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Automated machine learning (AutoML) systems aim at finding the best machine learning (ML)
pipeline that automatically matches the task and data at hand. We investigate the robustness of
machine learning pipelines generated with three AutoML systems, TPOT, H2O, and AutoKeras. In
particular, we study the influence of dirty data on accuracy, and consider how using dirty training
data may help create more robust solutions. Furthermore, we also analyze how the structure of the
generated pipelines differs in different cases.

1 Introduction

Automated machine learning (AutoML) systems are used to find the best machine learning (ML) pipeline
matching the task and data at hand, typically classification or regression. This includes model selec-
tion and hyperparameter optimization. Finding good models and hyperparameters are hard and time-
consuming tasks for human experts, and they frequently involve a lot of trial-and-error experimentation.
The promise of AutoML is that computers can automate these repetitive tasks and come up with good
pipelines with little human effort. The drawback is that AutoML systems require a lot of computing
power and the quality of the results varies. A recent overview of different AutoML systems [15] echoes
these issues.

In this paper, we investigate the robustness of ML pipelines produced by AutoML mechanisms. Our
focus is on user-friendly AutoML systems, which do not require prior knowledge about the data, algo-
rithm choices, or hyperparameter spaces. For critical use cases, it is not enough that AutoML produces
pipelines with accurate inference results. It is also important that the resulting pipelines tolerate faults,
e.g. Gaussian noise, in data. At the moment AutoML is in an early phase and there seem to be no prior
studies focusing on the robustness of their results. As AutoML gains maturity and ML systems are ap-
plied in safety-critical tasks deeper understanding of the robustness of the resulting systems is important.
This paper is an early step towards that direction.

When building AI systems for robots and other autonomous devices, one consideration is their ro-
bustness against unexpected inputs, which commonly occur as a result of hardware or other problems
in sensing and communication. Another class of unexpected inputs, which is outside of the scope of
the present paper, is adversarial attacks, which aim for minimum input changes able to confuse the ML
algorithms.

Recently there have been many papers comparing the performance of different AutoML systems [1,
15, 4]. Likewise, several papers discuss robust training of neural networks and vulnerability to adversarial
inputs [9, 14, 10, 16]. Our study combines these two perspectives. More precisely, we measure the
robustness of three different AutoML systems (TPOT [12], H2O AutoML [5], and AutoKeras [7]) with
artificial inputs where we can control the type and amount of faults in the training and testing data. Our
focus is on how dirty data, which arise if e.g. the camera of a robot is tilted or the lens is covered with
dust, affects the performance. In particular, we focus on the following questions:
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• How accurate are the AutoML generated models when testing with dirty data (Section 4.1.1).

• What effect would training with on-purpose dirty data have on model accuracy? (Section 4.2.1).

• How similar/different pipelines do the different AutoML tools produce in the above cases? (Sec-
tions 4.1.2 and 4.2.2)

• How do the results vary as a function of the amount of faults in the testing data? (Sections 4.1 and
4.2)

• What AutoML systems to recommended for different use cases? (Section 4.3)

In the scope of this paper, we study the three AutoML systems (TPOT, H2O, AutoKeras) in the
presence of data faults in training and/or testing data. Our experiments are built using dpEmu fault
injector framework [11], which makes running such experiments easy. We control the amount of faults
in the data and use two of the fault sources provided by dpEmu, namely Gaussian noise and rotation.
Our testing focuses on image classification tasks. We use six different data fault levels with each data
fault source and two different image datasets, namely Digits [13] and Fashion [17].

The structure of the paper is as follows. Section 2 gives background of AutoML systems. It also
introduces the AutoML systems we study in this paper and the criteria for their selection. In Section 3,
we discuss how the measurements were conducted and describe the used datasets and the faults generated
to them. The results are presented in Section 4 and their meanings discussed in Section 5. Finally, we
present our conclusions in Section 6.

2 AutoML systems

AutoML systems are meta-level machine learning algorithms, which use other ML solutions as building
blocks for finding the optimal ML pipeline. In this context, an ML pipeline means the set of algorithms
and their hyperparameters that the ML system uses to infer results from data. An AutoML system
has to consider multiple ML pipelines and search values for their parameters. It needs to optimize
each candidate pipeline to an adequate level but also ensure that enough time and resources are used
to experiment with alternative pipelines. As a result, using AutoML systems can consume a lot of
computing resources.

