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Abstract

The nonlinear vector autoregressive (NVAR)
model provides an appealing framework to
analyze multivariate time series obtained
from a nonlinear dynamical system. How-
ever, the innovation (or error), which plays a
key role by driving the dynamics, is almost
always assumed to be additive. Additivity
greatly limits the generality of the model,
hindering analysis of general NVAR processes
which have nonlinear interactions between
the innovations. Here, we propose a new
general framework called independent inno-
vation analysis (IIA), which estimates the
innovations from completely general NVAR.
We assume mutual independence of the in-
novations as well as their modulation by an
auxiliary variable (which is often taken as the
time index and simply interpreted as nonsta-
tionarity). We show that IIA guarantees the
identifiability of the innovations with arbi-
trary nonlinearities, up to a permutation and
component-wise invertible nonlinearities. We
also propose three estimation frameworks de-
pending on the type of the auxiliary variable.
We thus provide the first rigorous identifiabil-
ity result for general NVAR, as well as very
general tools for learning such models.

1 INTRODUCTION

Multivariate time series are of considerable interest
in a number of domains, such as finance, economics,
and engineering. Vector autoregressive (VAR) mod-
els have played a central role in capturing the dy-
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namics hidden in such time series (Sims, 1980). VAR
models typically attempt to fit a multivariate time se-
ries with linear coefficients representing the dependen-
cies of multivariate variables within limited number
of lags, and innovation (or error) representing new
information (impulses) fed to the process at a given
time point. Although it has been common practice
to maintain a linear functional form to achieve inter-
pretability and tractability, recent studies have pro-
vided a growing body of evidence that nonlinearity
often exists in time series, and allowing for nonlineari-
ties can be valuable for uncovering important features
of dynamics (Jeliazkov, 2013; Kalli and Griffin, 2018;
Koop and Korobilis, 2010; Primiceri, 2005; Shen et al.,
2019; Teräsvirta, 1994; Tsay, 1998). Many recent stud-
ies used a deep learning framework to model nonlinear
processes in video (Finn et al., 2016; Lotter et al., 2017;
Oh et al., 2015; Srivastava et al., 2015; Villegas et al.,
2017; Wichers et al., 2018) or audio (van den Oord
et al., 2016), for example, with neural networks.

The innovation plays a key role by driving time se-
ries, and it can have a concrete meaning, such as eco-
nomic shocks in finance, external torques given to a
mechanical system, or stimulation in neuroscience ex-
periments. However, its estimation has a serious inde-
terminacy even with linear models, if only conventional
statistical assumptions are made. To facilitate esti-
mation, VAR typically assumes that the innovations
are additive, multivariate Gaussian (not necessary un-
correlated), and temporally independent (or serially
uncorrelated). A well-known consequence of this is
that the innovations cannot be identified: Multipli-
cation of such innovations by any orthogonal matri-
ces will not change distribution of the observed data,
which hinders their interpretation. Some studies pro-
posed to incorporate independent component analysis
(ICA) framework to guarantee identifiability, by as-
suming mutual independence of non-Gaussian innova-
tions (Gómez-Herrero et al., 2008; Hyvärinen et al.,
2010; Lanne et al., 2017; Moneta et al., 2013). How-
ever, those studies assumed linear VAR models, while
indeterminacy would presumably be even more serious
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in general nonlinear VAR (NVAR) models, in which
the innovations may not be additive anymore. In
fact, a serious lack of identifiability in general non-
linear cases is well-known in nonlinear ICA (NICA)
(Hyvärinen and Pajunen, 1999).

We propose a novel VAR analysis framework called
independent innovation analysis (IIA), which enables
estimation of innovations hidden in unknown general
NVAR. We first propose a model which allows for non-
linear interactions between innovations and observa-
tions, with very general nonlinearities. IIA can be
seen as an extension of recently proposed NICA frame-
works (Hälvä and Hyvärinen, 2020; Hyvärinen and
Morioka, 2016; Hyvärinen et al., 2019), and guaran-
tees the identifiability of innovations up to permuta-
tion and component-wise nonlinearities. The model
assumes a certain temporal structure in the innova-
tions, which typically takes the form of nonstation-
arity, but can be more general. We propose three
practical estimation methods for IIA, two of which are
self-supervised and can be easily implemented based
on ordinary neural network training, and the remain-
ing one uses maximum-likelihood estimation in con-
nection with a hidden Markov model. Our identifia-
bility theory for NVAR is quite different from anything
presented earlier, and thus it can contribute as a new
general framework for NVAR process.

