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a b s t r a c t 

The white matter structures of the human brain can be represented using diffusion-weighted MRI tractography. 
Unfortunately, tractography is prone to find false-positive streamlines causing a severe decline in its specificity 
and limiting its feasibility in accurate structural brain connectivity analyses. Filtering algorithms have been pro- 
posed to reduce the number of invalid streamlines but the currently available filtering algorithms are not suitable 
to process data that contains motion artefacts which are typical in clinical research. We augmented the Con- 
vex Optimization Modelling for Microstructure Informed Tractography (COMMIT) algorithm to adjust for these 
signals drop-out motion artefacts. We demonstrate with comprehensive Monte-Carlo whole brain simulations 
and in vivo infant data that our robust algorithm is capable of properly filtering tractography reconstructions 
despite these artefacts. We evaluated the results using parametric and non-parametric statistics and our results 
demonstrate that if not accounted for, motion artefacts can have severe adverse effects in human brain structural 
connectivity analyses as well as in microstructural property mappings. In conclusion, the usage of robust filtering 
methods to mitigate motion related errors in tractogram filtering is highly beneficial, especially in clinical stud- 
ies with uncooperative patient groups such as infants. With our presented robust augmentation and open-source 
implementation, robust tractogram filtering is readily available. 

1

 

m  

e  

g  

2  

(  

t  

t  

a  

o  

H  

m  

2  

U

(  

i
 

w  

c  

o  

2  

d  

o  

T  

c  

b  

c  

C  

(  

h
R
A
1

. Introduction 

Diffusion-weighted magnetic resonance imaging (dMRI) of the hu-
an brain ( Basser et al., 1994 ) has various applications ranging from

arly clinical stroke diagnostics ( Horsfield and Jones 2002 ) to investi-
ations of the microstructural properties of the tissue ( Alexander et al.,
019 ; Novikov et al., 2019 ) and structural brain connectivity mapping
 Griffa et al., 2013 ; Delettre et al., 2019 ; Zhang et al., 2021 ) The latter
wo are gaining popularity in clinical research ( Kamiya et al., 2020 )
o investigate various brain diseases and neurological conditions of
dults ( Fieremans et al., 2013 ; Benitez et al., 2014 ) and development
f the growing brain in children and adolescents ( Genc et al., 2017 ;
uber et al., 2019 ). Furthermore, with the latest advances in auto-
atic brain segmentation with tools like Infant FreeSurfer ( Zöllei et al.,
020 ), it is likely that the amount of brain connectivity studies of infants
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 Kunz et al., 2014 ; Pannek et al., 2018 ; Pecheva et al., 2019 ) will grow
n the near future too. 

The clinical dMRI research comes with its own challenges to solve,
ith one most difficult being the patient motion. The subject motion

an be unavoidable when imaging infants or patients in discomfort
r pain, resulting in complex missing data problems ( Sairanen et al.,
017 , 2018 ). In short, rapid subject motion can result in slicewise signal
ropout artefacts. For readers interested in why this happens, we rec-
mmend the section “Origin of the dropout" by Andersson et al. (2016) .
herefore, the processing of the motion-corrupted images requires spe-
ialized algorithms and robust methods to minimize motion induced
ias in the results. While robust modeling has been considered in the
ontexts of diffusion and kurtosis tensor estimations ( Chang et al., 2005 ;
hang et al., 2012 ; Tax et al., 2015 ) as well as in higher order models
 Pannek et al., 2012 ) that could be used for tractography purposes, it has
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ot been investigated thoroughly in the context of the brain structural
onnectivity analyses. 

Structural brain connectivity analyses are based on the rapidly devel-
ping dMRI tractography ( Basser et al., 2000 ) algorithms that represent
he brain white matter structures with streamlines. These streamlines
an be used to investigate which gray matter regions might have a struc-
ural link. In general, the tractography algorithms are sensitive but they
ack specificity and they find great number of false streamlines connec-
ions ( Thomas et al., 2014 ; Maier-Hein et al., 2017 ). This means that
wo gray matter regions could be linked by tractography streamlines
espite that the brain tissue does not form a true structural link. This
s a known issue in structural connectivity analyses ( Drakesmith et al.,
015 ; Zalesky et al., 2016 ; Yeh et al., 2020 ) to which tractogram fil-
ering has been proposed as one solution. Tractogam filtering can be
chieved with different approaches ( Zhang et al., 2021 ), one being the
onvex Optimization Modelling for Microstructure Informed Tractogra-
hy (COMMIT) ( Daducci et al., 2015 ) which we will use in this study to
emonstrate possible effects of subject motion to the filtering and mi-
rostructural mapping as well as how it can be accounted and corrected
or. 

There are three alternative post-scan approaches to address outliers
hat are caused by the subject motion. The first approach is to find out-
iers in dMRI data manually or automatically with statistical methods
r deep-learning and simply exclude the artefactual dMRI data or even
he whole subject from the analysis ( Oguz et al., 2014 ; Samani et al.,
019 ). The second approach is to use a model to predict what the mea-
urements should look like, locate the outliers based on differences to
odel predictions and replace them with these predictions if differences

re deemed large enough ( Lauzon et al., 2013 ; Andersson et al., 2016 ).
he third approach is to detect the outliers, but instead of replacing or
ompletely excluding them, their weight is reduced in all subsequent
odel estimation steps ( Sairanen et al., 2018 ). 

Manual outlier detection can be laborious and excluding whole sub-
ects from clinical studies with relatively small number of participants
ight not be the optimal choice. The outlier replacement approach re-

ies on the quality and robustness of the chosen model and method to
epresent the measured dMRI signal. If multiple dMRI measurements are
orrupted by motion artefacts, this initial modeling and prediction step
an fail altogether ( Sairanen et al., 2018 ). Even in the best case, the re-
laced data points are simply interpolations based on the chosen model
nd the data points used in the modeling therefore it cannot increase
he available information but leads to increased error propagation due
o subsequent model fittings. The third approach, on the contrary, en-
bles quantifying the amount of the motion corrupted data and versatile
ubsequent modeling and analysis options therefore being optimal for
ur purposes. In Discussion section “Robust modeling or outlier replace-
ent ”, we provide further reasoning why we promote the use of robust
ethods over replacement in dMRI. 

While weighted and robust modeling has been implemented before,
hey have mostly been used outside the scope of tractogram filtering.
or example, in diffusion tensor modeling weighted linear least squares
s typically the fastest and most robust estimator ( Veraart et al., 2013 ;
ax et al., 2015 ; Sairanen et al., 2018 ). Robust modeling has been pro-
osed for higher order models as well ( Pannek et al., 2012 ). In the
ontext of tractogram filtering, weighted cost functions have been in-
roduced earlier in e.g., SIFT ( Smith et al., 2013 , 2015 ), but it has only
een evaluated with voxels affected by partial voluming. SIFT algorithm
tates that their ’processing mask’ is ’the square of the estimated white
atter partial volume fraction’ - which indeed should be beneficial in

he case of partial voluming. However, the approach in SIFT does not
ccount for outliers that are randomly occurring in the measurements
s our newly proposed augmentation to COMMIT does. 

