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Abstract The representativeness of aquatic ecosystem
monitoring and the precision of the assessment results are
of high importance when implementing the EU’s Water
Framework Directive that aims to secure a good status of
waterbodies in Europe. However, adapting monitoring
designs to answer the objectives and allocating the sam-
pling resources effectively are seldom practiced. Here, we
present a practical solution how the sampling effort could
be re-allocated without decreasing the precision and con-
fidence of status class assignment. For demonstrating this,
we used a large data set of 272 intensively monitored
Finnish lake, coastal, and river waterbodies utilizing an
existing framework for quantifying the uncertainties in the
status class estimation. We estimated the temporal and
spatial variance components, as well as the effect of sam-
pling allocation to the precision and confidence of chloro-
phyll-a and total phosphorus. Our results suggest that
almost 70% of the lake and coastal waterbodies, and
27% of the river waterbodies, were classified without
sufficient confidence in these variables. On the other hand,

many of the waterbodies produced unnecessary precise
metric means. Thus, reallocation of sampling effort is
needed. Our results show that, even though the studied
variables are among the most monitored status metrics, the
unexplained variation is still high. Combining multiple
data sets and using fixed covariates would improve the
modeling performance. Our study highlights that ongoing
monitoring programs should be evaluated more systemat-
ically, and the information from the statistical uncertainty
analysis should be brought concretely to the decision-
making process.
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Introduction

Environmental monitoring is the cornerstone of evidence-
based environmental management. The monitoring is usu-
ally based on traditional methods and well-established
standards. For many existing water quality monitoring
programs, sampling takes place at fixed sampling locations
and is carried out at regular intervals. This approach is
generally justified by the need for standard time series, but
it can also produce data that is either too excessive or
insufficient in time or space in the light of the assessment
and management objectives (Levine et al. 2014). This
together with the continuous need to produce data more
cost-efficiently (Nygård et al. 2016) has raised the dual
need for, firstly, evaluating the efficiency and sufficiency of
the ongoing monitoring schemes and, secondly, estimating
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the confidence of the assessment products. The need for
representative environmental monitoring programs has
been encountered in European member states in the im-
plementation of the Water Framework Directive (WFD;
EC 2000). TheWFD has aimed to increase the monitoring
efforts, improve assessment methodologies, and intensify
themanagement of waterbodies in EUmember states (e.g.,
Heiskanen et al. 2004; Borja et al. 2008;Hering et al. 2010;
Birk et al. 2012). The ultimate aim of theWFD is that river,
lake, coastal, and transitional waterbodies should achieve a
good ecological and chemical status. For this, the
waterbodies have been classified into “High,” “Good,”
“Moderate,” “Poor,” or “Bad” ecological status classes
(and “Good” or “Failing to achieve good” chemical status
classes). The ecological status is based on several biolog-
ical quality elements that are especially sensitive to key
pressures, such as (human induced) eutrophication and
changes in physical habitats (Anonymous 2003a). When-
ever the desired status is not met, plans for management
measures aiming to improve the status have to be made.
The reliability of the status assessment is crucial for cost-
effective river basin management, and the managers need
to be confident when making decisions whether or not to
invest money for often expensive management actions. A
waterbody incorrectly assessed as having a “less than good
status,” while the status is in reality good leads to an
unnecessary waste of resources and money on wrongly
targeted management actions. Vice versa, a falsely
assessed good status may result in no allocation of water
protection resources, which may have other consequences
to society. To address this sort of misclassification, WFD
requires the member states to determine the precision and
the confidence of the classification (Anonymous 2003b,
Annex I). Therefore, the most dominant errors, sources of
variation, in the status class indicators have to be identified
and quantified.

Quantification of different variance sources and ad-
dressing the uncertainty in assessing biological quality
elements is not a novel approach, but its implementation
often lags behind in practice in designing aquatic monitor-
ing. Therefore, any practical applications of the method
could speed up the positive development of monitoring
programs. Carstensen and Lindegarth (2016) presented a
coherent and well-established framework for quantifying
uncertainties in status assessment. They listed 18 different
sources of variation that a waterbody can be subjected to,
the sources including spatial and temporal variation and
methodological uncertainty (e.g., errors due to sampling
methods, instruments, analysts, and replications) (see also

Carvalho et al. 2013). For example, the year-to-year and
within summer variation in lakes have a considerable
influence on the classification results of phytoplankton
(Thackeray et al. 2013; Søndergaard et al. 2016) and
macrophytes (Dudley et al. 2013). In addition, spatial
variation between sampling sites in a waterbody or sam-
pling occasions within a sampling site affects the uncer-
tainty along with temporal variation, as was shown for
marine phytoplankton communities (Dromph et al. 2013).
Additionally, laboratory analysts and the water depth may
introduce a significant source of error, as demonstrated
with eelgrass shoot density in coastal environments
(Balsby et al. 2013, Bennet et al. 2011), and for lake
phytoplankton (Carvalho et al. 2013). As for rivers, the
classification of benthic diatoms is affected especially by
temporal variability (Kelly et al. 2009) and river macroin-
vertebrates are affected by spatial, temporal, and replicate
variation (Clarke 2013).

