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ABSTRACT
How to manage various data in a unified way is a significant re-
search topic in the field of databases. To address this problem,
researchers have proposed multi-model databases to support multi-
ple data models in a uniform platform with a single unified query
language. However, since relational databases are predominant in
the current market, it is expensive to replace them with others. Be-
sides, due to the theories and technologies of RDBMSs having been
enhanced over decades, it is hard to use few years to develop a multi-
model database that can be compared with existing RDBMSs in
handling security, query optimization, transactionmanagement, etc.
In this paper, we reconsider employing relational databases to store
and query multi-model data. Unfortunately, the mismatch between
the complexity of multi-model data structure and the simplicity of
flat relational tables makes this difficult. Against this challenge, we
utilize the reinforcement learning (RL) method to learn a relational
schema by interacting with an RDBMS. Instead of using the classic
Q-learning algorithm, we propose a variant Q-learning algorithm,
called Double Q-tables, to reduce the dimension of the original Q-
table and improve learning efficiency. Experimental results show
that our approach could learn a relational schema outperforming
the existing multi-model storage schema in terms of query time
and space consumption.

CCS CONCEPTS
• Information systems→ Relational database model; • The-
ory of computation→ Data structures and algorithms for data
management.
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Figure 1: An Example of Multi-model Data.
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1 INTRODUCTION
With the development of technology, different users may like to
use different devices to collect relevant information from various
perspectives for better describing or analyzing an identical phe-
nomenon. For convenience, these devices with their supporting
software would store the collected data in the way they like (e.g., us-
ing relational tables to preserve structured tabular data, using JSON
document to record unstructured object-like data, and using RDF
graph to store highly linked referential data), which is inevitable
to cause data variety. Although choosing different databases to
manage different data models is an ordinary operation, this would
result in operational friction, latency, data inconsistency, etc., when
using multiple databases in the same project.

Against this issue, researchers propose a multi-model database
concept that manages multi-model data (see Figure 1) in a uni-
fied system [5, 6]. However, since researchers have spent decades
strengthening RDBMS theories and technologies, it is not easy to
use few years to develop a multi-model database to effectively and
efficiently handle security, query optimization, transaction manage-
ment, etc. Besides, since relational databases are still predominating
the current market and storing mass legacy data, it is not easy to re-
place RDBMSs with multi-model databases at a low cost. Therefore,
it fuels more and more interest to reconsider loading and processing
multi-model data within RDBMSs.

JSON, as the representative of semi-structured data, is proposed
as a hierarchical, schema-less, and dynamic data interchange format
on the web. Each JSON object comprises a set of structured key-
value pairs, where key denotes attribute name, value is the attribute
value. As for RDF data, it is a collection of statements where each
statement is defined as subject-predicate-object (s,p,o) meaning that
a subject 𝑠 has a predicate (property) 𝑝 with value 𝑜 . For storing
them in RDBMSs, one straightforward method is to map the JSON
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Figure 2: The Framework of Transforming Multi-model
Data into Relational Table based on RL

document into several three-column tables (each table consists of
object ID, key name, and value) [1] and parse the RDF graph into a
series of triples stored in a three-column table [7]. Unfortunately,
this method not only involves many self-joins, but it ignores the
relationships among this multi-model data.

After reviewing the literature, we found there was still a blank
for this research. The current works only focus on storing semi-
structured document in RDBMSs [1, 3] or storing graph data in
RDBMSs [8, 10]. Due to the mismatch between the complexity of
multi-model data structure (as shown in Figure 1) and the simplicity
of flat relational tables, we think it is a challenge to design a good
schema for storing multi-model data in an RDBMS.

In this research, we attempt to generate a good relational schema
based on the RLmethod to store and querymulti-model data consist-
ing of relational data, JSON documents, and RDF data in RDBMSs.
It is not easy to employ the RL method to learn a relational schema
for multi-model data. We need to define its states, actions, rewards,
etc. And we propose a Double Q-tables method as a learning algo-
rithm to help the agent choose actions, which extremely reduce the
dimensions of the original Q-table’s action columns and improve
learning efficiency.

Themotivation for using RL is that RL is an optimization problem,
and we could use Markov Decision Process to model the process
of relational schema generation. Given an initial state (schema),
RL could work with a dynamic environment (RDBMSs) and find
the best sequence of actions (joins) that will generate the optimal
outcome (relational schema collecting the most reward), where the
most reward means the final generated schema have the minimum
query time for a set of queries on the given workload. Specifi-
cally, we use the Q-learning algorithm to take in state observations
(schemas) as the inputs and map them to actions (joins) as the out-
puts. In RL, this mapping is called the policy, which decides which
action to take for collecting the most reward over time rather than
a short-term benefit. It is just like supervised learning.