2 MODEL DEFINITION

2.1 NVAR Model and Demixing Model

We here assume a general NVAR model, which is first
order (NVAR(1)) for simplicity:

xt = f(xt−1, st), (1)

where f : R2n → Rn represents an NVAR (mix-
ing) model, and xt = [x1(t), . . . , xn(t)]

T and st =
[s1(t), . . . , sn(t)]

T are observations and innovations (or
errors) of the process at time point t, respectively. As
with ordinary VAR, the innovations are assumed to be
temporally independent (serially uncorrelated). Im-
portantly, this model includes potential nonlinear in-
teraction between the observations and innovations,
unlike ordinary linear VAR models (Gómez-Herrero
et al., 2008; Hyvärinen et al., 2010; Lanne et al., 2017;
Moneta et al., 2013) and additive innovation nonlin-
ear models (Shen et al., 2019). We assume that f is
unknown and make minimal regularity assumptions on
it. Our goal is to estimate the innovations (latent com-
ponents) s only from the observations x obtained from
the unknown NVAR process. The model, learning al-
gorithms, Theorems, and proofs below can be easily
extended to higher order models NVAR(p) (p > 1) by
replacing xt−1 by [xt−1, . . . ,xt−p].

To estimate the innovation, we propose a new frame-
work called IIA, which learns the inverse (demixing)
of the NVAR (mixing) model from the observations
in data-driven manner, based on some statistical as-
sumptions on the innovations. The theory is related
to ICA (Hyvärinen, 1999), which estimates a demix-
ing from instantaneous mixtures of latent components,
i.e., xt = fICA(st), where fICA : Rn → Rn is usually
a linear function. However, IIA includes a recurrent
structure of the observations in the model (Eq. 1),
which makes IIA theoretically distinct from ordinary
ICA. Nevertheless, in the following we leverage the
recently developed theory of NICA (Hyvärinen and
Morioka, 2016; Hyvärinen et al., 2019).

We start by transforming the NVAR model to some-
thing similar to NICA. This leads us to consider the
following augmented NVAR (mixing) model[

xt

xt−1

]
= f̃

([
st

xt−1

])
=

[
f(xt−1, st)

xt−1

]
, (2)

where f̃ : R2n → R2n is the augmented model, which
includes the original NVAR model f in the half of the
space, and an identity mapping of xt−1 in the remain-
ing subspace. Importantly, this augmentation does not
impose any particular constraint on the original model.
We only assume that this augmented model is invert-
ible (i.e. bijective; while f itself cannot be invertible)
as well as sufficiently smooth, but we do not constrain
it in any other way. The estimation of the innovation
s can then be achieved by learning the inverse (demix-
ing) of the augmented NVAR model f̃ :[

st
xt−1

]
= g̃

([
xt

xt−1

])
=

[
g(xt,xt−1)

xt−1

]
, (3)

where g̃ : R2n → R2n is the augmented demixing
model of the (true) augmented NVAR model f̃ , and
g(xt,xt−1) ∈ Rn is the sub-space of the demixing
model representing a mapping from two temporally
consecutive observations to the innovation at the cor-
responding timing. This is simply a deduction from
Eq. 2, and does not impose any additional assump-
tions on the original model.

2.2 Innovation Model with Auxiliary
Variable

The estimation of the demixing model in an unsu-
pervised (or self-supervised) manner needs some as-
sumptions on the innovations. Although some stud-
ies guaranteed the identifiability by assuming mutual
independence of the innovations in linear VAR mod-
els (Hyvärinen et al., 2010; Lanne et al., 2017; Mon-
eta et al., 2013), it would not be enough in nonlin-
ear cases, as can be seen in well-known indeterminacy



Hiroshi Morioka, Hermanni Hälvä, Aapo Hyvärinen

of NICA with i.i.d. components (Hyvärinen and Pa-
junen, 1999). Thus, we here adopt the framework
recently proposed for NICA (Hälvä and Hyvärinen,
2020; Hyvärinen and Morioka, 2016; Hyvärinen et al.,
2019); we assume that the distribution of the inno-
vation is time-dependent, and modulated through an
observable (or unobservable, Section 3.3) auxiliary in-
formation about the innovation, represented by a ran-
dom variable ut for each data point t. In practice,
ut can simply be time-index t to represent data-point-
specific modulations or a time-segment-index to rep-
resent segment-wise modulations, thus incorporating
information about nonstationarity. More specifically,
we assume the followings:

A1. Each si is statistically dependent on some m-
dimensional random auxiliary variable u, but con-
ditionally independent of the other sj , and has a
univariate exponential family distribution condi-
tioned on u (we omit data index t here):

p(s|u) =
n∏

i=1

Qi(si)

Zi(u)
exp

 k∑
j=1

qij(si)λij(u)

 , (4)

where Qi is the base measure, Zi is the normaliz-
ing constant, k is the model order, qij is the suffi-
cient statistics, and λij(u) is a parameter (scalar
function) depending on u.1

This model is related to the assumption of Gaussian
innovations in ordinary VAR, but requires more spe-
cific properties represented by conditional indepen-
dence and sufficient probabilistic modulation, deter-
mined by an auxiliary variable u. Note that exponen-
tial families have universal approximation capabilities,
so this assumption is not very restrictive (Sriperum-
budur et al., 2017).

3 LEARNING ALGORITHMS

Depending on the type of the auxiliary variable u
in the innovation model (see A1), we can develop
three learning algorithms; The first one (IIA-GCL;
Section 3.1) is for general cases of observable u, the
second one (IIA-TCL; Section 3.2) is for specific type
of observable u underlying within a finite number of

1The k is assumed to be minimal, meaning
that we cannot rewrite the form with a smaller
k′ < k. The parameters are assumed that for
each i, (∃(λi1(u), . . . , λik(u))|∀si,

∑k
j=1 qij(si)λij(u) =

const) =⇒ (λi1(u), . . . , λik(u)) = 0. These conditions are
required for the distribution to be strongly exponential
(Khemakhem et al., 2020), which is not very restrictive,
and satisfied by all the usual exponential family distribu-
tions.

classes, and the last one (IIA-HMM; Section 3.3) is for
unobservable u represented by hidden Markov chain.

3.1 General Contrastive Learning
Framework (IIA-GCL)

In the general case with observable and possibly
continuous-valued u, we develop a general contrastive
learning (GCL) framework for IIA, based on the re-
cently proposed NICA framework (Hyvärinen et al.,
2019). In IIA-GCL, we train a feature extractor
and a logistic regression classifier, which discriminates
a real dataset composed of the true observations of
(xt,xt−1,ut), from a version where randomization is
performed on u. Thus we define two datasets in which
a data point t is written as follows, respectively:

x̃t = (xt,xt−1,ut) vs. x̃
∗
t = (xt,xt−1,u

∗), (5)

where u∗ is a random value from the distribution of
u, but independent of xt and xt−1, created in practice
by random permutation of the empirical sample of u.
We learn a nonlinear logistic regression system using
a regression function of the form

r(x̃t) =

n∑
i=1

k∑
j=1

ψij(hi(xt,xt−1))µij(ut) + ϕ(xt−1,ut)

+ α(ut) + β(h(xt,xt−1)) + γ(xt−1), (6)

which gives the posterior probability of the first class x̃
as 1/(1+exp(−r(x̃t)). The scalar-valued functions ψij ,
hi, µij , ϕ, α, β, and γ take some specific combinations
of xt, xt−1, and ut as input, which are designed to
match to the difference of the log-pdfs of (xt,xt−1,ut)
in the two datasets, given the innovation model Eq. 4
(see Supplementary Material A). The universal ap-
proximation capacity (Hornik et al., 1989) is assumed
for those functions; they would typically be learned by
neural networks. This learning framework and the re-
gression function are based on the following Theorem,
proven in Supplementary Material A:

Theorem 1. Assume the following:

1. We obtain observations and auxiliary variable u
from an NVAR model (Eq. 1), whose augmented
model (Eq. 2) is invertible and sufficiently smooth.

2. The latent innovations of the process are tempo-
rally independent, follow the assumption A1 with
k ≥ 2, and the sufficient statistics qij are twice
differentiable.

3. (Assumption of Variability) There exist nk+1 dis-
tinct points u0, . . . ,unk such that the matrix

L = (λ(u1)− λ(u0), . . . ,λ(unk)− λ(u0)) (7)

of size nk × nk is invertible, where λ(u) =
(λ11(u), . . . , λnk(u))

T ∈ Rnk.
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4. We train a nonlinear logistic regression system
with universal approximation capability to dis-
criminate between x̃ and x̃∗ in Eq. 5 with regres-
sion function in Eq. 6.

5. The augmented function h̃(xt,xt−1) =
[h(xt,xt−1),xt−1] : R2n → R2n is invertible.

6. The scalar functions ψij in Eq. 6 are twice differ-
entiable, and for each i, the following implication
holds: (∃θ ∈ Rk|∀y,

∑k
j=1 ψij(y)θj = const) =⇒

θ = 0.