Typical tasks that many AutoML systems support are classification and regression. In various exam-
ples and benchmarks, typically image or text data are used. Some AutoML system like AutoKeras [7]
even offer specialized image and text classifiers. Image data is usually easy to handle as a pixel array,
with an integer value for each pixel, is used to represent each image. Pretty much all classification sys-
tems support this kind of input out of the box, and not much preprocessing is required. Unfortunately,
this is not the case with text data, as it comes in many shapes. One dataset might be a list of strings and
another a preprocessed dataset, where each string is represented as a sequence of integers representing
the overall frequency in the data. While some AutoML systems like TPOT [12] and H2O AutoML [5]
accept numerical arrays as inputs and do not care what the numbers represent, for example, AutoKeras
has only specialized classifiers for image and text data. Because AutoKeras’s text classifier only accepts
text data as a list of strings and uses a built-in preprocessor, fair comparison to other more general Au-
toML systems may prove difficult. Therefore, we have left out the text data and only focus on image
recognition in our study.

In this paper we study three different AutoML systems: TPOT, H2O, and AutoKeras. These were
chosen because:
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• All three provide a simple Python API and basic use requires only a few lines of code, which
makes them easy to include in our benchmarks.

• These three are different enough in their approach to constructing the optimal ML pipeline. They
also use different ML library backends.

• Unlike some of the available AutoML systems, with these three no previous knowledge of the data
is required and no search space for the models and hyperparameters needs to be specified making
them easy tools also for casual users.

Other free to use and open-source AutoML systems include MLBox 1 with required user-defined
search spaces, auto-sklearn [3], which is similar to TPOT, and TransmogrifAI 2, which uses Apache
Spark. Widely used cloud providers, such as Google Cloud, support AutoML 3, but, as part of the cloud
business model, they are usually closed source and not free to use.

2.1 TPOT

TPOT [12] is a tree-based pipeline optimization tool. It uses the scikit-learn library [13] as the ML
backend, and the classification models used include several models (Naive Bayes, Random Forest, Gra-
dient Boosting, Linear SVC, Logistic Regression, etc.) from scikit-learn and the XGBoost classifier [2].
Aside from the actual ML models, the pipelines that TPOT creates can contain for example scalers, fea-
ture selection techniques, dimensionality reduction techniques, and other preprocessors [12]. TPOT uses
genetic programming to evolve the pipeline sequence and hyperparameters to optimize certain criteria,
like classification accuracy [12]. Inspecting the code reveals that TPOT uses predefined hyperparameter
spaces for each model it considers. 4 TPOT offers no GPU support.

2.2 H2O

H2O AutoML [5] is a small and new part of the H2O.ai ML platform 5. H2O’s core code is written
in Java, but a Python API is also provided. H2O AutoML supports the training of Stacked Ensemble
models, which are collections of individual models. These Stacked Ensemble models are constructed
by a meta learner called Super Learner [8] with a goal of combining a diverse set of different, base or
optimized, models together.

The base models that H2O supports are Generalized Linear Models (GLM), Distributed Random
Forests (DRF), XGBoost, Gradient Boosting Machines (GBM), and Deep Learning (NN). The hyperpa-
rameters used are chosen from a predefined search space using grid search. It seems that H2O chooses
from 3 different options. It may use just one of the base models or their hyperparameter-optimized ver-
sions. It can also choose a Best Of Family Stacked Ensemble model, which includes one model from
each category. The last option available is the All Models Stacked Ensemble pipeline, which can be very
long. These three make up quite different choices for the best pipeline and in case of an easy dataset,
with high accuracy.

Unlike the other two AutoML systems, H2O uses its own backend, which runs as a Java process.
H2O offers a very limited GPU support: only XGBoost models can be trained with GPU, others are
limited to CPU.

