fig. 4, the simulated strewn field is 25 km long and 4.5 km wide in its
middle part (when the 56.6 kg nominal mass is ignored). There are 95
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Figure 4. The Neuschwanstein strewn field shown on the Google Earth map. White bullseyes represent the three recovered meteorite fragments (Heinlein
2004; Oberst et al. 2004). These are marked as (A) Neuschwanstein I (1.750 kg), (B) Neuschwanstein II (1.625 kg), and (C) Neuschwanstein III (2.843 kg).
Coordinates for Neuschwanstein I and II are given in Oberst et al. (2004) and the location of Neuschwanstein III is from Heinlein (2004). Open circles are the
fragments simulated in this work using the trajectory parameters for the beginning height of 84.95 km from Spurný et al. (2003). Red square (N) stands for the
virtual 56.6 kg nominal body, defined in Section 2.3, and the five orange and yellow circles correspond to 8.05 kg (D), 7.72 kg (E), 2.35 kg (F), 1.29 kg (G),
and 1.00 kg (H) simulated fragments. Colour codes for the simulated fragments are orange 3–10 kg, yellow 1–3 kg, green 0.3–1 kg, cyan 0.1–0.3 kg, and blue
<0.1 kg. Background map by Google/GeoBasis-DE/BKG 2020.

simulated fragments on the ground giving a total mass of 24.89 kg in
this simulation. This value compares well with the earlier mass range
estimate of 22–53 kg, obtained for the end of the luminous flight,
given in table 8 by Gritsevich (2008a).

In the series of 20 DFMC simulations, the nominal mass at the
start point is 605.4 kg. The mean cumulative mass on the ground
in these simulations is 19.95 kg (deviation 11.98–27.47 kg) which
means that only 2.0–4.5 per cent of the starting mass survives down
to the ground. The number of fragments per simulation is, on average,
121.4 and the mean mass of the largest fragment is 5.33 kg, while
the mean weight of all 2427 simulated fragments is 0.164 kg.

5 D ISCUSSION

All MC methods are based on a repeated process. MC methods rely
on a large number of samples. The more repetitions that are made,
the closer the result is to the realistic distribution. This is because
relative errors of an MC integration decrease when the number of
samples increases. Usually the result of a MC simulation is presented
as a distribution map of probability of the phenomena. In order to
obtain a representative gradient map, one has to simulate thousands
of trajectories or more.

Our DFMC simulation was first implemented in such a way. That
is how the classical MC simulations are made, but MC simulations

can also be used differently. MC methods can be restricted to just one
part of the phenomena and let the other parameters dictate how many
repetitions will be made. When simulating a meteorite strewn field we
do just that. We use MC variations for individual fragments which we
trace down to the ground. That means that each fragment will have
its own unique trajectory. Instead of thousands of trajectories, we
limit the number of trajectories to represent the number of fragments
that probably fell and can be found on the ground. Size and other
properties of the fragments are affected by the MC algorithm during
the fragmentations and the total mass of the fragments is limited by
the starting mass as calculated above.

Our trajectory tracing DFMC simulation was developed to help
the Finnish Fireball Network’s meteorite recovery efforts. It was an
addition to the numerical solution which was used to plot the central
line of the strewn field. However, a large part of Finland is covered
by water bodies and in some parts of the country undergrowth may
be so dense that one can walk over a meteorite without seeing it. That
is why searches should be conducted in search-friendly areas where
meteorites can be spotted on the ground in the first place.

Andreić (2011) estimated that errors in velocity and deceleration
in the beginning and during the dark flight cause the largest errors in
simulations only when the wind is not accounted for. Our simulations
agree with this. The main contributor for the strewn field shape, size
and location is atmospheric winds. This is evident in the way narrow
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and long strewn fields bend due to winds when a traditional concept
of a distribution ellipse is dismissed. If fragment shape, orientation
or break up played a bigger role, then the wind drift effect would
not be as clear. Although odd fragment shapes, wild orientation or
fast rotation may explain some meteorites found outside the main
distribution area of meteorites from the same fall. Of course, these
forces have to be included if trajectory tracing backwards is to be
done for a known meteorite fragment but then the true shape and
Reynolds number and other factors are known.

The most common shape of a strewn field is a narrow long tie
shaped area as shown in Fig. 4. This area is usually bent due to
atmospheric winds. Knowing the shape of a strewn field may help
to locate more meteorites also from past meteorite falls. The widely
used term of a distribution ellipse is outdated and may be only valid
for special cases.