Then, in the limit of infinite data, h in the regres-
sion function provides a consistent estimator of the
IIA model: The functions hi(xt,xt−1) give the in-
dependent innovations, up to permutation and scalar
(component-wise) invertible transformations.

This Theorem guarantees the convergence (consis-
tency) of the learning algorithm. It immediately im-
plies the identifiability of the innovations, up to a
permutation and component-wise invertible nonlinear-
ities. This kind of identifiability for innovations is
stronger than any previous results in the literature.
The estimation is based on the learning of nonlinear
logistic regression function, and thus can be easily im-
plemented based on ordinary neural network training.
The Assumption of Variability requires the auxiliary
variable u to have a sufficiently strong and diverse ef-
fect on the distributions of the innovations. The as-
sumptions on the NVAR model are not too restrictive,
and supposed to be satisfied in many applications. The
temporal independence of the innovations is the ordi-
nary assumption for VAR. The assumption 6 indicates
that ψij are not functionally redundant; any ψij can-
not be represented by a linear combination of ψil ̸=j .
Although the assumptions of the nonlinear functions
to be trained (assumptions 5 and 6) are not trivial, we
assume they are only necessary to have a rigorous the-
ory, and immaterial in any practical implementation.

3.2 Time-Contrastive Learning Framework
(IIA-TCL)

In the special case in which ut is observable and inte-
ger within a finite number of classes [1, T ], we can also
develop a TCL-based framework for the estimation
(Hyvärinen and Morioka, 2016). This special case in-
cludes time-segment-wise stationary process in which
ut represents the time segment index at time t.

Instead of the two-class logistic regression used in IIA-
GCL, IIA-TCL uses a multinomial logistic regression
(MLR) classifier for the learning. More specifically, we
learn a nonlinear MLR using a softmax function which

represents the posterior distribution of u, by the form

p(ut = τ |xt,xt−1) =
exp(

∑n
i=1

∑k
j=1 zijτ )∑T

l=1 exp(
∑n

i=1

∑k
j=1 zijl)

,

zijl = wijlψij(hi(xt,xt−1)) + ϕ(xt−1,ut = l) + bl,
(8)

where wijτ , bτ are the class-specific weight and bias
parameters of the MLR, and ψij , hi, and ϕ are again
scalar-valued functions assumed to have the universal
approximation capacity. This functional form is de-
signed based on the innovation model given by Eq. 4
(see Supplementary Material B). This learning frame-
work and the regression function are justified on the
following Theorem, proven in Supplementary Mate-
rial B:

Theorem 2. Assume the following:

1. We obtain observations and auxiliary variable u
from an NVAR model (Eq. 1), whose augmented
model (Eq. 2) is invertible and sufficiently smooth.

2. The latent innovations of the process are tempo-
rally independent, follow the assumption A1 with
k ≥ 2, and the sufficient statistics qij are twice
differentiable.

3. The auxiliary variable u is an integer in [1, T ],
with T the number of values it takes (classes).

4. The modulation matrix of size nk × (T − 1)

L = (λ(2)− λ(1), . . . ,λ(T )− λ(1)) (9)

has full row rank nk, where λ(τ) = (λ11(u =
τ), . . . , λnk(u = τ))T ∈ Rnk.

5. We train a multinomial logistic regression with
universal approximation capability to predict the
class label (auxiliary variable) ut from (xt,xt−1)
with regression function in Eq. 8.

6. The augmented function h̃(xt,xt−1) =
[h(xt,xt−1),xt−1] : R2n → R2n is invertible.

7. The scalar functions ψij in Eq. 8 are twice differ-
entiable, and for each i, the following implication
holds: (∃θ ∈ Rk|∀y,

∑k
j=1 ψij(y)θj = const) =⇒

θ = 0.

Then, in the limit of infinite data in each class, h in
the regression function provides a consistent estimator
of the IIA model: The functions hi(xt,xt−1) give the
independent innovations, up to permutation and scalar
(component-wise) invertible transformations.

Many of the assumptions are the same as those in
IIA-GCL, except for the specifics of the innovation
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model (assumptions 3 and 4) and the learning algo-
rithm (assumption 5). The estimation is based on self-
supervised nonlinear MLR, and thus can be easily im-
plemented based on ordinary neural network training,
like IIA-GCL. Although the estimation methods are
different, the identifiability result implied here by IIA-
TCL is the same as above by IIA-GCL. Note that here
the limit of infinite data takes the form that each class
(value of T ) has an infinite number of data points. In
practice, each class is thus required to have a sufficient
number of samples, so T needs to be much smaller than
the total number of data points; this would be natural
if T is a segment index (see Fig. 1b for the empirical
result of this point).