In this work, we propose a robust augmentation to the COMMIT al-
orithm ( Daducci et al., 2015 ) that accounts for the unreliability of the
riginal measurements. We detail the theoretical changes to the algo-
2 
ithm as well as provide open-source code 1 of its implementation. We re-
er to this new method as COMMIT_outlier throughout this manuscript.
o evaluate the method, we use the data from the Human Connectome
roject (HCP) ( Van Essen et al. 2013 ) as a base for thorough Monte-Carlo
imulations which emulate various motion induced artefacts in synthetic
ut realistic whole brain data. Synthetic data provides the necessary
aseline that can be used to isolate the bias arising from subject motion
rom noise effects in structural connectivity analyses as well as how well
otion artefacts can be amended using our robust augmentation. In the

ontext of this study, the measurement unreliability is associated with
utliers due to subject motion. However, it can readily be utilized to
orrect for measurements that are affected by partial voluming, as our
reliminary results have demonstrated earlier ( Sairanen et al., 2021 ). 

. Material and methods 

.1. Implementation 

We augmented the original cost function of COMMIT ( Daducci et al.,
015 ) with a voxelwise weighting factor W that we used to down weight
easurements that have decreased reliability due to subject motion or

ny other reason. The original COMMIT is based on a minimization of
he difference between the original measurements and a forward model
rediction. The forward model prediction is calculated by fitting a cho-
en microstructural model for each streamline in every voxel. COMMIT
ssigns a weight to each streamline that tells how much that stream-
ine contributes to the predicted signal. These streamline contribution
eights are iteratively updated until the difference between the mea-

urements and this prediction converges to a minimum. Any streamline
ith contribution of zero is then removed as an implausible streamline

i.e., not compatible with the measured signal). 
If part of the measurements are artefactual due to subject motion

r any other reason, the original COMMIT algorithm could converge to
n incorrect solution. To avoid this and decrease the impact of these
rtefactual measurements, we propose the robust cost function shown
n Eq. (1) . The weighting factor W is used to multiply the difference
etween the original measurements y and the product of model design
atrix A and estimated model coefficients x in the minimization prob-

em. Our proposed idea is further illustrated in Fig. 1 with a simple toy
xample. In future, these reliability weights W could be iteratively up-
ated along with the model coefficients x to help in estimating model
oefficients in voxels that do not fit to the chosen model perfectly due
o heart beat related pulsation or other uncertainties. 

𝑟𝑔𝑚𝑖𝑛 

�̂� ≥ 0 ‖𝑊 ( 𝐴 ̂𝑥 − 𝑦 ) ‖2 2 . (1)

The robustly weighted cost function in Eq. (1) is intended to be used
ith outlier detection with tools such as SOLID ( Sairanen et al., 2018 ).
OLID detects slicewise outliers based on robust statistical analysis of
he original dMRI data and can be used either to exclude outliers or
own weight them depending on how strong outliers are. This down
eighting scheme is likely a better option to outlier replacement that is
roposed in earlier studies ( Lauzon et al., 2013 ; Andersson et al., 2016 ).
f the outlier is replaced with a prediction from a tensor or a gaussian
odel, then COMMIT would try to minimize the difference from those
odel predictions to its own model prediction. Since these models can

e different and therefore capture different details of the dMRI signal,
t is more straightforward to use robust modeling with the proposed
eighted cost function. For interested readers, we provide more reason-

ng for this claim in the Discussion section “Robust modeling or outlier
eplacement ”. 
1 https://github.com/daducci/COMMIT . 

https://github.com/daducci/COMMIT
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Fig. 1. A toy example to illustrate the augmentation of COMMIT with the measurement reliability-based weighing. ( A ) A synthetic phantom consists of two slices 
both consisting of two voxels. For visualization purposes the 4th dimension i.e., diffusion weighted signals are omitted and observed signal is visualized using a fiber 
orientation distribution (FOD). To illustrate the subject motion artefact, the second slice in DWI #2 is affected by slicewise artefact and FOD of corresponding voxels 
3 and 4 is biased. In tractography, this is seen as an implausible streamline Fiber 3. ( B ) Data is vectorized to visualize the linear model problem. Vector y contains 
the simulated signals, diagonal of matrix W contains the reliability weights that are decreased for voxels 3 and 4 in DWI #2, A is the design matrix that depicts 
the modeled compartments (e.g., stick for streamlines and ball for isotropic compartments), and x contains the streamline wise contributions. With the successful 
downweighing, the contribution of Fiber 3 is set to zero and the implausible streamline is thus removed. 
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.2. Simulations 

To investigate the outlier effect on the tractogram filtering, we de-
eloped a comprehensive Monte-Carlo simulation pipeline delineated
n Fig.2 . Simulations were based on T1-weighted and dMRI data from
he HCP subject 103,818 which were processed with current state-of-
he-art methods ( Van Essen et al. 2013 ). We do not expect or imply that
his ground truth connectivity matrix depicted in Fig. 3 would represent
he true structural connections in a human brain. It simply provides us
he necessary ground truth connectivity that we can use to evaluate the
oise and outlier effects in the Monte-Carlo simulations with more real-
stic picture of the whole brain than typical fiber phantoms as it contains
ealistic brain structures such as kissing or crossing fibers as well as the
odeled partial voluming effects. 

.2.1. Ground truth data 

We segmented the T1-weighted HCP data with FreeSurfer
 Fischl 2012 ) to obtain 85 regions-of-interests (ROIs) based on the
esikan et al. (2006) atlas. Instead of the full brainstem, we used only its

nferior part of medulla as the last ROI. We used these brain segments to
ompute the ground truth connectivity matrix as well as to ensure that
e used only the connecting streamlines in our analyses. 

To calculate a whole brain tractogram from the HCP dMRI data, we
sed the anatomically constrained probabilistic tractography (iFOD2)
 Tournier et al., 2010 ; Smith et al., 2012 ) implemented in MRTrix3 soft-
are ( Tournier et al., 2019 ). We used the white matter mask as a seed

egion for three million streamlines. The tracking parameters were: step
3 
ize 0.5, turning angle 45°, min length value 5, max length 250, cutoff
alue 0.05, trials number 1000. Finally, we removed all non-connecting
treamlines based on the 85 ROI segmentation of T1-image. 

For ground truth tractogram filtering, we used the original COMMIT
 Daducci et al., 2015 ) because data did not contain slicewise outliers.
e chose the stick-zeppelin-ball (SZB) as the forward model with fol-

owing parameters: 1 . 7 ⋅ 10 −3 𝑚 𝑚 

2 ∕ 𝑠 for parallel stick and zeppelin dif-
usivities, 0 . 61 ⋅ 10 −3 𝑚 𝑚 

2 ∕ 𝑠 for perpendicular zeppelin diffusivity, and
wo ball compartments of 1 . 7 ⋅ 10 −3 𝑚 𝑚 

2 ∕ 𝑠 and 3 . 0 ⋅ 10 −3 𝑚 𝑚 

2 ∕ 𝑠 to account
or partial volumeing with gray matter as well as in cerebrospinal fluid
 Panagiotaki et al., 2012 ). 