The rest of this paper is organized as follows. Section 2 introduces
our approach. Section 3 shows the preliminary experimental results.
Finally, the last section summarizes this paper.

2 THE PROPOSED APPROACH
2.1 The Overview of Framework
Since RL allows an agent to explore, interact with, and learn from
the environment to maximize the cumulative reward, we propose

a transforming multi-model data into relational tuples framework
based on reinforcement Learning to store and query multi-model
data in RDBMSs (see Figure 2). In this framework, we first generate
an initial schema to be the initial state. Next, according to the
current schema (state) and policy, we choose an action to generate
a new (next) schema (state). Then, we rewrite the workload query
statements to adapt the new schema and perform the rewritten
query statements on the generated schema in MySQL databases.
After that, the MySQL database returns the query time. And we
regard the increase in negative query time compare to the previous
state as a reward. Finally, the agent updates the Q-table based on
the returned reward and observation (state). And it re-chooses an
action to explore the potential relational schema or collect the most
rewards that we already know about until the agent has tried all the
actions in this episode (or the episode has reached the maximum
number of iterations). After running the episode as many times as
you want and collecting the generated states and their query time
in this process, we could obtain a good relational schema for this
multi-model data workload.

To formalize the problem of generating a relational schema for
multi-model data as a reinforcement learning problem, we need to
figure out input, goal, reward, policy, and observation. Next, we
will introduce them separately.

Table 1: ArrayStringTable

objId key index valStr

1 items 0 product1

1 items 1 product2

2.2 Initial State
This framework uses a fully decomposed storage model (DSM) [2]
to preserve multi-model data as the initial schema. Besides, we
adopt the model-based method [4] to design a fixed schema for
preserving JSON arrays. In detail, if the number of unique keys in
the JSON document is (𝑛 + 1), we decompose a JSON document into
𝑛 two-column tables. Please note that we do not take JSON object id
into account. Wewill use it to distinguish to which object these keys
belong. For each table, the first column contains the JSON object id,
and the second column holds the values for the corresponding key.
Moreover, we use these keys as two-column table names. The table
in Table 1 is called ArrayStringTable, which is designed to store
array elements that have string type value. Similarly, we could also
define ArrayNumberTable and ArrayBoolTable.

For the relational data, we split each table into multiple little
tables whose amounts are equal to the number of unique attributes
except the table keys. For each little table, the first several columns
contain the original tuple keys, and the following column holds the
values for the corresponding attribute (This attribute is also the
name of this little table).

For the RDF graph, we break a triples table into multiple two-
column tables whose amounts are equal to the number of unique
predicates in this dataset. Within each table, the first column holds
the subjects having the specific predicate, and its corresponding



object values are preserved in the second column. Here, we use
these predicates as two-column table names.

The benefits of using DSM are: (1) it could handle a dynamic
dataset. If there is a new appearing attribute, we could add a new
table to preserve it, and there is no need to change the current
schema; (2) it could reduce the complexity of actions. In the next
part, we will give the definition of actions.

2.3 Action
First, we collect and count all the keys (JSON), predicates (RDF),
and attributes (relation) in the multi-model data. Next, we map each
JSON key to an integer id from 1 to 𝑛, map each predicate to an
integer id from (𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑1 + 1) to (𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑1 +𝑚), and map each
attribute to an integer id from (𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑2 + 1) to (𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑2 + 𝑝)
where𝑛 is the total number of keys,𝑚 is the number of predicates, 𝑝
is the number of attributes, and 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑1 is a number that is used
to distinguish keys from predicates (i.e., all the ids of JSON keys
are less than 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑1 and all the predicate ids are greater than
𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑1 and less than 𝑡ℎ𝑟𝑒𝑑ℎ𝑜𝑙𝑑2). Similarly, we set 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑2
to distinguish attributes from keys and predicates. Finally, we make
each id represent a join action. This means when the agent chooses
an id, we will use its representative table to do joining. These ids
(keys, predicates, and attributes) form a set of actions, denoted as
𝐴. For example, we could get 𝐴 = {1, 2, 3, 4, 11, 12, 13, 21} from
Figure 1, where {1 : 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟 }, {2 : 𝑡𝑜𝑡𝑎𝑙𝑃𝑟𝑖𝑐𝑒}, {3 : 𝑖𝑠𝑀𝑒𝑚𝑏𝑒𝑟 },
{11 : 𝑡𝑦𝑝𝑒}, {12 : 𝑏𝑜𝑟𝑛𝐼𝑛}, {13 : 𝑤𝑟𝑖𝑡𝑒}, {21 : 𝑟𝑎𝑡𝑒}, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑1 = 10,
and 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑2 = 20. In general, we are used to regarding a (𝑡𝑎𝑏𝑙𝑒1,
𝑡𝑎𝑏𝑙𝑒2) pair as an action to indicate which two tables to do joining.
But, this is easy to form a large action space. The benefit of our
action definition is to reduce the size of action space into 𝑂 (𝑞)
where 𝑞 = 𝑛 +𝑚 + 𝑝 .