3.3 Hidden Markov Model Framework
(IIA-HMM)

Next, we consider a special case where no u is ob-
served, and no segmentation is imposed as in TCL.
Instead, we assume the nonstationarity is described by
hidden states following a discrete-time Markov model
(Hälvä and Hyvärinen, 2020). This framework does
not require ut to be observable unlike the previous
two frameworks, and thus can learn the model in an
“purely unsupervised” manner. It is essentially like
TCL but the segmentation is inferred as part of the
learning process.

We assume the following temporal structure for u;

A2. The latent auxiliary variable ut ∈ {1, . . . , C} rep-
resents a hidden random states at each time point,
and it is described by a Markov chain governed
by a time-invariant transition-probability matrix
A ∈ RC×C , where Ai,j denotes the probability of
transitioning from state i to j.

From the NVAR observation model with the hidden
Markov chain ut generating the innovations for each
data point t, the likelihood is given by, using the prob-
ability transformation formula,

p(x0,x1, . . . ,xT ;A,θ) = p(x0)

T∏
t=1

|Jg̃(xt,xt−1)|

×
∑

u1,...,uT

πu1
p(s1|u1;θ)

T∏
t=2

Aut−1,ut
p(st|ut;θ) (10)

where θ = {λ,g}, λ denotes the parameters of the
innovation model with omitting subscripts (Eq. 4), g
is the demixing model, whose augmented model is g̃
(Eq. 3), π = (π1, . . . , πC) is the stationary distribution
of the latent state u, p(x0) is the marginal distribu-
tion of x0, and Jg̃ denotes the Jacobian of g̃. The
summation (marginalization) is taken over all possible
combinations of u1, . . . ,uT .

Unlike the previous two frameworks which are based
on self-supervised learning, the estimation of the
model has to be done by a maximum-likelihood frame-
work since ut is unobservable here. For example, EM
algorithm can be deployed when the innovation model
was chosen from a well-known family such that the
normalizing constant is tractable. The algorithm ba-
sically follows that of Hälvä and Hyvärinen (2020),
with some differences coming from the autoregressive
structure in the observations; the demixing model g̃
has the augmented structure defined in Eq. 3, and the
marginal distribution model of the observation p(x0)
is required. The E-step finds the optimal sequence
of the latent states (u1, . . . ,uT ), and M-step updates
the parameters of the model so as to maximize the
lower bound. Since a closed-form of the update for g
is not available in many cases, a gradient ascent up-
date is taken instead. Although the gradient of the
determinant of the Jacobian |Jg̃| is generally consid-
ered to be difficult, recent developments of autograd
packages, such as JAX, makes it possible to calculate
them numerically up to moderate dimensions (Hälvä
and Hyvärinen, 2020). Moreover, it can be computed
using the recently proposed relative gradient method
(Gresele et al., 2020). The identifiability of this frame-
work is discussed in Supplementary Material C.

4 EXPERIMENTS

4.1 Simulation 1: IIA-GCL for Artificial
Dynamics with Nonstationary
Innovations

Data Generation We generated data from an arti-
ficial NVAR process with nonstationary innovations.
The innovations were randomly generated from a
Gaussian distribution by modulating its mean and
standard deviation across time t, i.e., ut = t. The
modulations were designed to be temporally smooth
and continuous. The dimensions of the observations
and innovations (n) were 20. As the NVAR model,
we used a multilayer perceptron we call NVAR-MLP,
which takes a concatenation of xt−1 and st as an in-
put, then outputs xt. The goal of this simulation is
to estimate the innovations s only from the observable
time series x, without knowing the parameters of the
NVAR-MLP. See Supplementary Material D for more
details of the experimental settings.

Training Considering the innovation model with
ut = t, we here used IIA-GCL for the estimation
of the latent innovations. We adopted MLPs as the
nonlinear scalar functions in Eq. 6. The nonlinear
regression function was trained by back-propagation
with a momentum term so as to discriminate the real
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dataset from its ut-randomized version. For compari-
son, we also applied NICA based on GCL (NICA-GCL;
Hyvärinen et al. (2019)), an NVAR with additive in-
novation model (AD-NVAR), and variational autoen-
coder (VAE; Kingma and Welling (2014)) to the same
data.