This study aims to demonstrate how to concretely
bring the information from uncertainty analysis to the
decision-making process when improving the monitor-
ing design and evaluating assessment outcomes. For
this, (i) the uncertainty in the status classification is
evaluated by estimating a set of temporal and spatial
variance components. The effect of the sampling allo-
cation within and between years and between sampling
sites on the precision and confidence of the class metric
at a waterbody level is assessed. In order to support
wider implementation of the approach, (ii) we present
clear steps to carry out the analysis. Moreover, based on
analysis, (iii) we come up to the decision rules that
policy makers and water managers can utilize when
adapting the monitoring programs to provide more pre-
cise status assessments and thus to determine suitable
management actions. The approach is demonstrated for
two widely used indicators for eutrophication, chloro-
phyll-a (chla) and total phosphorus (TP). The concen-
tration data for these are available from 272 Finnish
coastal, lake, and river waterbodies for the period
2006–2013.

Materials and methods

Study areas and data

The analysis in this study is based on chla and TP data
from the most regularly monitored waterbodies in Fin-
land. The minimum requirement for a lake and a coastal
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site to be selected for the dataset was that the samples of
chla were taken at least 14 times during the period
2006–2012. A river waterbody was included in the
analysis if there were a minimum of 60 TP sampling
occasions in 2009–2012. The seasonal window follows
the Finnish classification system (Aroviita et al. 2012;
Andersen et al. 2016) applying the late summer periods
for chla in lakes and coastal waters, and the whole year
for TP concentrations in rivers (Table 1). In the dataset,
71% of lake waterbodies and 61% of coastal
waterbodies were represented with one sampling site,
the rest of the waterbodies at least two sites. In contrast,
the river waterbodies were mainly (90%) represented by
one sampling site.

The analyzed waterbodies represent broadly different
waterbody types in Finland (Table 2). The definition of
the types follows the Common Implementation Strate-
gies (CIS) of the Water Framework Directive
(Anonymous 2003a and 2003c). The typology factors
for rivers include altitude, catchment size, and its geol-
ogy, and for lakes surface area, altitude, mean depth,
humic substances (estimated by water color), and reten-
tion time (Pilke 2012). The Finnish classification system
includes established reference conditions for each na-
tional lake and river type. The coastal types are based,
among other aspects, on geographical location, salinity,
mean depth, and the mixing conditions of the water
(Kangas et al. 2003, Schenewski and Wilgat
Schernewski and Wilgat 2004, Pilke et al. Pilke 2012).
Basically, the coastal types are divided into inner, mid-
dle, and outer coastal waters/archipelagos, the inner
types being generally shallower than the water in the
outer types (Table 2). Summer time surface salinity
ranges from below 3 practical salinity units (psu, ‰)

in the Bothnian Bay to around 6‰ in the south-western
archipelagos (incl. the Archipelago Sea) where it de-
creases towards the eastern Gulf of Finland. In general,
the outer coastal waterbodies are larger in size than the
innermost waterbodies, which are also usually more
affected by river waters than the outer coastal types.

Indicator means and variance components

The chla and TP mean values and metric uncertainty are
derived from a statistical, mixed effects model. In the
linear mixed effects model, the indicator variable is
expressed as a linear sum of fixed and random variables
(Pinheiro and Bates 2000; Zuur et al. 2009). The fixed
part of the model describes the mean value, and the
random part includes the spatial and temporal variance
components. For the status class modeling, it is assumed
that the log-transformed waterbody indicator concentra-
tions (yijkl) are normally distributed with a mean μ and
variance σ2 denoted as log(yijkl)~N(μ, σ

2). The log-
transformation is used to linearize the relationship and
to normalize the right skewed response variables. This
usually normalizes the residuals, which is the pre-
assumption in the linear mixed modeling. A single
measurement l from a year i, month j, and sampling site
k can be expressed as a sum of the overall mean μ
(expected value) and the components of random varia-
tion. For simplicity, it is assumed that all the variability
is random:

log yijkl
� �

¼ μþ yeari þmonth j þ sitek þ εijkl ð1Þ

The interannual variation (yeari), monthly variation
(monthj), and the between sampling sites variation
(sitek) are assumed to be independent and normally
distributed as yeari~(0,σ2

year), monthj~풩(0,σ2
month), and

sitek~풩(0,σ2
site). Correspondingly, for the residual vari-

ation, εijkl~(0,σ2
ε). As the overall mean and the variance

components are unknown, they are estimated from the
data using a statistical mixed effects model. The analy-
ses were conducted using the R statistical programming
language (R Development Core Team, 2016) package
lme4 (Bates et al. 2015). For comparing the precisions
of the status class means in different waterbodies, the
relative standard error (RSE%) was calculated. It is
defined as the ratio of the estimated standard error to

the estimated mean RSE% ¼ ðσ̂2=μ̂Þ100. A small
RSE% indicates precise metric mean classification and

Table 1 Overview of the data in different water categories and the
number of waterbodies, sampling sites, and observations

Lakes Coastal waters Rivers

Metric chla (μg/l) chla (μg/l) TP (μg/l)

Sampling depth
(m)

0–2 0–5 ≤ 1

Period 2006–2012 2006–2012 2006–2012

Months Jun–Sep Jul–1st week of
Sep

Jan–Dec

Waterbodies (no.) 161 38 73

Sampling sites
(no.)

