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REVIEW

Machine learning in the analysis of biomolecular 
simulations
Shreyas Kaptan and Ilpo Vattulainen

Department of Physics, University of Helsinki, Helsinki, Finland

ABSTRACT
Machine learning has rapidly become a key method for 
the analysis and organization of large-scale data in all 
scientific disciplines. In life sciences, the use of machine 
learning techniques is a particularly appealing idea since 
the enormous capacity of computational infrastructures 
generates terabytes of data through millisecond simula-
tions of atomistic and molecular-scale biomolecular sys-
tems. Due to this explosion of data, the automation, 
reproducibility, and objectivity provided by machine 
learning methods are highly desirable features in the 
analysis of complex systems. In this review, we focus on 
the use of machine learning in biomolecular simulations. 
We discuss the main categories of machine learning tasks, 
such as dimensionality reduction, clustering, regression, 
and classification used in the analysis of simulation data. 
We then introduce the most popular classes of techniques 
involved in these tasks for the purpose of enhanced 
sampling, coordinate discovery, and structure prediction. 
Whenever possible, we explain the scope and limitations 
of machine learning approaches, and we discuss examples 
of applications of these techniques.
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1 Introduction

1.1. Why machine learning techniques are useful in analysis of biomolecular 
simulation data?

The first protein structure was discovered in 1958. In 2020, the number of 
resolved protein structures in the PDB database was already about 170,000 
[1]. For a long time, these impressive structural data have highlighted our 
understanding of these biological molecular machines that control processes 
in living systems at the molecular level.

However, understanding the function of proteins requires that their 
dynamic activation process be elucidated. For this purpose, one of the 
best, if not the best method is molecular dynamics (MD) [2], which uses 
structural data as a starting point and puts the structures into motion. MD 
simulations are an outstanding method to study the dynamics not only of 
proteins but of all biologically relevant molecules. A good example of this 
broad field of application is the elucidation of the dynamic functions of cell 
membranes. Cell membranes comprised lipids act as a functional environ-
ment for many membrane-associated proteins, modulating the activation 
and function of proteins. At the same time, cell membranes are rich in 
glycans and interact with numerous signaling molecules as well as water, 
with essentially all biologically relevant molecular types contributing to the 
function of the membranes. Thus, it is not surprising that MD methods have 
been used exceptionally extensively to elucidate the structural and dynamic 
properties of cell membranes [3].

Pioneering applications of the MD technique explored simulation models 
over a time scale of picoseconds; however, modern computational infra-
structure using, e.g. distributed computing [4] or specialized architectures 
[5,6] can generate simulation trajectories that extend up to the millisecond 
timescale [7,8]. At the same time, system sizes studied in MD simulations 
have become quite impressive, as is exemplified by simulations of molecular 
assemblies comprised of ~20 million particles [9]. Consequently, molecular 
simulations can generate terabytes of dynamic information: biomolecular 
Big Data. The explosion in the amount of information has created an 
exceptional challenge for investigators analyzing these data.

In life science, the goals of MD simulations are to identify the physiolo-
gical processes of complex biomolecular assemblies and to unveil their 
functions [10]. A typical outcome of analyzing MD simulations is a robust 
statistical model that provides intuitive understanding into how the archi-
tecture of the biomolecular assembly gives rise to its function. Machine 
learning (ML) techniques [11] are one of the primary tools of computational 
scientists investigating large simulation data sets. ML techniques are algo-
rithmic and automated, which is where the machine part of ML derives its 
origin. The learning part refers to detection of hidden patterns and 
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structures in the data that the investigator wishes to unveil. ML techniques 
are data driven in that they rely on the presence of relevant statistical 
information contained in the data at hand.

Assuming that the available data is of high quality, there are three 
important reasons why ML techniques are useful. The first is reproducibility 
and objectivity. In the case of MD simulations, ML methods allow for 
a systematic selection of a model. This contrasts with visualizing simulation 
trajectories to try hunt down the physical model with the help of investiga-
tor’s intuition. The second key advantage of ML techniques is interpret-
ability. ML techniques can highlight the importance of the chosen structural 
features of the biomolecules representing the structure–function relation-
ships between these features and the function in a statistically coherent 
form. Third, ML techniques are predictive, leading to quantitative and 
empirically verifiable models for biological processes. It is therefore not 
surprising that ML techniques have found very important applications in, 
among other things, elucidating the properties of membrane proteins 
[12,13].

In Sections 2–4, we consider several important topics in more detail, but 
before doing so let us first discuss how machine learning can be linked to 
biomolecular simulations in a practically meaningful way.

1.2. Machine learning combined with biomolecular simulations

The idea of combining MD and ML is not novel [14–18]. Biomolecular 
simulation techniques, including MD methods, are a part of a broader 
discipline of statistical physics where statistical learning/ML tools have 
been used for decades to analyze data. But due to the rapidly increasing 
popularity of the ML paradigm, there has been a remarkable influx of well- 
established ML techniques from other scientific branches to analyze the data 
generated by biomolecular MD simulations.

ML techniques are regularly used for simplification of simulation data. 
This task is complicated due to the large dimensionality of the molecular 
structures that typically contain thousands to millions of particles. It is not 
unusual that the effective dimensionality of the biomolecular assembly is in 
the order of 106. Furthermore, the thermal noise present in simulations of 
model systems can obscure the weak correlations that one would like to 
unveil. Even if a researcher has strong biological knowledge, it is very 
difficult to elucidate the mechanism of action of the problem under study 
from a mere visual examination. In fact, such a study may even lead to an 
interpretation based more on the researcher’s assumptions than on the 
actual research data. High-dimensional data sets are also susceptible to the 
curse of dimensionality[19], leading to difficult inference of a robust model 
for an underlying phenomenon.
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ML addresses these issues through Dimensionality Reduction (DR) 
methods, which form an important pillar in the repertoire of ML techni-
ques. DR methods ease visualization and analysis of high-dimensional data. 
In DR tasks, high-dimensional representations are mapped to a space of 
‘useful properties’ (see below) through either a linear or a non-linear 
transformation. This new representation has a smaller effective dimension 
than the original one. Those with a background in statistical physics and/or 
the development of coarse-grained simulation models can see a connection 
to the concept of coarse graining. The properties associated with DR 
transformations are based on the choice of a metric that measures the 
encoding of the potentially useful information present in the original data 
set. The effective dimensionality is then determined by minimizing the 
number of chosen dimensions while maximizing the information of inter-
est. A simple metric of this kind can be, e.g. the one that extracts variance or 
temporal autocorrelation of the simulated process, resulting in the identifi-
cation of a lower-dimensional space that encodes simulation data with fewer 
degrees of freedom. In most cases on DR techniques, the investigator can 
highlight which structural components in the biomolecular system are most 
information rich and can discard the noise resulting from the leftover 
components. DR techniques are often used to identify collective modes, 
which represent highly correlated movements within or between biomole-
cules. Collective modes provide a means to easily visualize the interesting 
dynamics of a biomolecular system and an objective way to emphasize the 
importance to certain structural regions of the molecular system. In the 
above discussion, the concept of a biomolecular system can be either a single 
molecule or a structure formed by several molecules.