2.4 State
Since we have known all the little table names and their correspond-
ing mapping ids, we could use them to represent the states (i.e.,
relational schemas). For example, we could represent initial state 𝑠0
as a string "1 0 2 0 3 0 11 0 12 0 13 0 21". We use the reserved word
"0" as an interval bit between different tables in this expression. To
clearly express the relational schema, we put these ids in numerical
order even inside a table. For example, in the state 𝑠1 ("1 3 0 2 0
11 0 12 0 13 0 21"), it has a table [1, 3] where the attribute 1 and
attribute 3 are arranged in ascending order. Please note that we use
a dictionary 𝐷 instead of a string to represent a relational schema,
although they have the same meaning. For example, the relational
schema of state 𝑠0 is 𝐷0 = {1:[1], 2:[2], 3:[3], 4:[4], 11:[11], 12:[12],
13:[13], 21:[21]}. In this dictionary, each key represents a table id,
and its corresponding value is its table attributes consisting of keys
(JSON), predicates (RDF), or attributes (relation). And all of the keys
in 𝐷0 represent the current existing tables at the state 𝑠0.

2.5 Policy
In the reinforcement learning framework, the agent knows nothing
about the environment. It just knows that it can take in a state and
one possible action from that state and get its new state and rewards
back from the environment after taking that action. Since there is a
finite number of states and actions in our problem, we adopt the

Algorithm 1Generating a Relational Schema based on RL (GRSRL)
Input: The multi-model data and queries
Output: A good relational schema
1: Initialize 𝑄𝑇𝑎 and 𝑄𝑇𝑗𝑜𝑖𝑛
2: Generate initial relational schema 𝐷0 and initial state 𝑠0
3: for each episode do
4: 𝐷 = 𝐷0, 𝑠 = 𝑠0
5: Initialize action space 𝐴
6: while True do
7: Choose a action 𝑎 at state 𝑠 by 𝑄𝑇𝑎 (𝜖-greedy)
8: Remove the action 𝑎 from the action space 𝐴
9: Choose a table id at state 𝑎 by 𝑄𝑇𝑗𝑜𝑖𝑛 (𝜖-greedy)
10: Execute join, perform queries, and observe 𝑟 , 𝑠 ′
11: Update 𝑄𝑇𝑎 and 𝑄𝑇𝑗𝑜𝑖𝑛
12: 𝑠 ← 𝑠 ′

13: until 𝐴 is empty
14: end while
15: end for

classic Q-learning algorithm [9] for action selection, whose core
idea is to generate a Q-table (𝑄𝑇𝑎) to store state-action values.

Since we define actions as join operations, we could not make
it work just with one Q-table and the current state, except that
we only do self-joins. This is because we have no idea which table
should be chosen from the current schema to do joining with the
table to which the action 𝑎𝑖 corresponds.

To address this problem, we have defined another Q-table𝑄𝑇𝑗𝑜𝑖𝑛 .
It is a (𝑞×𝑞)-dimensional table whose rows (states) are defined by𝐴,
columns (actions) are defined by table ids, meaning that when 𝑄𝑇𝑎
chooses an action 𝑎𝑖 , the 𝑄𝑇𝑗𝑜𝑖𝑛 will decide which table (selected
from the current schema) should be chosen to do joining with 𝑎𝑖
(𝑄𝑇𝑎) at the state 𝑎𝑖 (𝑄𝑇𝑗𝑜𝑖𝑛). For example, in the state 𝑠0 of 𝑄𝑇𝑎 ,
𝑄𝑇𝑎 chooses an action 3 and removes the action 3 from its action
space. Then if 𝑄𝑇𝑗𝑜𝑖𝑛 chooses a table id (tID) 1 (action of 𝑄𝑇𝑗𝑜𝑖𝑛)
from the current schema at state 3 (state of 𝑄𝑇𝑗𝑜𝑖𝑛), the new state
of 𝑄𝑇𝑎 will be state 𝑠1, and the 𝐷1 = {1:[1,3], 2:[2], 4:[4], 11:[11],
12:[12], 13:[13], 21:[21]}. The agent updates the two Q-table values
until the action space 𝐴 of 𝑄𝑇𝑎 is empty or the episode reaches the
maximum number of iterations. Besides, we set a sematic constraint
pool (including like key and foreign key constraints) to determine
whether they do joining.