Result The IIA-GCL framework could reconstruct
the innovations reasonably well even for the nonlin-
ear mixture cases (L > 1) (Fig. 1a). We can see
that a larger amount of data make it possible to
achieve higher performance, and higher complexity
of the NVAR model makes learning more difficult.
AD-NVAR performed well for the linear mixture case
(L = 1) because the additive innovation model is
equivalent to the general NVAR model in the linear
case; however, it was much worse in the nonlinear case.
As expected, the other methods performed worse than
IIA-GCL because their model did not match well to
the NVAR generation model.

4.2 Simulation 2: IIA-TCL for Artificial
Dynamics with Nonstationary
Innovations

Training Next, to evaluate the IIA-TCL framework,
we applied it to the same data used in Simulation 1.
For IIA-TCL, we first divided the time series into 256
equally-sized segments, and used the segment label as
the auxiliary variable ut; i.e., we assume that the data
are segment-wise stationary, which should be approx-
imately true because the modulations were designed
to be temporally smooth and continuous. The train-
ing and evaluation methods follow those in Simula-
tion 1. For comparison, we also applied NICA based
on TCL (NICA-TCL; Hyvärinen and Morioka (2016)).
See Supplementary Material E for more details.

Result IIA-TCL performed better than NICA-TCL
(Fig. 1b). In addition, even though the innova-
tion model matches IIA-GCL better than IIA-TCL
(the modulations are temporally smooth and continu-
ous, and thus not segment-wise stationary), IIA-TCL
achieved slightly better performances than IIA-GCL
(note that the performances of IIA-GCL is the same
as those in Fig. 1a because we used the same data);
this finding is consistent with the comparison of NICA-
GCL and NICA-TCL by Hyvärinen et al. (2019). As
with IIA-GCL, a larger number of data points leads to
higher performance (i.e. the method seems to con-
verge), and again, higher complexity of the NVAR
models makes learning more difficult. See also Sup-
plementary Material F in the two dimensional case
to visually see the difference of the estimation per-
formances.

4.3 Simulation 3: IIA-HMM for Artificial
Dynamics with Hidden Markov Process

Data Generation We generated data from an arti-
ficial NVAR process with hidden Markov model. The
innovations were generated based on hidden Markov
chain with modulating the mean and the variance of
Gaussian distribution for each state. The observations
were then obtained by the same method described in
Simulation 1, using the generated innovations. The di-
mensions of the observations and innovations (n) were
5, and the number of latent states (C) was 11. See
Supplementary Material G for more details.

Training We used here EM algorithm to maximize
the likelihood for estimating the parameters of the
demixing model and the innovation process, as in
Hälvä and Hyvärinen (2020). For comparison, we also
applied NICA-HMM (Hälvä and Hyvärinen, 2020),
IIA-TCL, and AD-NVAR.

Result IIA-HMM performed better than the other
baseline methods (Fig. 1c), except for the most com-
plex case (L = 5) possibly because of the difficulty of
the optimization due to the larger number of parame-
ters. The worse performances of IIA-TCL are likely to
be due to the inconsistency between the artificial tem-
poral segments used for the training and the actual
sequence of the hidden states, and also much smaller
number of latent states compared to the number of
the artificial segments. AD-NVAR did not perform
well even for the linear case (L = 1) because the in-
novations are not necessarily marginally independent
each other this time. As with the previous frameworks,
a larger number of data points leads to higher per-
formance, and again, higher complexity of the NVAR
models makes learning more difficult.

4.4 Experiments on Real Brain Imaging Data

To evaluate the applicability of IIA to real data, we
applied it on multivariate time series of electrical
activities of the human brain, measured by magne-
toencephalography (MEG). In particular, we used a
dataset measured during auditory or visual presenta-
tions of words (Westner et al., 2018). Although ICA
is often used to analyze brain imaging data, relying
on the assumption of mutual independence of the hid-
den components, the event-related components (such
as event-related potentials; ERPs) are not likely to be
independent because they may have similar temporal
patterns time-locked to the stimulation. However, the
innovations generating the components should still be
independent because they would be generated by dif-
ferent brain sources, which motivates us to use IIA
rather than ICA (see Supplementary Material H for
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Figure 1: (Simulation) Estimation of the latent innovations from unknown artificial NVAR process by IIA.
(a) (Simulation 1; IIA-GCL) Mean absolute correlation coefficients between innovations and their estimates by
IIA-GCL (solid lines), with different settings of the complexity (number of layers L) of the NVAR models and
data points. For comparison: NICA based on GCL (NICA-GCL, dashed line), NVAR with additive innovation
model (AD-NVAR, dotted line), and variational autoencoder (VAE, dash-dot line). IIA-GCL generally has higher
correlations than the baseline methods. (b) (Simulation 2; IIA-TCL) Estimation performances by the IIA-TCL
framework (solid lines), evaluated by the same data used in Simulation 1. For comparison: NICA based on TCL
(NICA-TCL, dashed line) and IIA-GCL shown in a (dotted line). (c) (Simulation 3; IIA-HMM) Estimation
performances by the IIA-HMM framework (solid lines). For comparison: NICA based on HMM (NICA-HMM,
dashed line), NVAR with additive innovation model (AD-NVAR, dotted line), and IIA-TCL (dash-dot line).