Another problem in processing biomolecular simulation data is under-
standing the effects of modifications of simulation conditions. How does 
a mutation of a residue or a change of pH affect the simulation data? Such a 
question is addressed by ML through Classification and Clustering tasks. 
When the membership of a data point to a certain category is known, 
classification tasks can be used to learn the relation between the assignment 
and the datapoint. For example, in the case of MD simulations of protein 
mutants, classification techniques can highlight the mutation-induced dif-
ferences in the simulation data. Yet, the categories needed in the analysis are 
frequently unknown and need to be inferred from the simulation data. In 
the case of MD simulations, this problem boils down to identifying meta-
stable states in the data using clustering tasks. Clustering can be carried out 
by clarifying the geometrical similarities in molecular structures or by 
employing some function computed from the structures. Clusters obtained 
from such an examination allow analysis of simulations based on the 
occupancy of the categories inferred from the data. Such clusters represent 
the metastable thermodynamic states sampled by the simulations. Like DR, 
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clustering techniques are competent visualization and interpretation tools. 
Identifying the structural features that define these clusters provides insight 
into the underlying biological mechanism. Additionally, clustering can be 
used to identify the need for further sampling in the regions of the con-
formational space where current sampling is inadequate. Such an approach 
leads to a data-driven exploration of the conformational space and forms 
the basis of many enhanced sampling techniques.

An application of ML techniques relevant to MD simulation is regression. 
Regression can be defined as the construction of a parametric model 
inferred from the data that relates a set of predictor variables called regres-
sors to a set of explained or predicted variables. Regression tasks are 
particularly useful when a function commensurate with some empirical 
observable is known and can be calculated from the structural data in the 
simulations. In such a scenario, the regression model can highlight the 
relative importance of structural features that take part in modulating the 
calculated function. Again, due to the high dimensionality of the structural 
space, inferring a robust regression model is a challenging task. Given this, 
regression models are augmented by first reducing the dimensionality of the 
space with DR techniques.

1.3. Machine learning with artificial neural networks

A special area of interest to the ML investigator are a class of techniques 
called Artificial Neural Networks (ANNs) [20], which are important to 
discuss separately. An artificial neural network (ANN) is designed to simu-
late the way our brain analyzes and processes information. It generates 
a map, which connects input data to a desired output through connections 
between artificial neuron nodes. The idea of an artificial neuron is inspired 
by biological neurons in the sense that an artificial neuron tries to model the 
activation process of genuine neurons with a simple computational model, 
where the downstream node in the ANN ‘activates’ or ‘deactivates’ the 
upstream node after receiving the input. This activation function simulates 
the activation potential at the synapse. In ANNs, the activation function can 
be linear or non-linear. Non-linear activation functions are used to apply a 
non-linear transformation to the input data, thus increasing the ability of 
the model to encode complex relationships between the input and the 
output.

In its basic form, ANNs are constructed in a simple three-layered form. 
The operation is based on an input layer, which connects to a hidden layer 
which transforms the data and is connected to an output layer, which is used 
to generate the actual prediction of the ANN. The hidden layer has several 
parameters that determine the transformations made to the input data. 
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These parameters are trained in a supervised manner using a training set. 
Finally, the trained model is optimized and tested with validation and test 
data.

Over the past two decades, ANNs have become very powerful in fore-
casting tasks due to the introduction of several algorithmic improvements 
and increased hardware efficiency. The form in which ANNs are most often 
used is the so-called Deep Neural Networks (DNNs) [21] with multiple 
hidden layers. DNN activation functions are carefully selected nonlinear 
functions such that each hidden layer applies a sequential nonlinear trans-
formation to the signal received from the previous layer. There are several 
architectural ways to achieve this, each of which creates a computational 
map that performs mathematical operations on the input in different ways. 
The most common of these architectures used for structural data are the 
Recurrent Neural Networks (RNNs), Convolutional Neural Networks 
(CNNs), and Autoencoders [21].

1.4. Practical aspects

In terms of practical implementation, ML methods typically have a fixed 
workflow (Figure 1). The first step in every ML technique is featurization. In 
this step, the raw data with T samples is transformed into N features, which 
are the knowledge-rich components of the data. We expect the features to be 
involved in the underlying model which generates the observed data. The 
feature vector, which has dimensions of N x T, is divided into non- 
overlapping groups, labelled the training, testing and validation sets. The 

Figure 1. Typical Machine Learning Workflow. Data generated from simulation trajectories is 
first represented by selecting certain features, usually reducing the dimensionality. Data is then 
chosen for training the ML tasks to generate a model, which is optimized for its hyperpara-
meters, validated, and tested for overfitting.
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training set is subjected to ML analysis to infer a statistical model. 
Parameters not determined by the ML technique and introduced by the 
investigator (called hyperparameters) are tested and optimized on the vali-
dation set to determine the best performing set of hyperparameters. Finally, 
the accuracy of the model is tested in a series of tests that contain data that 
the model has never seen, to avoid overfitting.

ML techniques are exceptionally useful in solving a wide variety of 
problems related to analysis of complex MD simulation data, such as to 
discover reaction coordinates, to carry out coarse graining, and in recon-
structing free energy surfaces that underlie the thermodynamics and 
kinetics of biomolecules.

Below, we focus on several ML tasks (Dimensionality Reduction, 
Clustering, Classification, and Regression) and their ability to address pro-
blems commonly encountered in MD simulations. We discuss popular 
techniques employed in these tasks and provide a brief overview of the 
studies that utilize ML. We conclude with a discussion of selected concrete 
applications, where machine learning has been used to analyze biomolecular 
simulation data.