2.6 Reward and Goal
The reward is an instantaneous benefit of being in a specific state
after the agent executing an action. In our problem, first, we obtain
the negative value of query time gotten by the MySQL database
performing a set of workload queries on the current relational
schema, denoted as−𝑡𝑛 . Then, we define the reward as the reduction
of this value compared to the previous negative query time, i.e.,
(𝑡𝑝 - 𝑡𝑛). This is because our goal is to let our agent automatically
learn a relational schema having the minimum query time for a set
of queries on the given workload by interacting with the MySQL
database environment.

Based on the above concepts, we propose Algorithm 1 to describe
our learning process.



3 EXPERIMENT
We use the Person dataset1 to compare our approach’s performance
with the multi-model database ArangoDB’s. After conducting the
data clean, we list its statistics in Table 2.

Table 2: The number of triples/objects in the data

RDF JSON
Person 4 471 790 153 134

Table 3: Queries employed in the experiments

ID Queries

𝑄1 Return Doris_Brougham’s pageid
𝑄2 Return all the values of subject about Tor_Ahlsand
𝑄3 Return birtthDate, activeYearsStartYear,

and activeYearsEndYear of Heath_Ledger
𝑄4 Return original and title when pageid = 8484745
𝑄5 Return birthYear and ns of Sadako_Sasaki

As shown in Table 3, we employ these queries in our experiments,
where each query includes one or two data models. For each 𝑄𝑖 ,
we perform the corresponding AQL in ArangoDB databases to get
its query time. Besides, we perform all queries three times and use
their median value in our experiments.

The experiments are implemented in Python and run on a laptop
PC with an Intel Core i7 processor of 3.19 GHz and 16GB memory.
The version of MySQL is 5.7.30, ArangoDB is 3.7.1. And we set the
maximum number of iteration as 100.

Table 4: Query Time (s)

Approaches 𝑄1 𝑄2 𝑄3 𝑄4 𝑄5 Total

GRSRL 0.265 1.789 0.106 0.201 0.373 2.733

ArangoDB 0.062 1.475 5.591 0.057 7.78 14.965

Table 4 presents the executing time of queries on the relational
schema generated by GRSRL and on ArangoDB. Due to ArangoDB
storing data in document format, we can see the query time of
ArangoDB is less than our schema when queries (𝑄1, 𝑄4) only in-
volve JSON. For the RDF queries(e.g.,𝑄3), our schema sometimes is
better than Arangodb since the triples store requires many self-joins.
Concerning the multi-model query of 𝑄5, our schema consisting of
a mix of binary tables and property tables is better than ArangoBD.

We set 𝜖_𝑔𝑟𝑒𝑒𝑑𝑦 = 0.1 to try its best to explore different schemas.
Then we use the optimal schema’s query time of each episode to get
Figure 3 that manifests the trend of total query time as the increase
of episodes. Of course, we could set a big number for 𝜖_𝑔𝑟𝑒𝑒𝑑𝑦 to
make it converge fast.

Figure 4 shows the cost of storage spaces onMySQL andArangodb,
which denotes the cost of storage spaces of our schema on MySQL
is less than Arangodb’s.
1https://www2.helsinki.fi/en/researchgroups/unified-database-management-
systems-udbms/datasets/person-dataset
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4 CONCLUSION
In this paper, we employ a reinforcement learning method to pro-
pose a framework that could automatically learn a relational schema
having the minimum query time for a set of queries on the given
multi-model data workload by interacting with theMySQL database
environment. Besides, we define the state, action, reward, etc., to
support this RL-based relational schema generation framework. Es-
pecially, the definition of actions extremely reduces the dimension
of the Q-table. The introduction of the Double Q-tables idea guaran-
tees this framework to work successfully. Finally, the experiments
show that our approach, GRSRL, could generate a good relational
schema. And it offers the possibility of storing multi-model data in
the RDBMSs while having a good performance.
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