1https://github.com/AxeldeRomblay/MLBox
2https://transmogrif.ai/
3https://cloud.google.com/automl/
4https://github.com/EpistasisLab/tpot/blob/master/tpot/config/classifier.py
5https://www.h2o.ai/

https://github.com/AxeldeRomblay/MLBox
https://transmogrif.ai/
https://cloud.google.com/automl/
https://github.com/EpistasisLab/tpot/blob/master/tpot/config/classifier.py
https://www.h2o.ai/
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2.3 AutoKeras

AutoKeras builds a deep learning neural model for your task and data. It optimizes both architecture
and hyperparameters using neural network morphism guided by Bayesian optimization to select the
most promising operations at each stage [7]. First, in each stage, the underlying model is trained with
the proposed architecture and its performance is measured. Then, a new architecture is generated by
optimizing an acquisition function. Finally, the performance of the new architecture is evaluated by
training and testing the actual neural network. It uses Tensorflow, Keras and Torch backends. While
TPOT and H2O do not support GPUs, AutoKeras offers full GPU support.

One of the interesting features of AutoKeras image classifier is the option to augment the train data
to prevent overfitting and possibly increase robustness. [7] It uses random crops, random horizontal flips,
and cutouts for data augmentation.

3 Research Approach

For performing the measurements, we have used parts of the dpEmu framework [11], a software frame-
work for emulating common problems in data, testing the robustness of ML systems, and visualizing the
results. The essential idea is that the system generates artificial faults to datasets according to predefined
or user-defined fault models. The script run.py, that is used to run our benchmarks can be found in our
repository [6]. It first creates different versions of the dataset at different data fault levels, given the data
fault source. Then the benchmarked model is trained with different versions of the training data in a loop
and after each step, the model is tested with all versions of the test data.

A total of twelve benchmarks were run for each model ranging from 15 mins to 6 hours. For the
Digits dataset, the six benchmarks were 15 min, 30 min and 1 hour for both data fault sources. For
the Fashion dataset, the six benchmarks were 1 hour, 3 hours and 6 hours for both data fault sources.
This is the time available for each AutoML system to find and train the optimal classification pipeline.
Notice that the images in the Digits dataset are too small in resolution for AutoKeras, so these results are
unavailable.

3.1 Test setup

All the CPU-only benchmarks used in our testing were run on the University of Helsinki’s Kale cluster
using Intel Xeon E5-2680 v4 CPU’s and a total of 40 cores with more than enough RAM. The bench-
marks utilizing GPUs were run with a single Nvidia Tesla v100 GPU.

For TPOT and H2O we used the latest version available at the time of writing. For AutoKeras we
used a slightly older but stable version 0.4.0, which may not have all the features of the newer versions,
but enables us to set a time limit to benchmark the system properly with the others. The particular
versions for the key components of our test system were: Python 3.7.0, Java 11.0.2, AutoKeras 0.4.0,
H2O 3.28.0.3, TPOT 0.11.1, XGBoost 1.0.1, CUDA 10.0.130 and cuDNN 7.5.0.56.

3.2 Datasets

Two datasets, Digits and Fashion, of different sizes were used. The smaller dataset is the Digits dataset
[13]. It consists of 1797 8x8 grayscale images of handwritten digits. The pixel values fall in range
0, . . . ,16. It was chosen because it is lightweight enough even for the heavier AutoML systems enabling
them to optimize the pipelines more instead of just struggling to find a decent solution. The larger dataset
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is the Fashion-MNIST [17] dataset, consisting of 70000 28x28 grayscale images of Zalando’s articles.
The pixel values are in the range 0, . . . ,255. It has been created as a more difficult replacement for the
famous MNIST dataset, mainly because MNIST classification is too easy for modern ML algorithms.
Like the Digits dataset, it contains images of articles from 10 different classes, 7000 each. With Digits
and Fashion, 1/4 and 1/7 of the dataset were reserved for testing and the rest for training, respectively.

The key idea is to compare the large Fashion dataset with its big number of good training images with
the small set of Digit training data. We especially want to see how fast the smaller training data becomes
useless because of the lack of good training images when the amount of faults in the data increases.