2. Dimensionality reduction

Dimensionality reduction (DR) tasks transform data from a high- 
dimensional space onto a low-dimensional description. The general pro-
blem in DR is to generate a map of the form: 

XN ! Yd (1) 

where N is the original dimensionality of the feature space, d is the 
reduced dimensionality of the new space, and X are the coordinates of the 
original and Y the coordinates of the new embedding. Such a transformation 
is conditioned on reconstructing a metric linked to information present in 
the original data. Although DR is required to reduce the effective dimen-
sionality of the problem, the new space may have the same dimensionality as 
the original one. In this case, dimensionality reduction is accomplished by 
choosing an appropriate subspace that maximizes the reconstruction of the 
selected metric. DR techniques are some of the most common ML tools 
employed in the field of biomolecular simulations. They are often the first 
stage in the analysis of simulation data on which regression, classification, 
and clustering models are built. DR techniques can reveal the underlying 
structure of the conformational space, removing effects of information-poor 
dynamics of the biomolecule or biomolecular system, which is often inter-
preted as noise. The dimensions that remain after dimensionality reduction 
can also be used as a proxy for reaction coordinates or order parameters that 
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define the paths connecting metastable states in the configurational space of 
biomolecules (or a biomolecular system). Here, we continue by discussing 
a common DR technique called principal component analysis.

2.1. Principal component analysis

Principal component analysis (PCA) [22] is one of the most popular tech-
niques for reducing dimensionality in a wide variety of problems involving 
high-dimensional data. PCA has been used in a wide range of applications 
in the analysis of biomolecular simulation data. In their review, Stein et al. 
introduce numerous applications of PCA [23]. Since its inception in the 
field of data science, it has evolved from a standalone technique to an 
integral part of a larger workflow. Here we delve deeper into PCA compared 
to other methods since the terminology and ideas used in PCA are common 
to many techniques.

Figure 2. Dimensionality Reduction with Machine Learning. A. PCA is used to detect 
directions of highest variance. In a two-dimensional case, PCA resolves the variance into two 
orthogonal Principal Components (PCs). B. Typical eigenvalue spectrum obtained from PCA. 
PCA can be used to reduce dimensionality by selecting a cut-off, where the variance starts to go 
asymptotically to zero. C. Comparison of PCA and tICA methods on a two-well potential. Left: 
Projection of the first PC and tIC on the data. The first tiC correctly identifies the two minima in 
the free energy surface (FES). Right: tIC finds the direction along the two minima in the FES. D. 
Kernel PCA solves the PCA problem by first applying a non-linear transform on the data that 
embeds the data into a higher-dimensional space, where a hyperplane can linearly separate the 
data points which were not linearly separable earlier.
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PCA is an ‘unsupervised’ statistical learning technique. The term unsu-
pervised refers to the lack of requirement of a response variable to build a 
model. The central idea of PCA is the assumption that the variance of the 
data set is a proxy for the useful information contained within. PCA defines 
a linear and a dimensionality preserving transformation that generates 
a new coordinate system. Along the axes of this new coordinate system, 
the variance present in the original data set is maximized (Figure 2A). The 
input for PCA is the simulation trajectory data: 

Xdata tð Þ ¼ Xi;data tð Þ
� �

i¼1;...;N (2) 

where Xdata is the N-dimensional structural data at time t and Xi,data are 
the components of the data. For biomolecular simulations, the components 
are the three spatial coordinates of all atoms in the structure. The recipe of 
PCA starts from centering the data: 

X tð Þ ¼ Xdata tð Þ � Xdata tð Þt (3) 

where h:it is the expectation value computed over the entire data set. 
A covariance matrix (C 0ð Þ

ij ) is then built from the centered data: 

C 0ð Þ
ij ¼ Xi tð ÞXj tð Þt (4) 

Using the covariance matrix, one obtains a diagonal matrix via eigen- 
decomposition. The diagonal matrix contains the eigenvectors (ri) and the 
corresponding unordered eigenvalues (λi), which are the variances along the 
eigenvectors. This decomposition is the solution to the eigenvalue problem: 

C 0ð Þri ¼ λiri (5) 

This decomposition creates a linear transformation that rotates the coor-
dinate system and aligns it along the direction that maximizes variance. The 
eigenvalues are the new variances along the transformed coordinates. 
A typical eigenvalue spectrum obtained from PCA is shown in Figure 2B. 
The eigenvectors are the new axes of this space and as such are orthogonal to 
each other. The new dimensions obtained in this manner are uncorrelated. 
A reduced dimensionality is now obtained by imposing restrictions on the 
eigenvalues. The eigenvalues are first ordered in a descending fashion. Then 
the variance explained by the largest k eigenvalues (out of n) can be used as 
a cut-off, such as the level of 95%, to determine the effective dimensionality: 

Pk

i¼1
λi =

Pn

i¼1
λi � 0:95 (6) 
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The eigenvectors are collective or correlated modes present in the data. 
Assuming that the subject of the study is a molecule, then these modes can 
be visualized by extrapolating the structure of the molecule along the 
eigenvectors.

As an exploratory technique, it is common to plot the projections of the 
data on the first two eigenvectors. This 2D-projection plot is then used as a 
basis for a quantitative classification, clustering, or regression task. As PCA 
eigenvectors represent the ‘largest’ motions in terms of variance, they are 
often used as reaction coordinates. These essential coordinates [24–27], as 
they are often called, are used for enhanced sampling of the simulation space 
[26,28]. There are two techniques where they have been used this way, 
namely conformational flooding [29] and a variant of metadynamics [30– 
32] that is based on the use of essential coordinates. In these methods, 
a biasing potential is applied to explore the coordinate represented by the 
eigenvector, which drives the simulation to explore the conformational 
space along the direction of the largest variance.

A problem that is inherent to many ML techniques is feature selection. In 
PCA this decision appears in the choice of coordinates to build the covar-
iance matrix. For most biomolecules, this boils down to the use of non- 
hydrogen atoms. For proteins, as a rule of thumb, one often uses the 
cartesian coordinates of the backbone or the C-alpha atoms for this purpose. 
Alternatively, in techniques such as dPCA [33–36], the coordinates used are 
the dihedral angles of the protein.