The filtered tractogram was used to form the ground truth connec-
ivity matrix with the information from T1-segmentation ( Fig. 3 ). The
etwork edges in the ground truth connectivity matrix were defined as
he sum of the COMMIT streamline weights multiplied by the length
f the tract and normalized by the average tract length between each
ray matter parcellation as was done in ( Schiavi et al., 2020 ). We com-
ined this information with the final streamline contributions to form
he synthetic whole brain prediction of dMRI data using the HCP’s three-
hell gradient scheme. This produced 270 noise free diffusion-weighted
hole brain images that we used as a ground truth for our Monte-Carlo

imulations. 

.2.2. Monte-Carlo data 

Our Monte-Carlo simulations were based on the ground truth syn-
hetic whole brain dMRI data obtained from HCP subject. We split the
imulations into two groups: Baseline and Test. Baseline group provides
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Fig. 2. A flowchart describing how the whole-brain simulations were obtained from the HCP dataset. The dMRI and T1-weighted data were used to obtain the 
ground truth connectome from which the ground truth dMRI signals were predicted using normal COMMIT forward modeling. The ground truth data was used to 
perform 100 Monte-Carlo simulations to evaluate the effects of noise and outliers to the structural brain connectome. The Monte-Carlo iteration setups shown inside 
the dashed rectangle were repeated for outlier percentages 5% and 10% both with the uniform and clustered outlier schemes. 

Fig. 3. The ground truth connectivity matrix used in this study was based on 
one subject. While, this connectivity matrix might not represent the real human 
brain connections, it provided the necessary ground truth control for our Monte- 
Carlo simulations. Deviations from this network in the simulations would be due 
to noise, outliers, or both. 
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he means to evaluate the pure noise effects on the connectome whereas
est group provides the means to isolate and evaluate the outlier effects.
etwork analyzes used for Test group were identical with the ground

ruth case. 
In Baseline group, random Rician noise was added before repeating

he normal COMMIT filtering with the original non-filtered but connect-
ng streamlines. The Rician noise had signal-to-noise ratio of 20 based on
he non-diffusion weighted signal which is roughly similar with signal-
o-noise ratios in clinical research. We used the same filtering param-
ters that were used to form the ground truth data. This process was
epeated to obtain 100 whole brain baseline images and connectomes. 
4 
In Test group, outliers were introduced to the data before adding the
ame Rician noise that was used for the Baseline group. Test group was
ltered with both the normal COMMIT as well as the proposed robust
OMMIT_outlier using the same streamlines and parameters that were
sed for the Baseline group. This process was repeated to obtain 100
hole brain test images with outliers and corresponding connectomes

rom normal and robust filtering methods. 
The outlier selection for the Test group was done with two differ-

nt schemes by replacing axial slices with signal decrease outliers in
n interleaved manner to 5% and 10% of the dMRI data per shell. The
rst scheme represented the worst possible situation where outliers were
lustered in the q-space (e.g., Fig. 4 ) whereas the second scheme repre-
ented the best possible situation where outliers were uniformly placed
n the q-space based on their electrostatic repulsion ( Sairanen et al.,
017 ). Futher details why we did not use purely random selection of
utliers is provided in Discussion section “Robust modeling or outlier
eplacement ”. 

.2.3. Statistical analysis 

We investigated global brain connectivity as well as individual net-
ork edges using analysis of variance (ANOVA) accompanied by Tukey’s
onestly significant difference (HSD) test and non-parametric Fried-
an’s test accompanied by two-sample Kolmogorov-Smirnov tests. The

eason for having these different test statistics is that outliers can lead
o skewed and long tailed distributions that might not be correctly in-
estigated solely by parametric tests. It should be noted that the added
ician noise has a non-zero positive mean value. This means that all
roups are likely shifted to some direction from the ground truth pre-
iction. This is the reason, why the Baseline group is needed as that is
ffected only by noise and can be used to isolate corresponding shifting
ffect. 

While we report p-values from these tests, we argue that the ef-
ect sizes are more interesting as they describe how different the tested
roups are. The effect sizes are measured using Cohen’s D for paramet-
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Fig. 4. An illustration how clustered outliers were selected from all the gradient 
directions. The three shells used in the HCP gradient scheme are shown with the 
transparent spheres and gradient directions with black dots. The initial direction 
( 𝜃, 𝜑 ) of was selected randomly after which the opening angle of the cone was 
increased until wanted number of outliers from each shell remained inside it. 
This approach ensured the maximal gap in the q-space sampling and the chance 
to find error prone schemes. 
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ic tests and Kolmogorov-Smirnov statistic for non-parametric tests. The
est statistics we employ are widely used and they provide information
bout average differences and differences in the shapes of the Monte-
arlo simulated distributions. For details about these tests, we recom-
end any textbook that covers parametric and non-parametric statis-

ics such as Sheskin (2004) handbook. Having these two different tests
eemed necessary during designing this study. Of course, as we did mul-
iple tests, we also performed multiple comparison correction to all the
-values in pair-wise tests. In total, there were 80 different tests and
e corrected for them using Benjamini-Hochberg False Discovery Rate

FDR) test ( Benjamini and Hochberg, 1995 ) with alpha 0.05. However,
s seen from the results later, neither mean based or distribution shape-
ased analysis might not be sufficient to provide absolute conclusions. 

.3. In vivo measurements 

.3.1. Infant data 

We obtained preliminary data from an on-going infant study to eval-
ate our method with in vivo measurements. T1-weighted image and
MRI data were obtained with 3T MRI Siemens Skyra system (Erlangen,
ermany) with a 32-channel head coil. The dMRI acquisition consisted
f 13 non-diffusion weighted images that were interspersed between 60
iffusion-weighted images with b-value of 750 𝑠 ∕ 𝑚 𝑚 

2 and 74 diffusion-
eighted images with b-value of 1800 𝑠 ∕ 𝑚 𝑚 

2 each with uniquely oriented
radients. Bipolar gradient scheme was used to minimize geometrical
istortions due to eddy currents. The image resolution was isotropic
 mm with 80 ×80 ×44 imaging matrix. The in-plane acceleration factor
as 2 (SENSE) and multi-band acceleration factor was 2. Only anterior-
osterior phase encoded images were acquired as the reverse phase en-
5 
oding required manual adjustment during the scan which was deemed
nfeasible at the corresponding clinical scan environment. The use of in-
ant data in this work was approved by the relevant Ethics Committee
f the Helsinki University Hospital. 

.3.2. Infant analyses 

We used ExploreDTI ( Leemans et al., 2009 ) with SOLID-plugin
 Sairanen et al., 2018 ) to simultaneously detect slicewise outliers and
o correct for subject motion and eddy currents as well as registered the
ata to anatomical T1-image to correct for geometrical distortions. Ad-
itionally, we used Gibbs ringing correction ( Perrone et al., 2015 ). We
id not correct for signal drift ( Vos et al. 2016 ) as it was not observed
n the measurements. 