Our DFMC model still has room for improvements, discussed
below, but the necessity of some of them is questionable. Fully
accurate physical modelling may, from a scientific standpoint, seem
to be what is hoped for. However, in many practical applications the
key ingredient for success is appropriate division of involved physical
processes into primary and secondary. To predict a meteorite strewn
field accurately enough for the search effort, some details may be
ignored. Magnus effect during the free fall is one of them. Although
some of the mapped strewn fields may exhibit outlying fragments
which are difficult to explain in any other way, they are not very
common.

There are reasons to apply more realistic shape for the nominal
body. One of them would be the possibility to match the starting
mass of the nominal body better with observed deceleration of
the meteoroid. Because of ablation, any fixed shape of the body
would not be more plausible than assuming a sphere. Implementing
a dynamic shape modification right after fragmentation could also
be an improvement. When a fragment breaks from the larger body,
its shape may be aerodynamically very poor, causing a jump in the
drag coefficient. However, these fragments may break up again in a
subsequent fragmentation event and/or ablation may rapidly reshape
them. The shape change coefficient is sometimes introduced to
account for the change in meteoroid shape along the flight (e.g. Levin
1956; Stulov, Mirskii & Vislyi 1995; Gritsevich 2009; Sansom et al.
2019b; Drolshagen et al. 2020). Hence, a test can be thought to apply
the model enhanced by the variation in shape change coefficient.

One improvement to our code would be implementing a true
fragmentation history of a fireball. It could be done by interpreting
the light curve of the fireball. It is known that each flash or flare
of a meteor is a sign of the fragmentation event. A theoretical light
curve of the non-fragmenting nominal body could be adjusted to
closely fit the observed light curve of the fireball and then subtracted
from it. This should produce a probability curve for fragmentation.
This kind of probability curve could also be thought when multiple
fragmentations are imposed.

One remaining open question is the better understanding of wind
during the dark flight. How much does wind speed and direction vary
while a cloud of meteorite fragments falls through certain altitudes
compared to the obtained/available atmospheric data?

6 C O N C L U S I O N S

The MC method based modelling can be successfully applied to
predict strewn fields produced by meteorite falls. Such predictions
work well in cases where good quality start point data (coming
from the analysis of the fireball) and corresponding atmospheric
data are available. Creating a probability distribution of fragments in

the strewn field improves the possibilities of finding recently fallen
meteorites. Using different kinds of filters gives an estimate of how
much meteorite material is expected to have landed on the ground
and if the labour effort required for a field search can be effective.
Some DFMC simulations fail to produce any surviving meteorites
or surviving meteorites are very small, even from a bright fireball.
That is not a sign of a failure but rather it implies that the fireball
did not produce any recoverable fragments. No prediction will make
actual finding of a meteorite easier but may prevent spending time
and resources in a wrong area.

This work, as well as the analysis of the maps of known meteorite
strewn fields, reveals the importance of wind drift and its possible
effects. Iron meteorites produce most of the narrow strewn fields less
than 2 km in width. Strewn fields produced by stony meteorites are
wider, yielding on average 3.8 km in width. The length of the strewn
field is mainly affected by the entry angle of the meteoroid and wind
direction. Clusters of meteorite fragments that exist in many strewn
fields are likely a result of fragmentation events occurring along the
trajectory. Shape, orientation, and character of motion of fragments
do not play a big role on the shape and location of the strewn field.

In many historical meteorite falls, the assumption of a distribution
ellipse of fragments has been erroneous and probably the true extent
of the strewn field has not been adequately searched. Hence, the
DFMC simulations may also help to find more meteorites from
old falls where meteorite finds have been rare or lacking. In cases
when several meteorites have already been found, knowledge of the
predicted strewn field shape may significantly help to search the rest
of the strewn field.
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39, 1627

Park C., Brown J.D., 2012, AJ, 144, 184
Peña-Asensio E., Trigo-Rodrı́guez J.M., Gritsevich M., Rimola-Gibert A.

2021, MNRAS, preprint (arXiv:2103.13758)
Povinec P.P. et al., 2015, Meteorit. Planet. Sci., 50, 880
Sansom E.K., Rutten M.G., Bland P.A., 2017, AJ, 153, 87
Sansom E.K. et al., 2019a, Icarus, 321, 388
Sansom E.K. et al., 2019b, ApJ, 885, 115
Sharp T.G., DeCarli P.S., 2006, in Meteorites and the Early Solar System II.

University of Arizona Press, p. 653, Tuscon, AZ, USA
Silber E.A., Boslough M., Hocking W.K., Gritsevich M., Whitaker R.W.,

2018, Adv. Space Res., 62, 489
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