PCA is a straightforward, compelling, and intuitive approach for DR and is 
used in combination with many ML techniques as a filter for simplifying the 
problem before performing more complex analysis. It is also a method of 
choice for exploration of the data and visualization of coordinated motions in 
the proteins. However, PCA has some significant pitfalls. Variance as a metric 
for the information contained in the simulations can lead the analysis astray. 
The largest variance modes in the sampled space might have no relation to the 
function of interest of the biomolecule. In fact, the subspace spanned by the 
effective dimensionality as calculated above might have little or no correlation 
with the function of interest. This has led investigators to choose alternative 
metrics for the information contained in the sample such as autocorrelations 
as described below. PCA is implemented in the scikit-learn [37] library of 
Python and distributed within the GROMACS [38] software package. The 
GROMACS package also provides convenient tools for visualization and 
analysis of the eigenvectors obtained from PCA.
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2.2. Principal time-lagged independent component analysis

Time-lagged independent component analysis (tICA) [39] is somewhat 
similar to PCA. It selects the autocorrelation in the data as the metric for 
the information in the simulation data. tICA incorporates the time- 
structure from the simulations into the DR technique. tICA introduces 
a linear transformation on the data in a way analogous to PCA. The 
transformed space has the same dimensionality as the original space. For 
the calculation of tICA eigenvectors, a time-lagged autocorrelation matrix 
(C Δtð Þ

ij ) is first computed from the centered data: 

C Δtð Þ
ij ¼ Xi tð ÞXj t þ Δtð Þt (7) 

where Xi tð Þ is the centered ith coordinate at time t in the simulation 
trajectory. Xj t þ Δtð Þ is the centered jth coordinate at time t +Δt in the 
trajectory. The parameter Δt is the time-lag chosen when the autocorrela-
tion matrix is constructed. The eigenvectors of this matrix, also called tICs, 
are a solution to the eigenvalue problem: 

C Δtð Þri ¼ C 0ð Þλiri# eq: 8ð Þ

where C 0ð Þ is the autocorrelation matrix computed without lag, λi are the 
corresponding eigenvalues of the tICs, ri: To reduce dimensionality, an 
expression analogous to the above-discussed variance can be used to deter-
mine the effective dimension. Dimensionality of the subspace chosen for 
analysis is often determined by a hard cut-off, frequently set to 95% of the 
total autocorrelation in the system.

A major advantage of tICA is that its eigenvectors approximate the 
eigenfunctions of the underlying Markovian dynamics [40]. In other 
words, tICA aims to find the slowest-relaxing degrees of freedom in the 
time series data set. tICA eigenvectors hence represent the slowest dynami-
cal modes as opposed to the PCA eigenvectors that maximize the variance 
present in the original data set as shown in Figure 2C. As tICA uses time 
correlation as the information metric, it is often utilized in DR tasks to build 
Markov State Models (MSMs) [41]. Further, they are often used in meta-
dynamics-based methods to enhance sampling of the conformational 
space [42].

However, tICA suffers from a significant issue: the choice of the time-lag 
Δt, which determines which kinetic processes are selected for constructing 
the new space. Any process slower than Δt is essentially ignored. Ideally, the 
time-lag Δt must be long enough so that the dynamics contained in tICA has 
the Markovian property of being memoryless, but also short enough so that 
the processes of specific interest are not neglected. There is currently no 
precise recipe to select Δt suitably. The construction models based on tICA, 
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such as of MSMs, require considerable trial and error to choose the correct 
Δt. A robust MSM constructed from tICA can be used to justify the choice of 
Δt, although this is an expensive exercise. Nonetheless, tICA is a useful 
method for finding optimal components to reduce dimensionality as com-
pared to PCA, as the time structure in the data can allow tICA to identify 
coordinates that can separate underlying metastable states in the data better 
than PCA. tICA is implemented for the purpose of analyzing biomolecular 
simulations in the PyEMMA package [43].

2.3. Kernel PCA and Kernel tICA

PCA and tICA are techniques that attempt to explain the metric of interest 
with a simple linear representation. However, correlations present in com-
plex data sets are seldom linear. To capture non-linear correlations, a 
generalization of PCA based on the kernel trick [44] technique has been 
suggested. First, a non-linear function, called the feature function (φ) is used 
to introduce additional dimensions to the data (X ), where the function itself 
acts as an extra dimension: 

φ : X ! f (9) 

In this higher-dimensional space (f ), the transformed points of the data 
are linearly separable by hyperplanes (Figure 2D). Yet this process requires 
expensive computations to calculate the map of the original data in the 
feature space and then to solve the PCA problem in that space. The kernel 
trick avoids this problem with selected choices of feature functions. It can be 
shown that calculating only the Gram matrix of the inner products of the 
feature functions is sufficient to calculate the eigenvectors of the embedding 
of the data in the feature space. These inner products are represented by 
kernel matrices (k): 

k x; x0ð Þ ¼ φ xð Þ;φ x0ð Þf (10) 

where h:if is the expectation value calculated over the entire feature space. 
Examples of feature functions used for the kernel trick are polynomial 
kernels, Gaussian kernels, sigmoid kernels, and radial basis functions. 
Standard PCA is a special case of the polynomial feature function of the 
first order. In the same vein as kernel tICA, a kernel trick-based variant of 
tICA [45] has also been developed specifically to compute eigenfunctions of 
the Markovian dynamics in the simulation data without having to explicitly 
compute an MSM. Non-linear kernel-based methods provide a more robust 
estimate for the PCs, which explain the variance or autocorrelation better 
than their linear counterparts. However, the choice of the optimal feature 
function for a given data set is generally very difficult to guess a priori and is 
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obtained by trial and error with available feature functions. It is also possible 
that for a given embedding of data, no feature function is suitable for a linear 
separation of the data.

Kernel PCA has been used in biomolecular simulations for identification 
of reaction coordinates of lactate dehydrogenase enzyme catalytic activity by 
Antoniou et al. [46]. Kernel PCA is implemented in the scikit-learn library 
of Python.

2.4. Manifold learning

Kernel PCA methods represent an attempt to capture the non-linearity of 
the space in which the data is embedded. However, the feature functions 
used for this purpose do it without any knowledge of the manifold in which 
this embedding exists. Methods that use the structure obtained from the 
data to gauge this manifold are more likely to capture patterns of the 
dynamics in a given data set. Some of the methods used successfully in 
biomolecular simulations for learning the manifold are Diffusion Maps [47] 
and Isomaps [48]. Diffusion maps calculate the connectivity between the 
datapoints by determining a diffusive model for transitions between data 
points using their time structure. The typical metric used to calculate the 
distances in the diffusion space is the root-mean square deviation (RMSD) 
between translationally and rotationally fitted structures. Diffusion maps 
have been used to calculate order parameters for alkanes [49], reaction 
coordinates in an alanine dipeptide toy model [50], and to characterize 
protein folding paths [51].