257 67 115

Samples (no.) 6707 1448 10,406
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high error indicates more variation around the mean. In
practice, the water manager makes the final decision
about the accepted level of uncertainty.

Confidence of a class

The estimated mean and uncertainty, thus the classifica-
tion result, defines a normal probability distribution.
The shape and the spread of the distribution show the
range of indicator values that the waterbody data have
taken. Following the standard notations and probability
calculations described in other WFD contexts (e.g.,
Kelly et al. 2009, Lindegarth et al. 2013), the confidence

of the status class can be calculated using the normal
distribution. The probability (pi) of observing an indica-
tor value x or better on the condition that the true mean
quality (μ) is equal to the class boundary (퐿i) is
expressed as 푝i = Pr(푋 ≥ 푥 | 휇 = 퐿i) = 1 – Φ [(푥
− i)/ σ] where Φ denotes the cumulative normal proba-
bility and the σ is the standard error of the mean calcu-
lated with the statistical model. This leads to the confi-
dence of the class “High” being 100(1–pHigh), the con-
fidence of the class “Good” being 100(pGood–pModerate),
the confidence of the class “Moderate” being
100(pModerate–pPoor), the confidence of the class “Poor”
being 100(pPoor–pBad), and the confidence of class

Table 2 Names, characteristics, and sample sizes of Finnish lake, river, and coastal waterbody types used in the analysis (A = area, z =mean
depth, Sal = salinity, CA = catchment area)

Type and name Characteristics Waterbody (n) Sample (n)

Vh; small and medium clear water lakes A < 4000 ha; color < 30 mg Pt/l; z ≥ 3 m 10 408

Kh; medium-sized humic lakes A 50–4000 ha; color 30–90 mg Pt/l; z ≥ 3 m 16 730

SVh; large clear water lakes A > 4000 ha; color < 30 mg Pt/l 30 1912

Sh; large humic lakes A > 4000 ha; color ≥ 30 mg Pt/l 16 867

Rh; very humic lakes Color > 90 mg Pt/l; z ≥ 3 m 9 203

MVh; shallow clear water lakes Color < 30 mg Pt/l; z < 3 m 4 168

Mh; shallow humic lakes Color 30–90 mg Pt/l; z < 3 m 12 380

MRh; shallow very humic lakes Color > 90 mg Pt/l; z < 3 m 15 363

Lv; lakes with a very short retention time Retention time 10 days or less 5 209

Rr; nutrient-rich lakes Naturally rich in nutrients 22 909

Rk; calcium-rich lakes Naturally rich in calcium 2 91

Ss; Gulf of Finland inner archipelago Sal 3.9–5.1 psu, z 9–11 m, A 85–117 km2 3 71

Su; Gulf of Finland outer archipelago Sal 4.2–5.3 psu; z 22–26 m, A 423–579 km2 5 225

Ls; southwestern inner archipelago Sal 5.0–5.9 psu; z 3–16 m; A 24–50 km2 9 205

Lv; southwestern middle archipelago Sal 5.6–5.9 psu; z 6–33 m; A 29–424 km2 6 339

Lu; southwestern outer archipelago Sal 5.9–6.2 psu; z 10–24 m; A 56–14,992 km2 7 287

Seu; Bothnian Sea outer coastal waters Sal 5.5–5.6 psu; z 10–14 m; A 172–482 km2 1 14

Mu; Quark outer archipelago Sal 3.3–5.1 psu; z 12–16 m; A 255–1076 km2 2 50

Pu; Bothnian Bay outer coastal waters Sal 0.8–3.2 psu; z 8–15 m; A 69–1337 km2 5 257

Pt; small peatland rivers CA < 100 km2; > 25% of CA peatland; col. > 90 mg Pt/l 1 119

Psa; small rivers in regions with clay soils CA < 100 km2 2 270

Kt; medium-sized peatland rivers CA 100–1000 km2; > 25% of CA peatland; col. > 90 mg Pt/l 8 628

Kk; medium-sized mineral soil rivers CA 100–1000 km2; < 25% of CA peatland; col. < 90 mg Pt/l 4 510

Ksa; medium-sized clay soil rivers CA 100–1000 km2 14 2451

St; large peatland rivers CA 1000–10,000 km2; > 25% of CA peatland; col. > 90 mg Pt/l 15 1644

Sk; large mineral soil rivers CA 1000–10,000 km2; < 25% of CA peatland; col. < 90 mg Pt/l 5 616

Ssa; large rivers in regions with clay soils CA 1000–10,000 km2 7 1082

Est; very large peatland rivers CA > 10,000 km2; > 25% of CA peatland; col. > 90 mg Pt/l 6 1089

ESk; very large mineral soil rivers CA > 10,000 km2; < 25% of CA peatland; col. < 90 mg Pt/l 11 1997
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“Bad” being 100pBad. These probabilities add up to
100%. The confidence of the metric class depends on
the position of the metric status class boundaries (퐿i).
The width and the position of the individual metric’s
status class boundaries (as concentrations) vary between
water categories and types.