Processing of this data was limited to specific computers in the hos-
ital network which prevented memory demanding tasks such as seg-
entation with Infant Freesurfer ( Zöllei et al., 2020 ). Problematically,

he T1-image contrast of this subject was not suitable for white and gray
atter segmentations using traditional options. This, unfortunately, pre-

ented us from performing full network analyses on the infant dataset as
here was no reliable way to perform gray matter segmentation and we
ad to content to a simpler analysis that consisted of comparing signal
raction maps between normal and robust filtering method. We obtained
 WM mask from multi-shell multi-tissue constrained spherical deconvo-
ution ( Jeurissen et al., 2014 ) implemented in MRTrix3 ( Tournier et al.,
019 ) and used that as a seed mask for probabilistic whole-brain tractog-
aphy (iFOD2) ( Tournier et al., 2010 ) to generate three million stream-
ines. 

We filtered the generated streamlines with normal COMMIT
 Daducci et al., 2015 ) and the proposed robust COMMIT_outlier to eval-
ate the improvements in the overall fit from root mean squared error
RMSE) maps as well as to see the impact of outliers in intracellular and
sotropic signal fractions. We used the stick-ball model for both filtering
ethods with the following parameters: 1 . 7 ⋅ 10 −3 𝑚 𝑚 

2 ∕ 𝑠 for parallel sig-
al diffusivity, and 1 . 7 ⋅ 10 −3 𝑚 𝑚 

2 ∕ 𝑠 and 3 . 0 ⋅ 10 −3 𝑚 𝑚 

2 ∕ 𝑠 for the isotropic
ignal diffusivities. 

. Results 

.1. Simulations 

We investigated the effects of noise to the structural brain connec-
ivity by comparing Baseline group. Test groups (COMMIT and pro-
osed robustly weighted COMMIT_outlier) could not be directly com-
ared to the ground truth due to Rician noise bias. With the Rician
oise bias we imply the effect that adding noise with non-zero mean
 Gudbjartsson and Patz 1995 ) to data leads to a shift in overall baseline.
herefore, outlier effects were investigated by comparing Test groups to
aseline group. We evaluated these differences in both global connec-
ivity matrix score as well as in network edge individually. 

.1.1. Global connectivity 

The global connectivity difference was defined as an average abso-
ute difference between the element’s upper triangle of the connectivity
atrices from Monte-Carlo groups and the corresponding ground truth

alues. The results of this comparison calculated are shown in Fig. 5 with
ll violin plots being based on 100 Monte-Carlo simulations each. The
oise effect on the global connectivity (Baseline) is shown with the first
iolin from the left, the uniform outlier effect is shown in the middle,
nd the clustered outlier effect is shown on the right. The percentage of
utliers (5% or 10%) is shown on different sides of each violin. 

Both, Baseline and robust COMMIT_outlier produced similar global
esults with differences ranging from 3 . 5 ⋅ 10 −4 to 4 . 0 ⋅ 10 −4 . This demon-
trates that on average, the proposed robust filtering method is capable
o mitigate the outlier effect. On the contrary, the results from normal
OMMIT ranged from 3 . 25 ⋅ 10 −4 to 6 . 5 ⋅ 10 −4 demonstrating that outliers
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Table 1 

Summary of the parametric and non-parametric test results. Bolded p-values indicate statistically significant findings with FDR based correction for multiple com- 
parisons using 0.05 alpha. 

Global, 5% outliers Global, 10% outliers CST, 5% outliers CST, 10% outliers 

ANOVA Friedman ANOVA Friedman ANOVA Friedman ANOVA Friedman 

score p score p score p score p score p score p score p score p 
124.51 < 0.05 224.10 < 0.05 281.80 < 0.05 290.88 < 0.05 12.93 < 0.05 152.86 < 0.05 1.81 0.13 115.26 < 0.05 

Groups D HSD K-S stat. K-S D HSD K-S stat. K-S D HSD K-S stat. K-S D HSD K-S stat. K-S 
Baseline Uniform 

COMMIT 
2.06 0.00 0.73 0.00 3.82 0.00 0.96 0.00 2.71 0.00 0.89 0.00 2.11 0.13 0.75 0.00 

Baseline Uniform 

COMMIT_r 
0.22 0.72 0.15 0.21 0.46 0.43 0.24 0.01 0.29 0.90 0.14 0.28 0.28 0.90 0.14 0.28 

Baseline Cluster 
COMMIT 

1.76 0.00 0.69 0.00 1.89 0.00 0.78 0.00 0.29 0.01 0.48 0.00 0.08 0.88 0.52 0.00 

Baseline Cluster 
COMMIT_r 

0.18 0.83 0.13 0.37 0.31 0.75 0.23 0.01 0.22 0.90 0.15 0.21 0.41 0.90 0.22 0.02 

Uniform COMMIT Uniform 

COMMIT_r 
2.28 0.00 0.75 0.00 3.28 0.00 0.93 0.00 2.53 0.00 0.84 0.00 1.94 0.21 0.72 0.00 

Uniform COMMIT Cluster 
COMMIT 

0.61 0.00 0.44 0.00 3.23 0.00 0.98 0.00 0.25 0.05 0.46 0.00 0.13 0.59 0.52 0.00 

Uniform COMMIT Cluster 
COMMIT_r 

2.18 0.00 0.77 0.00 3.42 0.00 0.93 0.00 2.49 0.00 0.84 0.00 1.68 0.27 0.62 0.00 

Uniform COMMIT_r Cluster 
COMMIT 

1.89 0.00 0.71 0.00 2.05 0.00 0.82 0.00 0.25 0.05 0.48 0.00 0.06 0.90 0.52 0.00 

Uniform COMMIT_r Cluster 
COMMIT_r 

0.03 0.90 0.13 0.37 0.15 0.90 0.10 0.70 0.05 0.90 0.11 0.58 0.16 0.90 0.18 0.08 

Cluster COMMIT Cluster 
COMMIT_r 

1.85 0.00 0.72 0.00 2.00 0.00 0.81 0.00 0.26 0.04 0.48 0.00 0.05 0.90 0.52 0.00 

Fig. 5. Impact of noise (Baseline) and outliers (original and proposed) to the 
global structural brain connectivity. Left and right sides of the violins repre- 
sent simulations with 5% and 10% outliers, respectively. The y-axis indicates 
the distance to the ground truth as an average absolute difference. The aug- 
mented COMMIT_outlier shown with the pink violins produced similar distribu- 
tions with the Baseline in all cases whereas the original COMMIT shown with 
orange violins differs from the Baseline already in the 5% cases. As expected, 
the clustered outlier scheme produced the largest deviations with the highest 
variability in the original COMMIT distributions. Interestingly, the uniform out- 
lier scheme resulted two different distributions for original COMMIT compared 
to the Baseline. This highlights the need for the robust processing as the exact 
effect of outliers can be very challenging to predict. 
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an have a much stronger effect than noise on the global connectivity
alues. 