3.3 Data fault sources

We used both Gaussian noise and image rotation as data fault types. Figure 1 shows examples of both
fault types for both datasets. Both sources generate random faults. This means that even at high error
levels it is possible but highly unlikely to get near original images. Notice also that the ranges of pixel
values are different in the two datasets as described in Section 3.2. Six predefined data fault levels are
used for both noise and rotation, including the clean level 0, with standard deviation and maximum angle
as the data fault parameters respectively.

The reason for choosing these two was that while Gaussian noise effectively destroys parts of the
information about the true label from the image, whereas, at least for the human eye, rotating the image
makes little difference to the shape of its object.

3.4 Metrics

Our primary metric for image classification is the accuracy score when comparing predicted and true
labels. The accuracy score was chosen over the F1-score because there are no imbalanced classes in
either of the datasets.

3.5 Validity and limitations

To make the comparison fair, the following points have been considered:

• We focus on image classification because, unlike text processing, it is done in rather similar ways
in all three systems. Text data would have required preprocessing for TPOT and H2O while Au-
toKeras would automate it.

• We conduct the testing using time limit based categories in a way similar to other studies [4].
Otherwise, the runtimes would vary greatly and the results would be more dependent on the default
parameters.

• We allocated all computing resources to work on one model with one fault type at a time.

• We allowed only some of the initialization parameters to be fixed. Such parameters include time
limits, random seeds, the parameters enabling the model to use more CPUs or RAM, and the
parameters used to modify logging output.

• AutoKeras benefits significantly from the GPU use and has a optional feature for image augmen-
tation. Thus we used three different versions for AutoKeras, namely CPU, GPU and GPU with
image augmentation.
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(a) Digits image with different levels of Gaussian
noise

(b) Digits image with different levels of random ro-
tation

(c) Fashion image with different levels of Gaussian
noise

(d) Fashion image with different levels of random
rotation

Figure 1: Example images from Digit and Fashion datasets using different data fault sources at different
data fault levels

The accuracy of AutoKeras GPU version results varied a lot form one run to the other in comparison
to the other tested systems. Therefore, we report the accuracy results for AutoKeras as average over two
runs for each benchmark.

Though the two image dataset are quite different regarding to both image and dataset sizes, they are
still quite similar with single item in each image. In a future work, a more realistic dataset with colors
could also be included.

4 Results

In this Section, unless otherwise mentioned, for noise source std is fixed at the second level, meaning
6.4 for the Digits dataset and 102 for the Fashion dataset. For rotation source maximum angle is fixed at
the last data fault level corresponding to 180 degrees for both datasets, meaning all possible rotations are
equally likely. Complete results are available at our GitHub repository [6].



T. Halvari et al. 109

Table 1: Summary of best accuracy results per model for both datasets, given the training and testing
data fault sources at a fixed data fault level.

Dataset Digits Fashion
Training data Clean Noise Rotation Clean Noise Rotation
Testing data Clean Noise Rotation Clean Noise Clean Rotation Clean Noise Rotation Clean Noise Clean Rotation
AutoKeras CPU - - - - - - - 0.914 0.205 0.250 0.836 0.819 0.820 0.807
AutoKeras GPU - - - - - - - 0.925 0.283 0.244 0.833 0.812 0.839 0.829
AutoKeras GPU with Aug. - - - - - - - 0.945 0.159 0.278 0.744 0.851 0.881 0.877
H2O 0.987 0.676 0.289 0.973 0.842 0.887 0.838 0.905 0.449 0.233 0.838 0.821 0.805 0.792
TPOT 0.987 0.887 0.373 0.951 0.838 0.891 0.853 0.882 0.492 0.236 0.801 0.782 0.760 0.760

Table 2: Summary of the effect of time to accuracy when both training and testing with clean data.

Digits Fashion
Benchmark 15 min 30 min 1 h 1.5 h 3 h 6 h
AutoKeras CPU - - - 0.887 0.912 0.912
AutoKeras GPU - - - 0.908 0.921 0.916
AutoKeras GPU with Aug. - - - 0.928 0.933 0.930
H2O 0.984 0.986 0.982 0.902 0.902 0.905
TPOT 0.985 0.985 0.987 0.876 0.879 0.882

4.1 How good are AutoML generated models with clean training data?

4.1.1 Accuracies

Let us start by comparing the five AutoML systems when both training and testing is done with clean
data. The accuracy results for both datasets can be found in Table 1. They report the maximum accuracy
of the six runs with different maximum execution times (typically longer execution times improved the
results but not always, see Tables 2 and 4).