Implications for the monitoring design

The data that were analyzed with the linear mixed
effects model (Eq. 1) correspond to a sampling design,
where each sampling site is revisited repeatedly. There-
fore, the overall variation in Eq. 2 (σ2) can be expressed
as a sum of the random components of variation
(Cochran 1977, Clarke 2013, Carvalho et al. 2013,
Carstensen and Lindegarth 2016). The finite population
correction factors, 1 − nyear/Nyear and 1 − nmonth/Nmonth,
are needed as there is a finite number of years in the
assessment period and within years. Here, the maximum
number of years within the assessment period 2006–
2012 (Nyear) is 7, maximum number of months (Nmonth)
for lake chla is 4 (Jun–Sep), for coastal chla 3 (Jul–1st
week of Sep), and for river TP 12 (Jan–Dec). For
waterbodies with only one sampling site, the sampling
site variation (σ2

site) cannot be estimated and it is there-
fore zero.

σ2 ¼
σ2
year 1−

nyear
Mnyear

� �

nyear
þ

σ2
month 1−

nmonth

Mnmonth

� �

nmonth

þ σ2
site

nsite
þ σ2

e

nyearnmonthnsiten
ð2Þ

Depending on the relative size of the variance com-
ponents and using this formula, it is possible to choose
the number of sampled years (nyear), months (nmonth),
sites (nsite), or replicate samples (n) the way that the
overall variance is minimized. This information can be
used for decision making when evaluating the ongoing
monitoring programs and planning more targeted ones.

Results

The overall uncertainty

The overall metric uncertainty was estimated for all the
272 waterbodies as the relative standard error of the

mean (RSE%). The RSE% for an individual lake
waterbody’s chla mean varied from a minimum of 2%
to a maximum of 34%, and for coastal waterbodies from
5% to 32%. For rivers, the RSE% of TP means varied
from 3 to 44%. The median RSE% for chla means in
coastal waterbodies was 10% and in lakes 6%, and for
TP means in rivers 8% (Fig. 1). For lakes, the smallest
mean uncertainty (5%) was in waterbodies belonging to
shallow and medium-size humic lakes (Mh, nWB = 12;
Kh, nWB = 16), and nutrient-rich lakes (Rr, nWB = 22).
The median RSE% was low also for very calcareous
lakes but only two waterbodies of this type were includ-
ed in the analysis. The highest median error occurred in
shallow, low-humic lakes (MVh, 11%, nWB = 4), and
very humic lakes (Rh, 10%, nWB = 9). For coastal
waterbody types, the RSE% varied from the median of
6% for waterbodies in the Gulf of Finland inner archi-
pelago (Ss, nWB = 3) to 19% for the Bothnian Bay outer
coastal waters (Pu, nWB = 5) and to 32% for a one
waterbody in the Bothnian Sea outer coastal waters
(Seu). The median TP uncertainty between river types
varied from 4% of large rivers in regions with mineral
soils (Sk, nWB = 5) to 13% of a small peatland river (Pt)
and to 12% of medium-sized rivers in regions with clay
soils (Ksa, nWB = 14). Rivers that are located in regions
with mineral soils (types ESk, Sk, Kk) seemed to have
smaller levels of uncertainty than rivers in peatland
(types ESt, Kt, Pt, ST) or clay soils (Ksa, Psa, Ssa).

For chla in lakes,when the status class was estimated
as high, the total error (RSE%) was also high and the
variation between waterbodies was high (Fig. 2). When
shifting to poor and bad classes, the RSE% and also the
variation between waterbodies decreased. There are no
coastal waterbodies with “High” or “Bad” chla class, but
an increase in RSE% along the improvement of status
class can be observed as well. However, for river TP, the
variance seems to be generally higher in “Poor” and
“Bad” classes than in the “High,” “Good,” or
“Moderate.”