Parametric statistical analysis 

The global connectivity differences with ANOVA detail that the
roup averages were statistically different with p-value less than 0.05.
ukey’s HSD test results are shown in Table 1 along with all other statis-
ical tests results. Statistically significant results after multiple compar-
son correction with FDR alpha 0.05 are shown with bolded p-values.
he results depict that normal COMMIT had significantly different mean
o both Baseline and COMMIT_outlier results and the effect sizes eval-
ated with Cohen’s D were systematically larger. Importantly, differ-
nces between Baseline and COMMIT_outlier were not statistically sig-
6 
ificant with relatively small effect sizes. These effect sizes indicate that
n our realistic simulations with 5% and 10% of outliers, the average
ias caused by outliers quickly increases and compromises the connec-
ivity analyses if data is not processed robustly. 

Non-parametric statistical analysis 

The Friedman’s test reported also p-value less than 0.05 therefore
roviding additional support for the graphical analysis and ANOVA re-
ults. We applied the two-sample Kolmogorov-Smirnov test to detect
hich of the distributions were different. All these test results are re-
orted in Table 1 . Comparisons between Baseline and normal COMMIT
ere all statistically significant with large effect sizes whereas compar-

sons between Baseline and COMMIT_outlier were not statistically sig-
ificant with 5% outliers. With 10% outliers non-parametric differences
etween Baseline and COMMIT_outlier were significant but the effect
ize remained small. 

.1.2. Network edges 

We investigated the network edge-wise differences between the
onte-Carlo connectivity matrices with parametric and non-parametric

tatistics as complementary information to the global results. The three
iolin plots in Fig. 6 depict the connectivity values from medulla to the
ight precentral gyrus. These streamlines are visualised in Fig. 7 and
re likely a part of the corticospinal tract and therefore a known true
onnection. The results of the parametric and non-parametric tests per-
ormed to this network edge are depicted in Table 1 . 

The noise effect results in a systematic over estimation of the connec-
ivity strength as depicted by Baseline in Fig. 6 . However, outliers have
 more random effect depending on the affected dMRI measurements.
his can either decrease or increase the connectivity strength and can
ounteract the noise effect. Therefore, group comparisons against Base-
ine were more meaningful than comparisons against the known ground
ruth value would be. For example, in this case the normal COMMIT pro-
uces an average connectivity strength that is closer to the ground truth
han Baseline despite the distribution is wider. 

Parametric statistical analyses 

The connectivity-wise differences between Baseline and normal
OMMIT as well as Baseline and robust COMMIT_outlier are shown in
ig. 8 . The color map indicates the effect size measured with Cohen’s
. Only elements that were deemed significantly different (p-value less
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Fig. 6. Impact of noise (Baseline) and outliers (original and proposed) to one 
specific network edge that represents connections between medulla and right 
precentral gyrus. The y-axis indicates the strength of this edge. Left and right 
sides of the violins represent simulations with 5% and 10% outliers, respec- 
tively. The augmented COMMIT_outlier shown with the pink violins produced 
similar distributions with the Baseline in all cases whereas the original COM- 
MIT shown with orange violins was heavily affected already in the 5% cases. As 
expected, the clustered outlier scheme produced the largest deviations with the 
highest variability in the original COMMIT distributions. The original COMMIT 
simulations with the clustered outlier scheme demonstrate why it is necessary to 
compare results against the Baseline instead of the noiseless ground truth as the 
outlier effect can surpass the noise effect. This can lead to the shown situation 
where the difference to ground truth on average would be smaller due to a very 
wide distribution. 

Fig. 7. Illustration of the network edge that connects medulla to right precentral 
gyrus. This edge or connection was selected for closer inspection as it forms a 
part of the corticospinal tract which is well known true connection in a healthy 
human brain. Shape of the tractogram is nearly vertical therefore perpendicular 
to the introduced slice-wise outliers in the axial plane. 
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Fig. 8. Differences in the network edges due to outliers measured using para- 
metric statistics. The color scale indicates the average effect size calculated using 
Cohen’s D with unequal variances. The left and right columns show the differ- 
ence from Baseline to original and proposed robust COMMIT. The top and bot- 
tom rows show the results from uniform and clustered outlier schemes. Robust 
augmentation clearly improves the COMMIT filtering if the data contains out- 
liers as the effect sizes remain very small in all edges in both outlier schemes. 
While the uniform outlier scheme produced larger effect sizes for original COM- 
MIT than the clustered, it can be easily explained because Cohen’s D is inversely 
proportional to the sample variance which is very high in the clustered outlier 
schemes. 
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han 0.05) based on ANOVA and Tukey’s HSD were drawn. The compar-
son between Baseline and normal COMMIT resulted in more elements
ith significant differences than the comparison between Baseline and
OMMIT_outlier. The effect sizes between Baseline and normal COM-
IT ranged from 0 up to 3 indicating that outliers can have strong

dverse effects on specific connectivity matrix elements. The overall
maller effect sizes between Baseline and robust COMMIT_outlier high-
ight that our augmentation is well capable to mitigate the outlier effects
ven on individual network edge level. 

Non-parametric statistical analysis 

The connectivity-wise distributional differences between Baseline
nd normal COMMIT as well as Baseline and robust COMMIT_outlier
re shown in Fig. 9 . The color map indicates the effect size measured
ith Kolmogorov-Smirnov statistic. Only elements that were deemed

tatistically significantly different (p-value less than 0.05) based on
7 
olmogorov-Smirnov tests were drawn. Similar to the parametric coun-
erpart, the differences between Baseline and normal COMMIT were
gain more frequent than differences between Baseline and robust COM-
IT_outlier. Also, the effect sizes between Baseline and normal COMMIT

anged from 0 to nearly 1 which is the maximum of the used statistic.
his indicates that outliers can lead to very large distributional differ-
nces. The differences between Baseline and robust COMMIT_outlier re-
ained relatively small with effect sizes ranging from 0 to 0.2. 

.2. In vivo measurements 

Besides tractogram filtering, we calculated the intracellular and
sotropic signal fractions using the COMMIT ( Daducci et al., 2015 ) and
he proposed robust COMMIT_outlier. Fig. 10 shows the results for out-
ier detection, RMSE, and signal fraction maps obtain from the infant
ata. On average, the amount of missing data i.e., how much confidence
n fitting was decreased per slice position ranged from 5% to 19%. 