Isomaps, on the other hand, are constructed by finding a low- 
dimensional representation that preserves the shortest geodesic distances 
on the underlying manifold. This task is performed by building neighbor-
hoods for a given point from the sampled data. A fixed number of neighbors 
are selected based on the smallest RMSD distance after rotationally and 
translationally fitting all structures. Isomap algorithms use the sampled 
configuration space to find shortest distances between any two points 
along a path connecting neighbors, and this distance is defined as the 
geodesic distance for any two structure pairs. Isomaps have been used to 
discover protein folding reaction coordinates [52], to apply enhanced sam-
pling to popular frameworks such as metadynamics [53], and to infer 
collective coordinates from simulations [54] to supplement other analysis 
tasks. Implementations for many manifold learning tasks can be found in 
the scikit-learn package of Python.
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2.5. Dimensionality reduction with autoencoders

An autoencoder [55] is a neural network that learns to copy its input to its 
output in a manner where the autoencoder reconstructs the input approxi-
mately, preserving only the most relevant aspects of the input data in the 
output copy. To this end, autoencoders typically use the ANN framework 
that uses data reconstruction as a metric instead of a function of the data, 
such as variance or autocorrelation. Unlike most other ANN techniques, 
autoencoders are unsupervised as the response (output) variable is identical 
to the input variable.

The parameters in the autoencoder (implemented as an ANN) are opti-
mized by a loss function (L). In the simplest form of an autoencoder, it is the 
reconstruction error: 

L x; x0ð Þ ¼ jx � x0j2 (11) 

where x is the original data vector and x0 is the predicted data vector. The 
loss function is very relevant in this context since the key principle of 
autoencoders is that they funnel the information present in the input 
through a lower-dimensional layer, called an encoding layer of an ANN. 
Minimization of the reconstruction error after such a passage enforces 
dimensionality reduction due to the smaller dimension of the encoding 
layer. The part of the ANN prior to the encoding layer is called the 
Encoder, while the part after it is called the Decoder. The effective dimen-
sionality of autoencoders is determined by the size of the encoding layer. 
The encoding layer dimension is a hyperparameter, which is optimized as a 

Figure 3. ANNs for Dimensionality Reduction. Autoencoder networks (shown in gray) are 
used for training a lower-dimensional representation of the simulation data by reconstructing 
sampled structures (deep blue) with decoded structures (light blue). A trained autoencoder can 
be used to generate a latent space representation of the data set (blue points), which can used 
to generate unseen latent space data (red points) to mine unsampled structures (red struc-
tures). Figure adapted from Degiacomi et al. [62].
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part of the training of the ANN. Autoencoders such as most ANN applica-
tions are built with non-linear activation functions that can compress infor-
mation present in the original data much more efficiently compared to 
linear methods such as PCA or tICA. In fact, autoencoders without non- 
linearities are directly analogous to PCA. Time-lagged autoencoders have 
been specifically constructed to mimic the properties of tICA [56].

Autoencoders are probably the most significant use of ANN techniques in 
the analysis of biomolecular simulations. They have been used by Chen et al. 
[57]. for coordinate discovery, where autoencoders perform enhanced sam-
pling to calculate the free energy surface from newly discovered collective 
variables. The reweighted autoencoded variational Bayes for enhanced 
sampling (RAVE) [58] framework, based on variation autoencoders 
(VAEs) by Ribeiro et al., has been used to obtain physically interpretable 
reaction coordinates from simulations [59]. Autoencoders have been used 
in DR for further analysis such as clustering and constructions of Markov 
State models [60]. They have also been used to construct coarse-grained 
force fields to reproduce the energetics obtained from atomistic simulations 
[61]. Overall, autoencoders can be used as a model to predict and sample 
hitherto unobserved structures in the configurational space of biomolecules 
(Figure 3) [62]. Autoencoders are implemented in the scikit-neuralnetwork 
library in scikit-learn.

3. Regression techniques

In studies of research questions dealing with biomolecular structure, one 
typically has some information about molecular properties that describe the 
function of the biomolecule. Alternatively, a feature extracted from the 
structure or dynamics of the system of interest can be used as a measure 
of its biological function. For example, for catalytic proteins a metric of 
enzyme activity can be the orientation of active residues. In the case of 
membrane channels, the channel conductance can be used as a direct 
measure of the permeability of the protein. In cases like these, regression 
techniques can be used to construct a mechanistic model of structure– 
function relationships. However, since these processes take place in a high- 
dimensional system, the noise caused by those degrees of freedom that do 
not contribute to biomolecular activity interferes with the construction of 
a robust multivariate regression model. Two ML techniques, both based on 
Functional Mode Analysis (FMA), are able to resolve this issue by reducing 
dimensionality.
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3.1. PCA-based functional mode analysis

PCA-based FMA is a technique based on Principal Component Regression 
(PCR), a methodology that uses ordinary least squares (OLS) with the PCA 
components as regressors and a function calculated from the simulation 
data. PCR uses only a subset of the Principal Components (PCs) for the 
regression model and thus leads to reduction in the total variance present in 
the data by an amount equal to the variance present in the omitted compo-
nents. This omitted variance is identified as noise resulting from those 
degrees of freedom in the data that have little or no correlation with the 
function of interest.

The recipe for PCR is simple. First, one calculates the PCs by performing 
PCA on the data. The PCs are then used as regressors in OLS regression 
against the function vector calculated for each data sample used for PCA. If 
all the PCs are used for the regression, then the PCR is identical to 
a multilinear regression model. If, however, only selected PCs are used, 
then variance reduction can be achieved. The selection of PCs is generally 
based on their eigenvalues. As a rule of thumb, the PCs with largest 
eigenvalues that result in a cut-off (e.g. 95%) of variance, as discussed 
above, are used as regressors. To gain a more robust model for the 

Figure 4. Principal Component Regression (PCR). A. PCR-based ensemble-weighted mode 
for the Leucine Binding Protein. B. Coefficient αi of the contribution to the PCR model from the 
largest PCA eigenvectors. C. Eigenvalues of the PCs used to construct the PCR model. D. 
Contribution of the variance of the PCs to the variance of the collective mode. Figure adapted 
from Hub et al. [63].
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correlation between the function of interest and regressors, PCs can be 
added to the regression problem to create a more complex model until a 
target value of regression coefficient is achieved.

PCA-based FMA was implemented by Hub et al. [63], where they 
addressed the regression problem by calculating the Pearson regression 
coefficient and mutual information between the PC regressors and the target 
function. To interpret the model, PCA-based FMA generates an ensemble- 
weighted Maximally Correlated Mode (ewMCM), which represents the 
most probable collective motion correlated with the function of interest. 
This ewMCM is the direct stand-in for thermodynamically attested 
mechanical action of the biomolecule as depicted in Figure 4, where the 
PCR method was used to better understand the collective dynamics of the 
leucine-binding protein.