Variance components

For waterbodies with one sampling site, the overall
uncertainty consisted of random temporal variances be-
tween years and months and the unexplained residual
variation. The overall variance contribution varied con-
siderably between single waterbodies and between wa-
ter category types. In general, the residual variation was
the most dominant (Fig. 3). For chla in waterbodies with
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one sampling site, and only temporal variation estimat-
ed, the median residual variability was 61% for lakes

and 66% for coastal waterbodies. For rivers, the residual
variation was up to 67%. For lake types, and especially

Fig. 1 Total error (RSE%) of themeanmetric for waterbody types
(Table 2) in a.) lakes, b.) coastal areas, and c.) rivers. The box plots
show the median, lower, and upper quartiles and outliers. The box
widths are proportional to the number of observations in each

waterbody type. For visualization, the widths denote the square
roots of the number of observations. The median RSE% of each
water category is denoted as a vertical line (6% for lakes and 10%
for the coastal chla values, and 8% for the river TP)

Fig. 2 Total error (RSE%) of mean metric for estimated status
classes within the waterbodies of a.) lakes (chla class), b.) coastal
areas (chla class), and c.) rivers (TP class). The box plots show the
median, the lower, and upper quartiles and outliers. The box

widths are proportional to the number of observations in each
status class. For visualization, the widths denote the square roots
of the number of observations.
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for coastal types, the interannual chla variation was
usually higher than the between-month variation. For
river TP, the monthly variation was a more dominant
error source than the interannual variation.

If there was more than one sampling site within a
waterbody, in addition to monthly and annual variance
components, between sampling sites variance was estimat-
ed. For lakewaterbodies, this spatial variationwas inmany
cases the most dominant source of variation (Fig. 4). For
example, for large, low-humic lakes, the between-site var-
iation covered almost half of the total variation in average.
For coastal areas, the Bothnian Bay outer coastal waters
(Pu) and theGulf of Finland outer archipelago (Su), the site
variation seemed to account a considerable part of the
overall variation. The same hold for the medium-sized
rivers in regions with clay soils (Ksa).

Confidence of a class

The estimated status class confidence, denoted as the
probability of the metric mean class, varied in lake
waterbodies from 43 to 100%, in coastal waterbodies
from 46 to 100%, and in river waterbodies from 47 to
100%. For over 63% of the waterbodies, the status class

confidencewas at least 80%. The status class confidence
was generally high in all water categories: for river
waterbodies, the median of the TP class confidence
was as high as 96%. For the chla means for coastal
waterbodies, it was 88% and for lakes, this stood at
83% (Fig. 5). However, the confidence of a class varied
between waterbody types, ranging from ca. 50 to 100%
in all water categories (Fig. 5). While the very large
rivers (ESk and ESt) had a high confidence level, the
rivers with clay/silt soil (Ksa, Ssa, Psa) had greater
variation in the confidence of the status classifications.
The confidence of the classification in the coastal
waterbodies varied between and within the types but
no clear pattern based on typology could be detected.
Relatively, the status class confidence was greatest for
the waterbodies in the middle Archipelago Sea (Lv),
where 8 out of 13 waterbodies reached a confidence
level exceeding 90%. Considering the south-western
types altogether covering the Archipelago Sea and the
western Gulf of Finland (Ls, Lv, Lu), around half of the
studied waterbodies (12 out of 21waterbodies) achieved
a confidence level of more than 90%. However, the
variation in the confidencewas significantly greater near
the coast (Ls), where the waterbodies represent smaller

Fig. 3 Relative sizes of residual and temporal (annual, monthly) variance estimates for a.) lake and b.) coastal chla and c.) river TP in
different waterbody types
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Fig. 4 Relative sizes of residual, temporal (annual, monthly), and spatial (sampling site) variance estimates for a.) lake and b.) coastal chla
and c.) river TP in different waterbody types

Fig. 5 Distributions of the status class confidence (%) within the
estimated status classes in a.) lakes (chla), b.) coastal areas (chla),
and c.) rivers (TP). The box plots show the median, the lower, and

upper quartiles and outliers. The box widths are proportional to the
number of observations in each status class. For visualization, the
widths denote the square roots of the number of observations.
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areas and are affected by river waters. The lake
waterbodies showed similar variation in confidence be-
tween the lake types. The highest confidence level with
the smallest variation was within the low-humic (Vh)
lake type.

The degree of confidence for the mean status class
varied within and between the water categories (Fig. 6).
For lakes and rivers, the class “High” showed the
highest confidence. In lakes, the greatest variation in
confidence occurred for the classes “Moderate” and
“Good,”whereas, in rivers, this was for the class “Poor.”
“Bad” and “High” status classes did not exist in coastal
waterbodies, and the confidence level for the “Good”
class was the lowest.

Implications for the monitoring design

In close collaboration with policy makers (regional en-
vironmental authorities from the Centres of Economic
Development, Transport and the Environment), we cre-
ated simple decision rules that help in the decision-
making process in monitoring design for classification
purposes. Here, the decision rules are illustrated in the
case where the sampling in time could be reallocated
(Fig. 7). First, the probability of the status class with the
highest probability is expressed as the confidence of a

class. A sufficient confidence was set to 80%which was
seen as a reasonable target of the confidence level for the
most intensively monitored waterbodies. If the status
class confidence was lower than 80%, more monitoring
effort would be needed in order to improve the status
class confidence. However, if the status classification
falls near the class boundary, increasing the sampling
frequency would not help (Clarke and Hering 2006).
For such waterbodies, the resources should be guided
towards management methods. When the confidence
was estimated to be higher than 80%, the status class
determines the next step. If the status class was “Good”
or “Moderate” and the RSE% higher than 10%, a more
precise status classification is needed. This is because
the “Good” and “Moderate” class limit has the greatest
implication for the decision whether or not to start
management measures. For the extreme classes
(“High,” “Bad,” “Poor”), the RSE% higher than 20%
leads to a need for more sampling effort. However, for
waterbodies classified as “Good” and “Moderate” and
the RSE% estimated less than 10%, or “High,” “Bad,”
or “Poor” classes with RSE% less than 20%, the sam-
pling design might produce even unnecessarily precise
status class. Based on the most variance components,
the sampling could be targeted more optimally in time.
If the most dominant source of variation was the