Let’s for now focus just on the columns with clean training and testing data. For the Digits dataset,
it seems that both H2O and TPOT are equally good. On the other hand, with the Fashion dataset, all
AutoKeras versions seem strong and data augmentation seems to help with accuracy. H2O seems to beat
TPOT slightly.

The results for the effect of benchmarking time to the accuracy when both training and testing with
clean data can be seen in Table 2. When looking at the accuracy transitions from 1.5 h to 3 h with the
larger Fashion dataset, AutoKeras CPU and AutoKeras GPU with image augmentation seem to require
more time to reach the optimal performance, when compared to the other three test cases. Especially
the CPU version of AutoKeras seems to struggle in creating a neural network with CPU resources only.
When testing, AutoKeras CPU with image augmentation enabled did not seem viable at all so GPU
training seemed to be the only option.

Let’s then move our focus to the columns with clean training data and dirty testing data in Table 1.
With the Digits dataset, TPOT seems to beat H2O when the test data fault source is noise and also when
it’s rotation. Thus it is interesting to see that the accuracies are pretty even with the Fashion dataset
although in Figure 2a there seems to be a wide difference. We have to remember that the values in Table
1 are the best values among the three benchmarks with noise as the data fault source for each model. The
difference can be explained by looking at Table 3. As we can see, in shorter Fashion benchmarks with
noise as the data fault source, H2O sometimes has only time to run the XGBoost models, which seems
to give better accuracies at higher test data fault levels with noise as the data fault source [6], thus being
more robust than the longer Stacked Ensemble pipelines. With the small Digits dataset, H2O seemed to
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Table 3: Summary of the effect of time to the best pipelines per model given the training data. The results
in parentheses are from alternative runs.

Training
data

Digits Fashion
15 min 30 min 1 h 1.5 h 3 h 6 h

AutoKeras
Clean - - -

CNN
16 (16) layers

CNN
66 (66) layers

CNN
67 (67) layers

Noise - - -
CNN
16 layers

CNN
66 layers

CNN
67 layers

Rotation - - -
CNN
16 layers

CNN
66 layers

CNN
483 layers

AutoKeras
GPU

Clean - - -
CNN
69 (483,483,483)
layers

CNN
68 (69,70,77)
layers

CNN
68 (70,483,483)
layers

Noise - - -
CNN
68 (69) layers

CNN
483 (483) layers

CNN
80 (483) layers

Rotation - - -
CNN
483 (483) layers

CNN
71 (483) layers

CNN
77 (79) layers

AutoKeras
GPU
with Aug.

Clean - - -
CNN
66 (66,66,66)
layers

CNN
69 (69,70,483)
layers

CNN
72 (79,483,483)
layers

Noise - - -
CNN
66 (66) layers

CNN
66 (67) layers

CNN
483 (483) layers

Rotation - - -
CNN
66 (66) layers

CNN
483 (483) layers

CNN
71 (483) layers

H2O
Clean

StackedEnsemble
BestOfFamily
6 models
(AllModels
75 models)

StackedEnsemble
BestOfFamily
6 models
(AllModels
192 models)

StackedEnsemble
AllModels
296 (341)
models

XGBoost
(StackedEnsemble
AllModels
6 models)

XGBoost
(StackedEnsemble
AllModels
15 models)

StackedEnsemble
AllModels
25 (30)
models

Noise
StackedEnsemble
AllModels
72 models

StackedEnsemble
AllModels
91 models

StackedEnsemble
AllModels
135 models

StackedEnsemble
SE AllModels
3 models

StackedEnsemble
BestOfFamily
4 models

StackedEnsemble
AllModels
28 models

Rotation StackedEnsemble BestOfFamily 6 models XGBoost
StackedEnsemble
AllModels
4 models

StackedEnsemble
AllModels
24 models

TPOT
Clean

LogisticReg.
+DT clf
+KNN clf
(same)

RF clf+2 models
+KNN clf
(GB clf+2 models
+KNN clf)

GB clf
+KNN clf
(same)

RF clf (same)

Noise KNN clf
MultinomialNB+
KNN clf

LinearSVC
OneHotEncoder
+KNN clf

Rotation
GB clf
+RF clf
+KNN clf

ET clf
+KNN clf

GB clf
+5 models
+KNN clf

KNN clf RF clf
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(a) With noise as the data fault source and clean
training data.