3.2. PLS-based FMA

An obvious caveat of PCR-based methods is that the subspace used for 
regression is built independently of the function of interest. While PCs have 
for long been considered important for the function of biomolecules in the 
MD simulation community, high-variance PCs calculated from limited data 
may have little or no correlation with the responses used to train the PCR 
model. A model built solely from high-variance PCs will ignore low-variant 
PCs with high correlation to the function. This problem has been addressed 
in the statistical learning community with the help of the Partial Least 
Squares (PLS) methodology. PLS is a cross-decomposition method, i.e. unlike 
PCR where the regressors are identified by decomposing the data matrix 
first via PCA, PLS methods add the information from the response variables 
to the decomposition as well. This is done in an iterative process, where first 
a component of the data vector with maximum correlation with the 
response variables is identified. Then that component is subtracted from 
the data matrix and stored as a regressor. The process is then iteratively 
repeated for the reduced data matrix to find the next orthogonal component 
with maximum correlation with the response variable. The final model in 
the PLS method is a linear combination of all the components extracted 
through this algorithm. The number of PLS components are dependent 
upon the required amount of correlation that needs to be explained from the 
data. Once this limit is reached, the investigator can stop the iteration 
process and choose the model with the current number of components.

PLS-based methods have an obvious advantage over PCR-based techni-
ques. Components of the PLS model are of natural interest from the point of 
view of the mechanical model that investigators want to extract from the 
data. PLS-based methods provide a simple, yet elegant linear and interpre-
table relationship between the data and the response.
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Krivobokova et al. [64] implemented this method for analyzing biomo-
lecular simulations by incorporating it in the FMA framework introduced 
by Hub et al. In a certain sense, the method is an update to the PCA-based 
FMA. It has been shown that PLS-based FMA creates models of lower 
complexity to reach the correlation values discussed above. In the same 
manner as PCA-based FMA, an ewMCM can be computed from PLS-based 
FMA. This ewMCM can be visualized like PCA-based eigenvectors and 
provide mechanical insight into structure–function relationships in biomo-
lecules. PLS-based FMA techniques have been used to understand how 
membrane channel proteins like aquaporins are regulated by pH [65] and 
mutations [66]. The PLS package is available in the scikit-learn library of 
Python, and also in the GROMACS software suite.

3.3. Force matching with ANNs as a regression problem

As an example of ANNs performing regression tasks where response vari-
ables are used to fit thermodynamic properties of biomolecules, one can 
consider force matching [67]. It is a technique where the parameters of a 
coarse-grained (molecular) force field are determined by matching the 
forces used in a coarse-grained representation with the forces obtained 
from a fine-grained (atomistic) representation. This process has been 
used, for instance, to reproduce forces calculated from expensive quantum- 
mechanical calculations in classical atomistic simulation models [68]. 
Recently, the force matching technique was used to reproduce atomistic 
forces in a coarse-grained representation using ANNs [69,70].

Figure 5. ANNs for Regression. ANNs can be trained to develop coarse-grained force fields by 
the force matching method. Physical restrictions of translational and rotational invariance, and 
conservative forces, are imposed on the regression task performed by the CGnets architecture 
by a choice of internal coordinates and the GDML layer, whereby the atomistic force field is 
reduced to a coarse-grained force field. Figure adapted from Wang et al. [71].
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Wang et al. [71] developed a framework named CGnets that learns the 
free energy functional with the help of the force matching scheme (see 
Figure 5). In this framework, invariances derived from physics are intro-
duced, namely a conservative potential of mean force and rotational and 
translational invariance. The former is accomplished by using a gradient- 
domain machine learning (GDML) approach, which enforces the forces 
computed at the atomistic level to match the forces generated by the coarse- 
grained representation. The latter is implemented by mapping the cartesian 
embedding of molecular coordinates on internal coordinates such as pair-
wise distances and dihedral angles that are rotationally invariant. The 
CGnets model is developed in a state corresponding to an implicit solvent. 
The free energy contribution of solvation is absorbed into the overall 
parametrization of the protein force field. Though this model has low 
transferability, it is a proof of principle experiment demonstrating the utility 
of ANNs as a regression model for parametrization of coarse-grained 
biomolecular simulation models. For the sake of completeness, it is worth 
mentioning the use of neural networks to coarse-grain the structure of 
biomolecules. Murtola et al. showed how self-organizing maps can be 
used to analyze atomistic representations of biomolecules to determine 
their simpler (coarse-grained) representations that include all the structural 
features that are most relevant to the function of the molecule [72].

4. Classification and clustering techniques

A typical problem in analysis of biomolecular data is assignment of categories. 
Sometimes it is known a priori what category a particular data set belongs to. 
In these cases, the goal is to understand differences between distinct classes 
that all share a common featurization. It could be that the investigator is 
trying to develop a model where classification needs to be learnt so that an 
unclassified data set can be classified with the mode. Classification tasks 
guided by ML can accomplish both goals. In other cases, the challenge 
could be to identify some internal order and grouping within the data set. If 
so, can it be identified in an automated manner without any supervision? This 
is the question answered by clustering tasks. Yet, in most cases it is important 
to first simplify the tasks of clustering and classification by reducing the 
dimensionality of the data sets. Below we consider four popular instances of 
these techniques.

4.1. Partial least squares-based discriminant analysis

Partial Least Squares-based Discriminant Analysis (PLS-DA) [73] is an 
application of the PLS-based methods for the purpose of classification. 
PLS-DA is a supervised method that solves the same regression problem 

ADVANCES IN PHYSICS: X 19



as PLS-FMA, when the response vector is discrete and categorical instead 
of being continuous. In the scenario where the class labels are qualitative, 
i.e. not mappable on real numbers, the investigator can assign one-hot 
vector representations to the classes for the purpose of finding a subspace 
that optimally separates the classes. In the same vein as PLS-based FMA, 
the complexity of the model obtained by PLS-DA can be increased by 
adding components until a target classification accuracy is reached. As an 
example of its applicability, one can consider a case of several simula-
tions of mutations in proteins. A typical goal in this case could be to 
identify the subspace of the structural dynamics that optimally defines 
each mutant. In PLS-DA methodology each mutational simulation can be 
expressed as one-hot encoding. The PLS-DA algorithm provides a line-
arly separating hyperplane which can be used to identify the differences 
between simulations under varying but known conditions. PLS-DA has 