the details of the data and settings).

Data and Preprocessing We used a publicly avail-
able MEG dataset (Westner et al., 2018). Briefly, the
participants were presented with a random word se-
lected from 420 unrelated German nouns either visu-
ally or auditorily, for each trial. MEG signals were
measured from twenty healthy volunteers by a 148-
channel magnetometer (219.1±22.4 trials for each sub-
ject; 2,207 auditory and 2,174 visual trials in total for
all subjects). We band-pass filtered the data between
4 Hz and 125 Hz (sampling frequency = 300 Hz). The
dimension of the data was reduced to 30 by PCA.

IIA Settings We used IIA-TCL for the training,
by assuming a third-order NVAR model (NVAR(3))
and the segment-wise-stationarity of the latent inno-
vations. The trial data were divided into 84 equally
sized segments of length of 8 samples (26.7 ms), and
the segment label was used as the auxiliary variable
ut. The same segment labels were given across the tri-
als; however, considering the possible stimulus-specific
dynamics of the brain, we assigned different labels for
the auditory and visual trials. In total, there are 168
segments (classes) to be discriminated by MLR. We
used MLPs for the nonlinear scalar functions (Eq. 8),
and fixed the number of components to 5. We fixed
the time interval between two consecutive samples to
3 (10 ms).

Evaluation Methods For evaluation, we per-
formed classification of the stimulus modality (audi-
tory or visual) by using the estimated innovations.
The classification was performed using a linear sup-
port vector machine (SVM) classifier trained on the

stimulation label and sliding-window-averaged innova-
tions obtained for each trial. The performance was
evaluated by the generalizability of a classifier across
subjects, i.e., one-subject-out cross-validation (OSO-
CV). For comparison, we also evaluated NICA-TCL
(Hyvärinen and Morioka, 2016) and AD-NVAR(3).
We omitted L = 1 for IIA-TCL because of the insta-
bility of training. We visualized the spatial character-
istics of each innovation component by estimating the
optimal (maximal and minimal) input xt while fixing
xt−1:t−3 to zero.

Results Figure 2a shows the decoding accuracies of
the stimulus categories, across different methods and
the number of layers for each model. The perfor-
mances by IIA-TCL with nonlinear models (L ≥ 2)
were significantly higher than the other baseline meth-
ods (p < 0.05; Wilcoxon signed-rank test, FDR correc-
tion), which indicates the importance of the modeling
of the MEG signals by NVAR, especially with the non-
linear (non-additive) interactions of the innovations.

The left panels of Fig. 2b show the temporal patterns
of the innovations during the auditory and visual stim-
uli. Some components have clear differences between
the stimulus modalities, which implies that those com-
ponents are related to the stimulus-specific dynam-
ics of the brain; e.g., C1 and C2 represent auditory-
and visual-relevant innovations, respectively. Such
stimulus-specificity can be also seen from the spatial
characteristics of the components; C1 is strongly acti-
vated by the MEG signals around auditory areas of the
brain, while C2 is more activated by the visual areas.
C3 seems to represent stimulus-evoked activities on
the parietal region caused by both categories. Those
results show that IIA-TCL extracted reasonable com-
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Figure 2: IIA-TCL on the electrical activity data measured by MEG from the human brain during auditory or
visual stimuli of German nouns. (a) Decoding accuracies of the stimulus category predicted from the innovations
extracted by IIA-TCL and the other baseline methods. The performance was measured by one-subject-out cross-
validation (OSO-CV), with changing the number of layers L for each method. Each point represents a testing
accuracy on a target subject. The black horizontal line indicates the chance level. (b) The temporal pattern
and the spatial specificity of each component trained by IIA-TCL (L = 3). (Left) The temporal patterns of the
components averaged separately for auditory (orange) and visual trials (blue). 0 s is the onset of the stimulus,
and the latter vertical line represents the average duration of the stimuli. (Right) The spatial topographies of
the optimal input (MEG signal; top view) which maximizes (+) and minimizes (−) the component.

ponents (innovations) relevant to the external stimuli
automatically from the data in a data-driven manner.