(b) With rotation as the data fault source and clean
training data.

(c) With noise as the data fault source and dirty
training data.

(d) With rotation as the data fault source and dirty
training data.

Figure 2: Accuracy plots for the 6 h benchmark with the Fashion dataset when testing at different data
fault levels given the data fault source and training data.

have ample time.
Moving again to the Fashion dataset, in Table 1 AutoKeras’ different versions seem to perform worse

when compared to H2O and TPOT when the data fault source is noise. Especially AutoKeras GPU with
image augmentation enabled shows poor performance. We can see in Figure 2a that this is true even
at the higher test data fault levels. In the same Table, all of the benchmarked systems seem to perform
equally with rotation as the data fault source. Though in Figure 2b we can see that AutoKeras GPU
with image augmentation seems to pull ahead of the competition at higher test data fault levels. This is
probably due to that the image augmentation process includes some rotations, as mentioned in Section
2.3.

4.1.2 Pipelines

The results for the optimal pipelines can be found in Table 3. When inspecting only the rows with
clean training data we can see a few things. Looking at the pipelines for AutoKeras’ different versions
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and the model summaries in the repo [6], we can see that it prefers very similar pipelines in different
benchmarks, which are shared even between different versions of AutoKeras used in our tests. It also
seems to mainly use one of three base pipelines of different lengths. As the training time increases, the
possible modifications to these pipelines and the hyperparameters seem to appear at the end, and with
the longer benchmarks, we can see a few layers being added to the end of the base pipelines. Looking at
H2O’s pipelines we can see that the length of the pipeline varies even more than with AutoKeras, ranging
from 6 to 341 models for the Digits dataset and from 1 to 30 models for the Fashion dataset.

For H2O, we can see some of the Stacked Ensemble models explained in Section 2.2 and some
pipelines based on a single model. The presence of a single XGBoost classifier among the Stacke-
dEnsemble models can be explained by looking at the H2O log files in our repo [6], which show that
H2O moves to the other base models discussed in Section 2.2 only after all base XGBoost models have
been tested. Also, the training of all the XGBoost models takes most of the runtime. So if the benchmark
time is limited, the XGBoost classifier could be the only option. For TPOT the choice of the dataset
seems to affect the chosen pipeline. With the Digits dataset, TPOT seems to like the K-Neighbors clas-
sifier. With the Fashion dataset, Random Forest classifier seems to be the only choice.

4.2 How good are AutoML generated models with dirty training data?

4.2.1 Accuracies

Let’s first consider the columns with dirty training data and clean testing data in Table 1. With the Digits
dataset, H2O and TPOT seem to perform quite similarly with both data fault sources when training
with dirty data, using parameters explained in the beginning of Section 4. With the Fashion dataset and
rotation as the data fault source, AutoKeras GPU with image augmentation is the clear winner as can be
seen in Table 1, but unfortunately seems to be the worst with noise.

(a) With noise as the data fault source. (b) With rotation as the data fault source.

Figure 3: Accuracy plots for the 1 h benchmark with the Digits dataset when testing at different data
fault levels given the data fault source.

Let’s then compare the five AutoML systems when both training and testing is done with dirty data.
With the Digits dataset, H2O and TPOT seem to perform quite similarly with both data fault sources
when testing with dirty data at different data fault levels, as can be seen in Figures 3a and 3b with maybe
H2O having a slight edge at mid-levels when rotation is the source.
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Table 4: Summary of the effect of time to accuracy when both training and testing with dirty data.