Fig. 6 Distributions of the status class confidence (%) within different status classes for a.) lakes (chla class), b.) coastal areas (chla class)
and c.) rivers (TP class). The box plots show the median, the lower and upper quartiles and outliers
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between-years variability, then all years of the assess-
ment period should be covered. On the other hand, if the
monthly variation was the largest source, the most im-
portant months within a year should be covered, but the
monitoring could be performed, e.g., every third year
(rotating panel design). Finally, if the unknown residual
variation was the highest source of uncertainty, the other
unknown error sources should be further examined or a
fixed covariate should be added to the model.

Based on the simple decision rules, it was possible to
identify those Finnish waterbodies where the sampling
effort could be reduced or reallocated without losing the
precision and thus the confidence in the status classifi-
cation. For 40% (108/272) of the studied Finnish
waterbodies, the status class confidence was over 80%
and the precision of the mean metric was high (the
RSE% was under 20% or 10% depending on the status
class (Table 3). Therefore, the data from these
waterbodies were identified as producing sufficiently
or even unnecessarily precise status class metric mean.

On the other hand, for almost 60% of the waterbodies,
the confidence of the status class estimates was low and
therefore, reductions in sample size were not recom-
mended. From the intensively monitored lake
waterbodies 69% (111/161) and from the coastal
waterbodies 68% (26/38) were lacking sufficient sam-
pling effort for reliable status class mean assessment
using chla. For rivers, the TP class metric was usually
more precise, which is seen in the amount of
waterbodies with sufficient sampling (63%).

Discussion

Quantifying and ultimately reducing the indicator un-
certainty and its components have been viewed as a way
towards achieving more reliable and transparent status
assessments (Birk et al. 2012). Further, the decision
makers would benefit from knowing not just the average
status but also the probabilities of each status class and

Fig. 7 An example of a decision chain for aiding how to allocate the waterbody level monitoring effort optimally in temporal scale
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they could therefore more intuitively select the appro-
priate management measures (Reyjol et al. 2014; Hering
et al. 2010). The standard scientific approach for ex-
pressing uncertainty is done through probabilities (Sigel
et al. 2010). However, quantification of uncertainty in
terms of probabilities has not been very broadly
assessed in the context of WFD classification even
though there is a need to support methods taking uncer-
tainty into account. Clarke (2013) introduced a frame-
work and decision-making tool to calculate the proba-
bility of a waterbody belonging to each status class
according to the WFD. Examples of probabilistic tools
to quantify status class confidence using a Bayesian
modeling framework include single metrics such as a
fish index in rivers (Marzin et al. 2014) and phytoplank-
ton in lakes (Kotamäki et al. 2015) and coastal waters
(Fernandes et al. 2012). We have used a probabilistic
distribution to account for the naturally high variation in
two status class metrics, river TP and chla in lakes and
coastal waters. This reduces the risks of misclassifica-
tion and helps water managers to make decisions more
confidently. Although the importance of quantifying the

ecological indicator’s uncertainty in assessing the status
is understood, the issue is still rarely addressed and even
less implemented in practice (Carstensen and
Lindegarth 2016).

In this study, the classification uncertainty was
estimated for 272 Finnish waterbodies for two status
class metrics. For lake and coastal waterbodies, we
used chla, which is a cost-effective and robust metric
reacting rapidly to eutrophication pressure (Phillips
et al. 2008). However, this sensitivity also makes the
chla metric highly variable (Lyche-Solheim et al.
2013, Carvalho et al. 2013). The result of this study
suggested that the uncertainty, expressed as a relative
standard error of the chla mean, was higher in coastal
waterbodies than in lakes. As for Nordic rivers, chla
is an unsuitable metric (Annex X in Mischke 2016);
TP was used instead. It should however be noted that
TP is a supporting quality element in the classifica-
tion of rivers and does not alone fulfill the require-
ment of the WFD ecological status assessment. The
use of TP instead of yet relatively scarcely available
ecological metrics in most Finnish rivers can be jus-
tified by statistical connection proved between the
biological indicators and phosphorus concentrations
(e.g., Paisley et al. 2011). Additionally, TP in rivers is
intensively and regularly sampled, which allows for
feasible estimation of its variance components. The
TP class uncertainty in Finnish river waterbodies
varied in our study from 2 to 44%. The highest
uncertainties were observed in rivers with clay-
dominated catchment soils.