Figure 6. Classification and Clustering (Machine Learning) Techniques. A. Partial least 
squares-based Discriminant Analysis technique (PLS-DA) is used for identifying the collective 
mode that differentiates between bound and unbound ubiquitin simulations. Projection of the 
simulation data from the bound and unbound simulations on the difference vector given by the 
PLS-DA mode separates their distributions. Inset: The structural ensembles of ubiquitin binding 
region in the unbound and bound mode identified by the PLS-DA eigenvector. Figure adapted 
from Peters et al. [74]. B. Active and inactive states of the Src kinase are identified from MD 
simulations with clustering and then classified using a Random Forest (RF) classifier. Using a 
Gini index, importance is assigned to the residues that contribute most significantly to the 
classification. Figure adapted from Sultan et al. [76 C. L11 · 23S protein-complex is first 
subjected to dimensionality reduction. The simulation data are projected on the first two 
eigenvectors and then clustered with the k-means algorithm to identify the structure in the 
data. Figure adapted from Wolf et al. [35]. D. Gaussian Mixture Model-based clustering is used 
to identify the free energy minima in Calmodulin simulations using the InfleCS methodology. 
The GMM is built on a 2D surface using the coordinates reciprocal interatomic distances (DRID) 
and the linker backbone dihedral angle correlation (BDAC). The most likely transition pathways 
in these states are identified and plotted on the free energy surface. Figure adapted from 
Westerlund et al. [96]..
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been used for separating the simulations of ubiquitin with bound and 
unbound partners as illustrated in Figure 6A [74], indicating its useful-
ness for classification tasks. More recently PLS-DA was used to deter-
mine dynamical differences in ligand-bound and unbound simulations of 
the PDZ2 domain and to identify differences in lysozyme mutants [75]. 
PLS-DA is implemented in the scikit-learn package of Python.

4.2. Decision trees

Decision trees [77] are a tree-like graph model, i.e. they have a network 
structure where each pair of nodes are connected only by one edge. Decision 
trees are used to perform both regression and classification tasks. When the 
target value of a parent node (also called the input node) is discrete, the 
decision tree performs classification. The child or the target nodes represent 
the known class labels. Decision trees are non-parametric models that 
advance the classification process by splitting the parent nodes into child 
nodes. The splitting is an algorithmic step that determines which class label 
will be assigned to a subset of the parent node. Splitting methods are chosen 
based on maximizing variance between the child node or maximizing gain in 
information due to the splitting.

Another popular metric for classification in decision trees is the Gini 
impurity index, which minimizes the probability of misclassification of an 
entry into a child node. If the splitting leads to optimal separation of the 
samples in the child nodes, any of these criteria can objectively report the fact. 
Decision trees are intuitive and simple to implement and interpret. However, 
they suffer from some severe problems. Decision trees are prone to overfitting 
when attempting to maximize the ability to classify data. This behavior results 
from creation of child nodes that contain only one or a few samples that can 
trivially satisfy the optimization criteria. It is possible to avoid overfitting by 
demanding that a given child node must contain at least a required minimum 
number of samples, and by regulating the maximum depth of branches that 
the trees can have. Also, decision trees generate piecewise constant approx-
imations for the decision boundaries. As these boundaries are not continuous, 
decision trees are not able to extrapolate data very well.

Another prevalent issue with decision trees is the sensitivity to fluctuation in 
the training data. If the classification task requires complex decision boundaries, 
then the outcome of the decision tree becomes highly dependent on the 
structure of the training data and small changes in training can lead to different 
structures for the final model. This problem is solved by the so-called ensemble 
learning methods. Ensemble learning involves generation of multiple models 
from subsets of training data and identifying a consensus model from their 
ensemble. This approach is identical in spirit to bootstrapping methods and is 
thus also called Bootstrapping aggregation. Creating such tree ensembles leads to 
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the Random Forest method [78]. The random forest technique has been used 
for analysis of biomolecular structural data to predict protein-protein interac-
tion sites [79], to estimate protein-ligand binding energies [80], to predict phase 
diagrams of lipid mixtures [81] and to identify and classify binding modes of 
enzymes [82]. Decision tree classifiers based on random tress were also used to 
automate the selection of features of analysis as demonstrated for the Src kinase 
in Figure 6B, where this technique was used to pinpoint the residues character-
izing its bound and unbound ensembles [76].

4.3. K-means/K-medoids

K-means [83] is a clustering technique that partitions the data x into k non- 
overlapping sets Ci. The boundary of each set is determined by its distance 
from a mean μi that is identified as a part of the K-means optimization 
algorithm, which attempts to minimize the variance of a subset of data. This 
condition is expressed as: 

argmin
C

Pk

i¼1

P

x2Ci

jx � μij
2 (12) 

This term is called the Within Cluster Sum of Squares (WCSS). The 
number of cluster means is a hyperparameter that must be chosen in the 
beginning of the algorithm. K-means begins with an initialization by first 
assigning cluster means randomly and assigning nearest points to that 
mean, creating a subset or a cluster. The assignment requires that for a 
given set of means, the WCSS score is minimized for that assignment. This 
is followed by an iterative step, where the cluster means are updated to be 
the geometric means of the current subsets: 

μ nþ1ð Þ

i ¼ 1
C nð Þ

ij j

P

xj2C nð Þ
i

xj (13) 

where n is the current step. Once this update step has converged to 
a stable set of means, the clusters are assigned to the final values of the 
means calculated in the last step. K-means is most frequently used for the 
selection and assignment of microstates in Markov State Models [84] as well 
as for structural clustering tasks [85–88]. An example of state assignment is 
depicted in Figure 6C, where the conformational space first reduced with 
PCA is clustered with K-means [85].

K-medoids is a related technique, where the means are not assigned to 
arbitrary points but instead assigned to real data points in the space, i.e. to 
real structures in the simulations. Otherwise, K-medoids follows the same 
algorithmic steps as K-means. An advantage of K-medoids is that the 
investigator can directly select the structures associated by the medoids as 
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a representation of the cluster. K-means-like algorithms can suffer from a 
few difficulties, which need to be addressed with manual inspection of the 
output of the algorithm. Most importantly, K-means can get trapped in local 
minima and lead to sub-optimal results. This problem can be resolved by 
running the algorithm several times with different choices of the initializa-
tion and then minimizing the final WCSS obtained.

4.4. Density based clustering

Density-based (DB) clustering methods are an alternative to the previously 
presented neighborhood-based algorithms. The goal of DB-clustering algo-
rithms is to identify high-density areas separated by regions of low density in 
the given space. The advantage of this approach is that it allows the algorithm 
to identify clusters of arbitrary shape, as opposed to neighborhood-based 
searches, which work best when the data samples can be characterized by 
a more or less convex shape. The most popular technique among DB 
clustering appears to be the Density Based Scan Algorithm with Noise 
(DBSCAN) [89]. In this algorithm, the idea is to first identify ‘core samples’ 
in the data, which corresponds to regions of space with a fixed number of 
points within a chosen radius ε. Once identified, in the second step one 
merges the core samples that share bordering points in the ε-neighborhood 
generating the cluster. The process is fully deterministic. The DBSCAN 
method is more resistant to noise components resulting from transition 
regions between the identified core clusters as compared to methods based 
on neighborhood searches. However, it can lead astray under conditions of 
sparse sampling that tend to characterize data that have a high variance in 
density. Also, DBSCAN does not scale well with increasing dimensionality of 
the space due to the complexity of corresponding neighborhood searches. 
DBSCAN has been used to identify specific ligand binding sites [90] for 
proteins and DNA [91]. It has also been used to study clustering of the 
conformations of small peptides in simulations [92].