Training data
fault source

Digits Fashion
15 min 30 min 1 h 1.5 h 3 h 6 h

AutoKeras CPU
Noise - - - 0.782 0.819 0.815
Rotation - - - 0.725 0.795 0.807

AutoKeras GPU
Noise - - - 0.807 0.812 0.812
Rotation - - - 0.810 0.821 0.829

AutoKeras GPU with Aug.
Noise - - - 0.837 0.851 0.845
Rotation - - - 0.860 0.848 0.877

H2O
Noise 0.842 0.840 0.840 0.796 0.799 0.821
Rotation 0.820 0.838 0.818 0.781 0.788 0.792

TPOT
Noise 0.827 0.827 0.838 0.776 0.776 0.782
Rotation 0.818 0.853 0.844 0.737 0.737 0.760

Table 5: Summary of the optimal pipelines for TPOT given the dataset and training data fault source and
level.

Dataset
Training data
fault source

Data fault level
0 (clean) 1 2 3 4 5

Digits
Noise

GB clf
+KNN clf

KNN clf
MultinomialNB
+KNN clf

MultinomialNB
MultinomialNB
+KNN clf

ET clf
+MultinomialNB

Rotation
GB clf
+KNN clf

GB clf
+MultinomialNB
+KNN clf

GB clf
+KNN clf

GB clf
+KNN clf

RF clf
+ET clf
+KNN clf

GB clf
+5 models
+KNN clf

Fashion
Noise RF clf XGB clf

OneHotEncoder
+KNN clf

LinearSVC
LinearSVC
+ GB clf

LinearSVC

Rotation RF clf

When looking at the same results for the Fashion dataset and rotation in Figure 2d, we can see that
the accuracies do not really drop as the data fault level increases as all possible rotations are covered with
the huge set of training data. AutoKeras GPU with image augmentation seems to be the clear winner here
while TPOT clearly performs the worst. With noise, all AutoKeras versions seem to struggle at higher
data fault levels, where TPOT seems to excel, as can be seen in Figure 2c. Furthermore, AutoKeras GPU
with image augmentation has a peculiar performance. The accuracy on the test data seems to peak at the
level that was used on the training data, clearly lacking robustness with bad scores at both ends.

The results for the effect of benchmarking time to the accuracy when both training and testing with
dirty data can be seen in Table 4. With the Digits dataset, while H2O’s scores seem to have stabilized
after 15 min, TPOT might need more time to reach the optimal results. With the Fashion dataset, 1.5 h
clearly is not enough for AutoKeras CPU. This can also be seen from Table 3, which shows that after 1.5
h, the CNN has only 16 layers. The rest of the tested systems show minor improvements with time.

4.2.2 Pipelines

When comparing the pipelines that the tested systems produce, we can see from Table 3, and from the
model summaries in the repo [6], that the general pipelines for AutoKeras’ versions and H2O do not
change that much, even though H2O has its issues with the large dataset and short benchmark time. With
TPOT, the preferred pipelines tend to change a lot more based on the dataset and the data fault source.
With the smaller Digits dataset, if rotation is the source, TPOT seems to favor the K-Neighbors classifier
as part of the pipeline as can be seen in Table 5. This is also true with noise as the source if the data
fault level is low. With higher levels of noise in the training data, Multinomial Naive Bayes seems to be
the preferred choice. Regarding the larger Fashion dataset, with noise as the data fault source, Logistic



114 Testing the Robustness of AutoML Systems

Regression seems to be the model of choice at higher data fault levels. On the other hand, with rotation,
TPOT seems to use a Random Forest classifier at all levels.

4.3 Recommendations and comparison

To begin with, the following recommendations for different use cases can be made, based on the results
above:

– When both training and testing with clean data, AutoKeras GPU with image augmentation seems
to be the clear winner but requires a lot of time and computing power.

– When training with clean data and testing with dirty data, due to the inconsistencies of H2O with
shorter training times, TPOT would be the optimal choice when noise is the data fault source.
With rotation, AutoKeras GPU with image augmentation would be the top choice because of good
performance with both clean and very faulty test data.

– When training with dirty data and testing with clean data, while AutoKeras GPU with image
augmentation is the clear winner with rotation, whereas with noise there is no clear winner. H2O
seems to best TPOT with both datasets, but equal the performance of the two other AutoKeras
versions with Fashion.