On average, the coastal chla assessment showed
slightly larger errors (10%) than the lakes (6%). This is
in line with the fact that coastal ecosystems, especially
in the northern Baltic Sea, are morphometrically and
hydrodynamically complex, and hence, the spatiotem-
poral variations are expected to be high (Kauppila 2007;
Borja et al. 2013). For lakes, it was difficult to draw any
clear conclusions about the variation between different
national lake types. On average, the lowest uncertainties
were within the shallow and medium-sized humic lakes
and the highest uncertainties on the other hand within
the shallow, low-humic and very humic lakes. The river
TP means were classified with a high degree of confi-
dence and a low error. However, the overall uncertainty
varied substantially between the river types. In general,
the size and the soil of the catchment area have been
shown to be significant factors producing differences in
TP variation (Vuorenmaa et al. 2002).

Table 3 Result of the statistical decision chain analysis (Fig. 7)
showing the number of Finnish lakes, coastal, and river
waterbodies for which the sampling effort is sufficient or should
be increased in the light of precise metric mean. Expressed in
lakes, coastal, and river waterbodies and in chla or TP status
classes

More sampling needed Sampling sufficient Total

Lakes 111 50 161

High 12 27 39

Good 34 12 46

Moderate 48 6 54

Poor 10 3 13

Bad 7 2 9

Coastal 26 12 38

Good 3 3

Moderate 17 9 26

Poor 6 3 9

Rivers 27 46 73

High 1 16 17

Good 8 12 20

Moderate 5 6 11

Poor 12 6 18

Bad 1 6 7

Total 165 108 272
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Comparing the different uncertainty components, the
unexplained random variation (residual error) was often
the most dominant source of variability. For rivers, the
residual variation was high (up to 67%), which is in
accordance with the general understanding that the riv-
erine nutrient concentrations are highly correlated with
other sources than just temporal variability (such as the
weather and water flows). The results of this study
suggest that, in coastal waterbodies with a single sam-
pling site, the annual variation was a larger source of
uncertainty than the between-month variation. The
intra-annual variation already reduces as the classifica-
tion scheme accounts only for a short period of time
(between July and early September). For river TP, the
largest source of uncertainty was the between-month
variation and this occurred in all river types which is
in line that riverine nutrients are highly variable
(Edwards and Withers 2008; Tattari et al. 2017). In
coastal waterbodies, which in general are very dynamic
systems, the site variation did not occur as dominant as
would have been expected. Especially concerning the
outer waterbodies, this is, firstly, because of the relative-
ly sparse monitoring network, and, secondly, because of
the patchiness of phytoplankton biomasses in open and
coastal marine waters (see Reinart and Kutser 2006;
Harvey et al. 2015). In contrast, the between-site varia-
tion was a large source of uncertainty for the lakes with
more than a one sampling site. Our results contradict the
results of the sampling experiment done for selected
European lakes (Thackeray et al. 2013) where increas-
ing the number of open water sampling stations visited,
or the number of samples collected at each station, did
little to improve the precision of ecological assessments
based upon the phytoplankton metrics.

If the variance components had been disregarded and
the error of the mean had been calculated from the data
using the sample standard deviation, the uncertainty
would have been grossly underestimated. When testing
this for a single lake, Lake Lentua, the summertime
monthly variation was the most prominent (59%) and
the estimated standard error was 24%. However, the
error was only 10% when calculated from the sample
data and ignoring the temporal variance. This highlights
the fact that, to gain realistic uncertainty estimates for
status classifications, the different sources of variation
have to be accounted for. If the indicator variance is
wrongly determined (usually underestimated, as
discussed), or not determined at all, it gives a false
impression of the confidence and precision of the

indicator. This can lead to insufficient judgements when
making decisions about the management actions.

The surface water monitoring programs in Finland
and in other EU member states have been evolving with
the requirements of the WFD. However, the long tradi-
tions and the large number of waterbodies have led to
challenges for planning and optimizing the monitoring
schemes. Additionally, the ongoing pressure to reduce
or optimize monitoring resources calls for systematic
examination for better monitoring allocation. However,
it is impossible to change the monitoring scheme to
become more adaptive unless there is a sound scientific
foundation to rely on. Besides expressing the status class
uncertainty as probabilities, the information of the dif-
ferent sources of uncertainty can be utilized also in
planning and optimizing monitoring programs (Gitzen
et al. 2012). Although a lot of research has been con-
ducted on the quantification of the different variance
components, less research has been carried out to apply
this knowledge to improve the monitoring designs. The
need for improving the monitoring programs was ac-
knowledged in the context of evaluating the success and
challenges obtained from the implementation process of
the WFD (Birk et al. 2012; Hering et al. 2010). In
assessing coastal status based on macrophyte index,
Cavallo et al. 2016 concluded that there are alternative
ways to perform the monitoring in respect to its spatial
and temporal coverage without losing the confidence of
the classification. Similar approaches have been
conducted by Thackeray et al. (2013) and Carvalho
et al. (2013) for lake phytoplankton and Clarke (2013)
for river macroinvertebrates.