The RMSE map of normal COMMIT was clearly affected by the out-
iers resulting in visible stripes in the image. On the contrary, the COM-
IT_outlier RMSE map that describes the robust cost function does

ot have such stripes therefore the fitting is not affected by outliers.
he difference RMSE map visualises the stripy pattern more promi-
ently and ranges from 0 to 30%. The outlier effect on intracellular and
sotropic signal fractions was less prominent in visual analysis i.e. less
r no stripes. However, the difference between normal COMMIT and ro-
ust COMMIT_outlier depicts that the differences ranged from − 10% to
 10% even in regions that were less affected by outliers for intracellular
ignal fraction. For isotropic signal fraction the differences ranged from
 7% to + 7%. 
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Fig. 9. Differences in the network edges due to outliers measured using non- 
parametric statistics. The color scale indicates the average effect size calculated 
as Kolmogorow-Smirnov statistic. The left and right columns show the differ- 
ence from Baseline to original and proposed robust COMMIT. The top and bot- 
tom rows show the results from uniform and clustered outlier schemes. Robust 
augmentation produces smaller effect sizes which means that the distributions 
between the Baseline and proposed COMMIT_outlier were very similar in both 
outlier schemes. For original COMMIT, the uniform outliers produced larger 
effect sizes than the clustered. This is the outcome of the cumulative distribu- 
tion function-based statistics where the uniform outliers results in distributions 
with a high precision but low accuracy which do not overlap with the Baseline 
whereas the clustered outlier results in distributions with a very low precision 
but moderate accuracy which do overlap with the Baseline. 
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To compare our results to literature, we refer to the study by
unz et al. (2014) . Kunz, et al. demonstrated that NODDI-model can
e fitted to newborn subjects and they reported average intracellular
ignal fractions from various brain regions calculated from 13 subjects
mongst other results. In their study, the intracellular signal fraction
alues ranged from 0.19 ± 0.02 in the posterior part of the superior lon-
itudinal fasciculus to 0.45 ± 0.06 in the body of the corpus callosum.
hile our results depicted in Fig. 10 are vaguely in the same range, the

ighest observed value (0.35) is lower than in the study by Kunz, et al.
his could be due to various reasons ranging from acquisition techniques
o the fact that the subject in this study was an extremely preterm born
nfant and therefore exhibited different anatomical characteristics than
he newborns studied by Kunz, et al. 

. Discussion 

We demonstrated that tractogram filtering is severely affected by
ubject motion artefacts and that with our proposed robust augmen-
ation these effects can be mitigated. In clinical research with unco-
perative patients such as infants, it is highly likely that motion to
ome degree occurs during scanning. This leads to corrupted measure-
ents which should not affect any modeling methods applied to the
ata. To best of our knowledge, this is the first time that motion re-
ated outliers are considered in the context of tractogram filtering there-
ore this update is crucial to enable tractogram filtering in clinical
esearch. 
8 
The reason why we evaluated the proposed augmented cost func-
ion with simulated brains instead of real brain data was simply to en-
ure that nothing else in the relatively long dMRI processing pipeline
ight affect the results. For example, it is currently unknown issue, how

utliers affect constrained spherical deconvolution based probabilistic
ractographies. While there have been proposals for robust higher or-
er model estimators ( Pannek et al., 2012 ), such are not widely avail-
ble. Furthermore, developing and evaluation of robustness of currently
vailable constrained spherical deconvolution tractography algorithms
re beyond the main scope of this study. 

.1. Comparison to other filtering methods 

While similar weighted cost function as in Eq. (1) has been proposed
efore in SIFT filtering algorithm ( Smith et al., 2013 ), those have been
esigned and tested to account for partial voluming related artefacts -
ot subject motion. The main difference in these artefact types is that
artial voluming affects all dMRI data whereas subject motion affects
nly part of the dMRI data randomly. Therefore, adjusting for partial
oluming requires one three-dimensional reliability image whereas ad-
usting for subject motion requires four-dimensional reliability image as
he measurement reliability must be accounted for each dMRI data sep-
rately. This difference in the implementations of the algorithms also
akes the accurate comparison of them fall outside the scope of this

tudy. 

.2. Correcting for artefacts 

Our proposed algorithm ( Fig. 1 can also be used to adjust for partial
oluming but the necessity of that depends on the forward model used
n COMMIT. For example, with ball and sticks model, voxels containing
erebrospinal fluid or gray matter can be described with an increased
ontribution from a ball compartment therefore the contribution of a
tick compartment could be correct even without additional reliability
eighting. If reliability weights are used, then the estimate for ball com-
artment would likely be improved but that should not still affect the
ltered tractogram. 

With motion induced artefacts, the outliers cause anisotropic sig-
al deviations ( Sairanen et al., 2017 ) affecting only part of the dMRI
ata. Therefore, COMMIT cannot adjust for those deviations simply by
ncreasing the contribution of the ball compartment as the deviations
re not isotropic over dMRI measurements. This is demonstrated in
ig. 10 where normal COMMIT obtains incorrect estimates for isotropic
ignal fraction maps i.e., ball compartments. Issue propagates causing
lso incorrect estimates for intracellular signal fraction maps i.e., stick
ontributions. Therefore, a local motion artefact can have a global ad-
erse effect in tractography filtering if not accounted for. 

.3. Statistical analysis 

The global connectivity differences ( Fig. 5 ) showed that normal
OMMIT results varied heavily depending on the used outlier scheme
uniform or cluster) as well as on the outlier percentage (5% and 10%)
hereas the robust COMMIT_outlier results remained relatively intact

n all cases. Statistical tests ( Table 1 ) depicted that global connectivity
as significantly affected by outliers with normal COMMIT producing
lso large effect sizes when compared against Baseline. On the contrary,
omparison between Baseline and the proposed robust COMMIT_outlier
esulted in small effect sizes despite two-sample Kolmogorov-Smirnov
ests reporting statistically significant differences in 10% outlier simu-
ations. It is possible that the number of simulated outliers (10%) was
lready reaching the limit after which the missing data problem becomes
oo severe even for robust modeling methods. This could also be related
o sample size being so large that Kolmogorov-Smirnov test finds any
ifferences statistically significant despite having relatively small effect
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Fig. 10. Summary of the evaluation with in vivo infant data. Coronal images visualize the slicewise artefacts that typically occur in the axial plane. Due to rotational 
subject motion (yaw, pitch, and roll), the acquired axial plane becomes an oblique plane during the image transformations that are necessary to align images to 
same spatial coordinates. On the left, an average reliability or confidence map and T1-image visualize the artefactual regions in the measurements after the image 
alignment. The bottom image in the left column shows a sagittal slice in which the red line indicates the position of the coronal slice. The three columns from the 
right are results for original COMMIT, proposed robustly weighted COMMIT_outlier and their difference, respectively. The first row details the results for root mean 
squared error (RMSE), the second row for intracellular signal fractions, and the third row for isotropic signal fractions. In this case, the signal drop outliers are seen 
as increased diffusivity in random directions and original COMMIT tries to adjust for it by increasing isotropic signal fraction in the affected slices. This results in an 
increased RMSE in the corresponding slices as well as slightly overestimated isotropic signal fraction which can is easiest to see in the corresponding difference map. 
This leads to interesting problem elsewhere in the brain (not affected by outliers) where original COMMIT overestimates the intracellular signal fraction. It should 
be noted that this is a case example which likely cannot be generalized as the effect of outliers is difficult to predict and depends on the affected gradient directions 
as well as the underlying brain structures. 
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izes. Therefore, in future studies some other non-parametric tests could
rovide better results. 