– When both training and testing with dirty data, TPOT seems to be the winner when noise is the data
fault source because of its constantly good performance even at high data fault levels. AutoKeras
GPU with image augmentation is once again the clear winner with rotation.

Given the test data fault source, with the larger datasets like Fashion, where good training images are
plenty, training with dirty data is in most cases the better option with both data fault sources as can be
seen when comparing the plots for each model in Figures 2a and 2c for noise, and Figures 2b and 2d for
rotation. This is also the case with the much smaller Digits dataset when using rotation as the data fault
source, as can be seen in Figure 3b. However, with noise, training with dirty data is not necessarily the
best option as can be seen in Figure 3a. In fact, training with dirty data seems to be the clear winner only
in H2O’s case. With TPOT the models seem to perform quite similarly at the mid and higher data fault
levels. The other exception to this rule, is obviously when we know that the test data is clean.

4.4 Resource usage

There were several differences in the resource usage between the three AutoML systems. With 40 cores
AutoKeras used almost 100% of the CPU resources available and around 8 GB of RAM. The two GPU
versions of AutoKeras used almost exclusively GPU and the same amount of memory.

H2O’s CPU usage was around 80% It typically used around 150GB with the larger Fashion dataset
when given 350GB of memory to use for the Java process. Some of the runs failed due to a segmentation
fault and had to be rerun.

We noticed that TPOT had trouble parallelizing some of the models it uses, and CPU efficiency was
around 30%. We observed times when only one core’s usage was maxed out. Regarding the RAM usage,
for TPOT around 30 GB was usually enough.
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5 Discussion

The authors of Fashion-MNIST report accuracy scores, with a similar train-test split, for several classi-
fiers and state-of-the-art Neural Networks (NNs). 6 The best reported score was 0.897 for basic classifiers
(SVC) and 0.967 for state-of-the-art NNs (WRN40-4). Looking at our best results with clean test data in
Table 1, even with dirty training data our best results compare quite well.

Regarding TPOT’s memory usage mentioned in Section 4.4, the official documentation of TPOT
includes a warning of possible memory issues when multiple cores are used [12]. We too noticed occa-
sional peaks to around 200 GB when testing with 96 cores. Others 7 have also noticed issues with ML
systems when using too many cores.

To explain the results from Section 4.3 related to the similar performance of models trained with
clean or dirty data with the smaller Digits dataset and noise, we have to consider the nature of the data
fault sources. When using data fault source like rotation, most information in the image is retained in
the data even at higher data fault levels. However, a data fault source like Gaussian noise destroys parts
of the information in the image, as can be seen in Figure 1a. Because the Digits dataset is small and the
random nature of Gaussian noise, we are left with only a few good training images, so training with dirty
data may not be the best choice after all. Also, the effects of Gaussian noise are particularly noticeable
with the Digits dataset, because we are using very low-resolution images as training data. Regarding the
larger Fashion dataset, there are still plenty good training images within the huge training dataset.

As for the results in 4.1 regarding AutoKeras’ bad performance with clean training data and dirty test
data, this is a known problem for neural networks as discussed in Section 1. In the image augmentation
enabled version’s case, it could be said that because of the random crops, horizontal flips, and cutouts
discussed in Section 2.3, the neural network becomes even more sensitive to certain data fault sources
destroying information from the data.

It is also known that AutoML systems can recommend alternative optimal solutions in different runs
for the same problem 8. We also observed this. The cause may be the tight time limits imposed on a
system with stochastic elements or just that two pipelines offer almost equal performance.

6 Conclusions

Based on the results, using training data, which contains examples of faults the system will encounter is
promising: accuracy with clean test data drops a bit but robustness increases a lot. We also noted that
different AutoML systems produce very different ML pipelines. TPOT even generated rather different
pipelines for clean, noisy, and rotated data.

Future work of exploring if our findings apply to not so similar datasets and different data fault
sources is important. Future AutoML tools may want consider robustness as an explicit optimization
goal. Perhaps the user could specify preferred trade-off between accuracy and robustness.
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