An improvement of the DBSCAN algorithm is the HDBSCAN [93] 
technique – Hierarchical Density Based Scan Algorithm with Noise. In 
this technique, the epsilon radius restriction is removed allowing for 
a more robust search of the space for clusters. HDBSCAN has been used 
as an effective tool to visualize complex dynamics in MD simulations [94].

4.5. Gaussian mixture models

Gaussian Mixture models (GMMs) [83] are mixture models in the sense that 
they create linear combinations of Gaussian probability distributions for 
unsupervised ML tasks such as clustering. A typical GMM model has the form: 
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p xð Þ ¼
XK

i¼1
ϕiN xjμi; σi

� �
(14) 

where ϕi is the weight of the ith component in the model, N is a Gaussian 
density characterized by mean μi and standard deviation σi, and x is a datapoint 
whose probability, p xð Þ, is evaluated with this model. When applied as 
a solution to a clustering problem, a GMM identifies a latent or a hidden 
variable associated with the data set which corresponds to the cluster label, 
i = 1 . . . K of the datapoints. This allows the problem to be set up with a Bayesian 
framework, where the goal is to calculate the parameters μiandσi for each cluster 
given the observed data. The solution can be obtained by solving a Maximum 
Likelihood estimator (MLE) for the parameter vectors. Generally, this is accom-
plished by using the Expectation Maximization (EM) algorithm.

Due to their intuitive structure and algorithmic simplicity, GMMs are an 
often-used solution to analyze data from biomolecular simulations. GMMs 
have been used for developing reaction coordinate discovery algorithms, such 
as Gaussian Mixture-based Umbrella Sampling [95], InfleCS [96] (Figure 4D) 
and GAMBES [97], where the GMM is used for clustering a reduced coordinate 
space to discover metastable states. GMMs have been coupled with ANNs to 
get interpretable embeddings from Autoencoder-based models as well [60]. 
GMM implementations are available in the scikit-learn library of Python.

4.6. ANN-based classification

ANNs can be trained to provide a powerful means to classify labelled data. A 
straightforward application of this idea is classification of biomolecular 
simulations under varying but known conditions. Plante et al. [98] used 
an architecture based on Convolutional Neural Networks (CNNs) (Figure 7) 
to identify residues of G-protein coupled receptors (GPCRs) based on 
changes introduced by ligand binding. First, GPCRs are scrambled rota-
tionally and translationally to remove the bias from their coordinates. Then 
a transformation from the cartesian X, Y, Z coordinates to an RGB color 
code is applied for each atom of the GPCR to create a pixel in a 2D 
representation. This new representation is well suited for a CNN-based 
classification analysis, which generates a nonlinear map from the 2D picture 
to the known class assignment of the GPCR. Once trained with the simula-
tion data set, the CNN learns a non-linear function for classification.

Using a technique called Saliency maps [99], Plante et al. were able to 
backtrack to the relative importance of the input pixels on the classification 
outcome, which can then be translated to the identity of specific atoms of 
GPCRs. Such an application reveals the increasing interpretability that is 
being introduced in ANN-based modelling of structural data.
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5. Conclusions

ML techniques can be integrated into all problem categories dealing with 
biomolecular simulations. ML techniques are used to identify key structural 
features for analysis, and they have a significant advantage in improving the 
signal-to-noise ratio by eliminating excessive degrees of freedom from the 
explored system or process. ML tools are particularly useful when investi-
gators need to differentiate between simulation data sets without their own 
prejudices affecting the outcome of the analysis. When the goal of analysis is 
to associate the simulation data to continuous labels, highly interpretable 
regression techniques can be used to learn the structure–function 
relationships.

With the innovative architectures adopted by Artificial Neural Networks, 
ML can contribute to more than just the analysis of simulation data. For 
instance, ANNs can be built to coarse-grain structural representations of 

Figure 7. ANNs for Classification. ANNs used for classification of GPCRs based on differences in 
a bound agonist. The geometric coordinates are first encoded into the RGB code to generate 
a two-dimensional image. Using a convolutional neural network architecture, the map between 
the image and the corresponding level is learnt. Sensitivity analysis is used to retrace the pixels 
in the image and then from them the corresponding residues that are mainly responsible for 
the classification task. Figure adapted from Plante et al. [98].
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biomolecular systems by imposing physical constraints that ensure physi-
cally correct simplified models. This approach has a lot of potential, but so 
far it has not been used much. The main weaknesses of the ANN approach 
are the need of high-quality–high-volume data and interpretability. The first 
of these two problems can be avoided quite easily, because the amounts of 
data produced by biomolecular simulations are constantly increasing. As far 
as interpretation is concerned, enormous progress has been made, for 
example, thanks to sensitivity analysis, which allows researchers to trace 
the function learned by the ANN to the initial input given to it.

What does all this mean for biomolecular simulations? This question is 
naturally illuminated by where data science is currently advancing. The goal 
of data science is to have an automated, reproducible, and objective 
approach to both hypothesis generation and testing. These goals are ubiqui-
tous in all branches of natural sciences, and data science most clearly 
intersects with those branches where data productivity (high throughput 
data generation) is high. The advantage of ML methods is that they establish 
a concrete pipeline for analysis, the structure of which is both modular and 
sufficiently flexible to rapidly test new approaches. More importantly the 
‘pipes’ in this pipeline are generic and accept both qualitative and quanti-
tative data. These considerations mean that experimenting with multiple 
approaches simultaneously has become relatively convenient. What makes 
the ML pipeline robust is the use of a well-defined testing and validation 
framework, which ensures that the models developed are efficient and 
suitable for the chosen task. In addition, in the times of Open-Source 
software development, all of these tools, protocols, and algorithms are 
readily available in public repositories, in a convenient format, and flexibly 
implemented. Models built from biomolecular simulation data are statisti-
cal, and the ML approach is ideally suited for formalizing their formulation. 
In our view, as a result of all this, ML methods have the potential to control 
the future of the biomolecular simulation field.
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