A more in-depth analysis of the connection from medulla to the right
recentral gyrus ( Figs. 6 and 7 ) revealed that ANOVA failed to find sta-
istically significant differences between the groups with a p-value of
.13 in 10% outlier simulations whereas significant differences were
ound in 5% outlier simulations with p-value less than 0.05. The non-
arametric Friedman’s tests indicated for both outlier percentages that
ifferences existed between the groups with a p-value less than 0.05. No-
ably, the effect sizes in comparison between Baseline and robust COM-
IT_outlier remained much smaller than in comparisons between Base-

ine and normal COMMIT providing support for our proposed method
eing capable to mitigate these artefacts even for individual network
dges. 

In summary, it remains unsolved what test statistic would be the
ost suitable to analyze such data that is affected by outliers in

nisotropic manner. We used two alternative approaches to evaluate
he differences in group averages (ANOVA) and group distributions
Kolmogorov-Smirnov). Average based analyses are likely inefficient
o locate all differences arising from outliers in the data whereas non-
arametric tests can be even too sensitive to baseline shifts. Therefore,
nstead of statistical significance, the obtained effect sizes are likely
ore meaningful results. 

.4. Robust modeling vs outlier replacement 

This section extends outside the main scope of this study and is
ntended for the readers interested in slicewise outliers and how they
hould be addressed in dMRI in general. We added this section because
e feel that the use of outlier replacement in diffusion weighted litera-

ure is not truly justified and should not be continued in its current state.
9 
o understand our reasoning, readers are encouraged to familiarize the
oncept of outlier replacement which in statistics is known as data im-
utation. For this, we recommend the textbook Statistical analysis with

issing data by Little (2002) . 
Outlier replacement in dMRI is a form of multiple imputation which

as been developed to correct for missing data in statistical analyses.
enefits of well performed imputation include decreased bias, increased
recision, and most conveniently the ability to apply standard statistical
ests and model estimators. For example, applying the standard t -test on
ample that contains many missing or incorrect measurements could
esult in highly incorrect outcome whereas using a fixed sample that
ontains correctly imputed data could provide more reasonable results.
his is, of course, the reason why outlier replacement seems so tempting

n the context of dMRI: simply replace outliers and use the rest of the
nalysis pipeline as it is. 

Imputation methods range from naive neighborhood interpolation
outlier is replaced e.g., by the average of its neighbors) and sample
tatistic-based replacements (outlier is replaced by e.g., the mean or me-
ian value of the sample) to complex model prediction-based replace-
ents. Some of these ideas have already been transferred to dMRI usage

y replacing outliers by their q-space neighborhood ( Niethammer et al.,
007 ) or model-based estimations ( Lauzon et al., 2013 ; Andersson et al.,
016 ; Koch et al., 2019 ). These methods have in common that they de-
end on perfect outlier detection which can be problematic if there are
any outliers. If some of the outliers are not correctly detected, this can

ead to bias in the interpolation or modeling used in imputation which
ould propagate to the diffusion modeling that is performed using a
ormal estimator. 

The idea in robust modeling is to account for the unreliability of the
easurements and weigh each data point accordingly. In dMRI, such

eliability can be obtained from voxelwise residuals (outliers tend to
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Fig. 11. Illustration of the streamline phantom setups used to investigate differences between outlier replacement and robust modeling. The left column in all setups 
is a ground truth with no outlier and normal modeling, the second column is a control with outlier and normal modeling, the third column is replaced outlier with 
normal modeling, and the fourth column is outlier and robust modeling. Outlier replacement was calculated as an average from the slice below and above the outlier 
(i.e., spatial neighborhood). (A) A single streamline traverses in parallel to z-axis throughout the phantom. Therefore, the outlier replacement produces exactly the 
missing data and should provide the same result with the ground truth. (B) A single streamline traverses parallel to x-axis in two upper slices with the third slice 
consisting of cerebrospinal fluid. (C) Two upper slices consist of streamline crossings in x and z-axes with the third consisting of streamline traversing only parallel 
to z-axis. (D) The first slice consists of streamline crossings in x and z-axes, the middle slice consists of crossings in all main axes, and the third slice in crossing in y 
and z-axes. 
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ave large residuals) which has been implemented in algorithms suchs
s RESTORE ( Chang et al., 2005 ; Chang et al., 2012 ) and REKINDLE
 Tax et al., 2015 ) for tensor model fitting. Similar approach can be ap-
lied to nearly any model. 

Voxelwise outlier detection, however, is suboptimal in dMRI because
rtefacts in the echo-planar imaging result in whole slices being incor-
ect. Therefore, detecting subject motion related outliers in slicewise
anner and assigning the reliability to all voxels in those slices is ar-

uably more powerful approach ( Andersson et al., 2016 ; Sairanen et al.,
018 ). Moreover, slicewise outliers can be used as complementary in-
ormation for voxelwise estimators to adjust for more local sources of
ncertainties e.g., pulsation due to heartbeat. 

To illustrate the performance of the aforementioned ideas, we pro-
ide a minimal example in which we compare naive outlier replacement
o simple robust model estimation. We used the constrained spherical
econvolution (CSD) algorithm implemented in DIPY ( Tournier et al.,
007 ; Garyfallidis et al., 2014 ) in this evaluation as evaluating the dif-
erences using COMMIT would be computationally inefficient (and well
eyond the purpose of the current study). 

In CSD, we used the default DIPY-library parameters with Lmax 8,
au 0.1, 362 vertices on the symmetrical sphere, relative peak threshold
f 0.5, minimal peak difference angle of 25°, and 50 iterations. We de-
eloped four streamline setups that are described in Fig. 11 . All setups
onsisted of three axial slices in which the middle slice was affected by a
ull signal dropout artefact. We investigated what happens to CSD signal
rediction if i ) nothing was done to the outlier, ii ) outlier was replaced
ith a naive neighborhood interpolation, and iii ) spherical harmonic

oefficients used in CSD were obtained using a robust in-house version
f CSD algorithm. The in-house algorithm simply decreased the outlier
10 
eight to zero in the linear least squares estimation of the spherical
armonic coefficients. 

We used infinite signal-to-noise ratio to evaluate only the effects
f the signal dropout. Outliers were introduced incrementally from
 to 9 of one of the HCP gradient scheme shells with b-value of
000 𝑠 ∕ 𝑚 𝑚 

2 using three different schemes in outlier selection. The first
cheme represented the worst possible situation where outliers were
lustered in the q -space (e.g. Fig. 4 ), the second scheme represented the
est possible situation where outliers were uniformly placed in the q -
pace based on their electrostatic repulsion ( Sairanen et al., 2017 ), and
he third scheme represented randomly selected outliers. In the first two
ases, we evaluated all possible 90 cases whereas the random scheme
onsisted of 500 combinations. Signal predictions from these schemes
ere compared to prediction from the ground truth fit that was not af-

ected by outliers. In this simulation we did not add Rician noise, there-
ore direct comparison to ground truth is sound. 