When the most dominant sources of uncertainty and
total error have been identified and quantified with
variance components, this information can be used for
allocating the sampling effort so that the overall uncer-
tainty is reduced. The practical guidance demonstrated
in this study and in some earlier studies (e.g., Clarke and
Hering 2006; Clarke 2013; Carstensen and Lindegarth
2016) helps the decision maker to enhance the monitor-
ing resources. The sample size directly affects the stan-
dard error of the mean and the probability distributions,
thus the confidence of the status class. In practice, the
results suggest that, for coastal waterbodies, the confi-
dence levels can be improved by ensuring annual sam-
pling, whereas, for lakes, higher confidence would re-
quire more sampling sites within a lake waterbody.
Following the suggested practical steps towards improv-
ing the monitoring design, one should analyze the
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variance components on the level of waterbody types or
waterbodies and not only rely on generalizations. The
confidence of classification depends also on which sta-
tus class the metric mean assigns the waterbody to. Our
results show that, for many waterbodies, the confidence
of estimating good and moderate status was low. Previ-
ous studies have shown that, near the class level bound-
aries, the confidence is low (Kelly et al. 2009). Also, the
width of status class has an effect on the confidence of a
class. For narrower classes, the uncertainties and the
probability of misclassification are higher (Clarke
2009, Kelly et al. 2009 and Mascaró et al. 2013). The
higher variation in the middle classes (moderate and
good) stems also from the wide range of natural condi-
tions within these classes that can either favor or hamper
chla and TP levels. More emphasis should be placed
when operating especially within the critical good and
moderate status classes. Equally important would be to
start identifying the unknown sources of uncertainty in
status assessments to further improve the reliability of
the classification results.

TheWFD-related phytoplankton sampling frequency
is typically 1–6 times per year in the Nordic lakes
(Poikane 2009, Carvalho et al. 2013) and 2–18 times
per year in Finnish coastal waters (Korpinen 2014). For
river TP at least fortnightly-monthly sampling is recom-
mended in the WFD guidance (Anonymous 2003b).
However, the minimum monitoring frequencies quoted
in the Directive may not be adequate or realistic, espe-
cially for transitional and coastal waters due to higher
variability and heterogeneity of most marine systems
(Anonymous 2003b). Our analysis was conducted using
data from the most frequently monitored Finnish
waterbodies and according to WFD guidance. Even
though part of the spatiotemporal variation could be
covered, it was still impossible to estimate many of the
possible uncertainty components from these data. For
example, the spatial within waterbody variance, which
can be high especially for chla, was impossible to derive
from data with only one sampling site. In addition,
longer datasets should be analyzed for filtering the pos-
sible trends from the time series. On the other hand, the
studied metrics, chla and TP, do not represent the overall
ecological status that is derived from several quality
elements composed of multiple metrics. In the WFD
classification, the individual metric values are scaled to
Ecological Quality Ratios (EQR) to allow comparability
between different assessment methods. EQR implicitly
includes information about the reference conditions;

therefore, it might lead to added (and unknown) uncer-
tainty. In addition, aggregating the data to EQR level
might add bias as has been discussed, e.g., in Carstensen
and Lindegarth 2016. Hence, the status assessment in
this study refers only to a computational, sample-based
class of chla or TP, which are single metrics of phyto-
plankton quality element or supporting element of eco-
logical classification. The statistical methods described
here are applicable to other biological variables, such as
macrophytes and phytobenthos, as well, but the moni-
toring of these quality elements is even sparser than for
phytoplankton. The reason for this is partly because of
the WFD monitoring is established for multiple pur-
poses and objectives requiring numerous variables to
be measured in different spatial and temporal scales.

Conclusions

This study is among the fewmaking an effort to estimate
systematically the precision and confidence of status
class metrics and using this information for reallocating
the sampling effort of an ongoing monitoring program.
Here, we presented a practical method to analyze the
variance components that build up the uncertainty of
status assessment and the probability of reporting the
correct status class. Our results showed that, for many
waterbodies, the overall uncertainty was not well cap-
tured by the year-to-year, monthly or sampling location
variations, but the largest variance component was often
the residual variation. This indicates that some impor-
tant sources of uncertainty were left ignored. In order to
identify these, one should include more explanatory
variables in the model as presented earlier, e.g., by
Carstensen and Lindegarth (2016) and Malve et al.
(Malve 2007). Frequency and coverage of monitoring
designs should be systematically and iteratively evalu-
ated with objectives that serve the river basin manage-
ment planning. Moreover, in the future, the monitoring
programs should combine different data sources, includ-
ing not only the traditional water sampling but also the
satellite data and automatic sensors. Combining such
data can be implemented using spatiotemporal interpo-
lation and Kalman filtering techniques (Cressie and
Wikle 2011). This would provide more information for
the assessments of the different sources of uncertainty.
Especially, the spatial coverage and variation, which
turned out to be significant source of classification un-
certainty, would be better accounted for.
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