5 DISCUSSION

IIA can be seen as a generalization of the recently pro-
posed NICA frameworks (Hälvä and Hyvärinen, 2020;
Hyvärinen and Morioka, 2016; Hyvärinen et al., 2019),
with the important difference that observations can
have recurrent temporal structure. The theory strictly
includes NICA as a special case, since the main as-
sumptions can be satisfied even if the NVAR model
(Eq. 1) does not actually depend on xt−1, which corre-
sponds to the instantaneous nonlinear mixture model
of NICA: xt = fICA(st). This connection can be also
seen by comparing the regression functions; by omit-
ting the dependencies of Eqs. 6 and 8 on xt−1, we
can obtain the same algorithms as NICA (Hyvärinen
and Morioka (2016) with k=1, and Hyvärinen et al.
(2019)). This indicates that the regression functions
of IIA can learn NICA models as a special case. See
Supplementary Material F for the empirical compari-
son in the two dimensional case.

Applying IIA on time series has some practical advan-
tages compared to NICA. First, autoregressive struc-
tures are generally inherent in any kinds of dynamics,
and their explicit modeling is beneficial for the estima-
tion. Second, innovations are usually more indepen-
dent mutually than the processes generated by them,
because the independence of processes implies the in-

dependence of their innovations, but not vice versa, as
argued in the linear case by Hyvärinen (1998). Thus,
innovations are likely to give a better fit to any model
assuming independence of the latent variables.

While IIA estimates innovations from the observed
time series, the NVAR model f is left unknown, un-
like in ordinary VAR analyses. In practice, we can
estimate f after IIA as a post-processing, by fitting
a nonlinear function which outputs xt from xt−1 and
the estimated st. Since IIA guarantees the estimation
of s up to a permutation and element-wise invertible
nonlinearities, this should be possible if the model to
be fitted has universal approximation capability.

6 CONCLUSION

We proposed independent innovation analysis (IIA) as
a new general framework to nonlinearly extract innova-
tions hidden in a time series. In contrast to the com-
mon simplifying assumption of additive innovations,
IIA can deal with a general NVAR model in which
innovations are not additive. Any general nonlinear
interactions between the innovations and the obser-
vations are allowed. To guarantee identifiability, IIA
requires some assumptions on the innovations, in par-
ticular mutual independence conditionally on an aux-
iliary variable which also needs to modulate the dis-
tributions of the innovations. A typical case would
be nonstationary innovations mutually independent at
each time point.



Hiroshi Morioka, Hermanni Hälvä, Aapo Hyvärinen

We proposed three practical estimation methods. Two
of them were based on a self-supervised training of a
nonlinear feature extractor by (multinomial) logistic
regression. They can thus be easily implemented by
ordinary neural network training. The third one is a
“purely unsupervised” framework based on maximum-
likelihood estimation, specifically applicable when an
auxiliary segmentation variable is unobservable (or in
practice, we do not want to impose some simple seg-
mentation). The consistency of the estimation is guar-
anteed up to a permutation and component-wise in-
vertible nonlinearity, which implies the strongest iden-
tifiability proof of general NVAR in the literature, by
far. IIA can be seen as a generalization of recently pro-
posed NICA frameworks, and includes them as special
cases.

Experiments on real brain imaging data by MEG
showed distinctive components relevant to the
external-stimulus categories. This result suggests a
wide applicability of the method to different kinds of
time series such as video, econometric, and biomedical
data, in which innovation plays an important role.
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G. Gómez-Herrero, M. Atienza, K. Egiazarian, and
J.L. Cantero. Measuring directional coupling be-
tween eeg sources. NeuroImage, 43(3):497 – 508,
2008.

L. Gresele, G. Fissore, A. Javaloy, B. Schölkopf, and
A. Hyvärinen. Relative gradient optimization of the
jacobian term in unsupervised deep learning. In
Advances in Neural Information Processing Systems
(NeurIPS2020), 2020.

M. U. Gutmann and A. Hyvärinen. Noise-contrastive
estimation of unnormalized statistical models, with
applications to natural image statistics. Journal of
Machine Learning Research, 13(11):307–361, 2012.
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