It should be noted that random outlier scheme is not the perfect
ethod to evaluate these effects in dMRI model estimation due to the

xtremely large number of possible combinations. For example, select-
ng 9 outliers out of 90 diffusion weighted images can be performed
n 7 . 0625 ⋅ 10 11 different ways therefore selecting 500 of these randomly
ight not represent the population well. Since evaluating all possible

ombinations is possible only for a smaller number of gradient direc-
ions ( Sairanen et al., 2017 ), it is more informative to investigate the
est (uniform) and the worst (clusters) extreme cases in the context of
odel estimator algorithm development. Practically having a subject

hat has either of the worst or the best-case outlier setup is very small.
herefore, if the interest is not the behavior of an algorithm but a dis-
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Fig. 12. Outlier replacement compared to robust modeling in constrained spherical deconvolution (CSD). Upward triangles ( ▴) indicate clustered outliers, dots ( ○) 
indicate randomly placed outliers, and downward triangles ( ▼) indicate uniformly placed outliers. All values are calculated as an average residual from ground 
truth (GT) signal prediction. Red markers (OUT) are results from normal CSD, green markers (REP) are results from normal CSD with outlier replacement, and blue 
markers (ROB) are results from the robust CSD. The clustered outliers ( ▴) result in the largest differences in all cases and the uniform outliers ( ▼) result in the 
smallest differences. Random cases ( ○) are generally closer to the uniform situation as the extreme outliers tend to result in heavily tailed distributions. Outlier 
replacement provided better results only in the Setup A in which the outlier could be replaced with similar data that was missing. In all other cases, where the spatial 
neighborhood did not exactly represent the missing measurement, the outlier replacement produced larger difference to the ground truth than the robust estimator. 
As the complexity of the streamline phantom increases in Setups C and D, the difference between replacement and robust methods become smaller. Importantly, 
both the robust modeling and outlier replacement improved the CSD prediction compared to the baseline case (OUT). 
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ribution of values such as FA, it can be more informative to investigate
andom cases than either of these extremes. 

Results of these four setups, shown in Fig. 12 demonstrate that if
othing is done to the outliers, the difference to ground truth increases
inearly as the number of outliers increase. Of course, after the mathe-
atical problem becomes ill-conditioned a more chaotic results would

e expected ( Sairanen et al., 2017 ) but this is likely to occur with much
arger number of outliers. Based on the Fig. 12 the naive outlier re-
lacement outperformed robust modeling only in the Setup A in which
he outlier was replaced by identical information from the neighboring
oxels. In setups B, C, and D with more complex and perhaps realistic
treamline combinations robust modeling outperformed outlier replace-
ent by providing results that were closer to the ground truth. 

It can be reasonably argued that the rather naive outlier replace-
ent we implemented here could be improved with already avail-

ble proposals of q -space neighborhood ( Niethammer et al., 2007 ) or
odel-based estimations ( Lauzon et al., 2013 ; Andersson et al., 2016 ;
och et al., 2019 ). However, same applies to the in-house robust spher-

cal harmonic linear least squares estimator we developed for this task
hich simply down weighs the outlier measurements. However, while

t might be possible to fine tune outlier replacement in dMRI to the
11 
egree that matches the robust modeling, outlier replacement would
till lack the ability to evaluate the uncertainty in the fitted model ren-
ering it less useful method for clinical usage that might require or
enefit from knowledge of the method’s uncertainty (e.g., surgery or
adiotherapy). 

The reader might be confused by the previous statement that impu-
ation could not contain information about uncertainties while even the
ext book by Little (2002) we cited has a chapter called “Estimation of

mputation Uncertainty ”. To understand this, remember that the imputed
ample in dMRI is generally an axial slice in a three-dimensional stack
f slices that are a part of four-dimensional series of diffusion weighted
mages. MRI scan of the whole series takes several minutes during which
he patient’s head tends to move and especially rotate (yaw, pitch, and
oll). These rotated images must be aligned with some reference image
efore model fitting but by doing so the image registration transforms
he axial (outlier) slice into an oblique plane which is an interpolation
etween the slice and its neighbors. 

This process of image alignment is described in Fig. 1 of
airanen et al. (2018) but in short, afterwards it is likely impossible
o accurately distinguish an imputed signal fraction from a normal sig-
al. This means that likelihood-based estimators or bootstrap methods
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 Whitcher et al., 2008 ) no longer can estimate the uncertainty of the
tted diffusion model. On the contrary, robust modeling that is based
n measurement reliability weights would still be able to tell this dif-
erence. Therefore, any clinical application that might benefit of these
ncertainty estimates would be hindered by using outlier replacement.
o avoid such bottleneck in the future of dMRI, we argue that it would
e highly beneficial for the dMRI community to avoid using the outlier
eplacement in its current form. Even in basic neuroscience, it could be
eneficial to know the voxelwise distributions of model derived values
uch as fractional anisotropy (e.g., 𝐹 𝐴 = 0 . 6 ± 0 . 03 ) to perform sound
tatistical analyses. 

.5. Where to go from here? 

We considered only post-scan motion corrections in this study be-
ause during-scan corrections should be able to produce data that does
ot need these correction algorithms. The problem with during-scan cor-
ections is their limited availability due to external hardware require-
ents or still experimental software. Due to the long-time span of tens

f years required to advance MRI technology in clinical use, it is un-
ikely that these during-scan correction methods would be so widely
vailable in clinical research centers that post-scan corrections such as
ur proposal are rendered obsolete any time soon. While the post-scan
orrections are more like a remedy to the symptom instead of cure to the
ause, novel studies on clinical patients and even infants are increasingly
roposed and carried out therefore the need for robust tools is current
nd cannot wait decades for hardware-based solutions. 

While we discussed using this robust weighing to adjust for subject
otion related signal dropout artefacts in this study, it could be possi-

le to use this same approach to correct for signal dropouts that have
ifferent origin. For example, in preclinical in-vivo and ex-vivo settings
cquiring very thin slices can be very demanding for the scanner gradi-
nt system. This can cause gradient system malfunctions that result in
imilar signal dropouts as the subject motion ( Le Bihan, et al. 2006 ). In
uch case, the proposed approach of outlier detection followed by robust
odeling could be beneficial. 

onclusion 

We proposed an augmentation to the tractogram algorithm COMMIT
hat renders it robust towards subject motion outliers in the measure-
ents. This addition is necessary for conducting tractogram filtering

n clinical research where subject motion is often unavoidable. While
obust data processing has been implemented before in the context of
iffusion tensor and higher order model estimations, it has not been pre-
iously implemented for tractogram filtering. We used realistic whole
rain Monte-Carlo simulations that account for kissing and crossing fiber
tructure as well as partial volumeing to successfully demonstrate that
ur augmentation is capable to accurately map the structural brain con-
ectivity in the presence of such outliers in the data. We also demon-
trated that if this correction is not done, the structural connectivity es-
imates can become strongly biased. With this update any clinical study
nvestigating structural connectomics of children or uncooperative pa-
ient populations can robustly perform their analyses without the need
o exclude subjects with outliers from them. 
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